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Abstract

Background Helicobacter pylori (H. pylori) is a well-

recognized gastroduodenal pathogen and class I carcino-

gen. Dual oxidase-2 (DUOX2), a member of NADPH

oxidase family, has several critical physiological functions,

including thyroid hormone biosynthesis and host mucosal

defense.

Aim To investigate the effect of H. pylori infection on

DUOX2 gene expression in human stomach.

Materials and Methods The biopsies were obtained from

patients who underwent endoscopic diagnosis. The patient

serum was assayed for two virulence factors of H. pylori,

CagA IgG and VacA. The inflammation in gastric mucosa

was analyzed with histology. Real-time quantitative PCR

was used to detect the expression of three members of

NADPH oxidase, NOX1, NOX2, and DUOX2, as well as

lactoperoxidase (LPO) in the gastric mucosa. NOX2,

DUOX2, and myeloperoxidase (MPO) protein levels were

quantified by Western blots or immunohistochemistry.

Results The H. pylori-infected gastric mucosa had more

severe inflammation than uninfected samples. However,

the expression of DUOX2 mRNA and protein was lower in

gastric mucosa of patients with H. pylori infection com-

pared to the uninfected. Among the H. pylori-infected
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patients, those having CagA IgG or VacA in the serum had

lower DUOX2 expression levels than those infected with

H. pylori without either virulence factor. The NOX2 and

MPO levels were higher in those patients infected with H.

pylori irrespective of the virulence factors than those

uninfected patients. NOX1 and LPO mRNA were unde-

tectable in the gastric mucosa.

Conclusion CagA? or VacA? H. pylori in the stomach

of patients may suppress DUOX2 expression to promote its

own survival. Increased NOX2 could not eliminate H.

pylori infection.

Keywords Dual oxidase-2 (DUOX2) � Gastric mucosa �
Helicobacter pylori (H. pylori) � Lactoperoxidase (LPO) �
NOX2

Introduction

Helicobacter pylori (H. pylori) is a Gram-negative,

microaerophilic bacterium that colonizes the luminal sur-

face of the gastric epithelium [1]. Approximately half of

the world’s population is infected with H. pylori, and

15–20 % of the infected individuals develop clinical dis-

eases [2]. Helicobacter pylori is a well-recognized

gastroduodenal pathogen and a group I carcinogen. Heli-

cobacter pylori can cause duodenal and gastric ulcers, non-

ulcer dyspepsia, gastric carcinoma, and gastric mucosa-

associated lymphoid tissue (MALT) lymphoma [3, 4].

However, recent evidence suggests that H. pylori protects

against esophageal reflux, Barrett’s esophagus [5, 6],

allergy, asthma [7], and even inflammatory bowel diseases

[8]. Most microorganisms cannot survive the gastric acid-

ity. However, H. pylori is able to secrete urease, which

hydrolyzes urea to produce alkaline ammonia, thus pro-

motes its own survival in the stomach [4]. Furthermore, H.

pylori is resistant to the immune responses that it activates

in gastric mucosa by using a highly sophisticated mecha-

nism contributed by pathogenicity-related factors [9–11].

Several virulence factors of H. pylori, including urease,

cytotoxin-associated gene A (CagA), and vacuolating

cytotoxin A (VacA), are used clinically for strain diagnosis

and virulence judgment [12, 13]. CagA, one of the most

abundant H. pylori proteins, is translocated into epithelial

cells by type IV secretion system [14]. The CagA gene is

located in the 47-kb Cag pathogenicity island (Cag-PAI),

which consists of approximately 27 genes. Cag-PAI-con-

taining H. pylori is more virulent, partially due to the fact

that Cag-PAI genes also encode type IV secretion system

[15, 16]. CagA facilitates H. pylori colonization in gastric

mucosa by disrupting the gap junctions, cell polarity, and

modulation of signal pathways to stimulate proliferation

[14, 17, 18]. VacA is a secreted protoxin, which is inter-

nalized through interference with membrane trafficking of

gastric epithelial cells. Once getting inside of the cells,

VacA causes cytochrome C release and cell apoptosis by

destabilizing mitochondria [19].

