Skip to main content
Log in

Peripheral Corticotropin-Releasing Factor Receptor Type 2 Activation Increases Colonic Blood Flow Through Nitric Oxide Pathway in Rats

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Corticotropin-releasing factor (CRF) peptides exert profound effects on the secretomotor function of the gastrointestinal tract. Nevertheless, despite the presence of CRF peptides and receptors in colonic tissue, their influence on colonic blood flow (CBF) is unknown.

Aim

To determine the effect and mechanism of members of the CRF peptide family on CBF in isoflurane-anesthetized rats.

Methods

Proximal CBF was measured with laser-Doppler flowmetry simultaneously with mean arterial blood pressure (MABP) measurement. Rats were injected with intravenous human/rat CRF (CRF1 > CRF2 affinity), mouse urocortin 2 (mUcn2, selective CRF2 agonist), or sauvagine (SVG, CRF2 > CRF1 affinity) at 1–30 µg/kg. The nitric oxide (NO) synthase inhibitor, L-NAME (3 mg/kg, iv), the cyclooxygenase inhibitor, indomethacin (Indo, 5 mg/kg, ip), or selective CRF2 antagonist, astressin2-B (Ast2B, 50 µg/kg, iv) was given before SVG injection (10 µg/kg, iv).

Results

SVG and mUcn2 dose-dependently increased CBF while decreasing MABP and colonic vascular resistance (CVR). CRF had no effect on CBF, but increased CVR. The hyperemic effect of SVG was inhibited by L-NAME but not by Indo, whereas hypotension was partially reduced by L-NAME. Sensory denervation had no effect on SVG-induced changes. Ast2B inhibited SVG-induced hyperemia and decreased CVR, and partially reduced the hypotension.

Conclusions

Peripheral CRF2 activation induces colonic hyperemia through NO synthesis, without involving prostaglandin synthesis or sensory nerve activation, suggesting a direct action on the endothelium and myenteric neurons. Members of the CRF peptide family may protect the colonic mucosa via the activation of the CRF2 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hasibeder W. Gastrointestinal microcirculation: still a mystery? Br J Anaesth. 2010;105:393–396.

    Article  CAS  PubMed  Google Scholar 

  2. Holzer P. Efferent-like roles of afferent neurons in the gut: blood flow regulation and tissue protection. Auton Neurosci. 2006;125:70–75.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Akiba Y, Guth PH, Engel E, Nastaskin I, Kaunitz JD. Acid-sensing pathways of rat duodenum. Am J Physiol. 1999;277:G268–G274.

    CAS  PubMed  Google Scholar 

  4. Akiba Y, Kaunitz JD. Lafutidine, a protective H2 receptor antagonist, enhances mucosal defense in rat esophagus. Dig Dis Sci. 2010;55:3063–3069.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kvietys PR. The Gastrointestinal Circulation. San Rafael, CA: Morgan & Claypool Life Sciences; 2010.

    Google Scholar 

  6. Holzer P, Livingston EH, Guth PH. Sensory neurons signal for the increase in rat gastric mucosal blood flow in the face of pending acid injury. Gastroenterology. 1991;101:416–423.

    CAS  PubMed  Google Scholar 

  7. Akiba Y, Nakamura M, Nagata H, Kaunitz JD, Ishii H. Acid-sensing pathways in rat gastrointestinal mucosa. J Gastroenterol. 2002;37:133–138.

    Article  CAS  PubMed  Google Scholar 

  8. Wallace JL, Miller MJ. Nitric oxide in mucosal defense: a little goes a long way. Gastroenterology. 2000;119:512–520.

    Article  CAS  PubMed  Google Scholar 

  9. Holzer P, Lippe IT, Jocic M, Wachter C, Erb R, Heinemann A. Nitric oxide-dependent and -independent hyperaemia due to calcitonin gene-related peptide in the rat stomach. Br J Pharmacol. 1994;110:404–410.

