
Vol.:(0123456789)

Distributed and Parallel Databases (2024) 42:31–71
https://doi.org/10.1007/s10619-023-07433-1

1 3

Multi‑model query languages: taming the variety of big
data

Qingsong Guo1,2 · Chao Zhang3 · Shuxun Zhang2 · Jiaheng Lu2

Accepted: 20 April 2023 / Published online: 31 May 2023
© The Author(s) 2023

Abstract
A critical issue in Big Data management is to address the variety of data–data are
produced by disparate sources, presented in various formats, and hence inherently
involves multiple data models. Multi-Model DataBases (MMDBs) have emerged as
a promising approach for dealing with this task as they are capable of accommodat-
ing multi-model data in a single system and querying across them with a unified
query language. This article aims to offer a comprehensive survey of a wide range
of multi-model query languages of MMDBs. In particular, we first present the SQL-
based extensions toward multi-model data, including the standard SQL extensions
such as SQL/XML, SQL/JSON, and GQL, and the non-standard SQL extensions
such as SQL++ and SPASQL. We then study the manners in which document-based
and graph-based query languages can be extended to support multi-model data. We
also investigate the query languages that provide native support on multi-model
data. Finally, this article provides insights into the open challenges and problems of
multi-model query languages.

Keywords Multi-model data · Query language · Cross-model query

 * Qingsong Guo
 qingsongg@gmail.com

 * Jiaheng Lu
 jiaheng.lu@helsinki.fi

 Chao Zhang
 cycchao@mail.tsinghua.edu.cn

 Shuxun Zhang
 shuxun.zhang@helsinki.fi

1 School of Computer Science & Technology, North University of China, No.3 of Xueyuan Road,
Taiyuan 030051, Shanxi, China

2 Department of Computer Science, University of Helsinki, P.O. Box 68, Pietari Kalmin katu 5,
00560 Helsinki, Finland

3 Department of Computer Science, Tsinghua University, 30 Shuangqing Road, Beijing 100084,
China

http://orcid.org/0000-0003-2067-454X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-023-07433-1&domain=pdf

32 Distributed and Parallel Databases (2024) 42:31–71

1 3

1 Introduction

In past decades, we were witnessing the burst of heterogeneous data, where data may
be produced by disparate sources, presented in various formats (structured, semi-
structured, or unstructured), and hence inherently involves multiple data models.
Take a healthcare dataset Mimic II [1] as an example, it encompasses 26,000 patients/
days in the intensive care unit (ICU) of Beth Israel Hospital in Boston. This dataset
includes data collected from disparate sources: (1) real-time data (time series from
bedside monitoring devices); (2) a historical archive of waveform data (from previous
patients); (3) patient metadata (relational data); (4) doctor’s and nurse’s notes (text);
and (5) prescription information (semi-structured data). Relational data is only a small
portion of this dataset. To make the right treatment decisions, doctors have to check
the real-time diagnosis and request the historical treatments of the patients as well.

The demands for efficient management of massive multi-model data have trig-
gered the development of Multi-Model DataBase (MMDB) systems [2, 3]. Con-
ventionally, every database must adhere to a specific data model, which determines
the logical structure of data, and the manner in which data is stored, organized,
and manipulated by database systems. The relational model has become the domi-
nant data model of databases since its inception in 1970 [4]. However, many of the
relational DBMSs gradually evolved into their multi-model versions with support
to the lately invented data models such as XML, JSON, graph, and key-value data.
We have found 124 MMDB systems listed on the DB-Engines Ranking site1 (414
DBMSs in total). An MMDB tightly integrates multiple storage engines together
and accommodates data in the formats that fit the sources best, e.g., key/value pairs,
relational tables, graphs, XML/JSON documents, etc. It also provides a unified
query language to express users’ interests across multiple data models.

In this article, we present a comprehensive investigation of the query languages
of MMDBs, as shown in Table 1. Syntactically, these languages can be roughly
divided into four categories: the SQL extensions, the XPath/XQuery extensions, the
graph extensions, and the native ones. The most appealing feature of these query
languages is the capability of expressing cross-model queries—a query spans multi-
ple data models. Therefore, such language allows users to express relational queries,
document queries, graph queries, key/value lookups, and arbitrary mixtures of them
in a single query. By relational queries, we mean queries that manipulate relations in
accordance with relational algebra/calculus. By document queries, we mean queries
that navigate through a document from the root to any particular node. By graph
query, we mean queries that involve the particular connectivity features coming
from the edges, e.g., shortest path, graph traversal, and pattern matching.

Related work To the best of our knowledge, this is the first survey to discuss
state-of-the-art research works and industrial products on multi-model query lan-
guages. A number of related surveys have been published in past years, but most
of them focused on the general issues in multi-model data management or query
languages for specific data models, especially for graph models. Scholl [5] inves-
tigates the restrictions on the relational model and the ways to extend the model to

1 DB-Engines Ranking (Apr 2023). https:// db- engin es. com/ en/ ranki ng

https://db-engines.com/en/ranking

33

1 3

Distributed and Parallel Databases (2024) 42:31–71

Ta
bl

e
1

 M
ul

ti-
m

od
el

 q
ue

ry
 la

ng
ua

ge
s

C
at

eg
or

y
La

ng
ua

ge
s

D
at

a
m

od
el

s
D

es
cr

ip
tio

n

SQ
L

Ex
te

ns
io

ns
SQ

L/
X

M
L

Re
la

tio
n,

 X
M

L
A

 p
ar

t o
f S

Q
L:

20
03

; E
xa

m
pl

es
: P

L/
SQ

L,
 T

-S
Q

L,
 P

L/
pg

SQ
L,

 D
b2

, M
yS

Q
L,

 e
tc

SQ
L/

JS
O

N
Re

la
tio

n,
 JS

O
N

A
 p

ar
t o

f S
Q

L:
20

16
; E

xa
m

pl
es

: P
L/

SQ
L,

 T
-S

Q
L,

 P
L/

pg
SQ

L,
 D

b2
, M

yS
Q

L,
 e

tc
SQ

L+
+

Re
la

tio
n,

 JS
O

N
Ex

te
nd

 S
Q

L
w

ith
 p

at
h

ex
pr

es
si

on
s;

 E
xa

m
pl

es
: A

ste
rix

D
B

’s
 S

Q
L+

+
, C

ou
ch

ba
se

’s

N
1Q

L
SQ

L/
SP

A
R

Q
L

Re
la

tio
n,

 R
D

F
N

on
-s

ta
nd

ar
d

ex
te

ns
io

ns
 o

f S
Q

L;
 E

xa
m

pl
es

: O
ra

cl
e’

s S
Q

L/
SP

A
R

Q
L,

 V
irt

uo
so

’s

SP
A

SQ
L

SQ
L/

PG
Q

Re
la

tio
n,

 p
ro

pe
rty

 g
ra

ph
A

 p
la

nn
ed

 S
Q

L
ex

te
ns

io
n

fo
r p

ro
pe

rty
 g

ra
ph

; n
ot

 im
pl

em
en

te
d

ye
t

G
Q

L
Re

la
tio

n,
 p

ro
pe

rty
 g

ra
ph

Th
e

la
te

st
pl

an
ne

d
st

an
da

rd
 fo

r p
ro

pe
rty

 g
ra

ph
; n

ot
 im

pl
em

en
te

d
ye

t
X

Pa
th

/X
Q

ue
ry

 E
xt

en
si

on
s

C
or

e-
X

Pa
th

X
M

L,
 JS

O
N

N
av

ig
at

io
na

l c
ap

ab
ili

ty
 o

f X
Pa

th
; n

ot
 im

pl
em

en
te

d
ye

t
G
X
P
a
th

r
e
g

X
M

L,
 JS

O
N

, g
ra

ph
X

Pa
th

 e
xt

en
si

on
 to

w
ar

ds
 d

oc
um

en
t a

nd
 g

ra
ph

 d
at

a;
 n

ot
 im

pl
em

en
te

d
ye

t
JS

O
N

Pa
th

X
M

L,
 JS

O
N

A
 m

im
ic

 o
f X

Pa
th

 fo
r b

ot
h

X
M

L
an

d
JS

O
N

; i
ns

pi
re

d
th

e
SQ

L/
X

M
L

st
an

da
rd

JS
O

N
iq

X
M

L,
 JS

O
N

A
 m

im
ic

 o
f X

Q
ue

ry
 fo

r b
ot

h
X

M
L

an
d

JS
O

N
; E

xa
m

pl
e:

 th
e

Zo
rb

a
X

Q
ue

ry
 p

ro
ce

s-
so

r
G

ra
ph

 E
xt

en
si

on
s

X
SP

A
R

Q
L

R
D

F,
 X

M
L

A
 c

om
bi

na
tio

n
of

 S
PA

R
Q

L
an

d
X

Q
ue

ry
; E

xa
m

pl
e:

 M
ar

kl
og

ic
’s

 X
SP

A
R

Q
L

A
ge

ns
Q

L
G

ra
ph

, r
el

at
io

n
A

 c
om

bi
na

tio
n

of
 C

yp
he

r a
nd

 S
Q

L;
 E

xa
m

pl
e:

 A
ge

ns
G

ra
ph

’s
 q

ue
ry

 la
ng

ua
ge

A
ge

Q
L

G
ra

ph
, r

el
at

io
n

A
 c

om
bi

na
tio

n
of

 S
Q

L
an

d
op

en
C

yp
he

r;
Ex

am
pl

e:
 P

os
tg

re
SQ

L
A

G
E’

s q
ue

ry

la
ng

ua
ge

N
at

iv
e

A
Q

L
K

V,
 JS

O
N

, p
ro

pe
rty

 g
ra

ph
, G

eo
Sp

at
ia

l
A

 n
at

iv
e

m
ul

ti-
m

od
el

 q
ue

ry
 la

ng
ua

ge
; A

ra
ng

oD
B

’s
 q

ue
ry

 la
ng

ua
ge

O
rie

nt
Q

L
G

ra
ph

, J
SO

N
, K

V
A

 n
at

iv
e

m
ul

ti-
m

od
el

 q
ue

ry
 la

ng
ua

ge
; O

rie
nt

D
B

’s
 q

ue
ry

 la
ng

ua
ge

K
Q

L
Re

la
tio

n,
 T

im
e

se
rie

s,
G

eo
Sp

at
ia

l
A

 c
om

bi
na

tio
n

of
 S

Q
L

an
d

G
re

m
lin

; E
xa

m
pl

e:
 O

rie
nt

D
B

’s
 q

ue
ry

 la
ng

ua
ge

34 Distributed and Parallel Databases (2024) 42:31–71

1 3

more capable data models, including the nested relational model, the object model,
and the object-relation model. Schweikardt et al. [6] give an in-depth investigation
of the theories that underpin the relational query languages (relational algebra, rela-
tional calculus, and SQL), including the expressive power, query and data complexi-
ties, and manners to extend a query language with more expressiveness. Atzeni et al.
[7] presents a comprehensive survey on NoSQL modeling, such as Key-value data,
document data, and NoAM (NoSQL Abstract Model). Prior to Atzeni et al.’s work,
Angles and Gutiérrez described the issues in graph data modeling such as graph
schema, graph manipulation, and the integrity constraints enforcing consistency
of graph data [8]. Wood [9] and Barceló [10] study several graph query languages
from a theoretical point of view, focusing on their expressive power and the com-
putational complexity of associated problems. Angles [11] makes a comprehensive
survey of the fundamental concepts underpinning modern graph query languages,
such as navigational queries, regular path queries, and graph pattern matching. Bon-
diombouy and Valduriez [12] analyzed a bunch of representative polystore systems
on their architecture, data model, query languages, and query processing techniques.
MMDBs can be roughly viewed as tightly-coupled polystores but has a significant
difference within query language and query processing. Another related work is
published by Lu and Holubová [3], they summarize a variety of data models widely
adopted by database systems and discuss the general issues and challenges in multi-
model data management. Compared to that work, this article has a different focus on
multi-model query languages which are not well investigated in previous work.

Outline The survey is structured as follows: We first discuss the general concepts
related to multi-model databases in Sect. 2. In the same section, we also summarize
the essential queries demanded by each type of data model, including conjunctive
queries for SQL, navigational queries for document and graph data, and graph pat-
tern matching for graph data. We then step into the details of multi-model query lan-
guages. In Sect. 3, we present the SQL-based extensions toward multi-model data,
including the standard SQL extensions such as SQL/XML, SQL/JSON, and GQL,
and the non-standard SQL extensions such as SQL++ and SPASQL. In Sect. 4, we
study the manners in which a document query language can be extended to sup-
port multi-model data. In Sect. 5, we give the graph-based extensions toward multi-
model query. In Sect. 6, we describe the recent query languages that natively support
multi-model data. Finally, we conclude with a brief summarization of the challenges
related to designing a multi-model query language or extending from the existing
base languages.

2 Preliminaries

In this section we briefly review the related concepts in multi-model data
management.

35

1 3

Distributed and Parallel Databases (2024) 42:31–71

2.1 Multi‑model data

We concentrate on the relational model and 5 widespread NoSQL models in this
article.

Relational data The relational model become the dominant data model since its
invention by Codd in 1970 [4, 13]. It provides a tabular view in which data are rep-
resented as relations with columns and rows. The model has an elegant math foun-
dation, but it is too strict to represent more complex data [14, 15]. For example, rela-
tions following the model must be flat (i.e., attribute values to be atomic) due to the
First Normal Form (1NF). In recent years, various data models have been proposed
to extend the relational model.

Semi-structured data Semi-structured models (or documents) are widely used to
represent the web data and exchange over the Internet [16, 17]. It is a self-describing
structure that associates semantic tags or markers and enforces hierarchies of records
and fields by nesting elements within it. XML (eXtensible Markup Language) [18,
19] and JSON (JavaScript Object Notation) [20, 21] are the most widespread semi-
structured data. XML is a typeless markup language that represents data using
nested elements delimited by tags, which can contain plain text, nested subelements,
or their combination. JSON [22, 23] is a human-readable open-standard format that
is based on the idea of an arbitrary combination of three basic data types used in
most programming languages—key/value pairs, arrays, and objects.

