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Abstract
Background  Ulcerative colitis (UC) is a Th2 inflammatory bowel disease characterized by increased IL-5 and IL-13 expres-
sion, eosinophilic/neutrophilic infiltration, decreased mucus production, impaired epithelial barrier, and bacterial dysbiosis of 
the colon. Acetylcholine and nicotine stimulate mucus production and suppress Th2 inflammation through nicotinic receptors 
in lungs but UC is rarely observed in smokers and the mechanism of the protection is unclear.
Methods  In order to evaluate whether acetylcholine can ameliorate UC-associated pathologies, we employed a mouse 
model of dextran sodium sulfate (DSS)-induced UC-like conditions, and a group of mice were treated with Pyridostigmine 
bromide (PB) to increase acetylcholine availability. The effects on colonic tissue morphology, Th2 inflammatory factors, 
MUC2 mucin, and gut microbiota were analyzed.
Results  DSS challenge damaged the murine colonic architecture, reduced the MUC2 mucin and the tight-junction protein 
ZO-1. The PB treatment significantly attenuated these DSS-induced responses along with the eosinophilic infiltration and 
the pro-Th2 inflammatory factors. Moreover, PB inhibited the DSS-induced loss of commensal Clostridia and Flavobacteria, 
and the gain of pathogenic Erysipelotrichia and Fusobacteria.
Conclusions  Together, these data suggest that in colons of a murine model, PB promotes MUC2 synthesis, suppresses Th2 
inflammation and attenuates bacterial dysbiosis therefore, PB has a therapeutic potential in UC.
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Abbreviations
UC	� Ulcerative colitis
IBD	� Inflammatory bowel disease
PB	� Pyridostigmine bromide
DSS	� Dextran sodium sulfate
nAChR	� Nicotinic acetylcholine receptors

AChe	� Acetylcholine esterase
TJ	� Tight junction
ZO-1	� Zona occludin-1

Introduction

Ulcerative colitis (UC) is a chronic idiopathic inflamma-
tory bowel disease (IBD), where inflammation is mainly 
restricted to colon. The incidence of UC is steadily increas-
ing particularly in the Western world [1]. Although the exact 
etiology of UC is unclear, increasing evidence suggests that 
a combination of factors including genetics, environmental 
agents, immune dysregulation, gut barrier dysfunction, and 
dysbiosis of the gut microbiota influence the course of the 
disease [2, 3]. UC is rarely observed in smokers, as nico-
tine/nicotinic receptor agonists suppress colitis [4]; however, 
the mechanism by which cigarette smoke/nicotine sup-
presses the development of UC is unclear. UC is primarily a 
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Th2-mediated IBD associated with eosinophilic infiltration 
and overproduction of Th2 chemokines/cytokines including 
eotaxin (CCL11), IL-5, and IL-13 [5–7]. In animal models, 
activation of pulmonary nicotinic acetylcholine receptors 
(nAChRs) moderates eosinophilic infiltration through sup-
pression of Th2 responses [8]. In mammals, acetylcholine 
(ACh) is the only known biological ligand for nAChRs, and 
increasing evidence suggests that ACh and PB—the latter 
of which increases ACh by inhibiting acetylcholine esterase 
(AChE)—tend to protect against tissue injury [9, 10]. We 
and others have shown that nicotine, ACh, and the AChE 
inhibitor neostigmine bromide (similar to PB) promote 
mucus formation in human lung epithelial cells through 
α7-nAChRs [11, 12]. MUC2, the predominant mucin in the 
gut, plays a critical role in gut homeostasis, and MUC2-
deficient mice develop colitis spontaneously [13]; however, 
unlike MUC5AC in bronchial epithelial cells [14], IL-13 
does not always stimulate MUC2 [15]. UC also affects gut 
microbiota and the integrity of the epithelial barrier in the 
colon [2, 5, 6]; thus normal fecal microbial transplantation 
is a promising treatment for UC [16, 17]. As DSS has been 
found to induce UC-like conditions in a mouse model [18, 
19], in this study we examined whether PB attenuated DSS-
induced colon pathology in C57BL/6 mice.

Materials and Methods

Animals

Pathogen-free 5–6-week-old C57BL/6 mice were purchased 
from the Jackson Laboratory (Bar Harbor, ME, USA). Ani-
mals were kept in chambers as described previously [11]. All 
animal protocols were approved by the Institutional Animal 
Care and Use Committee.

