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Abstract
A critical issue in Big Data management is to address the variety of data–data are 
produced by disparate sources, presented in various formats, and hence inherently 
involves multiple data models. Multi-Model DataBases (MMDBs) have emerged as 
a promising approach for dealing with this task as they are capable of accommodat-
ing multi-model data in a single system and querying across them with a unified 
query language. This article aims to offer a comprehensive survey of a wide range 
of multi-model query languages of MMDBs. In particular, we first present the SQL-
based extensions toward multi-model data, including the standard SQL extensions 
such as SQL/XML, SQL/JSON, and GQL, and the non-standard SQL extensions 
such as SQL++ and SPASQL. We then study the manners in which document-based 
and graph-based query languages can be extended to support multi-model data. We 
also investigate the query languages that provide native support on multi-model 
data. Finally, this article provides insights into the open challenges and problems of 
multi-model query languages.
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1  Introduction

In past decades, we were witnessing the burst of heterogeneous data, where data may 
be produced by disparate sources, presented in various formats (structured, semi-
structured, or unstructured), and hence inherently involves multiple data models. 
Take a healthcare dataset Mimic II [1] as an example, it encompasses 26,000 patients/
days in the intensive care unit (ICU) of Beth Israel Hospital in Boston. This dataset 
includes data collected from disparate sources: (1) real-time data (time series from 
bedside monitoring devices); (2) a historical archive of waveform data (from previous 
patients); (3) patient metadata (relational data); (4) doctor’s and nurse’s notes (text); 
and (5) prescription information (semi-structured data). Relational data is only a small 
portion of this dataset. To make the right treatment decisions, doctors have to check 
the real-time diagnosis and request the historical treatments of the patients as well.

The demands for efficient management of massive multi-model data have trig-
gered the development of Multi-Model DataBase (MMDB) systems  [2, 3]. Con-
ventionally, every database must adhere to a specific data model, which determines 
the logical structure of data, and the manner in which data is stored, organized, 
and manipulated by database systems. The relational model has become the domi-
nant data model of databases since its inception in 1970 [4]. However, many of the 
relational DBMSs gradually evolved into their multi-model versions with support 
to the lately invented data models such as XML, JSON, graph, and key-value data. 
We have found 124 MMDB systems listed on the DB-Engines Ranking site1 (414 
DBMSs in total). An MMDB tightly integrates multiple storage engines together 
and accommodates data in the formats that fit the sources best, e.g., key/value pairs, 
relational tables, graphs, XML/JSON documents, etc. It also provides a unified 
query language to express users’ interests across multiple data models.

In this article, we present a comprehensive investigation of the query languages 
of MMDBs, as shown in Table  1. Syntactically, these languages can be roughly 
divided into four categories: the SQL extensions, the XPath/XQuery extensions, the 
graph extensions, and the native ones. The most appealing feature of these query 
languages is the capability of expressing cross-model queries—a query spans multi-
ple data models. Therefore, such language allows users to express relational queries, 
document queries, graph queries, key/value lookups, and arbitrary mixtures of them 
in a single query. By relational queries, we mean queries that manipulate relations in 
accordance with relational algebra/calculus. By document queries, we mean queries 
that navigate through a document from the root to any particular node. By graph 
query, we mean queries that involve the particular connectivity features coming 
from the edges, e.g., shortest path, graph traversal, and pattern matching.

Related work To the best of our knowledge, this is the first survey to discuss 
state-of-the-art research works and industrial products on multi-model query lan-
guages. A number of related surveys have been published in past years, but most 
of them focused on the general issues in multi-model data management or query 
languages for specific data models, especially for graph models. Scholl  [5] inves-
tigates the restrictions on the relational model and the ways to extend the model to 