Helicobacter pylori infection will elicit host immune

responses with varied intensities depending on the bacterial

strain and virulence. Pro-inflammatory cytokines, enzymes,

and reactive oxygen species (ROS) produced by gastric

epithelial cells and inflammatory cells (i.e., neutrophils and

monocytes) all contribute to inflammation [20]. There are

seven members in the family of ROS-generating nicoti-

namide adenine dinucleotide phosphate (NADPH) oxidase,

including NOX1–5 and two dual oxidases (DUOX1 and

DUOX2). NADPH oxidases are transmembrane proteins

that accept electrons from cytosolic NADPH, transport

them through flavin adenine dinucleotide (FAD), mem-

brane-imbedded hemes, and then donate a single electron

to reduce oxygen to superoxide [21]. NOX1 is highly

expressed in the normal colon epithelium and plays a role

in intestinal inflammation [22–24]. Guinea pig gastric

NOX1 is highly responsive to lipopolysaccharide from H.

pylori to generate peroxide anion [25].

NOX2 is the prototype NADPH oxidase and is referred

to as the phagocyte NADPH oxidase because it was first

described in neutrophils and macrophages [26]. The dis-

tribution of NOX2 is not limited to phagocytes; other type

of cells, such as lymphocytes, neurons, and endothelium,

also express NOX2 [26, 27]. NOX2 is a major ROS-pro-

ducing enzyme with bactericidal activity [22]. Here, we

investigated the levels of NOX2 and myeloperoxidase

(MPO), the most abundant neutrophil granule proteins, as

inflammation markers in the gastric mucosa.

DUOXs have an intrinsic Ca2?-NADPH-dependent

H2O2-generating activity [28]. DUOX2, but not DUOX1,

was found in the epithelium of the digestive tract [29]. The

physiological functions of DUOX2 include thyroid hor-

mone biosynthesis and host mucosal defense [21]. A

putative mechanism of action is via DUOX–LPO–SCN

system, in which the DUOX-produced H2O2 and the

ubiquitous thiocyanate (SCN-) are catalyzed by LPO to

form bactericidal isothiocyanate (OSCN-) in the airway,
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salivary gland, and intestinal mucosal epithelial cells [30–

33]. The DUOX2 and LPO are highly expressed in the

lower GI tract, especially in the rectum [22, 34]. Increased

DUOX2 expression was found in colonic epithelial cell in

patients with inflammatory bowel disease [35–37]. More-

over, DUOX2 is regulated by NOD2 upon ligand binding

in the intestine [36]. In animal studies, DUOX2 gene

expression is elevated in the H. pylori-infected stomach of

rhesus macaques in a Cag-PAI-dependent manner [38] and

in the Salmonella typhimurium-infected mouse colon [39].

DUOX2 prevented H. felis infection and consequently

reduced inflammation in the mouse stomach [40]. Whether

DUOX2 gene expression is also activated by H. pylori

colonization in human gastric mucosa is unclear.

In this study, we investigated NADPH oxidase, NOX1,

NOX2, DUOX2, LPO, and MPO expressions in the gastric

biopsies of patients with and without H. pylori infection.

Higher inflammation scores, NOX2 and MPO expression

levels were detected in the samples from H. pylori-infected

patients compared to those uninfected. Unexpectedly, the

DUOX2 protein and mRNA levels were lower in patients

infected with CagA? or VacA? H. pylori than patients

infected with H. pylori without virulence factors and

uninfected patients. The latter two groups had the same

DUOX2 mRNA levels. We speculate that the virulence

factors of H. pylori may inhibit DUOX2 gene expression in

human gastric mucosa.