DSS and PB Treatment

Mice (8–9 weeks old) were divided into three groups (con-
trol, DSS, and DSS+PB) with 6–8 animals/group. PB and 
DSS were purchased from Sigma-Aldrich, USA. Mice were 
given PB through intraperitoneally implanted Alzet mini-
osmotic pumps [20] starting at day 7 prior to DSS treatment 
and continued until they were euthanized. Mice implanted 
with mini-osmotic pumps containing sterile saline served 
as the control. The pumps provided PB at a concentration 
of 2 mg/day/kg body weight. Colitis was induced by 3.0% 
(w/v) DSS-containing water. The treatment continued for 
7 days; the animals were euthanized and colons harvested 
on day 8. Animals were weighed daily after DSS treatment. 
Where indicated, intestines were dissected to obtain ileum, 
cecum, and colon; tissues were frozen for RNA and protein, 
and fecal material for bacterial microbiome analysis.

Histochemical Staining and Scoring

Formalin-fixed and paraffin-embedded tissue sections (5 
μm) were stained with hematoxylin and eosin (H&E) for 
general histology. Histochemical staining with Alcian Blue 
and periodic acid–Schiff reagent (AB–PAS) was carried out 
as described previously [21]. Eosinophils and goblet cells 
were enumerated microscopically. Tissue sections were 
coded and assessed in a blinded manner. Histological dam-
age was scored as described previously [18]. Briefly, sec-
tions were scored for eosinophil infiltration (0–3), with 0 
representing less than three eosinophils per field of view at 
40× magnification in the lamina propria, 1 for greater than 
three eosinophils per field of view in the lamina propria, 2 
representing confluence of eosinophils extending into the 
submucosa, and 3 representing confluence of eosinophils 
present in all tissue layers.

Immunofluorescence Imaging

Deparaffinized and hydrated tissue sections were washed in 
0.05% v Brij-35 in phosphate-buffered saline (PBS; pH 7.4) 
and immunostained for antigen expression as described pre-
viously [22]. Briefly, the antigens were unmasked and incu-
bated in a blocking solution. The sections were stained with 
antibodies to ZO-1 (Invitrogen Inc., Carlsbad, CA, USA) or 
anti-eosinophil antibody (Novus Biologicals, Littleton, CO, 
USA), or isotype control antibodies. Immunofluorescence 
images were captured with a BZX700 all-in-one microscope 
(Keyence Corp., Japan).

qRT‑PCR Analysis

Total RNA from frozen mouse colon tissue was isolated 
using TRI Reagent (Molecular Research Center, Inc., Cin-
cinnati, OH, USA). Quantitative reverse transcription poly-
merase chain reaction (qRT-PCR) was performed using the 
StepOnePlus detection system (Applied Biosystems, Foster 
City, CA, USA) and the TaqMan One-Step RT-PCR kit con-
taining AmpliTaq Gold® DNA polymerase [23]. Specific 
primers and probes were obtained from Applied Biosystems. 
Fold changes in qPCR expression were calculated by the 
2(−ΔΔCT) method [24].

Western Blot Analysis

Western blot analysis of eotaxin, IL-5, IL-13 and MUC2 
in mice colon homogenates was performed as described 
previously [23]. Briefly, colon homogenates (70 μg) were 
fractionated on 10% sodium dodecyl sulfate polyacryla-
mide gel electrophoresis (SDS-PAGE) for eotaxin, IL-5, 
and IL-13, and 5% SDS-PAGE for MUC2. After transfer to 
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nitrocellulose membranes, blots were probed with antibod-
ies to eotaxin, IL-5, IL-13, and MUC2 (Abcam), and after 
stripping were re-probed with anti–β actin antibody.

Histological Grading

The H&E-stained sections were analyzed for histologi-
cal grading to evaluate the severity of inflammation. The 
total score ranged from 0 to 14, representing the sum of 
scores from the following: (1) severity of inflammation, with 
0 = none, 1 = mild, 2 = moderate, and 3 = severe; (2) mucosal 
damage, with 0 = none, 1 = mucosal layer, 2 = submu-
cosa, and 3 = transmural; (3) crypt damage, with 0 = none, 
1 = basal one-third damage, 2 = basal two-thirds damage, 
3 = crypt lost with intact epithelium, and 4 = crypt and epi-
thelium lost; and (4) percentage involvement, with 0 = none, 
1 = ≤25%, 2 = 26–50%, 3 = 51–75%, and 4 = 76–100%, as 
previously described [25].