1  DB-Engines Ranking (Apr 2023). https://​db-​engin​es.​com/​en/​ranki​ng

https://db-engines.com/en/ranking
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more capable data models, including the nested relational model, the object model, 
and the object-relation model. Schweikardt et al. [6] give an in-depth investigation 
of the theories that underpin the relational query languages (relational algebra, rela-
tional calculus, and SQL), including the expressive power, query and data complexi-
ties, and manners to extend a query language with more expressiveness. Atzeni et al. 
[7] presents a comprehensive survey on NoSQL modeling, such as Key-value data, 
document data, and NoAM (NoSQL Abstract Model). Prior to Atzeni et al.’s work, 
Angles and Gutiérrez described the issues in graph data modeling such as graph 
schema, graph manipulation, and the integrity constraints enforcing consistency 
of graph data [8]. Wood [9] and Barceló [10] study several graph query languages 
from a theoretical point of view, focusing on their expressive power and the com-
putational complexity of associated problems. Angles [11] makes a comprehensive 
survey of the fundamental concepts underpinning modern graph query languages, 
such as navigational queries, regular path queries, and graph pattern matching. Bon-
diombouy and Valduriez [12] analyzed a bunch of representative polystore systems 
on their architecture, data model, query languages, and query processing techniques. 
MMDBs can be roughly viewed as tightly-coupled polystores but has a significant 
difference within query language and query processing. Another related work is 
published by Lu and Holubová [3], they summarize a variety of data models widely 
adopted by database systems and discuss the general issues and challenges in multi-
model data management. Compared to that work, this article has a different focus on 
multi-model query languages which are not well investigated in previous work.

Outline The survey is structured as follows: We first discuss the general concepts 
related to multi-model databases in Sect. 2. In the same section, we also summarize 
the essential queries demanded by each type of data model, including conjunctive 
queries for SQL, navigational queries for document and graph data, and graph pat-
tern matching for graph data. We then step into the details of multi-model query lan-
guages. In Sect. 3, we present the SQL-based extensions toward multi-model data, 
including the standard SQL extensions such as SQL/XML, SQL/JSON, and GQL, 
and the non-standard SQL extensions such as SQL++ and SPASQL. In Sect. 4, we 
study the manners in which a document query language can be extended to sup-
port multi-model data. In Sect. 5, we give the graph-based extensions toward multi-
model query. In Sect. 6, we describe the recent query languages that natively support 
multi-model data. Finally, we conclude with a brief summarization of the challenges 
related to designing a multi-model query language or extending from the existing 
base languages.

2 � Preliminaries

In this section we briefly review the related concepts in multi-model data 
management.
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2.1 � Multi‑model data

We concentrate on the relational model and 5 widespread NoSQL models in this 
article.

Relational data The relational model become the dominant data model since its 
invention by Codd in 1970 [4, 13]. It provides a tabular view in which data are rep-
resented as relations with columns and rows. The model has an elegant math foun-
dation, but it is too strict to represent more complex data [14, 15]. For example, rela-
tions following the model must be flat (i.e., attribute values to be atomic) due to the 
First Normal Form (1NF). In recent years, various data models have been proposed 
to extend the relational model.

Semi-structured data Semi-structured models (or documents) are widely used to 
represent the web data and exchange over the Internet [16, 17]. It is a self-describing 
structure that associates semantic tags or markers and enforces hierarchies of records 
and fields by nesting elements within it. XML (eXtensible Markup Language) [18, 
19] and JSON (JavaScript Object Notation) [20, 21] are the most widespread semi-
structured data. XML is a typeless markup language that represents data using 
nested elements delimited by tags, which can contain plain text, nested subelements, 
or their combination. JSON [22, 23] is a human-readable open-standard format that 
is based on the idea of an arbitrary combination of three basic data types used in 
most programming languages—key/value pairs, arrays, and objects.

Graph data The graph model represents data as a graph ⟨V ,E⟩ of vertices (or 
objects) V and edges E connecting the vertices in V. There are many variants of 
the graph model  [8, 24, 25], including the hypergraph model  [26], the tempo-
ral graph  [27], the edge-labeled graph (ELG) [28], and the property graph model 
(PGM)  [29]. The most popular representatives are the edge-labeled graph and 
property graph. A well-known example of the edge-labeled graph is the Resource 
Description Framework (RDF)  [28, 30]. It represents named properties and their 
values as a collection of triples, {… , ⟨s, p, o⟩,…} . Each triple represents a relation-
ship (labeled with a predicate p) between two nodes in the Semantic Web, where the 
subject s is a resource or an entity, and the object o is another node or a literal value. 
The property graph  [31, 32] represents data as a directed, attributed multi-graph. 
Vertices and edges are objects with a set of labels and a set of key-value pairs, so-
called properties.