Graph data The graph model represents data as a graph ⟨V ,E⟩ of vertices (or
objects) V and edges E connecting the vertices in V. There are many variants of
the graph model [8, 24, 25], including the hypergraph model [26], the tempo-
ral graph [27], the edge-labeled graph (ELG) [28], and the property graph model
(PGM) [29]. The most popular representatives are the edge-labeled graph and
property graph. A well-known example of the edge-labeled graph is the Resource
Description Framework (RDF) [28, 30]. It represents named properties and their
values as a collection of triples, {… , ⟨s, p, o⟩,…} . Each triple represents a relation-
ship (labeled with a predicate p) between two nodes in the Semantic Web, where the
subject s is a resource or an entity, and the object o is another node or a literal value.
The property graph [31, 32] represents data as a directed, attributed multi-graph.
Vertices and edges are objects with a set of labels and a set of key-value pairs, so-
called properties.

Key-value data Key-Value (KV) data is the simplest data model that has been
widely adopted by NoSQL databases such as BerkeleyDB and Redis.

Key-Value data consists of a collection of key-value pairs ⟨k, v⟩ that are viewed
as individual records and each value is designated a unique key, with which we can
quickly store, retrieve, or modify the value. The values in key-value pairs have no
type and it is up to the application to determine what type of data is being used, i.e.,
it could be an integer, string, JSON, XML file, or binary data like images.

Figure 1 displays an example of multi-model data, including a relational table
(customers), two semi-structured documents (orders.json and invoices.xml), a social
network (property graph G), and a collection of key-value pairs (feedback.kv). The
example is generated with UniBench [33–35]—a benchmark for testing multi-model
databases and was developed by the UDBMS group from the University of Helsinki.

36 Distributed and Parallel Databases (2024) 42:31–71

1 3

UniBench simulates the application scenario within a commercial social network, in
which a user can follow anyone else be interested in, leave comments on the posts
from others he has already followed, navigate the marketplace for products posted
by sellers and place orders on the site, and give feedback on the purchased product.
In the example data, the social network is represented as a property graph G, where
each node (edge) has a label describing its type (e.g., :Person, :Post, :Tag,
and :follows) and associates with a set of key/value pairs as its properties. Nodes
of other types, i.e., :Post, :Tag, are not presented in the graph. The JSON docu-
ment records the order information, while invoices are kept in the XML document
so that they can be presented to the customers in various styles. Customer feedback
on the products is kept in key/value pairs (with a pair of keys, i.e., custID and pro-
ductID). Finally, we use a relational table to record the information of customers.

2.2 Multi‑model queries

The main purpose of managing massive multi-model data is to be able to query it.
UniBench [34] also defines a collection of the workload of multi-model queries.
Taking the query Q5 of UniBench as an example:

Fig. 1 An example multi-model dataset generated with UniBench [34]

37

1 3

Distributed and Parallel Databases (2024) 42:31–71

The query accesses data from heterogeneous sources, i.e., Follows.pg, Orders.
json, and Feedback.kv listed in Fig. 1. As shown in Query 1, we can write Q5 in
ArangoDB’s query language (AQL) [36]. The query involves a variable-length path
query on the property graph, an embedded array operation on the JSON document,
and a composited key lookup on key-value pairs. Thereafter, we use two equi-joins
(i.e., a graph-JSON join and a JSON-KV join) to assemble the partial records from
the property graph, JSON document, and key-value pairs.

 Query 1 is a multi-model query (MMQ), which is a mixture of relational queries,
document queries, graph queries, and key/value fetches. By document queries, we
can navigate through the root to any particular node in a document. By graph query,
we mean queries that involve the particular connectivity features coming from the
edges, e.g., shortest path, graph traversal, and pattern matching. The query opera-
tions in key-value stores rely on low-level key lookups. Ideally, a multi-model query
language is capable of expressing an arbitrary mixture of queries on all data models
we discussed in the previous section. Nevertheless, we concentrate on three types of
fundamental queries.

(1) Relational queries The essence of relational queries is conjunctive queries
(CQs), which use a restricted form of the first-order logic expressions with only con-
junction operator and existential quantifier. In particular, CQs are equivalent to the
SELECT-FROM-WHERE queries in SQL in which the WHERE clause uses exclu-
sively conjunctions of atomic equality conditions [6]. However, we cannot express
the transitive closure and aggregate with CQ (likewise with the relational algebra
and calculus) [37]. Normally, one can extend the expressive power of CQ in sev-
eral ways: (1) adding more operations such as union and negation; (2) allowing
recursion, which is essential for extending CQ to graph data; (3) counting, which is
essential for aggregate queries; (4) introducing more powerful grammars (e.g., regu-
lar expression or context-free grammar) for formulating complex query expressions.

(2) Navigational queries Navigational queries (NQs) form the foundation for
many semi-structured and graph query languages such as Lorel [38], OQL [39],
XPath [40], XQuery [41], XSLT [42], and nSPARQL [43]. Most formalisms for
NQs are based on the notion of path expression [44–47], which specify the way to

38 Distributed and Parallel Databases (2024) 42:31–71

1 3

navigate the underlying data [16, 39, 46, 48, 49]. Essentially, there are two types
of NQs: simple path query (SPQ) and regular path query (RPQ) [9, 16, 50–54].
An SPQ is a complete sequence � = l1.⋯ .ln of edges, where l1,… , ln are labels of
edges between objects. It can be extended by introducing wildcards (?, *, %, or #)
and more expressive grammar such as context-free grammar [55]. Formally, RPQs
are expressions of the form (x, L, y), where L is a regular language over an alphabet
Σ of edge labels. It generalizes SPQs to support transitive closure and can be further
extended with more complex patterns, backward navigation, relations over paths,
and mixing labels and data in nodes [45, 55], such as the conjunctive regular path
queries (CRPQs) [56], two-way regular path queries (2CRPQs) [56]. The property
path queries extend RPQs with a mild form of negation [57] and forms the concep-
tual core of the SPARQL 1.1 standard [58, 59].

(3) Graph pattern matching Graph pattern matching (GPM) is one of the foun-
dations that underpin the graph query languages such as W3C’s SPQAQL [59–61],
Cypher [29, 62], TinkerPop’s Gremlin [63, 64], Oracle’s PGQL [65, 66], LDBC’s
G-CORE [67], and TigerGraph’s GSQL [68, 69]. A graph pattern P = (VP,EP, LP)
is a directed graph that specifies the structural and semantic requirements that
matched subgraphs in the data graph G must satisfy. Tree pattern is a special form of
graph pattern that has been extensively studied in the context of XML database [70,
71]. The task of GPM is to find the set M of subgraphs from data graph G that match
a pattern graph P. The precise definition of a match varies among graph query lan-
guages but is generally based on the following semantics: (1) subgraph isomorphism
(i.e., structural matching) or near isomorphism between P and m ∈ M [72], and
(2) equality or similarity between the types and attribute values of the vertices and
edges in P and those in m ∈ M.

2.3 Cross‑model query processing

So far we have stated examples of multi-model data and queries. We proceed to pre-
sent multi-model query languages (MMQLs) that allow users to express MMQs in
a declarative way. Ideally, an MMQL is capable of expressing any MMQs using an
arbitrary mixture of relational, navigational, and graph queries that span over a col-
lection of multi-model data. The problem of accessing multi-model data sources [73,
74], i.e., managed by various heterogeneous DBMSs such as relational, XML, or
graph DBMSs, has been extensively studied in the context of multidatabase sys-
tems [75, Chapter 7] (also known as federated database systems) and data integra-
tion [76]. In general, an MMQ q is a mapping that spans a collection of multi-model
data D = {d1,… , dk} and maps it to the query result q(D). The evaluation of q is a
challenging task and we say it as cross-model query processing [2, 12, 77] when an
MMQ spans multiple data models. Roughly, we can identify two feasible approaches
for cross-model query processing: (1) the mediator-wrapper fashion in Polystore
systems, and (2) a holistic evaluation in MMDB systems.

Polystores The basic idea of Polystore (or Multistore) systems (e.g., Polybase[78]
and BigDAWG [79, 80]) is to provide integrated access to a set of heterogeneous
data stores (SQL or NoSQL). We can divide polystore systems into three categories,

39

1 3

Distributed and Parallel Databases (2024) 42:31–71

i.e., loosely-coupled, tightly-coupled, and hybrid, based on the level of coupling
with the underlying data stores. Query processing in polystores is complex and com-
monly based on the mediator-wrapper architecture [12, 81], where the media-
tor provides a global view of multi-model data to users and each wrapper supports
the functionality of translating subqueries to the particular store, and reformatting
answers (partial results) appropriate to the mediator. The mediator has a catalog of
data stores, and each wrapper has a local catalog of its data store. With the global
schema, one can express MMQs over a polystore as if it is a single database. How-
ever, query evaluation in polystores involves massive data exchange, which consists
of defining a global schema over the underlying multi-model data and mappings
between the global schema and the local schemas.

Multi-model databases Polystores may result in disparate data silos and multiple
interfaces that require expensive integration workflows. This poses a great challenge
to query processing and encourages the development of Multi-Model DataBases
(MMDBs) [2, 34]. A plethora of MMDBs emerged over the past years, such as Ora-
cle [82, 83], PostgreSQL [84], MongoDB [85], ArangoDB [86], and OrientDB [87].
These MMDBs are developed in two ways: (1) native MMDBs built from scratch
such as ArangoDB and OrientDB; (2) extensions of the existing relational, docu-
ment, and graph DBMSs. For more details about MMDBs, we refer the readers to
Lu and Holubová’s survey paper [3]. Table 2 summarizes the representatives for
each type of MMDBs. An MMDB system can be viewed as a variant of the tightly
integrated polystores, in which multi-model data is accommodated in a set of native
storage engines, a global execution engine is on the top of the local stores, and
MMQs are expressed in a unified query language. There is a global execution engine
that runs on top of local storage engines and the executor directly accesses local
storage engines without any intervention of wrappers. Consequently, MMQs can be
evaluated in a holistic manner instead of being divided into subqueries.

Cross-model query processing via schema mapping Cross-model query pro-
cessing in both polystores and MMDBs may incur expensive data exchange [77, 88].
Figure 2 gives a visual representation of the MMQ Query 1, in which data fragments
from the property graph, JSON document, and key-value pairs should be assembled
into an intact query result with a graph-JSON join and a JSON-KV join. The two
joins can be done through two data exchange schemes, i.e., a graph-to-JSON map-
ping and a KV-to-JSON mapping.

The main task in data exchange is to translate data between the source schema
and the target schema under a set of source-to-target constraints known as schema
mappings [89]. Query processing under schema mappings [90] has also been inves-
tigated extensively in the context of multidatabase systems [75, Chapter 7] and
data integration [91]. It typically relies on the two cases where each target atom is
mapped to a query over the source (called GAV, global-as-view), and where each
source atom is mapped to a query over the target (called LAV, local-as-view) [76].
The general case, called GLAV, in which queries over the source are mapped to
queries over the target, has attracted a lot of attention recently, especially for data
exchange. The GAV and LAV are widely implemented in polystores. For more
details about query processing via schema mapping, we refer the readers to Bondi-
ombouy et al.’ survey paper [12].

40 Distributed and Parallel Databases (2024) 42:31–71

1 3

Ta
bl

e
2

 M
ul

ti-
m

od
el

 d
at

ab
as

es

C
at

eg
or

y
D

B
M

Ss
Q

ue
ry

 la
ng

ua
ge

s
Su

pp
or

te
d

m
od

el
s

D
es

cr
ip

tio
n

Re
la

tio
n-

ba
se

d
Ex

te
ns

io
ns

A
ste

rix
D

B
SQ

L+
+

Re
la

tio
n,

 JS
O

N
Ex

te
nd

 S
Q

L
w

ith
 p

at
h

ex
pr

es
si

on
s

O
ra

cl
e

PL
/S

Q
L

Re
la

tio
n,

 JS
O

N
, X

M
L,

 R
D

F
Ex

te
nd

ed
 fr

om
 S

Q
L

M
yS

Q
L

O
ra

cl
e

M
yS

Q
L

Re
la

tio
n,

 K
V

Ex
te

nd
ed

 fr
om

 S
Q

L
Po

stg
re

SQ
L

PL
/p

gS
Q

L
Re

la
tio

n,
 JS

O
N

, X
M

L,
 K

V
Ex

te
nd

ed
 fr

om
 S

Q
L,

 T
ur

in
g-

co
m

pl
et

e
SQ

L
Se

rv
er

T-
SQ

L
Re

la
tio

n,
 JS

O
N

, X
M

L
Ex

te
nd

 S
Q

L
to

 su
pp

or
t J

SO
N

 a
nd

 X
M

L,
 T

ur
in

g-
co

m
pl

et
e

IB
M

 D
b2

SQ
L

Re
la

tio
n,

 X
M

L
Ex

te
nd

 S
Q

L
to

 su
pp

or
t t

re
es

, n
ot

 T
ur

in
g-

co
m

pl
et

e
D

oc
um

en
t-b

as
ed

 E
xt

en
si

on
s

M
ar

kL
og

ic
X

Q
ue

ry
/X

Pa
th

X
M

L,
 JS

O
N

, R
D

F,
 R

el
at

io
n

Ex
te

nd
ed

 fr
om

 X
Q

ue
ry

, T
ur

in
g-

co
m

pl
et

e
Zo

rb
a

X
Q

ue
ry

/JS
O

N
iq

X
M

L,
 JS

O
N

Ex
te

nd
ed

 fr
om

 X
Q

ue
ry

G
ra

ph
-b

as
ed

 E
xt

en
si

on
O

rie
nt

D
B

O
rie

nt
Q

L
G

ra
ph

, J
SO

N
, K

V
Ex

te
nd

ed
 fr

om
 g

ra
ph

 m
od

el
, n

ot
 T

ur
in

g-
co

m
pl

et
e

A
ge

ns
G

ra
ph

A
ge

ns
Q

L
G

ra
ph

, R
el

at
io

n
C

yp
he

r o
n

SQ
L

or
 S

Q
L

on
 C

yp
he

r,
no

t T
ur

in
g-

co
m

pl
et

e
A

ph
ac

he
 A

G
E

op
en

C
yp

he
r+

SQ
L

G
ra

ph
, R

el
at

io
n

a
gr

ap
h

ex
te

ns
io

n
of

 P
os

tg
re

SQ
L

to
 u

se
 S

Q
L

al
on

g
w

ith
 o

pe
nC

y-
ph

er
N

at
iv

e
A

ra
ng

oD
B

A
Q

L
JS

O
N

, g
ra

ph
, K

V
SQ

L-
lik

e
qu

er
y

la
ng

ua
ge

O
rie

nt
D

B
O

rie
nt

Q
L

G
ra

ph
, J

SO
N

, K
V

SQ
L-

lik
e

K
us

to
K

Q
L

Re
la

tio
n,

 ti
m

e
se

rie
s,

G
eo

Sp
at

ia
l

SQ
L-

lik
e

41

1 3

Distributed and Parallel Databases (2024) 42:31–71

3 Relational extensions

In this section, we present the relational extensions toward multi-model data.