Bacterial Microbiome Analysis: Sequencing and 16S 
DNA Analysis

Fecal contents were collected from the gut encompassing 
distal cecum and distal sigmoid colon and frozen on dry ice. 
The fecal matter was lysed using glass beads in a MagNA 
Lyser tissue disruptor (Roche Diagnostics, Indianapolis, 
IN, USA) and total DNA was isolated using the DNeasy 
Powersoil® or AllPrep PowerFecal® DNA isolation kits 
(MO BIO Laboratories, Carlsbad, CA, USA) and quantified 
as described elsewhere [26]. Briefly, the bacterial 16S V4 
rDNA region was amplified using fusion primers, and each 
sample was PCR-amplified with two differently barcoded V4 
fusion primers and loaded into the MiSeq cartridge (Illumina 
Inc., San Diego, CA, USA). The amplicons were sequenced 
for 250 cycles with custom primers designed for paired-end 
sequencing. Using the QIIME platform, sequences were 
quality-filtered and demultiplexed using exact matches to 
the supplied DNA barcodes. The sequences were searched 
against the Greengenes reference database and clustered at 
97% by UCLUST (closed-reference operational taxonomic 
unit [OTU] picking). The relative abundance of OTUs con-
stituting a single phylum in treated animals was normalized 
with the OTUs in controls. The resulting ratios were ana-
lyzed using Prism software (GraphPad Software, LA Jolla, 
CA, USA) to identify changes between groups in the five 
major bacterial phyla in the microbiome.

Results and Discussion

PB Ameliorates the DSS‑Induced Increase in IL‑5 
and Eotaxin

While the exact pathophysiology of UC is unknown, several 
immune cell types, including neutrophils, eosinophils, and 
lymphocytes, have been implicated in the disease process 
[27, 28]. Similar to allergic asthma in the lungs, UC is a Th2 
disease where eosinophils and eosinophil-associated pro-
teins play a significant role in the disease pathology [29], 
and eosinophilic granulocyte infiltration is seen in UC-asso-
ciated inflammation [5, 30] and implicated in the pathophys-
iology of UC in humans [31, 32]. Moreover, eosinophils are 
a therapeutic target for gut inflammation [33]. IL-5 drives 
the growth of eosinophils, and eotaxin is the most potent 
chemokine that stimulates eosinophilic infiltration, while 
IL-13 affects the gut epithelial barrier; these factors are ele-
vated in UC [27, 32], and interestingly, eosinophilic gran-
ules contain IL-5, IL-13, and eotaxin [34, 35]. Eotaxin has 
been established as the chemokine that drives eosinophilic 
infiltration in UC. We analyzed colonic tissues from control, 
DSS-treated, and DSS+PB-treated mice for eosinophil infil-
tration of the tissue. Eosinophils were visualized by immu-
nohistochemistry using an eosinophil-specific antibody that 
showed that DSS stimulated eosinophilic infiltration of the 
colon (Fig. 1a, left panel), with a pathology score of > 3.0, 
which was significantly reduced by PB treatment (Fig. 1a, 
right panel), indicating that inhibition of AChE partially pro-
tects the colon from infiltration by eosinophils. Accumula-
tion of eosinophils at the site of inflammation requires coop-
eration between IL-5 and eotaxin [36], where IL-5 promotes 
proliferation and differentiation of eosinophils, and eotaxin 
is a potent chemoattractant for eosinophils that is increased 
significantly in UC [5, 32, 33]. We determined the expres-
sion of IL-5 and eotaxin by Western blot and/or RT-qPCR 
analyses. The results showed that DSS doubled the amount 
of IL-5 protein in the colon, which was significantly reduced 
by the PB treatment (Fig. 1b). DSS-induced IL-5 levels were 
comparable to IL-5 mRNA levels observed in rectal biopsy 
samples from UC patients [5]. Similarly, PB reduced eotaxin 
protein (Fig. 1c) and eotaxin mRNA (Fig. 1d) levels. DSS 
treatment has also been found to cause body weight loss 
in mice [4]. Following DSS treatment, we weighed mice 
daily. On day 4, DSS-treated animals began to exhibit loss 
of body weight, and the decrease was statistically signifi-
cant compared with control mice on day 5. However, on 
day 5 there was no significant difference in body weight 
between the control and DSS+PB groups (Fig. 1E). This 
difference in body weight became significant on day 7/8, but 
the reduction was lower than in the animals treated with DSS 
alone ((Fig. 1e). These results suggest that PB slightly but 
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significantly moderates DSS-induced weight loss in mice. 
Thus, PB appears to attenuate the pro-eosinophilic effects 
of DSS in the mouse colon through downregulation of IL-5 
and eotaxin expression and moderates the DSS-induced loss 
of body weight.