Key-value data Key-Value (KV) data is the simplest data model that has been 
widely adopted by NoSQL databases such as BerkeleyDB and Redis.

Key-Value data consists of a collection of key-value pairs ⟨k, v⟩ that are viewed 
as individual records and each value is designated a unique key, with which we can 
quickly store, retrieve, or modify the value. The values in key-value pairs have no 
type and it is up to the application to determine what type of data is being used, i.e., 
it could be an integer, string, JSON, XML file, or binary data like images.

Figure  1 displays an example of multi-model data, including a relational table 
(customers), two semi-structured documents (orders.json and invoices.xml), a social 
network (property graph G), and a collection of key-value pairs (feedback.kv). The 
example is generated with UniBench [33–35]—a benchmark for testing multi-model 
databases and was developed by the UDBMS group from the University of Helsinki. 
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UniBench simulates the application scenario within a commercial social network, in 
which a user can follow anyone else be interested in, leave comments on the posts 
from others he has already followed, navigate the marketplace for products posted 
by sellers and place orders on the site, and give feedback on the purchased product. 
In the example data, the social network is represented as a property graph G, where 
each node (edge) has a label describing its type (e.g., :Person, :Post, :Tag, 
and :follows) and associates with a set of key/value pairs as its properties. Nodes 
of other types, i.e., :Post, :Tag, are not presented in the graph. The JSON docu-
ment records the order information, while invoices are kept in the XML document 
so that they can be presented to the customers in various styles. Customer feedback 
on the products is kept in key/value pairs (with a pair of keys, i.e., custID and pro-
ductID). Finally, we use a relational table to record the information of customers.

2.2 � Multi‑model queries

The main purpose of managing massive multi-model data is to be able to query it. 
UniBench  [34] also defines a collection of the workload of multi-model queries. 
Taking the query Q5 of UniBench as an example: 

Fig. 1   An example multi-model dataset generated with UniBench [34]
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The query accesses data from heterogeneous sources, i.e., Follows.pg, Orders.
json, and Feedback.kv listed in Fig. 1. As shown in Query 1, we can write Q5 in 
ArangoDB’s query language (AQL) [36]. The query involves a variable-length path 
query on the property graph, an embedded array operation on the JSON document, 
and a composited key lookup on key-value pairs. Thereafter, we use two equi-joins 
(i.e., a graph-JSON join and a JSON-KV join) to assemble the partial records from 
the property graph, JSON document, and key-value pairs. 

 Query 1 is a multi-model query (MMQ), which is a mixture of relational queries, 
document queries, graph queries, and key/value fetches. By document queries, we 
can navigate through the root to any particular node in a document. By graph query, 
we mean queries that involve the particular connectivity features coming from the 
edges, e.g., shortest path, graph traversal, and pattern matching. The query opera-
tions in key-value stores rely on low-level key lookups. Ideally, a multi-model query 
language is capable of expressing an arbitrary mixture of queries on all data models 
we discussed in the previous section. Nevertheless, we concentrate on three types of 
fundamental queries.

(1) Relational queries The essence of relational queries is conjunctive queries 
(CQs), which use a restricted form of the first-order logic expressions with only con-
junction operator and existential quantifier. In particular, CQs are equivalent to the 
SELECT-FROM-WHERE queries in SQL in which the WHERE clause uses exclu-
sively conjunctions of atomic equality conditions [6]. However, we cannot express 
the transitive closure and aggregate with CQ (likewise with the relational algebra 
and calculus)  [37]. Normally, one can extend the expressive power of CQ in sev-
eral ways: (1) adding more operations such as union and negation; (2) allowing 
recursion, which is essential for extending CQ to graph data; (3) counting, which is 
essential for aggregate queries; (4) introducing more powerful grammars (e.g., regu-
lar expression or context-free grammar) for formulating complex query expressions.