3.1 Relational query languages and the SQL standards

In the early 1970s, Codd proposed two mathematical query languages, called rela-
tional algebra (RA) and relational calculus (RC, also known as the Data Sublan-
guage ALPHA) [92, 93], which form the basis for real languages like SQL. ALPHA
inspired the design of subsequent query languages including SEQUEL [94, 95] and
QUEL [96, 97]. The structured query language SEQUEL finally evolved to SQL.
The core query syntax of SQL is the SELECT-FROM-WHERE (SFW) clauses, and
we say a query language is SQL-like if it has similar clauses as well. By 1986, SQL
had been formally adopted by the ANSI and ISO as a standard database query lan-
guage, namely SQL-86 (also known as SQL1). The earliest versions of SQL lacked
support for some aspects of the relational model, including subqueries, primary keys
and referential integrity. All these problems were solved by the SQL:1992 standard
(or SQL2) [98]. Procedural extensions SQL/PSM [99] formally became a part of
the SQL:1996. The common table expressions (CTEs), WITH [RECURSIVE]
construct, was introduced into SQL:1999 (also called SQL3) to allow recursive que-
ries [100, 101].

Recently, many traditional RDBMSs have been evolving to their multi-model ver-
sions, such as Oracle, MySQL, MS SQL Server, PostgreSQL, IBM Db2, and Mari-
aDB. The query languages of these systems are naturally extended from the SQL
standard and thus have certain compliance with each other. Table 2 lists several such
extensions. Consequently, a number of extensions were proposed to handle multi-
model data, and some of them have been accepted by the SQL standard, such as
SQL/XML [102], SQL/JSON [103], SQL/PGQ [104], and GQL [105–107]. In this
section, we present three standard extensions such as SQL/XML, SQL/JSON, and
GQL, and two non-standard extensions such as SQL++ and SPQRSQL.

Fig. 2 A visual representation of the query Q5 in UniBench

42 Distributed and Parallel Databases (2024) 42:31–71

1 3

3.2 SQL extensions toward semistructured data

We mainly focus on the SQL extensions toward XML and JSON. In addition to the
predefined data types (e.g., NUMERIC and CHAR), SQL/XML and SQL/JSON
introduce the new data type XML and JSON into the SQL standard, where each data
type associates with a set of constructors, functions, and rules for XML(JSON)-to-
SQL mapping. Even though XML and JSON are somewhat similar—documents
with nested structures—their integration into SQL is quite different. The most strik-
ing difference is that the standard does not define a native JSON type like it does for
XML. Instead, the standard uses strings to store JSON data. Other than creating a
new data type, SQL++ builds a unified data model to capture and manipulate both
relational data and JSON documents.

3.2.1 SQL/XML and SQL/JSON

SQL/XML SQL/XML [102] is a collection of XML-related specifications and
became part 14 of the ANSI/ISO SQL standard in 2003. It is SQL-centric and lets
SQL queries create XML structures with a few powerful XML publishing functions.
It introduces the predefined data type XML together with constructors, functions,
and XML-to-SQL data type mappings to support the manipulation and storage of
XML in a relational database. SQL/XML has substantially similar functionality to
XQuery. The specification defines the data type XML, and functions working on
XML, including element construction, mapping data from relational tables, com-
bining XML fragments and embedding XQuery expressions in SQL statements.
Functions that can be embedded include XMLQUERY (which extracts XML or val-
ues from an XML field) and XMLEXISTS (which predicates whether an XQuery
expression is matched). The existing RDBMSs have their own implementations of
SQL/XML. As shown in Table 3, they have different compliance with the SQL/
XML standard.

In a nutshell, the SQL/XML extension consists of the following 4 parts: (1) The
XML data type and related constructors. The SQL/XML standard defines a sin-
gle data type named XML. Its possible values are either null or a document con-
forms to the definition in W3C’s XML recommendation [19]. DB2, SQL Server,
and PostgreSQL provide native support for the XML data type. MySQL doesn’t
support XML data types like SQL Server or PostgreSQL but just takes XML as a
CLOB (Character Large Object) data type. Oracle entitles the XMLType’ instead of
‘XML’. (2) Support for XPath/XQuery. In order to retrieve XML data within a SQL
query, one must incorporate the XPath expressions or XQuery’s FLWOR clauses into
the standard SQL syntax. Excepting MySQL supports only XPath, other RDBMSs
provide full supports for XPath and XQuery. (3) Special functions for handling
XML data. The standard defines 9 functions that allow application to retrieve XML
directly within SQL queries, including XMLAGG , XMLCONCAT , XMLCOMMENT,
XMLELEMENT, XMLFOREST, XMLPARSE, XMLPI, XMLROOT, and XMLSERIAL-
IZE. Oracle, DB2, and PostgreSQL provide full support for all the XML functions.
MySQL provide two functions, ExtractValue() and UpdateXML(), to work

43

1 3

Distributed and Parallel Databases (2024) 42:31–71

with XPath. (4) Rules for mapping XML to SQL tables. The standard defines sev-
eral rules for mapping SQL types to XML or in a reversed mapping. For example,
mapping an SQL table to XML and an XML Schema document.

SQL/JSON SQL/JSON [103] was introduced into the standard (ISO/IEC
9075:2016) in 2016. The specification includes a SQL/JSON data model, a set of
SQL/JSON functions working on the data model, and a SQL/JSON path language
for navigating the nested data structure. The data model is used by the SQL/JSON
functions and the path language. There are five standard SQL/JSON functions, such
as JSON_CONCAT, JSON_KEYCOUNT, JSON_KEYS, JSON_CONTAINS, and
JSON_EXISTENCE. The SQL/JSON path language use the dot notation and it is a
query language used by the SQL/JSON operators (JSON_VALUE, JSON_QUERY,
JSON_TABLE, and JSON_EXISTS) to query JSON text. Unfortunately, the current
SQL/JSON standard does not define a native data type for JSON, but represents it as
a VARCHAR or binary formats such as AVRO or BSON.

3.2.2 SQL++

SQL++ [108, 109] applies to both relational and JSON data. It is backward-compat-
ible with the SQL standard and is extended with a small number of query properties
for JSON. Differing from the previous extensions, SQL++ creates a unified data
model for relational tables and JSON.

(1) SQL++ Data Model The SQL++ data model is a superset of both rela-
tional tables and JSON, based on three observations: (a) A SQL tuple corre-
sponds to a JSON object literal; (b) a SQL string, integer, or boolean map to the
respective JSON scalar; and (c) a JSON array is similar to a SQL table (bag)
with the order. The model expands JSON with bags (as opposed to having JSON
arrays only) and enriched values, i.e., atomic values that are not only numbers
and strings. Vice versa, we can also think of SQL++ as expanding SQL with
JSON features: arrays, heterogeneity, and the possibility that any value may be
an arbitrary composition of the array, bag and tuple constructors, hence enabling
arbitrary nested structures, such as arrays of arrays.

The data operated on and query results of SQL++ are JSON values, which
can be either primitive values or structured values, as shown in Fig. 3. A primi-
tive value is any of the following: (1) a string like “Hello”, (2) a number like
42 or −3.14159, (3) a boolean value true or false, or (4) null. A structured
value could be an object or array, where an object is a list of name-value pairs

Table 3 Compliance to the SQL/XML standard

Oracle 11g IBM DB2 9.7 MS SQL
Server 2008

MySQL 5.1.30 PostgreSQL 9.1

XML Datatype XMLType XML XML CLOB XML
XPath/XQuery Syntax Full Full Full XPath Full
Predicates Full Full Partial No Full
Functions Full Full Partial Partial Ful

44 Distributed and Parallel Databases (2024) 42:31–71

1 3

separated by a comma and enclosed in curly braces. The name-value pairs are
also called fields. Each name is a string and each value can be any JSON value.
An array is an ordered list of items separated by commas and enclosed in square
brackets. Each item can be any JSON value.

(2) Query structure and path expressions SQL++ has been adopted by
many database systems, such as Couchbase’s N1QL-SQL++ alignment [110]
and the SQL++ interface of AsterixDB [111, 112]. An SQL++ query is either
an SFW query or an expression query. Unlike SQL expressions, which are
restricted to outputting scalar and null values, SQL++ expression queries output
arbitrary values, and are fully composable with SFW queries.

SQL++ supports simple path queries, which consist simply of an expression
that evaluates to an object, followed by a dot and an identifier. For example,
in the expression “person.name”, person is a variable that evaluates to an
object, and the identifier name is used to find a field in the object whose name
matches that identifier. Since the result of a path expression is an object, it can
serve as one step in a longer path expression such as “person.name.first”.
Since SQL++ supports boolean operators such as NOT, AND, and OR, we can
issue more complex query patterns by binding several path expressions with
such operators. Unfortunately, SQL++ doesn’t support complex queries like
RPQs, CRPQs, and 2CRPQs. Figure 4 shows a cross-model query of SQL++
accessing both the relational table and JSON document. The query is a compos-
ite of the relational query and path query. For more examples of SQL++, please
refer to the technical papers [108, 109] and D. Chamberlin’s tutorial [109].

3.3 SQL extensions toward graph data

3.3.1 SQL extension for RDF

The emergence of the Semantic Web is enabling new approaches to federated data
queries. RDF promotes universally grounded identifiers for data, allowing the
SPARQL query language for RDF to perform joins across different data sources.
There is no standard SQL extension towards SPARQL. W3C defines a set of rules
for mapping between relational data and RDF [113] and the RDBMS vendors can

Fig. 3 A JSON value and an
array

45

1 3

Distributed and Parallel Databases (2024) 42:31–71

develop their own SQL/SPARQL extensions following these rules. We present two
extensions, i.e., Oracle’s SQL/SPARQL and OpenLink Virtuoso’s SPASQL [114].

(1) Oracle’s SQL/SPARQL Oracle extends SQL with full SPARQL 1.1 query
constructs [115]. A SPARQL subquery is embedded within the SQL query follow-
ing the SEM_MATCH statement. As shown in the following query, by integrating
RDF with existing enterprise data, one can use Oracle’s SQL/SPARQL to JOIN
with relational data, to create tables/views for RDF data, and to allow SQL con-
structs/functions working on RDF data.

 (2) Virtuoso’s SPASQL As a multi-model RDBMS, Virtuoso supports native
stores for a bunch of data models such as relational tables, RDF, and XML. It also
provides multiple ways to declaratively manipulate data, one of them is called
SPASQL (SPARQL-in-SQL) [116], which delivers a built-in blend of SQL func-
tionality with SPARQL functionality. SPASQL is a simple extension of the SQL
standard, allowing execution of SPARQL queries within SQL statements, typically
by treating them as a subquery or function clauses. The syntax of SPASQL is as
follows:

 In a SPASQL query, a SPARQL subquery is embedded within a SQL query fol-
lowing the keyword “SPARQL”. The subquery draws only from relations represented

Fig. 4 A SQL++ query

46 Distributed and Parallel Databases (2024) 42:31–71

1 3

as RDF statements and returns data in tabular form to an SQL interface. Virtuoso
has a universal server, which is a middleware that combines the functionalities of a
traditional RDBMS, an RDF engine, an XML engine, a web server, and even a file
server in a single system. While processing a SPASQL query, the universal server
will incur an RDF function call to the RDF engine for handling the SPARQL sub-
query and the result is then returned to the host SQL engine for further processing.
In this way, one can retrieve both relational and RDF data with a SPASQL query
like Query 3.

3.3.2 SQL extension for property graph

In recent years, a wealth of property graph query languages have been developed
by database vendors, including Neo4j’s Cypher/openCypher [117, 118], Oracle’s
PGQL [65, 66], LDBC’s G-CORE [67], and TigerGraph’s GSQL [68]. In 2019, the
ISO SQL Committee initiated a new project GQL (Graph Query Language) [106] as
the standard property query language to unify the previous languages. Prior to GQL,
WG3, and SC32 have helped to define SQL/PGQ (SQL/Property Graph Queries) as
a new planned Part 16 of the SQL standard [104], which allows a read-only graph
query to be embedded inside a SQL SELECT statement and returning a table of data
values as the result. SQL/PGQ is mainly used for matching a graph pattern using a
syntax that is very close to Cypher, PGQL, and G-CORE. The GQL project coordi-
nates closely with the SQL/PGQ and its project proposal [105] shows that GQL will
in general be a superset of SQL/PGQ.

GQL is intended to be useable both as a declarative property graph query
language as well as in conjunction with SQL [119, 120]. The existing property
graph query languages and the new GQL standard can fit together with the exist-
ing SQL standard. One key goal is composability—the ability to return the result
of a graph query as a graph that can be referenced in other graph queries. Query
syntax follows the syntactic tradition of SQL, i.e., using the SELECT-FROM-
WHERE clauses, and a query is represented as a tree of clauses, each introduced
by a distinct keyword and optionally further qualified by sub-clauses, expres-
sions, and patterns. According to the working draft [105] of the GQL specifica-
tion in 2019, GQL reuses basic literal and expression syntax from SQL but is
amended with the following features.

(1) New data types GQL provides new data types for handling graph ele-
ments. Graph types describe the structure of a graph in terms of nodes, edges,
and their labels and properties. A graph type consists of the following defini-
tions: (i) An (abstract) content type definition that defines a combination
of required labels, required properties, and the required data types of those

47

1 3

Distributed and Parallel Databases (2024) 42:31–71

properties. (ii) A node type definition that defines a combination of required
labels, required properties, and the required data types of those properties that
a node shall have. Node types may be defined as an extension of other node
types or content types. (iii) An edge type definition that defines a combination of
required labels, required properties, and the required data types of those proper-
ties that an edge and its endpoints shall have. Edge types may be defined as an
extension of other edge types or content types. (iv) Graph element constraint
definitions such as key constraint definitions, where a graph element is either a
node or an edge.