Materials and Methods

Tissue Procurement

Gastric biopsies were obtained from patients with alimen-

tary tract symptoms who underwent endoscopic diagnosis

at the First Affiliated Hospital of Henan University of

Science and Technology. To ensure accurate histopatho-

logical diagnosis, minimally four biopsies of gastric

mucosa were collected during endoscopy at 2.5-cm-circle

area from the pylorus, as well as one from gastric incisura

angularis for the study. More biopsies were taken from the

abnormal areas for pathological diagnosis. One biopsy was

used for rapid urease test (RUT). One biopsy was fixed in

10 % formalin, embedded in paraffin, and then sectioned.

The sections were stained with hematoxylin and eosin

(H&E) for pathological scoring and for IHC staining. The

remaining samples were stored at -80 �C for RNA

extraction and Western blotting. RNAlater (Qiagen, Hil-

den, Germany, Cat. No. 76106) was used to prevent RNA

degradation. Patient serum was collected during endoscopy

and was tested for CagA IgG and VacA using enzyme-

linked immunosorbent assays (ELISA). The clinical data

collected from each patient included age, gender, medical

history, medication usage, and endoscopy diagnosis

(Table 1). Patient exclusion criteria were as follows: (1)

undergoing proton pump inhibitor and antibiotic treatment,

such as amoxicillin and clarithromycin, within 1 month of

biopsy; (2) having esophageal or gastric cancers; (3) upper

gastrointestinal bleeding; (4) severe disease in the liver,

kidney, cardiovascular or cerebrovascular system; and (5)

pregnant or breast-feeding. Informed consent was obtained

from all patients, and the study was approved by the

Clinical Research Ethics Committee of the Hospital.

Diagnosis of H. pylori Infection and Diseases

Both RUT and C13 or C14 urea breath test (UBT) were used

to determine H. pylori infection without performing col-

ony-forming assay. When either one was positive, the

patient was considered colonized with H. pylori. The

diagnosis of chronic superficial gastritis and atrophic gas-

tritis was based on endoscopy and pathology [41, 42].

Intestinal metaplasia (IM) was diagnosed by the presence

of goblet cells. The gastric and duodenal ulcers were

diagnosed by endoscopy.

Histological Analysis

The criteria for inflammation scores in gastric mucosa were

based on the Updated Sydney System [41]. The pathologic

features included (1) neutrophil infiltration, (2) monocyte

infiltration, (3) atrophy, and (4) IM. The score for each fea-

ture is the following: normal to very mild as 0, mild as 1,

moderate as 2, andmarked to severe as 3. The total scores for

normal tissue are below 4. The visual analogue scale was

applied to microscopic examination results [41, 43].

ELISA of CagA IgG and VacA of H. Pylori

The serum CagA IgG and VacA protein levels were mea-

sured using a CagA IgG, TSZ ELISA kit (Biotang Inc.,

Lexington, MA, USA, Catalog no. HU9659) and a human

VacA ELISA kit (Catalog no. HU8333) following manu-

facturer’s instructions. Briefly, CagA IgG and VacA were

Table 1 Clinical features of gastric biopsies

Hp?/total Hp?/gender Age (year)a

Male Female Male/female

Superficial gastritis 68/132 39/71 29/61 54/53

Atrophic gastritis 1/5 0/2 1/3 66/58

Gastric ulcer 27/43 19/25 8/18 52/53

Duodenal ulcer 15/20 11/15 4/5 43/46

Total 111/200 69/113 42/87

a The patient’s age ranges from 18 to 70 years
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detected with biotinylated monoclonal antibodies. After

incubation with streptavidin–horseradish peroxidase (HRP)

for 30 min, the peroxidase activity was analyzed with the

addition of chromogenic substrate 3,3-,5,5-tetramethyl

benzidine and hydrogen peroxide. After 15 min at room

temperature, the reaction was stopped with H2SO4 and the

absorbance was measured at 450 nm. According to the

manufacturer’s specifications, above 1.2 ng/mL CagA IgG

or 142 pg/mL VacA is considered positive (?).