(2) Navigational queries Navigational queries (NQs) form the foundation for 
many semi-structured and graph query languages such as Lorel  [38], OQL  [39], 
XPath  [40], XQuery  [41], XSLT  [42], and nSPARQL  [43]. Most formalisms for 
NQs are based on the notion of path expression [44–47], which specify the way to 
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navigate the underlying data [16, 39, 46, 48, 49]. Essentially, there are two types 
of NQs: simple path query (SPQ) and regular path query (RPQ)  [9, 16, 50–54]. 
An SPQ is a complete sequence � = l1.⋯ .ln of edges, where l1,… , ln are labels of 
edges between objects. It can be extended by introducing wildcards (?, *, %, or #) 
and more expressive grammar such as context-free grammar [55]. Formally, RPQs 
are expressions of the form (x, L, y), where L is a regular language over an alphabet 
Σ of edge labels. It generalizes SPQs to support transitive closure and can be further 
extended with more complex patterns, backward navigation, relations over paths, 
and mixing labels and data in nodes [45, 55], such as the conjunctive regular path 
queries (CRPQs) [56], two-way regular path queries (2CRPQs) [56]. The property 
path queries extend RPQs with a mild form of negation [57] and forms the concep-
tual core of the SPARQL 1.1 standard [58, 59].

(3) Graph pattern matching Graph pattern matching (GPM) is one of the foun-
dations that underpin the graph query languages such as W3C’s SPQAQL [59–61], 
Cypher [29, 62], TinkerPop’s Gremlin [63, 64], Oracle’s PGQL [65, 66], LDBC’s 
G-CORE [67], and TigerGraph’s GSQL [68, 69]. A graph pattern P = (VP,EP, LP) 
is a directed graph that specifies the structural and semantic requirements that 
matched subgraphs in the data graph G must satisfy. Tree pattern is a special form of 
graph pattern that has been extensively studied in the context of XML database  [70, 
71]. The task of GPM is to find the set M of subgraphs from data graph G that match 
a pattern graph P. The precise definition of a match varies among graph query lan-
guages but is generally based on the following semantics: (1) subgraph isomorphism 
(i.e., structural matching) or near isomorphism between P and m ∈ M  [72], and 
(2) equality or similarity between the types and attribute values of the vertices and 
edges in P and those in m ∈ M.

2.3 � Cross‑model query processing

So far we have stated examples of multi-model data and queries. We proceed to pre-
sent multi-model query languages (MMQLs) that allow users to express MMQs in 
a declarative way. Ideally, an MMQL is capable of expressing any MMQs using an 
arbitrary mixture of relational, navigational, and graph queries that span over a col-
lection of multi-model data. The problem of accessing multi-model data sources [73, 
74], i.e., managed by various heterogeneous DBMSs such as relational, XML, or 
graph DBMSs, has been extensively studied in the context of multidatabase sys-
tems [75, Chapter 7] (also known as federated database systems) and data integra-
tion [76]. In general, an MMQ q is a mapping that spans a collection of multi-model 
data D = {d1,… , dk} and maps it to the query result q(D). The evaluation of q is a 
challenging task and we say it as cross-model query processing [2, 12, 77] when an 
MMQ spans multiple data models. Roughly, we can identify two feasible approaches 
for cross-model query processing: (1) the mediator-wrapper fashion in Polystore 
systems, and (2) a holistic evaluation in MMDB systems.