(2) Query syntax, structure, and clauses GQL borrows the syntax from
Cypher and provides an SQL-like query structure over table or graph data
that produces a tabular query result set. Specifically, GQL uses the SELECT-
(MATCH)-FROM-WHERE-(RETURN) clauses in which the MATCH and
RETURN clauses are optional when querying relational tables. Therefore,
GQL can provide full compliance with the SQL standard. Given a pat-
tern MATCH (p:Person)-[:lives_in]->(c:City), the query result
returned by the SELECT clause is represented in a tabular fashion. We have
to use the optional RETURN statement if we need to construct a graph as out-
put. The syntax of GQL’s RETURN clause is given in Query 4. GQL follows
the definition in Cypher and also provides multiple semantics for graph pat-
tern matching [121, 122], i.e., isomorphism and homomorphism. In addition,
GQL borrows the syntax of regular path expressions from PGQL [66], i.e.,
“(a:Person)-/:friend_of*/->(a:Person)”.

4 Document extensions

Many semi-structured data models have been proposed in practice, including the
ODMG Data Model (ODM) [39, 123], the Object Exchange Model (OEM) [124],
XML [19], JSON [21], and Google’s Protocol Buffers (ProtoBuf) [125]. The for-
mer 3 models have standard query languages—OQL [126] for ODM data, Lorel for
OEM data [38, 48], and XPath/XQuery for XML data [40, 127] respectively. Unfor-
tunately, we do not have standard query languages for JSON and ProtoBuf. ProtoBuf
is mainly used for serializing structured data and Google only provides low-level
API for programming languages like Go and Java. In this section, we proceed to dis-
cuss document query languages and their extensions toward multi-model data.

48 Distributed and Parallel Databases (2024) 42:31–71

1 3

4.1 XPath/XQuery extensions

Since the late-1990s, a bunch of XML query languages has been proposed, such as
XPath/XQuery [40, 41], Xcerpt [128], XDuce [129], CDuce [130], and XTreeQ-
uery [131], among which XPath/XQuery have already become the standards advo-
cated by W3C. In this section, we examine the expressiveness of XPath/XQuery on
path queries and graph pattern matching. In addition, we describe the extensions of
XPath/XQuery toward multi-model data.

4.1.1 Core XPath/XQuery

(1) XPath XPath is a path language designed to both navigate nodes and query data
from an XML document. It plays a prominent role as an XML navigational lan-
guage and becomes a core component of a number of more expressive languages
with variables such as XQuery. Essentially, an XPath query is a path expression that
consists of a sequence of location steps, where each step, /axis::node_label-
[predicates], has three components: (i) an axis, (ii) a node test, and (iii) zero or
more predicate. XPath supports a number of axes: ancestor, ancestor-or-self, attrib-
ute, child, descendant, descendant-or-self, following, following-sibling, parent, pre-
ceding, preceding-sibling, and self. All nodes in an XML document conform to a
document order in which the data is represented as a hierarchy tree and a path query
is evaluated in the order with respect to a context node. The axes can be divided into
a forward axis and a reverse axis according to the direction from the context node.
For example, child or descendant specifies the two directions for XML navi-
gation respectively. A node test within an XPath query is to retrieve nodes and the
predicates after the node test is to filter a sequence of values. Apart from using the
name of a node or a wildcard (to select unknown nodes), we can also use other node
tests such as node() and text().

(2) XQuery XQuery shares the same data model with XPath and supports the
same functions and operators. It is a superset of XPath and takes advantage of
both XPath expressions and SQL-like FLWOR syntax [40, 132]. It extends XPath
in many ways, in which the most important ones are the capability to specify out-
put query nodes and an introduction of sequences in values. In addition to the path
expressions, XQuery provides CRUD syntax like SQL. There are several versions of
XQuery in use. XQuery 1.0 [41] became a W3C Recommendation in 2007, XQuery
3.0 [127] in 2014 and the revised version XQuery 3.1 became a W3C Recommenda-
tion in 2017. The overall design of XQuery is based on a language proposal called
Quilt [133], which was significantly influenced by OQL [39, 123] and SQL [134],
and by previous XML query language proposals such as XQL [135] and Lorel [38].

4.1.2 Document navigation and the core‑XPath fragment

A simple path query of XPath is a sequence of axis steps (A/B/C). Query 5 presents
5 simple path queries of XPath. P1 lists the descriptions of all items offered for sale
by Smith. P2 has the same purpose as P1 but uses a different axis. P3 defines the

49

1 3

Distributed and Parallel Databases (2024) 42:31–71

path P1 as a variable description. P4 reuses the variable in P3 to list the status
attribute of the item that is the parent of a given description. P5 is to list all the items
that are the parents of a given description but excluding the @status elements.
We can use predicates in the steps of a path query to filter a sequence of values.
For example, in the step item[seller = “Smith”], the predicate (seller
= “Smith”) is used to select certain item nodes and discard others. We will refer
to the items in the sequence being filtered by a predicate as candidate items. The
variable description given in P3 is used to bound a node in the document, and
traverses will start at the nodes bound to the variable.

 Path expressions can be also written in abbreviated syntax. Within a path expres-
sion, a single dot (.) refers to the context node (self-axis), and two consecutive dots
(..) refer to the parent of the context node. These notations are abbreviated invoca-
tions of the child (/), descendant (//), and attribute axes (@), respectively.

The navigational capability of the XPath standard can be captured all by a frag-
ment called Core-XPath [49, 136, 137]. The syntax of Core-XPath is given in
Table 4. It supports all XPath’s axes, except for the attribute and namespace axes,
and allows sequencing and taking unions of path expressions and full booleans in the
filter expressions. Formally, the semantics of Core-XPath queries can be modeled
by binary relations on the nodes of an XML tree. For example, the path expression
descendant::p (abbreviated as .//p) denotes in any XML tree T, the set of all
pairs (m, n) with n a descendant node of m that has tag name p. Thus the binary rela-
tion is equivalent to a conjunctive query: �(x, y) = descendant(x, y) ∧ p(y).

Conversely, the conjunctive query
�(x, y) = ∃z1 … zn

⋀n

i=1
descendant

�
x, zi

�
∧ pi

�
zi
�
 defines a binary relation that can

be expressed as a union of the XPath queries, i.e., descendant::p(1)/.../
descendant::p(n)/descendant::q, for all permutations of 1… n .
Therefore, conjunctive path queries and 2-way conjunctive path queries can be
naturally supported by all versions of XPath.

XPath standards do not support RPQs, but it can be fixed by adding two opera-
tors, i.e., Kleene star and path equality. The Kleene star allows us to take the
reflexive transitive closure of arbitrary path expressions and path equalities allow
us to specify the equality conditions. Formally, the semantics of these operators is
as follows [49]:

Thereafter, we can use the RPQ expression, (child::p)*/child::q, to list
all child items or descendant items named q, where (path)* denotes the reflexive

R∗
PExpr

= reflexive transitive closure of RPExpr

R ≈ SNExpr =
{
x ∣ ∃y ⋅ (x, y) ∈ RPExpr ∩ SPExpr

}

50 Distributed and Parallel Databases (2024) 42:31–71

1 3

transitive closure of the binary relation denoted by path. RPQ can be viewed as a
mix between Core XPath and regular path expressions [16]: it has the filter expres-
sions of the former and the Kleene star of the latter. With the extended operators,
one can also easily issue CRPQ and 2CRPQ queries.

XML path query and tree pattern query Essentially, there are two types of
structural XML queries [138]: (1) the no branching path query, and (2) the XML
tree pattern query (also known as twig query). Query 6 shows three XML que-
ries, where Q1 is a simple path query, but Q2 and Q3 are two twig queries for-
mulated with XPath and XQuery respectively. Using the boolean operators pro-
vided by XPath/XQuery, one can issue more complex queries by a combination
of XPath expressions. XPath provides full support to the SPQs and SPQs with
wildcards, but unfortunately the current version of it does support any RPQ and
its extensions.

An XML tree pattern query is a special case for the graph pattern query. For-
mally, a twig query is a pair Q = (T ,F) , where T is a node-labeled and edge-labeled
tree with a distinguished node x ∈ T and F is a boolean combination of constraints
on nodes. Node labels are variables such as $x and $y . Edge labels are one of PC,
AD indicating parent–child or ancestor–descendant. Node constraints are of the
form $x.tag = TagName or $x.datarelOpval , where $x.data denotes the data content
of node $x , and relOp is one of = , <, >, ≤ , ≥ , ≠ . Twig queries can be seen as an
abstraction of a core fragment of XPath and XQuery [139]. Therefore, a substantial

Table 4 Syntax of Core-XPath

MMDBs Data models Query languages

Axis := self | child | parent | right | left | descendant
:= | ancestor | following | preceding
:= | following sibling | preceding sibling

NameTest := QName | *
Step := Axis::NameTest
PathExpr := Step

:= | PathExpr/PathExpr
:= | PathExpr union PathExpr
:= | PathExpr[NodeExpr]
:= PathExpr
:= | not NodeExpr
:= | NodeExpr and NodeExpr
:= | NodeExpr or NodeExpr

51

1 3

Distributed and Parallel Databases (2024) 42:31–71

amount of work on XML query evaluation and optimization [70, 140, 141] using
tree patterns as a basis.

4.1.3 Graph pattern matching with XPath/XQuery

An XML tree can be viewed as a special directed acyclic graph (DAG), so its query
languages XPath/XQuery can be also used to query graph data. Several works have
been done to extend the XPath to query graph data [142–144]. Path expressions of
the core graph XPath, denoted by GXPathcore , are stated as:

Similary, path expressions of regular graph XPath, denoted by GXPathreg , are given

We call this fragment “Core graph XPath” since it is natural to view edge labels
(and their reverse) in data graphs as the single-step axes of the usual XPath on trees.
For instance, a and a- could be similar to “child” and “parent”. Thus, in our core
fragment, we only allow transitive closure over navigational single-step axes, as is
done in Core XPath on trees. Note that we did not explicitly define the counterpart
of node label tests in GXPath node expressions to avoid notational clutter, but all
the results remain true if we add them. According to the investigation [142–144],
GXPath provides full support to the navigational queries and graph pattern queries.

4.1.4 Querying relational data with XPath/XQuery

When XPath is used to query relational data, relational tables are treated as
though they are XML documents, and path expressions work in the same way as
they do for XML. Since relational data have a flat structure, path expressions used
for tables are usually simple. XQuery extends XPath with the FLWOR clauses.
To extend it to relational data, three essential perspectives must be taken into
account: (i) The mapping between relational tables and XML data; (ii) The syn-
tax difference between XQuery and SQL, especially the returned clause; (iii) The
correspondence between the built-in functions for XQuery and SQL. The SQL/
XML standard [102] defines the rules for mapping between relations and XML
data, so an XPath/XQuery-based extension can follow these rules to provide sup-
port for relational data. Many database systems implement the SQL/XML map-
ping rules but have different built-in XQuery functions, so their supports for rela-
tional data vary a lot. For example, the XQuery engines for MarkLogic [145] and
DataDirect [146] have very different supports for relational data.

DataDirect’s XQuery DataDirect treats all data to look like XML. Notice that
while the syntax between the XQuery expression and the SQL statement differs,
the semantics are the same—the FOR clause has been translated as part of the
SELECT FROM statement; the where clause has been translated as the predicate;
and so on. Another difference that must be taken into account when using XQuery
to query relational data is structure—the output of a SQL statement is a table (a

𝛼, 𝛽 ∶= 𝜀|−|a|a−|a∗|a−∗|[𝜑]|𝛼 ⋅ 𝛽|𝛼 ∪ 𝛽|�̄�

𝛼, 𝛽 ∶= 𝜀|−|a|a−|[𝜑]|𝛼 ⋅ 𝛽|𝛼 ∪ 𝛽|�̄� ∣ 𝛼∗

52 Distributed and Parallel Databases (2024) 42:31–71

1 3

flat structure), but the typical XML value is a tree. To achieve the required trans-
formation of the result from a flat structure to a tree structure, DataDirect XQuery
translates the query into two parts: an XML construction part and a SQL part.
Query 7 illustrates a such query, in which the XML construction part adds XML
tags to the results retrieved from the database to create the hierarchy requested in
the query.

4.2 JSON‑oriented extensions

Navigational queries on JSON documents are similar to that on XML or graph
databases. Similar to Core-XPath and Core-GXPath, we can also define a JSON
navigation logic(JNL) to capturing the navigation capability [20]. We can reuse
results devised for other semi-structured languages such as XPath/XQuery, but the
nature of JSON and the functionalities present in query languages also demand new
approaches or refinement of these techniques. A bunch of query languages has been
proposed for JSON data, such as MongoDB’s query language [85], JAQL [147],
JSONPath [148], JSONiq [149], and SQL++ [108]. To note that there is no standard
query language for JSON and most of these languages are inspired either by XPath/
XQuery (e.g, JSONPath and JSONiq) or SQL (e.g., SQL++).

4.2.1 Document navigation with JSONPath

JSON documents can be also retrieved in the way of XPath. JSONPath [148] covers
the essential parts of XPath 1.0 [40] and hence shares a lot of common characteris-
tics with it. The correspondence of syntax elements between JSONPath and XPath can
be found in the language specification [148]. JSONPath expressions always refer to a
JSON structure in the same way as XPath expressions are used in combination with
an XML document. The “root member object” in JSONPath is always referred to as $
regardless if it is an object or array.

JSONPath expressions can use the dot-notation “.store.book[0].title”
and the bracket-notation “[‘store’][‘book’][0][‘title’]” to formulate
path queries as well. Internal or output paths will always be converted to the more gen-
eral bracket notation. JSONPath allows the wildcard symbol * for member names and
array indices. It borrows the descendant operator ‘.’ from E4X and the array slice syntax
proposal [start:end:step] from ECMASCRIPT 4. Expressions of the underly-
ing scripting language (<expr>) can be used as an alternative to explicit names or
indices as in “.store.book[(@.length-1)].title”. Filter expressions are

53

1 3

Distributed and Parallel Databases (2024) 42:31–71

supported via the syntax ?(<boolean expr>) as in “.store.book[?(@.price <
10)].title”.

4.2.2 Querying document data with JSONiq

JSONiq [149–151] is a query language that mimics XQuery. It borrows ideas from
XQuery, such as the structure and semantics of a FLWOR construct, the language’s
functional aspect, the semantics of comparisons in the face of data heterogeneity, and
declarative, snapshot-based updates. For example, Query 8 is used to calculate the aver-
age score for each question in a test.