PB Inhibits DSS‑Induced IL‑13 Expression 
and Improves Colonic Epithelial Integrity and MUC2 
Mucin Expression

UC is predominantly a Th2 inflammatory disease and 
IL-13 is the key effector cytokine in UC pathogenesis 

[6, 37], which in excessive concentrations impairs the 
integrity of colonic epithelium [38–40]. In the lung, 
IL-13 induces airway mucin (MUC5AC) formation [11]; 
however, unlike the lung, IL-13 does not regulate mucin 
(MUC2) production in the intestinal epithelial cells [41]. 
The lamina propria of UC patients produces substantially 
more IL-13 than normal individuals [28, 42] and neutrali-
zation of IL-13 prevents experimental UC and attenuates 
human UC [37, 43]. Therefore, we analyzed the effects 
of PB on the IL-13 expression in gut tissues. Western 
blot analysis indicated that DSS upregulates the expres-
sion of IL-13 protein and PB significantly downregulates 

Fig. 1   PB ameliorates the DSS-induced eosinophilic infiltration and 
increased expression of IL-5 and eotaxin in the colon, and the reduc-
tion in body weight. a Colonic tissues from mice treated with DSS 
alone or PB+DSS were analyzed for eosinophils on H&E-stained 
sections and were compared with controls (magnification 400×). b 
Western blot analysis of IL-5 in colonic homogenates (70 µg). Blots 
were probed for IL-5 and β-actin levels and quantitated as the ratio 
of IL-5/β-actin following densitometric analysis. c Eotaxin expression 
by Western blots of colonic homogenates (70  µg) (left panel), den-

sitometric quantitation of eotaxin (right panel). d RT-qPCR analysis 
of eotaxin mRNA expression in total colonic RNA. e PB effects on 
DSS-induced body weight reduction on day 8 after DSS treatment. 
Groups are as follows: Control (Cont), DSS: dextran sodium sulfate-
treated, and DSS+PB: DSS and pyridostigmine bromide-treated. Fig-
ures are representative of two separate experiments (n = 4–5/group) 
for A, B, C, and D and one experiment for E (n = 6–8 animals). 
*≤ 0.01; **≤ 0.001; ***≤ 0.0001

Fig. 2   PB suppresses DSS-induced IL-13 expression and induces 
MUC2 expression. a WB analysis of IL-13 in colonic homogenates 
(70 µg). The blots were probed with anti-IL-13-specific antibody. The 
bar graph represents quantitation by densitometry (ratio of IL-13/β-
actin). b Analysis of MUC2 expression by WB analysis of colon tis-

sue homogenates (70 µg) probed with MUC2-specific antibody. The 
bar graph is quantitation of MUC2 by densitometry (ratio MUC2/
β-actin). Figures are representative of two separate experiments 
(n = 4–5/group); where *≤ 0.01, **≤ 0.001, and ***≤ 0.0001
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this response (Fig. 2a). The intestinal barrier consists of 
epithelial columnar cells connected by intracellular junc-
tions that are covered by mucus. The epithelium and the 
mucus layer inhibit the invasion of gut mucosa by luminal 
microbes. Impaired colonic barrier promotes gut inflam-
mation and the thickness of the mucus layer is decreased 
in active UC patients [44, 45]. Mucus is made by gob-
let cells, and the major gel-forming mucin in the gut is 
MUC2 [46]. MUC2 synthesis is defective in UC patients, 
and variants of MUC2 gene are associated with increased 
incidence of UC [47]. In UC patients and experimental 
animals, bacteria penetrate the normally impenetrable 
colonic mucus layer and MUC2 expression is strongly 
downregulated in UC [48]. MUC2 provides protec-
tion against colitis, and MUC2-deficient mice exhibit 
increased susceptibility to colitis [49, 50]. We compared 
the expression of MUC2 protein in DSS and DSS+PB 
colons by Western blot analysis. The results presented 
in Fig. 2B show that compared to normal colonic tis-
sues, MUC2 protein expression is significantly decreased 
(p < 0.05) by DSS; however, PB treatment strongly upreg-
ulates the expression of MUC2 protein in DSS-treated 
animals (p < 0.01), and MUC2 expression is even higher 
(p < 0.05) than the control group. These results suggest 
that loss of MUC2 protein expression is associated with 
UC inflammation, and PB promotes MUC2 expression.