IHC

Four-micron sections of paraffin-embedded samples were

mounted on poly-L-lysine-coated slides. IHCwas performed

using a modified biotin–peroxidase complex method as

described [44]. Briefly, tissue sections were dewaxed in

xylene, rehydrated through graded alcohol, and the antigen

retrieval was done by microwave-boiling the slides for

10 min in 0.1 N sodium citrate, pH 6.0. The endogenous

peroxidase was blocked by incubating in 3 % H2O2 for

10 min, and non-specific binding was blocked by 5 %

bovine serum albumin (Sigma, USA) for 20 min. Sec-

tions were incubated overnight at 4 �C with a rabbit anti-

DUOX2 Ab (raised against a KLH-conjugated 501–600

amino acids of human DUOX2; Bioss, Beijing, China, Cat.

No. bs-11432R). A rabbit anti-MPO Ab (1:200 dilution,

Abcam, UK, Cat. No ab9535) was used to detect MPO. The

DUOX2-Ab and MPO-Ab complexes were detected with

biotinylated goat anti-rabbit Ab (Boster Biological Tech-

nology Co. Ltd, Wuhan, China, Cat. No SA1020) and

streptavidin–HRP, and visualized with 3,3-diaminoben-

zidine substrate.Agoat anti-NOX2Ab (1:100 dilution, Santa

Cruz, CA, USA, Cat. No sc-5826) and a biotinylated rabbit

anti-goat Ab (1:300 dilution) (Boster Biological Technology

Co. Ltd, Wuhan, China, Cat. No SA1023) were used as to

detect NOX2. The sections were counterstained with

hematoxylin. The positive control for anti-DUOX2 Ab was

thyroid gland tissues, and the negative controls were either

omitting the primary Ab or using an unrelated rabbit Ab.

The protein levels were evaluated blindly in 10 fields

under 4009 magnification from each slide. One hundred

cells per field were categorized as follows: ‘‘-,’’ 0 %, no

staining; ‘‘?,’’[25 % cells were stained; ‘‘??,’’ 26–50 %

cells were stained; and ‘‘???,’’[50 % cells stained.

Real-Time qPCR

Total RNA was extracted using TRIzol Reagent (Invitro-

gen, USA). Two lg of total RNA was used for cDNA

synthesis using PrimeScriptTM RT Master Mix (Takara,

Japan) in a 40-ll reaction mixture, following these steps:

37 �C for 15 min,85 �C for 5 s, and 4 �C for 10 min. The

primer sequences for DUOX2, NOX1, NOX2, LPO, MPO,

and b-actin (Table 2) were designed by using Primer3.0

software [45] and synthesized by Sangon Biotechnology

(Zhengzhou, China). Real-time qPCR was done with a

CFX96TM Real-Time PCR system (Bio-Rad Labs, USA).

In 25-ll reaction mixture contained 2 ll of cDNA, 12.5 ll
of 2 9 SYBR Premix Ex Taq II (Takara, Japan), 8.5 ll of
H2O, and 2 ul of 0.4 lM primers. A two-step method was

used for DUOX2, NOX1, LPO, and b-actin cDNAs

detection because of the 60 �C annealing temperature; the

reaction had an initial step of 95 �C for 30 s and 40 cycles

of 95 �C for 5 s plus 60 �C for 30 s. A three-step method

(40 cycles of 95 �C for 5 s, 57 �C for 30 s, and 72 �C for

30 s) was used for NOX2 cDNA, which had 57 �C
annealing temperature. Each sample was assayed in trip-

licates. The efficiency of PCR amplification was 97–

105 %. A melting curve was performed to evaluate product

specificity. RNA levels were quantified using the Ct

(2-DDCt) method and normalized to b-actin. The gene is

considered as not expressed when the Ct value is higher

than 35.