    Article  Google Scholar 

  10. Vale W, Vaughan J, Perrin M. Corticotropin-releasing factor (CRF) family of ligands and their receptors. Endocrinologist. 1997;7:S3–S9.

    Article  Google Scholar 

  11. Hsu SY, Hsueh AJ. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med. 2001;7:605–611.

    Article  CAS  PubMed  Google Scholar 

  12. Lewis K, Li C, Perrin MH, et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci U S A. 2001;98:7570–7575.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Pallai PV, Mabilia M, Goodman M, Vale W, Rivier J. Structural homology of corticotropin-releasing factor, sauvagine, and urotensin I: circular dichroism and prediction studies. Proc Natl Acad Sci U S A. 1983;80:6770–6774.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lederis K, Letter A, McMaster D, Moore G, Schlesinger D. Complete amino acid sequence of urotensin I, a hypotensive and corticotropin-releasing neuropeptide from Catostomus. Science. 1982;218:162–165.

    Article  CAS  PubMed  Google Scholar 

  15. Chen R, Lewis KA, Perrin MH, Vale WW. Expression cloning of a human corticotropin-releasing-factor receptor. Proc Natl Acad Sci U S A. 1993;90:8967–8971.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kishimoto T, Pearse RV, Lin CR, Rosenfeld MG. A sauvagine/corticotropin-releasing factor receptor expressed in heart and skeletal muscle. Proc Natl Acad Sci U S A. 1995;92:1108–1112.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lovenberg TW, Liaw CW, Grigoriadis DE, et al. Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc Natl Acad Sci USA. 1995;92:836–840.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Perrin M, Donaldson C, Chen R, et al. Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart. Proc Natl Acad Sci U S A. 1995;92:2969–2973.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Stenzel P, Kesterson R, Yeung W, Cone RD, Rittenberg MB, Stenzel-Poore MP. Identification of a novel murine receptor for corticotropin-releasing hormone expressed in the heart. Mol Endocrinol. 1995;9:637–645.

    CAS  PubMed  Google Scholar 

  20. Hauger RL, Grigoriadis DE, Dallman MF, Plotsky PM, Vale WW, Dautzenberg FM. International Union of Pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands. Pharmacol Rev. 2003;55:21–26.

    Article  CAS  PubMed  Google Scholar 

  21. Perrin MH, Vale WW. Corticotropin releasing factor receptors and their ligand family. Ann N Y Acad Sci. 1999;885:312–328.

    Article  CAS  PubMed  Google Scholar 

  22. Gourcerol G, Wu SV, Yuan PQ, et al. Activation of corticotropin-releasing factor receptor 2 mediates the colonic motor coping response to acute stress in rodents. Gastroenterology. 2011;140:1586–1596.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Tache Y, Perdue MH. Role of peripheral CRF signalling pathways in stress-related alterations of gut motility and mucosal function. Neurogastroenterol Motil. 2004;16:137–142.

    Article  PubMed  Google Scholar 

  24. Tache Y, Bonaz B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J Clin Invest. 2007;117:33–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Rademaker MT, Charles CJ, Espiner EA, et al. Beneficial hemodynamic, endocrine, and renal effects of urocortin in experimental heart failure: comparison with normal sheep. J Am Coll Cardiol. 2002;40:1495–1505.

    Article  CAS  PubMed  Google Scholar 

  26. Yoneda M, Nakamura K, Nakade Y, et al. Effect of central corticotropin releasing factor on hepatic circulation in rats: the role of the CRF2 receptor in the brain. Gut. 2005;54:282–288.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Grossini E, Molinari C, Mary DA, Marino P, Vacca G. The effect of urocortin II administration on the coronary circulation and cardiac function in the anaesthetized pig is nitric-oxide-dependent. Eur J Pharmacol. 2008;578:242–248.

    Article  CAS  PubMed  Google Scholar 

  28. Davis ME, Pemberton CJ, Yandle TG, et al. Urocortin 2 infusion in healthy humans: hemodynamic, neurohormonal, and renal responses. J Am Coll Cardiol. 2007;49:461–471.