5 Graph extensions

In this section, we present the graph extensions toward multi-model data.

5.1 Graph query languages

A variety of graph languages have been proposed for querying graph data in vari-
ous applications such as knowledge graphs, social networks, and real-time road net-
works [9–11, 25, 32, 54, 61, 144, 152–154]. Most of the relatively early graph lan-
guages originated from the research community such as Lorel [38], StruQL [155],
UnQL [156], G [157], and GraphLog [50]. The most recent ones are mainly from
the industry, including W3C’s SPARQL [59–61], Cypher/openCypher [29, 62,
117, 118, 158], TinkerPop’s Gremlin [63, 64], Oracle’s PGQL [65, 66], LDBC’s
G-CORE [67], and TigerGraph’s GSQL [68, 69]. The modern graph query lan-
guages are proposed and implemented for interrogating specific graph data mod-
els—SPARQL for RDF graphs and the rest for property graphs respectively.
SPARQL [59, 60] and Cypher [29, 62, 117] are the standard query languages for the
RDF graph and property graph respectively, so we concentrate on the extensions of
SPARQL and Cypher toward multi-model data.

The graph query languages are mainly based on the notation of graph pattern
matching, with which we can express graph patterns and path queries against the
data. Table 5 shows the core query syntax of property graph query languages—they
all have SQL-like syntax and SQL-like functionalities. The queries given in this
table are to list the pairs of persons who are friends or friend-of-friend along with the
:follows relationship (of length 2) and one person in each pair had commented
on the other’s post. PGQL pioneered support for full regular path expressions [66].

54 Distributed and Parallel Databases (2024) 42:31–71

1 3

Cypher was influenced by XPath [40] and SPARQL [43, 59], but it only supports
a restricted form of RPQs: the concatenation and disjunction of single relation-
ship types, as well as variable length paths (i.e., transitive closure). For example,
(a:Person)-[:knows*2]->(b:Person) describes paths of fixed length
of 2, (a:Person)-[:knows*3..5]->(b:Person) represents paths have
variable lengths from 3 to 5, and (a:Person)-[:knows*]->(b:Personb)
stands for paths of any length. GSQL and G-CORE combine the ASCII-art syn-
tax from Cypher and the regular path expression syntax from PGQL. With the
PGQL’s regular path expression, we can express RPQ and CRPQ queries. By using
the boolean operators such as conjunction (A&B), disjunction (A|B), negation (!A),
and grouping/nesting ((A&B)|C), we can express even more complex graph queries.
In addition, we can issue 2CRPQs by removing the direction of relationships, e.g.,
(a)-[:knows]-(b) implies a and b know each other.

5.2 SPARQL extensions

RDF is the standard data model for Semantic Web and is widely adopted by knowl-
edge graphs. SPARQL [59, 60, 115] is the standard query language for RDF data-
bases. We refer the readers to Karvounarakis et al.’s paper [159] and Haase et al.’s
paper [160] for a comparison of RDF query languages. Syntactically, SPARQL
adopts the SELECT-FROM-WHERE query structure and uses one or more
PREFIX(s) to define the abbreviations of resource URIs. Particularly, the SELECT
clause returns a table of variables and values that satisfy the query; each variable
is a string starting with a question mark “?”. The FROM clause states the targeted
RDF graph to be queried. The WHERE clause specifies the query pattern to the
targeted RDF graph; each pattern consists of a set of triple patterns. Since SPARQL
1.1 [58, 115], it can supports complex queries such as RPQs [11] and graph patterns
matching.

So far, a handful of extensions SPARQL are available for multi-model data,
including relational, key-value, GeoSpatial, and XML data. Table 6 summarizes
supported data models, query languages, and new functionalities of these exten-
sions. In the following, we introduce these extensions in detail.

(1) Extending SPARQL with SQL SPARQL allows one to call built-in SQL
functions or stored procedures in the SELECT and WHERE clauses. The call starts
with a prefix sql: before a function name. In this way, one can blend SQL and
SPARQL queries for richer data access. As we can see from Query 9, the Virtuoso2
data system allows to call a SQL function ComposeInfo in the SELECT clause for
concatenating the bindings of first name and last name from the Berners–Lee person
graph.

2 https:// virtu oso. openl inksw. com/.

https://virtuoso.openlinksw.com/

55

1 3

Distributed and Parallel Databases (2024) 42:31–71

Table 5 Core query syntax of
PGQL, Cypher, G-CORE, and
GSQL

Language Core query syntax and Example query

PGQL SELECT-FROM-MATCH-WHERE
SELECT a.name, b.name, x.id
FROM social_network
MATCH (a:Person)-/:follows(1,2)/->(b:Person)
WHERE (a)-[:hasPost]->(x:Post)<-[:comment]-(b)

Cypher FROM-MATCH-WHERE-RETURN
FROM social_network
MATCH (a:Person)-[:follows*1..2]->(b:Person)
WHERE (a)-[:hasPost]->(x:Post)<-[:comment]-(b)
RETURN a.name, b.name, x.id

G-CORE SELECT-MATCH-ON-WHERE
SELECT a.name, b.name
MATCH (a:Person)-[:follows*1..2]->(b:Person) ON

social_network
WHERE EXISTS (
CONSTRUCT ()
MATCH (a)-[:hasPost]->(x:Post)<-[:comment]-(b))

GSQL SELECT-FROM-WHERE
SELECT a.name, b.age, x.id
FROM social_network
WHERE (a:Person) -/:follows*1..2/-> (b:Person)
(a) -[:hasPost]-> (x:Post)
(b) -[:comment]-> (x)
ORDER BY a.name

Table 6 A summary of SPARQL extensions

Multi-model data Query language Functionality

RDF+Relational SPARQL+SQL SQL procedures and aggregation
RDF+Text SPARQL+Full-Text Search Keyword search over RDF triples
RDF+XML SPARQL+XQuery FLWOR expressions on RDF
RDF+Geo-Spatial SPARQL+Geo-Spatial Operations on geometric objects

56 Distributed and Parallel Databases (2024) 42:31–71

1 3

 The query results of SPARQL are tuple-like triples, so we can easily integrate
them with the aggregation functionalities. Virtuoso’s SPARQL supports GROUP
BY, ORDER BY, LIMIT, and OFFSET. It also provides a set of aggregation func-
tions (e.g., COUNT, MIN, MAX, AVG, and SUM) in the result clause. Query 10
is to list out the town or city in the UK that has the largest proportion of students,
where the GROUP BY clause operates on two variables: town and graduate, and the
ORDER BY clause sorts the number of graduates by town in descending order.

(2) Extending SPARQL with full-text search The second extension to SPARQL
is a full-text search, which has been supported by two RDF-based databases: Vir-
tuoso and Semantic Server.3 For example, Query 11 would match all subjects whose
foaf:Name starts with Tim. In Virtuoso, we can add an index on the RDF graph by
defining a rule DB.DBA.RDF_OBJ_FT_RULE_ADD over the target variable. The
function takes three arguments that define the IRI’s for the RDF graph, the target
predicate, and the application name. If NULL is given then all graphs or predicates
match. To invoke the created full-text index, the built-in function bif:contains needs
to be used with target text for retrieving the wanted triples.

3 http:// www. intel lidim ension. com/ devel opers/ libra ry/ sparql- exten sions. aspx# funct ions.

http://www.intellidimension.com/developers/library/sparql-extensions.aspx#functions

57

1 3

Distributed and Parallel Databases (2024) 42:31–71

(3) Extending SPARQL with Geo-Spatial data This extension comes from
Virtuoso 7.1.4 Table 7 summarizes the extension for Geo-Spatial data, including
common geometric data types such as point, line, and polygon, and functions for
querying these objects. Query 12 is to find the geometry objects in the dataset that
intersects the given polygon object.

GeoSPARQL5 is another geographic query language for RDF which defines a
vocabulary for representing geospatial data in RDF. In particular, it introduces an
extension to the SPARQL query language for processing geospatial data. Query 13
is to list the nearby objects within 1 km of a given location.

(4) Extending SPARQL with XQuery The extension comes from XSPARQL
[161]—a query language that integrates XQuery to SPARQL for transformations
between RDF and XML. As shown in the following abstractions of XSPARQL, the
DWMC (Dataset, Where, Modifier, Construct) syntax of SPARQL is extended with
FLWOR (For, Let, Where, Order, Return) expressions of XQuery. XSPARQL intro-
duces two concepts of “lifting” and “lowering” which translate data from XML to
RDF and vice versa. In particular, the construct (C) clause in XSPARQL transforms
the XML data to an output RDF graph for the “lifting”.

Table 7 SPARQL extensions to GeoSpatial data

Supported data types Extended functions

Point, Multipoint, LineString, MultiLineString, Poly-
gon, MultiPolygon, GeometryCollection

equals, disjoint, intersects, touches, within,
contains, overlaps, crosses, nearby, distance

4 Virtuoso 7.1. https:// docs. openl inksw. com/ virtu oso/ virtc lient refin tro/.
5 GeoSPARQL. https:// www. ogc. org/ stand ards/ geosp arql.

https://docs.openlinksw.com/virtuoso/virtclientrefintro/
https://www.ogc.org/standards/geosparql

58 Distributed and Parallel Databases (2024) 42:31–71

1 3

5.3 Cypher extensions

Cypher is designed for querying property graphs. Syntactically, it adopts the
MATCH-WHERE-RETURN syntax, where the MATCH clause specifies the
query pattern, the WHERE clause includes filters for labels and properties, and the
RETURN clause retrieves the intended results. Regarding path queries, Cypher
allows transitive closure (recursive operator ∗) over a single edge label in a property
graph, as well as the shortest paths between two nodes. Semantically, Cypher follows
a non-repeated-edges isomorphism semantics [11], where the edge variables must
have one-to-one relationships but node variables can have repeated bindings in the
results. Table 8 summarizes the up-to-date Cypher extensions toward relational data
and machine learning models. We proceed to discuss the two extensions in detail.

(1) Extending cypher with SQL This extension originates from Agens-
Graph6 and Apache AGE,7 where both are built on top of PostgreSQL to pro-
vide graph database functionalities—mapping the graph to the vertex and edge
tables through a Cypher query engine. Therefore, AgensGraph and Apache AGE
can ingest Cypher queries, SQL queries, or a hybrid of them. Typically, a hybrid
query performs aggregation and statistical processing on tables and columns by
using SQL query, and the Cypher query to replace the relational Join operations.
Specifically, Cypher and SQL are mixed together via the following two ways: (1)
embedding Cypher in a SQL query (i.e., Cypher-in-SQL), or (2) embedding SQL
in a Cypher query (i.e., SQL-in-Cypher). AgensGraph supports both manners but
Apache AGE supports only the first one. The ways to extend Cypher with SQL
in AgensGraph and Apache AGE are much simple than that used by SQL/PGQL
and GQL (see Sect. 3.3 for details).

Table 8 A summary of cypher extensions

Data models Language Functionality

Property graph + Relational Cypher + SQL SQL-in-Cypher, Cypher-in-SQL
Property graph + ML models Cypher + UDF/Procedure Regression, Classification,

Graph embeddings

6 AgensGraph. https:// bitni ne. net/ agens graph/.
7 Apache AGE. https:// age. apache. org/.

https://bitnine.net/agensgraph/
https://age.apache.org/

59

1 3

Distributed and Parallel Databases (2024) 42:31–71

Cypher-in-SQL Since the result of a Cypher query is a relation, we can directly
place it in the FROM clause of a SQL query. The syntax is shown in Query 15. In
this way, we are able to use Cypher syntax inside the FROM clause to utilize a set of
vertex or edges stored in a graph database as data in a SQL statement.

SQL-in-Cypher The syntax is shown in Query 16, in which a SQL query is
placed in the WHERE clause of a Cypher query as an input for the filters of pattern
matching. When querying the content of a graph database with Cypher queries, one
can use the SQL query to search specific data from a relational database. However,
the usage of SQL-in-Cypher queries is restricted since the result of the SQL query
can only be a single row of results.

(2) Extending cypher with ML models As machine learning (ML) techniques
become more and more important in making sense of data, an emerging extension
of Cypher is to support ML models. This is done by defining user-defined proce-
dures in Cypher queries and the procedures can be deployed to Neo4j as plugins. As
shown in Query 17, a predefined logistic regression model iris is used to predict the
unknown species of the flowers based on four features.

6 Native multi‑model query languages

In recent years, there have emerged several native MMDBs [3]. The native MMDBs
treat the supported data models as the “first-class citizen” and implement native
multi-model query languages for issuing MMQs, as shown in Table 9. In contrast
to single-model-based query languages like SQL, XQuery, and Cypher, they deliver
new query syntax for manipulating multi-model data. Moreover, their processing
diagrams are different from the aforementioned multi-model query languages, from
the expressive power to query evaluation. In this section, we introduce three repre-
sentatives. Namely, ArangoDB Query Language (AQL), OrientDB Query Language
(OrientQL), and Kusto Query Language (KQL).

60 Distributed and Parallel Databases (2024) 42:31–71

1 3

6.1 ArangoDB query language

ArangoDB Query Language (AQL) [36] is a declarative query language developed
by ArangoDB, which is a multi-model database supporting key-value, document,
and graph models. Particularly, it is implemented on a key-value storage engine,
RocksDB. The documents in ArangoDB follow the JSON format, and they are
organized and grouped into collections. Moreover, the graph data is stored in vertex
and edge collections as well. Table 10 gives the multi-model functionalities sup-
ported by AQL.

AQL is a pure data manipulation language (DML) allowing for operations
such as selection, filtering, projections, aggregation, and joining. The basic
building block of AQL is the FOR-FILTER-RETURN (FFR) expressions where
the FOR operation is used for data iteration, FILTER for data filtering and join-
ing, and RETURN for data projection and returning. In particular, the results can
be returned as JSON or table, or be visualized as graphs. In addition to advanced
array operations, AQL also provides the syntax of graph traversal for named
graphs and edge collections using the FFR expressions. Such a feature allows
for navigational path queries, pattern matching queries, and shortest path que-
ries expressed in AQL. Interestingly, AQL can also specify a single statement to
retrieve and combine data from JSON, key-value, and graph. Query 18 shows an
example of AQL query, in which we can naturally handle cross-model queries.