Western Blotting Analysis

Protein lysates were prepared from tissues by homoge-

nization in RIPA lysis buffer (Soliarbio Co., Beijing,

Table 2 Primer sequence for

quantitative real-time PCR
mRNA Gene Primer sequence Amplicon (bp)

NM-014080 DUOX2 Forward 50-CCTCAGGACCACCATGCTAT 133

Reserve 50-CTGCAGGGAGTTGAAGAAGG

NM-007052 NOX1 Forward 50-TTTGTCGGCCTTCTCATATT 159

Reserve 50-GAATCTTCCCTGTTGCCTAGAA

NM-000397 NOX2 Forward 50-AATCCCTGCTCCCACTAACA 108

Reserve 50-TTTCAAGATGCGTGGAAACTAC

NM-006151 LPO Forward 50-CAGAGCTCATGGCGGTCTTC 122

Reserve 50-TACCACAAGAGCGCAGACTAC

NM-001101 b-actin Forward 50-CTCTTCCAGCCTTCCTTCCT 116

Reserve 50-AGCACTGTGTTGGCGTACAG

Dig Dis Sci (2016) 61:2328–2337 2331
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China) on ice with a grinder. The supernatant was collected

after centrifugation for 15 min at 12,000 rpm and deter-

mined for protein concentrations with bicinchoninic acid

(BCA, Solarbio Company, Beijing). Thirty lg of protein

was resolved by 10 % SDS-PAGE and then transferred

onto polyvinylidene difluoride membranes (Millipore;

USA). A rabbit anti-DUOX2 Ab (2009, Abcam, UK; Cat.

No. ab65813; raised against 400–500 a.a. of human

DUOX2) and rabbit anti-GAPDH r Ab (10,0009, Abcam;

UK, Cat. No. ab37168) were used as primary Ab. After

hybridization with the HRP-conjugated anti-rabbit IgG

(300X, Boster Biological Technology Co. Ltd, Wuhan,

China, Cat. No. BA1054), the Ag/Ab complex was detec-

ted by an enhanced chemiluminescence reagent (Pierce;

Minneapolis, MN, USA). The image was captured by

ChemiDoc XRS (Bio-Rad, USA), and the intensity was

quantified with ImageJ 1.48v program (NIH, USA).

Statistical Analysis

Student’s t test and Mann–Whitney U test were used to

assess the difference in each pair. One-way ANOVA and

Kruskal–Wallis tests were used to compare the data among

at least three groups. Significant difference was defined as

P\ 0.05. Data were reported as mean ± standard error of

the mean (SEM). All statistical analysis was performed by

using the SPSS 19.0 statistics package (SPSS Inc., Chi-

cago, IL, USA).

Results

Helicobacter pylori Infection Rate and Distribution

of CagA1 IgG and VacA1 in Patients with Gastritis

Among the 200 patients recruited in the study, 113 patients

were male and 87 were female (Table 1). Besides the

higher disease incidence in males than females, there was

no gender difference in disease characteristics. The average

ages of male and female were 53.5 and 52.7 years. Most

patients (66 %, 132/200) had chronic superficial gastritis;

other patients had atrophic gastritis (2.5 %, 5/200), gastric

ulcer (21.5 %, 43/200), and duodenal ulcer (10 %, 20/200).

While only one of the five atrophic gastritis patients was

positive for H. pylori infection, 52 % (68/132), 63 % (27/

43), and 75 % (15/20) of patients with superficial gastritis,

gastric ulcer, and duodenal ulcer, respectively, were posi-

tive for H. pylori infection. The total H. pylori infection

rate was 55.5 % (111/200) (Table 1). This distribution

pattern of H. pylori infection is similar to other studies in

China [46].