Normal functioning of the gut epithelium requires tight 
junction (TJ) proteins, which provide structural integrity 
to the tissue by forming a highly polarized barrier with 
selective paracellular permeability [51]. Histopathologi-
cally, UC is associated with disruption of TJ proteins and 
the TJs are composed of proteins that include occludin, 
claudins, junctional adhesion molecules, and intracel-
lular scaffold proteins such as zonula occludens (ZO), 
including ZO-1 [52]. ZO-1 is a scaffolding linker pro-
tein that interacts with occludin and is reduced in UC 
patients [53]. To determine the effects of PB on colonic 

architecture, colon tissues were stained with H&E and 
analyzed for histological grading to evaluate the severity 
of UC. We based the disease severity primarily on histo-
pathological changes in the colon on a scale of 0–14 (see 
“Materials and methods” section). As assessed by these 
criteria, Fig. 3a shows that DSS-induced disease sever-
ity of 6.33 ± 0.42, which was significantly moderated by 
PB to 2.67 ± 0.33. Moreover, as seen by immunofluores-
cence/immunohistochemistry analysis, the DSS-induced 
reduction in colonic ZO-1 was attenuated by PB treatment 
(Fig. 3b, in green). These results suggest that PB partially 
protected mice from DSS-induced disruption of the gut 
epithelial architecture.

PB Attenuates DSS‑Induced Dysbiosis of Microbiota 
in the Colon

The intestines, particularly the colon, are inhabited by a large 
number of microorganisms that normally provide symbi-
otic benefits to the host; however, barrier dysfunction in UC 
causes unfavorable changes in the composition of gut micro-
biota (dysbiosis) that facilitates the penetration of colonic 
mucus layers by these bacteria to induce gut inflammation 
[13, 38, 54]. Normal gut bacterial microbial community 
is typically dominated (nearly 95%) by phyla Firmicutes, 
Bacteroidetes, and Proteobacteria [55], and each phylum 
has members that are beneficial or pathogenic in the gut. 
Imbalances in gut microbiota are seen in the DSS-induced 
UC in mice [56], and recent results suggest that fecal trans-
plants containing normal bacterial microbiota attenuate UC 
symptoms in patients [17, 57] and in experimental animal 
models [58].

To determine whether DSS-induced changes in the bac-
terial composition of the colon are attenuated by PB, we 
analyzed the colonic 16S V4-rDNA. Figure 4a shows that in 
a normal mouse colon (CON), Erysipelotrichia, Clostridia, 
Flavobacteria, and Fusobacteria represent approximately 

Fig. 3   PB ameliorates the colonic epithelial integrity loss and inflam-
mation. a Representative H&E stained colon sections and the his-
tological scoring of pathological severity. The lower panel shows 
the enlarged images of the inset drawn on upper panels (scale, 50 
microns). b Representative colonic expression of ZO-1 as assessed 
by immunofluorescence analysis. Images show ZO-1 (in green) 

and DAPI-stained nuclei (in blue). Lower panels show the enlarged 
images of the inset drawn on upper panels. Image magnification 
100× for upper panel and 400× for lower panel. Figures are repre-
sentative of two separate experiments (n = 4–5/group); where *≤ 0.01, 
**≤ 0.001, and ***≤ 0.0001
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69%, 14%, 13%, and 4% of all sequences, respectively, and 
DSS treatment alters this composition to 82%, 3%, 7%, and 
8%, respectively. Thus, DSS increases Erysipelotrichia and 
Fusobacteria and decreases Clostridia and Fusobacteria in 
the gut. PB treatment nearly restored the normal microbiota 
composition of Erysipelotrichia, Clostridia, Flavobacteria, 
and Fusobacteria to about 73%, 12%, 11% and 4%, respec-
tively. The weighted Unifrac principal coordinate analysis 
of the microbiome data shows that the microbiome from 
the control animals cluster distinctly compared to the DSS-
treated animals (Fig. 4b).