Table 9 A summary of native multi-model query languages

Query language Supported data models Query syntax

AQL (ArangoDB) Key-Value, JSON, Graph, GeoSpatial FFR (For, Filter, Return)
OrientQL (OrientDB) Key-Value, JSON, Graph SQL-like syntax with dot(.)
KQL (Kusto) Relational, Time series, GeoSpatial Dataflow operators with pipe(|)

Table 10 Multi-model functionalities of AQL

Data models Syntax/Operator

Key-Value Return (@collection, @key)
JSON FOR @doc IN @collection FILTER Boolean_function(@doc) RETURN @doc
Graph FOR @vertex,@edge,@path IN @min..@max OUTBOUND|INBOUND|ANY @

startVertex GRAPH @graph RETURN {@vertex, @edge, @path}
GeoSpatial GEO_LINESTRING(), GEO_MULTILINESTRING(), GEO_MULTIPOINT(),

GEO_POINT(), GEO_POLYGON(), GEO_MULTIPOLYGON(),DISTANCE(),
GEO_CONTAINS(), GEO_DISTANCE(), GEO_AREA(),GEO_EQUALS(), GEO_
INTERSECTS(), IS_IN_POLYGON()

61

1 3

Distributed and Parallel Databases (2024) 42:31–71

The above query is from UniBench Q5, which finds a given person (id=1)’s
3-hop friends and feedback. These friends have bought products with a given
brand b, i.e., name=“Nike”, and the feedback should have 5-star ratings. Spe-
cifically, line 1–3 operates on the graph, JSON, and key-value data, respectively.
In the graph traversal, the min and max length is 1 and 3, the direction is out-
bound from the starting person with Id 1 in the “knowsgraph” which is an edge
collection. The filtering conditions and equijoin predicates are specified in the
Filter clause accordingly during lines 4–6. In line 4, the JSON orders are joined
with persons in the graph on Ids. line 5, it uses the [*] operator to access to the
brand element in items array. In line 6, the persons in the graph are joined with
feedback that has a 5-score rating. Finally, the filtered persons and feedback are
returned as a JSON array.

6.2 OrientDB query language

OrientDB Query Language (OrientQL) [87] is a declarative multi-model query lan-
guage developed by OrientDB, which utilizes the object records to persist the data
and links the records by pointers. Particularly, an object record can be a document,
a bytes record (BLOB), a vertex, and an edge. Consequently, it can support the data
models that include document, graph, object, and key-value models simultaneously.
Table 11 gives the multi-model functionalities supported by OrientQL.

OrientQL is a SQL-like language with a SELECT-FROM-WHERE structure.
However, it does not completely follow the standard SQL syntax. For instance, the
JOIN syntax is not supported while relationships are represented by links. Thus, it

Table 11 Multi-model functionalities of OrientQL

Data models Syntax/Operator

Key-Value SELECT * FROM #rid
JSON SELECT [<Projections>] [FROM <Target>] [WHERE <Condition>] [GROUP BY

<Field>][ORDER BY <Fields>] [UNWIND <Field>]
Graph TRAVERSE < relationship> [FROM <target>] [MAXDEPTH <number> | WHILE <

condition>] [STRATEGY <strategy>]
Geo-Spatial Point(), Line(), Polygon(), MultiPoint(), MultiLine(), MultiPolygon(), ST_AsText(),

ST_GeomFromText(), ST_AsGeoJSON(), ST_GeomFromGeoJSON(), ST_Within(),
ST_Contains(), ST_Disjoint(), ST_Intersects(), ST_AsBinary()

62 Distributed and Parallel Databases (2024) 42:31–71

1 3

uses the dot (.) notation to navigate links or embedded documents. For the graph
traversal, it provides a TRAVERSE command that recursively navigates the graph in
either depth-first or breadth-first search. Query 19 illustrates an implementation of
UniBench Q5 in OrientQL’s syntax.

The query combines data from tabular, graph, and JSON. Specifically, in line
1, the SELECT clause returns the person and feedback. In lines 3–5, it leverages
the TRAVERSE-FROM-WHERE syntax to traverse the graph with the start ver-
tex (PersonId=56) within a max traversal depth of 3. In line 6, two filtering condi-
tions are specified in the WHERE clause. In particular, the Order is associated with
the person implicitly because the person is the source table in FROM clause. The
nested brand is accessed via a chain of path-oriented dot operations. In line 7, it flat-
tens the embedded JSON document to multiple single-row documents by using the
UNWIND operator.

6.3 Kusto query language (KQL)

Kusto Query Language (KQL)8 is a declarative query language introduced by
Microsoft Azure Data Explorer. It is a scalable data analytics service in Microsoft
Azure Cloud, aiming for interactive analysis of big data. KQL adopts a pipelined
syntax with a sequence of operators to filter, transform, join, and aggregate the data.
Particularly, KQL has a number of operators for tabular, time series, and Geo-Spa-
tial data analysis. Table 12 lists the multi-model functionalities supported by KQL.

Query 20 is an example of KQL query for analyzing the data stored in a table
called StormEvents. Specifically, line 1 declares the data source. Line 2 defines
a function named distance_1_to_100 m to compute the shortest distance
between two geospatial coordinates. Line 3 gives the range of the distance that
should be between 1 and 100 m. Line 4 contains another filtering condition in the
where operator that requires the events should take place between 2007-11-01 and
2007-12-01. Finally, the last line projects the results on three columns: distance_1_
to_100m, State, and EventType. In addition to the single-source analysis, KQL sup-
ports cross-database and cross-cluster queries for complex data analysis.

8 https:// docs. micro soft. com/ en- us/ share point/ dev/ gener al- devel opment/ keywo rd- query- langu age- kql-
syntax- refer ence.

https://docs.microsoft.com/en-us/sharepoint/dev/general-development/keyword-query-language-kql-syntax-reference
https://docs.microsoft.com/en-us/sharepoint/dev/general-development/keyword-query-language-kql-syntax-reference

63

1 3

Distributed and Parallel Databases (2024) 42:31–71

7 Open challenges and problems

In contrast to the single-model-based query languages (e.g., SQL), most of the
MMQLs we have investigated are built for practical purposes and thus lack of solid
foundation. There are many open challenges and problems related to these lan-
guages. In this section, we show a compiled list of these challenges.

(1) Expressivity The most important feature of an MMQL is the capability to
express multi-model queries. An open problem is to determine the expressivity of
the MMQL—how much the mixtures of the fundamental queries can be expressed
with the language. Unfortunately, none of the existing MMQLs are full-fledged to
support all the fundamental queries listed in Sect. 2.2. Most of the existing MMQLs,
including the native ones, provide support for multi-model data by introducing vari-
ous informal operations, e.g., the traversal operations for document data and the
matching operations for graph data, whose expressivities still need better investiga-
tion. Moreover, there is no accepted notion of completeness for document and graph
query languages. The relational completeness was established by the relational alge-
bra (or calculus) [93], but we do not have that counterpart in any existing MMQLs.
It has a serious restriction on the application of these languages, and so far we
haven’t seen any measurement of the expressive power of MMQLs.

(2) Universal data model The second challenge is about designing a univer-
sal data model to encapsulate the difference between multi-model data. The exist-
ing NoSQL data models can be viewed as extensions or simplifications of the rela-
tional model. In general, we have several ways to extend the relational model [5]:
(1) The simplest way is to add new data types into the primitive type set, such as

Table 12 Multi-model functionalities of KQL

Data models Syntax/Operator

Relational Source Table 1 | [Tabular operators*] [union | join] [Source Table n | [Tabular opera-
tors*][union | join]]*

Time series make-series, avg(), count(), max(), min(), percentile(), stdev(), sum(), variance(),
series_fir(), series_iir(), series_fit_line(), series_outliers(), series_periods_detect(),
series_stats(), series_fill_backward(), series_fill_const(), series_fill_forward(),series_
fill_linear()

Geo-Spatial geo_distance_2points(),geo_distance_point_to_line(),geo_line_densify(), geo_point_in_
circle(),geo_point_in_polygon(),geo_point_to_geohash(), geo_point_to_s2cell(),geo_
polygon_to_s2cells(),geo_polygon_densify()

64 Distributed and Parallel Databases (2024) 42:31–71

1 3

literal, hypertext, and URI. (2) One can also include other type constructors such
as lists, multisets, and arrays to generate other data models such as JSON [17, 21,
22]. (3) By repeatedly using the relation constructor, one can yield the nested rela-
tional model [162]. The nested relational model (or complex value model) contains
nested type constructors that allow building nested relations from atomic types by
using tuple constructors and set constructors [162, 163]. (4) By separating the set
and tuple of the relation constructor, one can support the complex object and hence
yields the object-relation model [123, 126, 164–166]. In this model, we can inte-
grate structured data with semi-structured data [167].

By mixing the aforementioned methods we can create many of the existing data
models. However, it is still a challenging task to create a universal data model for
multi-model data. In the MMQLs we have investigated, only SQL++ [109] creates a
unified model for both relational data and JSON. The consequence is that the under-
lying multi-model data cannot be processed in a unified logic and hence has a signif-
icant impact on query processing and optimization. In recent years, several research
groups (e.g., Fleming et al. [168], Spivak et al. [169, 170], and Lu et al. [171, 172])
tried applying category theory as a unifying formalism (to create an abstraction from
a higher level) to multi-model data. But these methods are still too complicated to be
implemented in MMDBs.

(3) Cross-model query processing and optimization Query processing in most
MMDB systems relies on data exchange, which can be done in two ways: (1) des-
ignating a local data model as the primary model and the rest are translated into the
format as the primary model, or (2) creating a super-model to describe the local data
models. Most MMDB systems implement the first solution and the relational model
is typically taken as the primary model. For instance, in an MMDB extended from
a relational DBMS, the NoSQL data involved in a query will be mapped into rela-
tional tables according to the specifications in the SQL standard (e.g., SQL/XML,
SQL/JSON, and SQL/PGQ). Consequently, we may observe many types of data
exchange schemes, i.e., XML-to-relation, JSON-to-relation, and graph-to-relation
mappings, in a cross-model query in that database.

Alternatively, Bugiotti et al. were to create an abstract model like NoAM (NoSQL
Abstract Model) [173], which is a super-model that specifies the underlying NoSQL
databases. However, the proposal covers only a few types of NoSQL databases (i.e.,
key/value, column, and document). Similarly, Atzeni et al. [174, 175] leverage a
meta-model to facilitate the data exchange for multi-model data. The meta-model is
a formalism for the definition of data models and uses a small set of commonly used
meta-constructs such as lexical types, abstract types, aggregation, and function to
define data models. Data exchange in can be accomplished in two steps: (1) from the
source model to the supermodel; and (2) from the meta-model to the target model.
The super-model/meta-model approach can be used efficiently to facilitate schema
mapping, but query processing under this approach still results in significant over-
heads. Recently, several approaches have been proposed to optimize query evalu-
ation of MMQs, such as efficient enumeration of execution plan [176] and query
augmentation that supports automatic enrichment of the answer [177, 178]. Cross-
model query processing and optimization of MMQs are still open for MMDBs.

65

1 3

Distributed and Parallel Databases (2024) 42:31–71

8 Conclusions

It is a challenging task to design a query language for MMDBs that allows users to
express multi-model queries. Throughout the previous sections, we investigated a
number of multi-model query languages from the syntactical perspective, which can
be divided into four types: SQL extensions, XPath/XQuery extensions, graph exten-
sions, and native ones. The investigation of existing multi-model query languages,
from the syntactical and application perspectives, makes this article useful for moti-
vating new multi-model query languages, as well as serving as a technical refer-
ence for formulating multi-model queries. This survey also shows that the existing
MMQLs are still far from a mature query language compared to the single-model-
based languages.

Acknowledgements This work was partially funded by the Finnish Academy Project 310321 and the
Fundamental Research Program of Shanxi Province, China (Grant No. 20210302123025).

Funding Open Access funding provided by University of Helsinki including Helsinki University Central
Hospital.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Saeed, M., et al.: Multiparameter intelligent monitoring in intensive care II: a public-access inten-
sive care unit database. Crit. Care Med. 39, 952–960 (2011)

 2. Lu, J., Holubová, I.: Multi-model data management: what’s new and what’s next?, pp. 602–605
(OpenProceedings.org)

 3. Lu, J., Holubova, I.: Multi-model databases: a new journey to handle the variety of data. ACM
Comput. Surv. 52, 1–38 (2019)

 4. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13, 377–387
(1970)

 5. Scholl, M.H.: Extensions to the relational data model, pp. 163–182 (1992)
 6. Schweikardt, N., Schwentick, T.: Database Theory: Query Languages, 2nd edn., p. 39. Chapman

and Hall/CRC, Boca Raton (2010)
 7. Atzeni, P., Bugiotti, F., Cabibbo, L., Torlone, R.: Data modeling in the NoSQL world. Comput.

Stand. Interfaces 67, 103149 (2020)
 8. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. 40, 1–39 (2008)
 9. Wood, P.T.: Query languages for graph databases. SIGMOD Rec. 41, 50–60 (2012)
 10. Barceló, P.: Querying graph databases, pp. 175–187
 11. Angles, R., et al.: Foundations of modern query languages for graph databases. ACM Comput.

Surv. 50, 1–40 (2017)
 12. Bondiombouy, C., Valduriez, P.: Query processing in multistore systems: an overview. Int. J. Cloud

Comput. 5, 309–346 (2016)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

66 Distributed and Parallel Databases (2024) 42:31–71

1 3

 13. Codd, E.F.: Derivability, redundancy and consistency of relations stored in large data banks.
Research Report /RJ /IBM /San Jose, California RJ599 (1969)

 14. Codd, E.F.: Extending the database relational model to capture more meaning. ACM Trans. Data-
base Syst. (TODS) 4, 397–434 (1979)

 15. Atzeni, P., Antonellis, V.D.: Relational Database Theory. The Benjamin/Cummings Publishing
Company, San Francisco (1993)

 16. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured Data
and XML. Morgan Kaufmann, San Francisco (1999)

 17. IETF RFC 8259. The JavaScript Object Notation (JSON) Data Interchange Format. https:// datat
racker. ietf. org/ doc/ html/ rfc71 59 (2014)

 18. Klarlund, N., Schwentick, T., Suciu, D.: XML: Model, Schemas, Types, Logics, and Queries,
1–41. Springer, Heidelberg (2003)

 19. Extensible Markup Language (XML) 1.0 (Fifth Edition). https:// www. w3. org/ XML/
 20. Bourhis, P., Reutter, J.L., Suárez, F., Vrgoc, D.: JSON: data model, query languages and schema

specification, pp. 123–135
 21. ECMA-404. The JSON Data Interchange Standard, 2nd Edition. https:// www. json. org/ json- en. html

(2017)
 22. Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoč, D.: Foundations of JSON Schema, pp.