We evaluated H. pylori virulence with CagA IgG and

VacA ELISA on 82 of 111 patient sera. We found that

58.5 % of patients (n = 48) were negative for both CagA

and VacA (CagA-/VacA-), 9.7 % (n = 8) were CagA-/

VacA?, 13.4 % (n = 11) were CagA?/VacA-, and

18.3 % (n = 15) were double positive (CagA?/VacA?).

The CagA IgG? rate in our study was also similar to other

studies conducted in China [47].

Helicobacter pylori1 Patients Had Higher

Inflammation in Gastric Mucosa than Uninfected

Patients

We analyzed the inflammation scores and compared the

scores between the H. pylori-negative (Hp-) and H. pylori-

positive (Hp?) groups (Table 3). The pathology scores

were based on inflammation, atrophy, and intestinal

metaplasia (IM). The inflammation, but not atrophy or IM,

was significantly higher in the Hp? group.

We also compared the inflammation scores between the

Hp? and Hp- groups as well as among the subgroups of

Hp? patients based on CagA IgG and VacA in their serum

(Fig. 1a, b). The inflammation scores in gastric mucosa of

Hp? patients were significantly higher than Hp- group.

Also, the inflammation scores of patients of CagA?/

VacA? group are significantly higher than CagA-/VacA-

group (Fig. 1b). However, the inflammation scores of

patients positive for CagA IgG or VacA? H. pylori

infection were not different from any other infected groups.

Detection of Pro-Oxidant Gene Expression by qPCR

NOX2 protein is highly expressed in the neutrophils and

macrophages, which are recruited into the inflammatory

sites by H. pylori infection [48]. The NOX2 mRNA level is

twofold higher in the gastric mucosa of Hp? patients than

in Hp- patients, and no difference is found among the

infected groups stratified with CagA and VacA status

(Fig. 2a and Supplementary Figure 1A).

Because DUOX2 protected against Helicobacter felis

infection in mouse stomach [40], we analyzed DUOX2

mRNA levels in our patients. Unexpectedly, the DUOX2

Table 3 Inflammation in gastric mucosa of patients

Hp Normal/very mild Mild Medium Severe

– ? – ? – ? – ?

Inflammation 36 10 37 32 11 34a 5a 35b

Atrophy 74 83 14 25 1 2 0 1

IM 80 89 8 17 1 3 0 2

IM intestinal metaplasia
a More Hp? patient with medium inflammation compared to Hp-

patients (P = 0.002)

bMore Hp? patients with severe inflammation compared to Hp-

subjects (P\ 0.0001)
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RNA level is decreased in the gastric mucosa of patients

who are infected with the H. pylori expressing either of the

virulence factors compared to Hp ? patients without either

virulence factors and in Hp- patients (Fig. 2b and Supple-

mentary Figure 1A). The DUOX2 mRNA level of the

CagA-/VacA- group is similar to that in the Hp- group.

Because DUOX2 and LPO have been postulated to form

a defense mechanism against bacterial infection and LPO is

expressed in the intestine [22, 34], we also analyzed LPO

gene expression in the gastric mucosa. No LPO mRNA can

be detected in both Hp? and Hp- patients (n = 20 for

each group; data not shown). Furthermore, because NOX1

plays a role in wound-healing [49] and promotes inflam-

mation in a mouse model of ileocolitis [24], we also ana-

lyzed NOX1 mRNA levels in the gastric mucosa. Similar

to LPO, no NOX1 mRNA was detected in the gastric

mucosa (n = 20 each for Hp? and Hp- groups, as well as

two IM samples (data not shown).

Detection of DUOX, NOX2, and MPO Protein

Expression

We quantified DUOX protein levels with Western blotting

(Fig. 3a, b). Consistent with DUOX2 mRNA levels,

twofold higher DUOX protein level was present in Hp-

gastric mucosa than Hp? samples. After confirming the Ab

specificity by IHC of thyroid tissues (data not shown), this

antibody was used to compare DUOX2 protein levels in the

gastric mucosa among the Hp? subgroups and Hp- group

by IHC. A stronger DUOX staining was detected in Hp-

patients especially at the apical surface, although it is also

present in the cytoplasm of the epithelial cells (Fig. 3c).