Clostridia difficile infection is known to recur in UC 
patients and is associated with increased morbidity and 
mortality in this population [59]; however, organisms within 
Clostridia genera are higher in normal gut flora and normal 
fecal microbiota is used to treat recurrent Clostridia difficile 
infection [60]. Both Clostridia and Erysipelotrichia belong 
to phylum Firmicutes, but commensal Clostridia maintains 
gut homeostasis and moderates Clostridia difficile infection 
[60, 61]. Commensal Clostridia promotes the development 
of anti-inflammatory IL-10-producing Fox3p+ T-reg cells in 
the gut [62–64], and defects in the IL-10 or IL-10 receptor 
are known to promote early onset of UC [65]. On the other 
hand, Erysipelotrichia increases mucosal permeability and 
stimulates inflammatory immune responses in the gut [66]. 
The role of Flavobacteria in the human gut has not been 
clearly defined; however, Flavobacteria are less abundant 
in human IBD [67]. Similarly, the function of Fusobacte-
ria in the gut are unknown, but their numbers increase in 

colorectal cancer [68], and UC increases susceptibility to 
colon cancer [69]. Therefore, it is likely that PB, through 
increased acetylcholine levels, (a) increases mucus forma-
tion and (b) inhibits the DSS-induced loss of the epithelial 
barrier function by suppressing IL-13 production. Together, 
this inhibits the DSS-induced migration of pathogenic bac-
teria and bacterial dysbiosis in the gut. Thus, PB has the 
potential to stabilize gut flora and attenuate inflammation 
associated with UC.

Cholinergic stimuli involving ACh are important in the 
regulation of gut function, and ACh regulates both motility 
and mucosal responses in the gut. Recent evidence suggests 
that ACh and PB tend to be protective against experimental 
tissue injury. PB restored cardiac autonomic balance in mice 
and rats after experimental myocardial infarction [9, 70, 71], 
and heart-specific overexpression of the ACh-synthesizing 
enzyme choline acetyltransferase was found to protect the 
myocardium against ischemia-induced injury in mice [72]. 
PB has also been shown to help some patients with spinal 
cord injuries [73] and diabetic patients with gastrointestinal 
disorders [74]. Moreover, release of ACh through electrical 
stimulation of the vagus nerve ameliorates gut inflammation 
through nAChRs [75]. We have shown that ACh and neostig-
mine bromide induce mucus production in airway epithe-
lial cells through α7-nAChRs [11], and nicotine suppresses 
both inflammatory and adaptive immune responses [76, 77]; 
interestingly, tobacco smokers were found to be very resist-
ant to UC [78]. In mammals, ACh is the only known biologi-
cal ligand that reacts with nicotinic as well as muscarinic 

Fig. 4   PB attenuates DSS-induced dysbiosis of microbiota in the 
colon. a Colonic 16S V4-rDNA from various groups was analyzed 
for sequences specific for Erysipelotrichia, Clostridia, Flavobacte-
ria and Fusobacteria. b The weighted Unifrac principal coordinate 
analysis of the three groups. Microbiome from the control animals 
is seen to cluster distinctly compared to DSS-treated animals. The 
PB+DSS group is seen to cluster with the control group. p-value is 

0.01 (control vs. DSS), 0.038 (DSS vs. PB+DSS) and 0.2 (control vs. 
PB+DSS). Test of significance was a two-sided Student two-sample 
t test, and non-parametric p-values (exact) were calculated using 999 
Monte Carlo permutations. The figure presents the mean distribution 
of the bacterial types (n = 4–5 colons/group) and is representative of 
two separate experiments
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receptors, and nAChRs on non-neuronal cells respond to 
very low concentrations of nicotine [11, 79]. Therefore, it 
is likely that at lower concentrations, ACh reacts primarily 
with nAChRs thereby protecting the gut from colitis and 
bacterial dysbiosis and has the potential to suppress UC. 
Because nAChRs are present on many different cell types, 
including T cells, monocytes/macrophages, and epithelial 
cells, at present the identity of the cell type(s) that is/are the 
primary target of acetylcholine in the gut is unclear. In the 
lung, bronchial epithelial cells express nAChRs, and acetyl-
choline, neostigmine bromide, and nicotine promote mucus 
production from these cells [11, 80]; however, nicotine is 
known to inhibit Th2 immune responses through its effects 
on T cells and macrophages [8, 81]. It is therefore likely that 
the effects of acetylcholine/PB on UC severity involve mul-
tiple cell types. Further experiments are needed to identify 
the target cell type(s) that is/are critical in moderating UC 
in this model.
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