263–273
 23. Baazizi, M.-A., Colazzo, D., Ghelli, G., Sartiani, C.: Schemas and types for json data: From theory

to practice, 2060–2063. ACM, New York (2019)
 24. Ullman, J.D.: Principles of Database and Knowledge-Base Systems - Volume I: Classical Database

Systems. Tech. Rep. (1988)
 25. Güting, R.H.: GraphDB: Modeling and Querying Graphs in Databases, pp. 297–308
 26. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. J.

ACM 30, 479–513 (1983)
 27. Moffitt, V.Z., Stoyanovich, J.: Temporal Graph Algebra, Vol. Part F1306 (2017)
 28. Resource Description Framework (RDF). https:// www. w3. org/ RDF/ (2004)
 29. Group, C.L.: Cypher query language reference version 9. https:// s3. amazo naws. com/ artif acts. openc

ypher. org/ openC ypher9. pdf (2011)
 30. Erling, O. et al.: The LDBC social network benchmark: interactive workload, pp. 619–630 (2015)
 31. Angles, R.: The property graph database model. Vol. 2100 of CEUR Workshop Proceedings

(CEUR-WS.org)
 32. Bonifati, A., Fletcher, G., Voigt, H., Yakovets, N.: Querying Graphs. Synthesis Lectures on Data

Management, vol. 10. Morgan & Claypool Publishers, San Rafael (2018)
 33. Lu, J.: Towards Benchmarking Multi-Model Databases
 34. Zhang, C., Lu, J., Xu, P., Chen, Y.: UniBench: A Benchmark for Multi-model Database Manage-

ment Systems, pp. 7–23. Springer, Heidelberg (2018)
 35. Zhang, C., Lu, J.: Holistic evaluation in multi-model databases benchmarking. Distrib. Parallel

Databases 39, 1–33 (2021)
 36. ArangoDB Query Language(AQL). https:// www. arang odb. com/ docs/ stable/ aql/ index. html
 37. Aho, A.V., Ullman, J.D.: Universality of data retrieval languages. POPL 79, 110–120 (1979)
 38. Abiteboul, S., Quass, D., Mchugh, J., Widom, J., Wiener, J.L.: The Lorel query language for semis-

tructured data. Int. J. Digit. Libr. 1, 68–88 (1997)
 39. Cattell, R.G.G., Barry, D.K.: The Object Data Standard: ODMG 3.0. Morgan Kaufmann, San

Francisco (2000)
 40. Clark, J., DeRose, S.: XML Path Language (XPath), Version 1.0, W3C Recommendation. https://

www. w3. org/ TR/ xpath- datam odel- 31/ (1999)
 41. Boag, S. et al.: XQuery 1.0: An XML Query Language (Second Edition). https:// www. w3. org/ TR/

2010/ REC- xquery- 20101 214/ (2010)
 42. XSL Transformations (XSLT): Version 1.0. https:// www. w3. org/ TR/ 1999/ REC- xslt- 19991 116
 43. Pérez, J., Arenas, M., Gutiérrez, C.: nSPARQL: a navigational language for RDF. J. Web Semant.

8, 255–270 (2010)
 44. Barceló, P., Hurtado, C.A., Libkin, L., Wood, P.T.: Expressive languages for path queries over

graph-structured data. ACM Trans. Database Syst. 37, 3–14 (2012)
 45. Figueira, D.: Foundations of Graph Path Query Languages (Course Notes). Reasoning Web Sum-

mer School, Leuven, Belgium. hal-03349901v2 (2021)

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159
https://www.w3.org/XML/
https://www.json.org/json-en.html
https://www.w3.org/RDF/
https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf
https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf
https://www.arangodb.com/docs/stable/aql/index.html
https://www.w3.org/TR/xpath-datamodel-31/
https://www.w3.org/TR/xpath-datamodel-31/
https://www.w3.org/TR/2010/REC-xquery-20101214/
https://www.w3.org/TR/2010/REC-xquery-20101214/
https://www.w3.org/TR/1999/REC-xslt-19991116

67

1 3

Distributed and Parallel Databases (2024) 42:31–71

 46. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases. SIAM J. Comput.
24, 1235–1258 (1995)

 47. Wang, G., Liu, M.: Query Processing and Optimization for Regular Path Expressions, vol. 2681,
pp. 30–45. Springer, Heidelberg (2003)

 48. Abiteboul, S.: Querying Semi-Structured Data. Lecture Notes in Computer Science, vol. 1186, pp.
1–18. Springer, Heidelberg (1997)

 49. ten Cate, B., Marx, M.: Navigational XPath: calculus and algebra. SIGMOD Rec. 36, 19–26 (2007)
 50. Cruz, I.F., Mendelzon, A.O., Wood, P.T.: A graphical query language supporting recursion. ACM

SIGMOD Rec. 16, 323–330 (1987)
 51. Calvanese, D., Giacomo, G.D., Lenzerini, M., Vardi, M.Y.: Rewriting of regular expressions and

regular path queries, pp. 194–204
 52. Calvanese, D., Giacomo, G.D., Lenzerini, M., Vardi, M.Y.: Rewriting of regular expressions and

regular path queries. J. Comput. Syst. Sci. 64, 443–465 (2002)
 53. Vardi, M.Y.: A Theory of Regular Queries, 1–9. ACM, New York (2016)
 54. Barceló, P., Libkin, L., Reutter, J.L.: Querying regular graph patterns. J. ACM 61, 8:1-8:54 (2014)
 55. Martinez, P., Lopez, J., Rodriguez, F.J., Wiggins, J.B., Boyer, K.E.: An algorithm for context-free

path queries over graph databases (2020)
 56. Calvanese, D., Giacomo, G.D., Lenzerini, M., Vardi, M.Y.: Containment of Conjunctive Regular

Path Queries with Inverse, pp. 176–185. Morgan Kaufmann, San Francisco (2000)
 57. Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoc, D.: SPARQL with Property Paths. Lecture Notes

in Computer Science, vol. 9366, pp. 3–18. Springer, Heidelberg (2015)
 58. SPARQL 1.1 Property Paths. https:// www. w3. org/ 2009/ sparql/ docs/ prope rty- paths/ Overv iew. xml#

define- prope rty- paths (2010)
 59. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language. W3C recommenda-

tion (2013)
 60. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C recommendation

(2008)
 61. Curé, O., Blin, G.: RDF Database Systems: Triples Storage and SPARQL Query Processing. Mor-

gan Kaufmann, San Francisco (2015)
 62. Francis, N. et al.: Cypher: An Evolving Query Language for Property Graphs, pp. 1433–1445

(2018)
 63. Rodriguez, M.A.: The Gremlin Graph Traversal Machine and Language. https:// arxiv. org/ abs/ 1508.

03843 (2015)
 64. TinkerPop: The Gremlin Graph Traversal Machine and Language. https:// tinke rpop. apache. org/

greml in. html (2021). Accessed Oct 2021
 65. PGQL 1.1 specification. https:// pgql- lang. org/ spec/1. 1/ (2017)
 66. van Rest, O., Hong, S., Kim, J., Meng, X., Chafi, H.: PGQL: A Property Graph Query Language.

ACM, New York (2016)
 67. Angles, R. et al.: G-CORE: A Core for Future Graph Query Languages, pp. 1421–1432
 68. Wu, M., Deutsch, A.: GSQL: An SQL-Inspired Graph Query Language. Tech. Rep. (2018)
 69. Deutsch, A., Xu, Y., Wu, M., Lee, V.E. TigerGraph: A Native MPP Graph Database. https:// arxiv.

org/ abs/ 1901. 08248 (2019)
 70. Amer-Yahia, S., Cho, S., Lakshmanan, L.V.S., Srivastava, D.: Minimization of Tree Pattern Que-

ries, pp. 497–508 (2001)
 71. Czerwinski, W., Martens, W., Niewerth, M., Parys, P.: Optimizing tree patterns for querying graph-

and tree-structured data. SIGMOD Rec. 46, 15–22 (2017)
 72. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23, 31–42 (1976)
 73. Kelter, U., Däberitz, D.: An Assessment of Non-Standard DBMSs for CASE Environments, pp.

96–113. Springer, Heidelberg (1996)
 74. Atzeni, P., Bugiotti, F., Rossi, L.: Uniform access to nosql systems. Inf. Syst. 43, 117–133 (2014)
 75. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 4th edn. Springer, Heidel-

berg (2020)
 76. Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kaufmann, San Fran-

cisco (2012)
 77. Ciucanu, R.: Cross-Model Queries and Schemas: Complexity and Learning. Ph.D. thesis, Lille

University of Science and Technology, France (2015)
 78. DeWitt, D.J., et al.: Split query processing in polybase, pp. 1255–1266

https://www.w3.org/2009/sparql/docs/property-paths/Overview.xml#define-property-paths
https://www.w3.org/2009/sparql/docs/property-paths/Overview.xml#define-property-paths
https://arxiv.org/abs/1508.03843%20%282015)
https://arxiv.org/abs/1508.03843%20%282015)
https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/gremlin.html
https://pgql-lang.org/spec/1.1/
https://arxiv.org/abs/1901.08248
https://arxiv.org/abs/1901.08248

68 Distributed and Parallel Databases (2024) 42:31–71

1 3

 79. Elmore, A.J., et al.: A demonstration of the BigDAWG Polystore system. Proc. VLDB Endow. 8,
1908–1911 (2015)

 80. Duggan, J., et al.: The BigDAWG Polystore system. SIGMOD Rec. 44, 11–16 (2015)
 81. Bondiombouy, C.: Query Processing in Multistore Systems. (Traitement de requêtes dans les sys-

tèmes multistores). Ph.D. thesis, University of Montpellier, France (2017)
 82. Multimodel Database, White Paper. ORACLE CORPORATION 16 (2019)
 83. Oracle Database. https:// www. oracle. com/ datab ase/ (2021)
 84. PostgreSQL: The World’s Most Advanced Open Source Relational Database. https:// www. postg

resql. org/ (2021)
 85. MongoDB: Build faster! Build smarter!. https:// www. mongo db. com/ (2021). Accessed Oct 2021
 86. ArangoDB. https:// www. arang odb. com/
 87. OrientDB: The database designed for the modern world. https:// orien tdb. com/
 88. Kaitoua, A., Rabl, T., Markl, V.: A distributed data exchange engine for polystores. it Inf. Technol.

62, 145–156 (2020)
 89. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and Query Answering.

Lecture Notes in Computer Science, vol. 2572, pp. 207–224. Springer, Heidelberg (2003)
 90. Calvanese, D., Giacomo, G.D., Lenzerini, M., Vardi, M.Y.: Query processing under GLAV map-

pings for relational and graph databases. Proc. VLDB Endow. 6, 61–72 (2012)
 91. Lenzerini, M.: Data integration: a theoretical perspective, pp. 233–246
 92. Codd, E.F.: A Data Base Sublanguage Founded on the Relational Calculus, SIGFIDET ’71, pp.

35–68. ACM, New York (1971)
 93. Codd, E.F.: Relational completeness of data base sublanguages. Research Report /RJ /IBM /San

Jose, California RJ987 (1972)
 94. Chamberlin, D.D., Boyce, R.F.: SEQUEL: a structured english query language, pp. 249–264
 95. Chamberlin, D.D., et al.: SEQUEL 2: A unified approach to data definition, manipulation, and con-

trol. IBM J. Res. Dev. 20, 560–575 (1976)
 96. Held, G., Stonebraker, M., Wong, E.: INGRES: a relational data base system, Vol. 44, pp. 409–416

(AFIPS Press)
 97. Stonebraker, M., Held, G., Wong, E., Kreps, P.: The design and implementation of INGRES. ACM

Trans. Database Syst. 1, 189–222 (1976)
 98. Melton, J., Simon, A.R.: Understanding the New SQL: A Complete Guide. Morgan Kaufmann,

San Francisco (1993)
 99. Committee, I.J.T.: ISO/IEC 9075-4:2011, Information technology–Database languages–SQL–Part

4: Persistent Stored Modules (SQL/PSM). https:// www. iso. org/ stand ard/ 53684. html (2011)
 100. ISO/IEC 9075-2:1999 Information technology–Database languages–SQL–Part 2: Foundation

(SQL/Foundation). https:// www. iso. org/ stand ard/ 26197. html (1999)
 101. Melton, J.: Understanding the New SQL: A Complete Guide, vol. I, 2nd edn. Morgan Kaufmann,

San Francisco (2000)
 102. ISO/IEC 9075-4:2011, Information technology–Database languages–SQL–Part 4: Persistent

Stored Modules (SQL/PSM). https:// www. iso. org/ stand ard/ 53684. html (2011)
 103. Committee, I.J.T.: ISO/IEC TR 19075-6:2017(E), Part 6: SQL support for JavaScript Object Nota-

tion (JSON). https:// www. iso. org/ stand ard/ 67367. html (2017)
 104. ISO/IEC CD 9075-16.2 Information technology–Database languages SQL–Part 16: SQL Property

Graph Queries (SQL/PGQ). https:// www. w3. org/ TR/ sparq l11- query/ (2019)
 105. Plantikow, S., Cannan, S.: GQL Early Working Draft v2.2. https:// www. dellt echno logies. com/ en-

us/ blog/ crap- and- crud- from- datab ase- to- datac loud/ (2019)
 106. ISO SC32/WG3: Graph Query Language (GQL) Standard. https:// www. gqlst andar ds. org/ home

(2021)
 107. W3C Workshop on Web Standardization for Graph Data. https:// www. w3. org/ Data/ events/ data- ws-

2019/ report. html (2019)
 108. Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ semi-structured data model and query

language: A capabilities survey of sql-on-hadoop, nosql and newsql databases. https:// arxiv. org/
abs/ 1405. 3631 (2014)

 109. Chamberlin, D.: SQL++ For SQL Users: A Tutorial. Couchbase Inc, Santa Clara (2018)
 110. Database Query Language N1QL: Get the familiarity of SQL with the flexibility of JSON. https://

www. couch base. com/ produ cts/ n1ql (2021)
 111. Alsubaiee, S., et al.: AsterixDB: a scalable, open source BDMS. Proc. VLDB Endow. 7, 1905–