Consistent with DUOX2 mRNA levels, mucosa of CagA?

or VacA? group had weaker DUOX2 staining than the

CagA-/VacA- and Hp- groups (Table 4). Also, the

CagA-/VacA- group had similar DUOX2 staining

intensity as the Hp- group.

NOX2 IHC was performed on the gastric mucosa of

Hp? and Hp- groups of patients (n = 20 for each group,

Fig. 3d). In the Hp? groups of patients, a stronger NOX2

staining was detected in the infiltrating inflammatory cells

compared to that in Hp- gastric mucosa (IHC scores not

shown). Similarly to NOX2 IHC pattern, a higher level of

MPO? inflammatory cells is detected in the Hp? groups

than in the Hp- patients (n = 15 for each group, data not

shown).
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Discussion

In this study, we found that the gastric mucosa of patients

infected with H. pylori expressing either CagA? or VacA?

had a lower level of DUOX2 expression than patients

infected with CagA-/VacA- H. pylori and uninfected

patients. This result suggests that the virulence factors in H.

pylori are able to suppress DUOX2 expression.Helicobacter

pylori can survive in the host by defying the host innate and

adaptive immune systems that it triggers [12, 50]. CagA and

R
el

at
iv

e 
In

te
ns

ity
  

kDa 
175 
165  

36

Hp- Hp+

DUOX2 

-GAPDH 

a b 

B 
A 

C 

D 

HP- HP+
n=9 n=12

Hp- Hp+(Cag+/Vac+)

DUOX2 

NOX2 

Hp- Hp+ (Cag+/Vac+)

Fig. 3 Comparison of DUOX protein expression in gastric mucosa of

Hp- and Hp? patients. aWestern blot of DUOX and GAPDH from a

representative Hp- and Hp? patients. The expected m.w. of DUOX

is 175 kDa, and the Hp- has an additional 165-kDa band recognized

by anti-DUOX2 Ab (Abcam, which cannot distinguish DUOX2 from

DUOX1). b Bar graph of DUOX protein quantified from the Western

blots analyzed from 9 Hp- and 12 Hp? patients. The error bar is

SEM; the different letters above the columns indicate that the means

are different, where a[ b (P\ 0.05). c IHC stained gastric mucosa

from Hp- and Hp? (CagA?/VacA) patients. Hp? gastric mucosa

has more infiltrating cells and weaker DUOX staining (brown color;

the original magnification is 9400). d That there is higher NOX2

staining in inflammatory cells in the Hp? (CagA?/VacA) gastric

mucosa than that in Hp- (brown color; the original magnification is

9400)

Table 4 DUOX2

immunohistochemical staining
Intensity Hp-a (n = 51) CagA-/VacA-b (n = 15) CagA? or VacA? (n = 33)

? 9 2 15

?? 27 4 16

??? 15 9 2

a P\ 0.01 compared between Hp- group and patients with at least one virulence factor, CagA? or

VacA?
b P\ 0.05 compared between patients without virulence factors (CagA-/VacA-) and with at least one

virulence factor, CagA? or VacA?
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VacA promote mucosal inflammation through their multi-

factorial functions, such as induction of pro-inflammatory

cytokines, disruption of cell conjunction regulation of host

immunity, activation of proliferation and apoptosis [12].