    Article  CAS  PubMed  Google Scholar 

  29. Lenz HJ, Fisher LA, Vale WW, Brown MR. Corticotropin-releasing factor, sauvagine, and urotensin I: effects on blood flow. Am J Physiol. 1985;249:R85–R90.

    CAS  PubMed  Google Scholar 

  30. Hill LT, Kidson SH, Michell WL. Corticotropin-releasing factor is present in intestinal tissue of patients with gastrointestinal dysfunction following shock and abdominal surgery. Nutrition. 2013;29:650–654.

    Article  CAS  PubMed  Google Scholar 

  31. Chatzaki E, Anton PA, Million M, et al. Corticotropin-releasing factor receptor subtype 2 in human colonic mucosa: down-regulation in ulcerative colitis. World J Gastroenterol. 2013;19:1416–1423.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Porcher C, Juhem A, Peinnequin A, Sinniger V, Bonaz B. Expression and effects of metabotropic CRF1 and CRF2 receptors in rat small intestine. Am J Physiol Gastrointest Liver Physiol. 2005;288:G1091–G1103.

    Article  CAS  PubMed  Google Scholar 

  33. Chatzaki E, Crowe PD, Wang L, Million M, Taché Y, Grigoriadis D. CRF receptor type 1 and 2 expression and anatomical distribution in the rat colon. J Neurochem. 2004;90:309–316.

    Article  CAS  PubMed  Google Scholar 

  34. Rivier J, Gulyas J, Kirby D, et al. Potent and long-acting corticotropin releasing factor (CRF) receptor 2 selective peptide competitive antagonists. J Med Chem. 2002;45:4737–4747.

    Article  CAS  PubMed  Google Scholar 

  35. Akiba Y, Kaunitz JD. Regulation of intracellular pH and blood flow in rat duodenal epithelium in vivo. Am J Physiol. 1999;276:G293–G302.

    CAS  PubMed  Google Scholar 

  36. Akiba Y, Guth PH, Engel E, Nastaskin I, Kaunitz JD. Dynamic regulation of mucus gel thickness in rat duodenum. Am J Physiol Gastrointest Liver Physiol. 2000;279:G437–G447.

    CAS  PubMed  Google Scholar 

  37. Kawakubo K, Akiba Y, Adelson D, et al. Role of gastric mast cells in the regulation of central TRH analog-induced hyperemia in rats. Peptides. 2005;26:1580–1589.

    Article  CAS  PubMed  Google Scholar 

  38. Martinez V, Wang L, Rivier J, Grigoriadis D, Tache Y. Central CRF, urocortins and stress increase colonic transit via CRF1 receptors while activation of CRF2 receptors delays gastric transit in mice. J Physiol. 2004;556:221–234.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Million M, Maillot C, Saunders P, Rivier J, Vale W, Tache Y. Human urocortin II, a new CRF-related peptide, displays selective CRF(2)-mediated action on gastric transit in rats. Am J Physiol Gastrointest Liver Physiol. 2002;282:G34–G40.

    Article  CAS  PubMed  Google Scholar 

  40. Kosoyan HP, Wei JY, Tache Y. Intracisternal sauvagine is more potent than corticotropin-releasing factor to decrease gastric vagal efferent activity in rats. Peptides. 1999;20:851–858.

    Article  CAS  PubMed  Google Scholar 

  41. Martins JM, Kastin AJ, Banks WA. Unidirectional specific and modulated brain to blood transport of corticotropin-releasing hormone. Neuroendocrinology. 1996;63:338–348.

    Article  CAS  PubMed  Google Scholar 

  42. Kastin AJ, Akerstrom V. Differential interactions of urocortin/corticotropin-releasing hormone peptides with the blood-brain barrier. Neuroendocrinology. 2002;75:367–374.