1916 (2014)

https://www.oracle.com/database/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.mongodb.com/
https://www.arangodb.com/
https://orientdb.com/
https://www.iso.org/standard/53684.html
https://www.iso.org/standard/26197.html
https://www.iso.org/standard/53684.html
https://www.iso.org/standard/67367.html
https://www.w3.org/TR/sparql11-query/
https://www.delltechnologies.com/en-us/blog/crap-and-crud-from-database-to-datacloud/
https://www.delltechnologies.com/en-us/blog/crap-and-crud-from-database-to-datacloud/
https://www.gqlstandards.org/home
https://www.w3.org/Data/events/data-ws-2019/report.html
https://www.w3.org/Data/events/data-ws-2019/report.html
https://arxiv.org/abs/1405.3631
https://arxiv.org/abs/1405.3631
https://www.couchbase.com/products/n1ql
https://www.couchbase.com/products/n1ql

69

1 3

Distributed and Parallel Databases (2024) 42:31–71

 112. AsterixDB - The SQL++ Query Language. https:// aster ixdb. apache. org/ docs/0. 9.3/ sqlpp/ manual.
html (2018)

 113. A Direct Mapping of Relational Data to RDF. https:// www. w3. org/ TR/ rdb- direct- mappi ng/ (2012)
 114. Virtuoso: Data-driven agility without compromise. https:// virtu oso. openl inksw. com/ (2021)
 115. DuCharme, B.: Learning SPARQL: Querying and Updating with SPARQL 1.1. O’Reilly Media

Inc, Sebastopol (2013)
 116. OpenLink Virtuoso Blog. About linked data, data virtualization, and data flow. https:// medium.

com/ virtu oso- blog (2021)
 117. Group, C.L.: Cypher 10 Improvement Proposals. https:// github. com/ openc ypher/ openC ypher/

labels/ cyphe r10 (2017)
 118. openCypher query language. https:// openc ypher. org/ (2016)
 119. Lindaaker, T.: An overview of the recent history of Graph Query Languages (2018)
 120. Plantikow, S. Summary Chart of Cypher, PGQL, and G-Core. https:// s3. amazo naws. com/ artif acts.

openc ypher. org/ websi te/ mater ials/ DM32.2/ DM32.2- 2018- 00086 r1- summa ry- chart- of- cypher-
pgql- gcore. pdf (2018)

 121. Gallagher, B.: Matching structure and semantics: a survey on graph-based pattern matching, Vol.
FS-06-02, pp. 45–53

 122. Junghanns, M., Kießling, M., Averbuch, A., Petermann, A., Rahm, E.: Cypher-based Graph Pattern
Matching in Gradoop, pp. 3:1–3:8

 123. Cattell, R.G.G.: The Object Database Standard: ODMG-93. Morgan Kaufmann, San Francisco
(1994)

 124. Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object exchange across heterogeneous infor-
mation sources, pp. 251–260

 125. Protocol Buffers – Google’s data interchange format. https:// github. com/ proto colbu ffers/ proto buf
(2008)

 126. Cluet, S.: Designing OQL: allowing objects to be queried. Inf. Syst. 23, 279–305 (1998)
 127. Robie, J., Chamberlin, D., Dyck, M.: XQuery 3.0: An XML Query Language, W3C Recommenda-

tion. https:// www. w3. org/ TR/ xquery- 30/ (2014)
 128. Bry, F., Schaffert, S.: The XML Query Language Xcerpt: Design Principles, Examples, and

Semantics, Vol. 2593 of LNCS, pp. 295–310 (Springer, Heidelberg, 2002)
 129. Hosoya, H., Pierce, B.C.: XDuce: a statically typed XML processing language. ACM Trans. Inter-

net Technol. 3, 117–148 (2003)
 130. Benzaken, V., Castagna, G., Frisch, A.: CDuce: an XML-centric general-purpose language. ACM

SIGPLAN Not. 38, 51–63 (2003)
 131. Chen, Z., Ling, T.W., Liu, M., Dobbie, G.: Xtree for Declarative XML Querying. Lecture Notes in

Computer Science, vol. 2973, pp. 100–112. Springer, Heidelberg (2004)
 132. Berglund, A., et al.: XML Path Language (XPath) 2.0 (Second Edition), W3C Recommendation.

https:// www. w3. org/ TR/ xpath 20/# XPath (2010)
 133. Chamberlin, D.D., Robie, J., Florescu, D.: Quilt: An XML Query Language for Heterogeneous

Data Sources. Lecture Notes in Computer Science, vol. 1997, pp. 1–25. Springer, Heidelberg
(2000)

 134. Kovse, J., Mahnke, W.: Introducing Custom Language Extensions to sql:1999, 193–208. Springer,
Heidelberg (2003)

 135. Ishikawa, H., Kubota, K., Kanemasa, Y.: A query language for XML data, XQL (1998)
 136. Gottlob, G., Koch, C., Pichler, R.: Efficient Algorithms for Processing Xpath Queries, pp. 95–106.

Morgan Kaufmann, Hong Kong (2002)
 137. Marx, M., de Rijke, M.: Semantic characterizations of navigational xpath. SIGMOD Rec. 34,

41–46 (2005)
 138. Baca, R., et al.: Structural XML query processing. ACM Comput. Surv. 50, 64:1-64:41 (2017)
 139. Lakshmanan, L.V.S., Wang, W.H., Zhao, Z.J.: Answering tree pattern queries using views, pp.

571–582
 140. Chen, Z., et al.: Counting Twig Matches in a Tree, pp. 595–604
 141. Jagadish, H.V., Lakshmanan, L.V.S., Srivastava, D., Thompson, K.: TAX: A Tree Algebra for

XML. Lecture Notes in Computer Science, vol. 2397, pp. 149–164. Springer, Heidelberg (2001)
 142. Mendelzon, A.O., Wood, P.T.: Finding Regular Simple Paths in Graph Databases, pp. 185–193
 143. Cassidy, S.: Generalizing xpath for directed graphs (2003)
 144. Libkin, L., Martens, W., Vrgoč, D.: Querying graphs with data. J. ACM 63, 14:1-14:53 (2016)

https://asterixdb.apache.org/docs/0.9.3/sqlpp/manual.html
https://asterixdb.apache.org/docs/0.9.3/sqlpp/manual.html
https://www.w3.org/TR/rdb-direct-mapping/
https://virtuoso.openlinksw.com/
https://medium.com/virtuoso-blog
https://medium.com/virtuoso-blog
https://github.com/opencypher/openCypher/labels/cypher10
https://github.com/opencypher/openCypher/labels/cypher10
https://opencypher.org/
https://s3.amazonaws.com/artifacts.opencypher.org/website/materials/DM32.2/DM32.2-2018-00086r1-summary-chart-of-cypher-pgql-gcore.pdf
https://s3.amazonaws.com/artifacts.opencypher.org/website/materials/DM32.2/DM32.2-2018-00086r1-summary-chart-of-cypher-pgql-gcore.pdf
https://s3.amazonaws.com/artifacts.opencypher.org/website/materials/DM32.2/DM32.2-2018-00086r1-summary-chart-of-cypher-pgql-gcore.pdf
https://github.com/protocolbuffers/protobuf
https://www.w3.org/TR/xquery-30/
https://www.w3.org/TR/xpath20/#XPath

70 Distributed and Parallel Databases (2024) 42:31–71

1 3

 145. Marklogic XQuery. https:// docs. markl ogic. com/ guide/ xquery/ lango vervi ew# chapt er (2021).
Accessed Oct 2021

 146. DataDirect XQuery. http:// media. datad irect. com/ downl oad/ docs/ ddxqu ery/ alldd xq/ refer ence/
wwhelp/ wwhim pl/ common/ html/ wwhelp. htm? conte xt= refer ence & file= quick start2. html (2020).
Accessed Oct 2021

 147. Beyer, K.S., et al.: Jaql: a scripting language for large scale semistructured data analysis. Proc.
VLDB Endow. 4, 1272–1283 (2011)

 148. Gössner, S., Frank, S.: JSONPath - XPath for JSON. https:// goess ner. net/ artic les/ JsonP ath/h
 149. Robie, J., et al.: JSONiq: The JSON Query Language. https:// www. jsoniq. org/ (2016)
 150. Florescu, D., Fourny, G.: JSONiq: the history of a query language. IEEE Internet Comput. 17,

86–90 (2013)
 151. Fourny, G. Jsoniq: The sql of nosql (2013)
 152. Barceló, P., Libkin, L., Reutter, J.L.: Querying graph patterns, pp. 199–210
 153. Barceló, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path queries over graph-

structured data. ACM Trans. Database Syst. 37, 31:1-31:46 (2012)
 154. Angles, R., Reutter, J., Voigt, H.: Graph query languages. Encyclopedia of Big Data Technologies,

pp. 883–890 (2019)
 155. Fernández, M.F., Florescu, D., Levy, A.Y., Suciu, D.: Declarative specification of web sites with

strudel. VLDB J. 9, 38–55 (2000)
 156. Buneman, P., Fernandez, M.F., Suciu, D.: UnQL: a query language and algebra for semistructured

data based on structural recursion. VLDB J. 9, 76–110 (2000)
 157. Consens, M.P., Mendelzon, A.O.: Expressing structural hypertext queries in graphlog, pp. 269–292
 158. Marton, J., Szárnyas, G. & Varró, D. Formalising openCypher Graph Queries in Relational Alge-

bra, Vol. 10509 LNCS, 182–196 (Springer, Heidelberg, 2017)
 159. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL: a declarative

query language for RDF, pp. 592–603
 160. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A comparison of RDF query languages. ISWC

3298, 502–517 (2004)
 161. XSPARQL Language Specification. https:// www. w3. org/ Submi ssion/ xspar ql- langu age- speci ficat

ion/ (2009)
 162. Scholl, M.H., Paul, H., Schek, H.: Supporting flat relations by a nested relational kernel, pp.

137–146
 163. Wang, H., Zaniolo, C., Luo, C.: ATLAS: a small but complete SQL extension for data mining and

data streams, pp. 1113–1116 (2003)
 164. Abiteboul, S., Beeri, C.: The power of languages for the manipulation of complex objects. Tech.

Rep. (1988)
 165. Deux, O.: The O2 system. Commun. ACM 34, 34–48 (1991)
 166. Kifer, M., Kim, W., Sagiv, Y.: Querying Object-Oriented Databases, pp. 393–402
 167. Lahiri, T., Abiteboul, S., Widom, J.: Ozone: Integrating structured and semistructured data, Vol.

1949, 297–323 (Springer, Heidelberg, 1999)
 168. Fleming, M.W., Gunther, R., Rosebrugh, R.D.: A database of categories. J. Symb. Comput. 35,

127–135 (2003)
 169. Spivak, D.I.: Table manipulation in simplicial databases. https:// aarxiv. org/ abs/ 1003. 2682 (2010)
 170. Schultz, P., Spivak, D.I., Vasilakopoulou, C., Wisnesky, R.: Algebraic databases. https:// arxiv. org/

abs/ 1602. 03501 (2016)
 171. Uotila, V., et al.: Multi-model Query Processing Meets Category Theory and Functional

Programming
 172. Uotila, V., et al.: MultiCategory: multi-model query processing meets category theory and func-

tional programming. Proc. VLDB Endow. 14, 2663–2666 (2021)
 173. Bugiotti, F., Cabibbo, L., Atzeni, P., Torlone, R.: Database design for nosql systems, Vol. 8824 of

LNCS, pp. 223–231 (Springer, Heidelberg, 2014)
 174. Atzeni, P., Torlone, R.: A metamodel approach for the management of multiple models and transla-

tion of schemes. Inf. Syst. 18, 349–362 (1993)
 175. Atzeni, P., Gianforme, G., Cappellari, P.: A universal metamodel and its dictionary. Trans. Large

Scale Data Knowl. Centered Syst. 1, 38–62 (2009)
 176. Forresi, C., Francia, M., Gallinucci, E., Golfarelli, M.: Optimizing execution plans in a multistore,

Vol. 12843 of LNCS, pp. 136–151 (Springer, Heidelberg, 2021)
 177. Maccioni, A., Torlone, R.: Augmented access for querying and exploring a polystore, pp. 77–88

https://docs.marklogic.com/guide/xquery/langoverview#chapter
http://media.datadirect.com/download/docs/ddxquery/allddxq/reference/wwhelp/wwhimpl/common/html/wwhelp.htm?context=reference%20&file=quickstart2.html
http://media.datadirect.com/download/docs/ddxquery/allddxq/reference/wwhelp/wwhimpl/common/html/wwhelp.htm?context=reference%20&file=quickstart2.html
https://goessner.net/articles/JsonPath/h
https://www.jsoniq.org/
https://www.w3.org/Submission/xsparql-language-specification/
https://www.w3.org/Submission/xsparql-language-specification/
https://aarxiv.org/abs/1003.2682
https://arxiv.org/abs/1602.03501
https://arxiv.org/abs/1602.03501

71

1 3

Distributed and Parallel Databases (2024) 42:31–71

 178. Maccioni, A., Torlone, R.: Learning How to Optimize Data Access in Polystores, Vol. 11721 of
LNCS, pp. 115–127 (Springer, Heidelberg, 2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Multi-model query languages: taming the variety of big data
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Multi-model data
	2.2 Multi-model queries
	2.3 Cross-model query processing

	3 Relational extensions
	3.1 Relational query languages and the SQL standards
	3.2 SQL extensions toward semistructured data
	3.2.1 SQLXML and SQLJSON
	3.2.2 SQL++

	3.3 SQL extensions toward graph data
	3.3.1 SQL extension for RDF
	3.3.2 SQL extension for property graph

	4 Document extensions
	4.1 XPathXQuery extensions
	4.1.1 Core XPathXQuery
	4.1.2 Document navigation and the core-XPath fragment
	4.1.3 Graph pattern matching with XPathXQuery
	4.1.4 Querying relational data with XPathXQuery

	4.2 JSON-oriented extensions
	4.2.1 Document navigation with JSONPath
	4.2.2 Querying document data with JSONiq

	5 Graph extensions
	5.1 Graph query languages
	5.2 SPARQL extensions
	5.3 Cypher extensions

	6 Native multi-model query languages
	6.1 ArangoDB query language
	6.2 OrientDB query language
	6.3 Kusto query language (KQL)

	7 Open challenges and problems
	8 Conclusions
	Acknowledgements
	References