These two virulence factors can manipulate and inhibit

human T cells [11]. CagAmediatesH. pylori colonization on

the apical surface of gastric epithelium by manipulating

host’s immune response to allow its persistence in the host

[20]. The intracellular CagA forms a complex with the

oncogenic c-Met to stimulate cell proliferation [18]. Since

DUOX2 is expressed in the mature epithelium [29], and an

in vitro study has shown that H. pylori infection induces

oxidative stress-associated cell death leading to loss of

DUOX2-expressing gastric epithelial cells [51], these may

explain why the epithelial cells from CagA? or VagA?

patients have lower DUOX2 expression. Alternatively, the

decrease in DUOX2 expression in the gastric mucosa of

Hp ? patients may be a part of the strategy of H. pylori to

evade host’s innate immune response [30, 31]. The exact

mechanism for H. pylori to suppress DUOX2 expression

needs to be further investigated.

Clearly, our finding is different from the animal studies.

Grasberger et al. [40] reported that DUOX2 protected mouse

stomach from H. felis infection and colonization, and

Hornsby et al. found thatH. pylori infection inducedDUOX2

mRNA expression in the stomach of rhesus macaques [41].

AlthoughH. felis can infect human stomach, it does not cause

gastric pathology [52]. It is possible that H. felis induces a

different response in mice compared to human’s response to

H. pylori. After the rhesus macaques infected with Cag-PAI-

positive H. pylori, the DUOX2 mRNA levels were elevated

at weeks 4 and 8 and decreased at week 13. This result

suggests that H. pylori induce DUOX2 expression tempo-

rally; after the initial induction, the H. pylori-infected cells

may progress to adapting the infection. It is possible that the

long-term infected patients had a different response from that

in the newly infected animals.

H. pylori-infected human gastric epithelial cells recruited

inflammatory cells, including neutrophils and macrophages,

which induced bactericidal ROS, most notably from NOX2

[53–56].Helicobacter pylori encodes an array of antioxidant

enzymes, including catalase, superoxide dismutase, and a

unique bacterial peroxiredoxin, to reduce ROS and escape

from ROS-mediated injury [57, 58]. Other studies suggest

that H. pylori infection activates NOX2 activity to launch

inflammatory responses but fails to eradicate bacterial col-

onization [59, 60]. Although the virulence factors affected

the severity of inflammation, in which CagA?/VagA?-in-

fected patients had more severe inflammation than other

subgroups, these factors did not further enhance NOX2 gene

expression. Our result supports the view that H. pylori

infection activates NOX2 gene expression. The NOX2 gene

inductionmay occur inmacrophages rather than neutrophils.

The mature neutrophils have fewmRNA, and NOX2 protein

is synthesized and stored in the granules. Upon stimulation,

the mature neutrophils are recruited to the inflammatory site

without the need for de novo synthesis of proteins [61, 62].

MPO is a marker for neutrophils and monocytes [24]. A

similar pattern of NOX2 and MPO protein expression sug-

gests that either NOX2 or MPO is a good marker for infil-

trating inflammatory cells.

DUOX2 has been proposed to defend against bacterial

infection by teaming upwithLPOandSCN.Althoughwe did

not detect LPO mRNA in gastric mucosa, because LPO is

highly expressed in the salivary gland, it is possible that LPO

can be ingested into the stomach to form a DUOX–LPO–

SCN antimicrobial defense network as in the airway and the

lower intestine [22, 30]. NOX1 is highly expressed in normal

colon but not detectable in normal stomach [26, 27, 55]. A

few studies showed that NOX1 was present in gastric cancer

[63], and its transcript was detected in H. pylori-associated

gastric diseases [64]. In our hands, NOX1 mRNA is not

detectable in the gastric epithelium regardless of H. pylori

infection status and existing intestinal metaplasia.

In this study, we demonstrated the presence of DUOX2

in the human gastric mucosa. Unexpectedly, the levels of

DUOX2 expressed in the gastric mucosa of patients

infected with VacA? or CagA? H. pylori were lower than

patients infected with VacA-/CagA- H. pylori and

uninfected patients. This result suggests that VacA or

CagA of H. pylori can modulate DUOX2 gene expression

in gastric epithelial cells to promote its own survival. How

VacA and CagA can affect DUOX2 gene expression is

worthy of further studies.
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