    Article  CAS  PubMed  Google Scholar 

  43. Martinez V, Wang L, Million M, Rivier J, Tache Y. Urocortins and the regulation of gastrointestinal motor function and visceral pain. Peptides. 2004;25:1733–1744.

    Article  CAS  PubMed  Google Scholar 

  44. Negri L, Noviello L, Noviello V. Effects of sauvagine, urotensin I and CRF on food intake in rats. Peptides. 1985;6:53–57.

    Article  CAS  PubMed  Google Scholar 

  45. Kato S, Hirata T, Takeuchi K. Nitric oxide, prostaglandin, and sensory neurons in gastric mucosal blood flow response during acid secretion in rats. Gen Pharmacol. 1997;28:513–519.

    Article  CAS  PubMed  Google Scholar 

  46. Sugamoto S, Kawauch S, Furukawa O, Mimaki TH, Takeuchi K. Role of endogenous nitric oxide and prostaglandin in duodenal bicarbonate response induced by mucosal acidification in rats. Dig Dis Sci. 2001;46:1208–1216.

    Article  CAS  PubMed  Google Scholar 

  47. Wallace JL. Cooperative modulation of gastrointestinal mucosal defence by prostaglandins and nitric oxide. Clin Invest Med. 1996;19:346–351.

    CAS  PubMed  Google Scholar 

  48. Raimura M, Tashima K, Matsumoto K, et al. Neuronal nitric oxide synthase-derived nitric oxide is involved in gastric mucosal hyperemic response to capsaicin in rats. Pharmacology. 2013;92:60–70.

    Article  CAS  PubMed  Google Scholar 

  49. Chen RY, Guth PH. Interaction of endogenous nitric oxide and CGRP in sensory neuron-induced gastric vasodilation. Am J Physiol. 1995;268:G791–G796.

    CAS  PubMed  Google Scholar 

  50. Schweda F, Klar J, Narumiya S, Nusing RM, Kurtz A. Stimulation of renin release by prostaglandin E2 is mediated by EP2 and EP4 receptors in mouse kidneys. Am J Physiol Renal Physiol. 2004;287:F427–F433.

    Article  CAS  PubMed  Google Scholar 

  51. Yang T, Du Y. Distinct roles of central and peripheral prostaglandin E2 and EP subtypes in blood pressure regulation. Am J Hypertens. 2012;25:1042–1049.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Kedar A, Wajsman Z, Williams P, Moore R, Murphy GP. Paradoxical increase of renal blood flow in anesthetized hypertensive dog treated with indomethacin. Urology. 1979;14:256–259.

    Article  CAS  PubMed  Google Scholar 

  53. Takahashi K, Totsune K, Murakami O, Shibahara S. Urocortins as cardiovascular peptides. Peptides. 2004;25:1723–1731.

    Article  CAS  PubMed  Google Scholar 

  54. Im E, Rhee SH, Park YS, Fiocchi C, Tache Y, Pothoulakis C. Corticotropin-releasing hormone family of peptides regulates intestinal angiogenesis. Gastroenterology. 2010;138:2457–2467.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Konturek SJ, Bilski J, Pawlik W, et al. Gastrointestinal secretory, motor and circulatory effects of corticotropin releasing factor (CRF). Life Sci. 1985;37:1231–1240.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Yvette Taché (UCLA) and Dr. Jean Rivier (Salk Institute, Peptide Laboratories) for their suggestions and peptide supply. Authors received study support from NIHDDK-41303 Animal Model Core (MM, JDK), NIHDDK DK 57238-01A1S1 & DK078676 (MM), Department of Veterans Affairs Merit Review Award, and NIH-NIDDK RO1 DK54221 (JDK).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mulugeta Million.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akiba, Y., Kaunitz, J.D. & Million, M. Peripheral Corticotropin-Releasing Factor Receptor Type 2 Activation Increases Colonic Blood Flow Through Nitric Oxide Pathway in Rats. Dig Dis Sci 60, 858–867 (2015). https://doi.org/10.1007/s10620-015-3579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3579-y

Keywords

Navigation