Polystores The basic idea of Polystore (or Multistore) systems (e.g., Polybase[78] 
and BigDAWG [79, 80]) is to provide integrated access to a set of heterogeneous 
data stores (SQL or NoSQL). We can divide polystore systems into three categories, 
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i.e., loosely-coupled, tightly-coupled, and hybrid, based on the level of coupling 
with the underlying data stores. Query processing in polystores is complex and com-
monly based on the mediator-wrapper architecture  [12, 81], where the media-
tor provides a global view of multi-model data to users and each wrapper supports 
the functionality of translating subqueries to the particular store, and reformatting 
answers (partial results) appropriate to the mediator. The mediator has a catalog of 
data stores, and each wrapper has a local catalog of its data store. With the global 
schema, one can express MMQs over a polystore as if it is a single database. How-
ever, query evaluation in polystores involves massive data exchange, which consists 
of defining a global schema over the underlying multi-model data and mappings 
between the global schema and the local schemas.

Multi-model databases Polystores may result in disparate data silos and multiple 
interfaces that require expensive integration workflows. This poses a great challenge 
to query processing and encourages the development of Multi-Model DataBases 
(MMDBs) [2, 34]. A plethora of MMDBs emerged over the past years, such as Ora-
cle [82, 83], PostgreSQL [84], MongoDB [85], ArangoDB [86], and OrientDB [87]. 
These MMDBs are developed in two ways: (1) native MMDBs built from scratch 
such as ArangoDB and OrientDB; (2) extensions of the existing relational, docu-
ment, and graph DBMSs. For more details about MMDBs, we refer the readers to 
Lu and Holubová’s survey paper  [3]. Table  2 summarizes the representatives for 
each type of MMDBs. An MMDB system can be viewed as a variant of the tightly 
integrated polystores, in which multi-model data is accommodated in a set of native 
storage engines, a global execution engine is on the top of the local stores, and 
MMQs are expressed in a unified query language. There is a global execution engine 
that runs on top of local storage engines and the executor directly accesses local 
storage engines without any intervention of wrappers. Consequently, MMQs can be 
evaluated in a holistic manner instead of being divided into subqueries.

Cross-model query processing via schema mapping Cross-model query pro-
cessing in both polystores and MMDBs may incur expensive data exchange [77, 88]. 
Figure 2 gives a visual representation of the MMQ Query 1, in which data fragments 
from the property graph, JSON document, and key-value pairs should be assembled 
into an intact query result with a graph-JSON join and a JSON-KV join. The two 
joins can be done through two data exchange schemes, i.e., a graph-to-JSON map-
ping and a KV-to-JSON mapping.

The main task in data exchange is to translate data between the source schema 
and the target schema under a set of source-to-target constraints known as schema 
mappings [89]. Query processing under schema mappings [90] has also been inves-
tigated extensively in the context of multidatabase systems  [75, Chapter  7] and 
data integration [91]. It typically relies on the two cases where each target atom is 
mapped to a query over the source (called GAV, global-as-view), and where each 
source atom is mapped to a query over the target (called LAV, local-as-view) [76]. 
The general case, called GLAV, in which queries over the source are mapped to 
queries over the target, has attracted a lot of attention recently, especially for data 
exchange. The GAV and LAV are widely implemented in polystores. For more 
details about query processing via schema mapping, we refer the readers to Bondi-
ombouy et al.’ survey paper [12].
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3 � Relational extensions

In this section, we present the relational extensions toward multi-model data.

3.1 � Relational query languages and the SQL standards

In the early 1970s, Codd proposed two mathematical query languages, called rela-
tional algebra (RA) and relational calculus (RC, also known as the Data Sublan-
guage ALPHA) [92, 93], which form the basis for real languages like SQL. ALPHA 
inspired the design of subsequent query languages including SEQUEL [94, 95] and 
QUEL  [96, 97]. The structured query language SEQUEL finally evolved to SQL. 
The core query syntax of SQL is the SELECT-FROM-WHERE (SFW) clauses, and 
we say a query language is SQL-like if it has similar clauses as well. By 1986, SQL 
had been formally adopted by the ANSI and ISO as a standard database query lan-
guage, namely SQL-86 (also known as SQL1). The earliest versions of SQL lacked 
support for some aspects of the relational model, including subqueries, primary keys 
and referential integrity. All these problems were solved by the SQL:1992 standard 
(or SQL2)  [98]. Procedural extensions SQL/PSM  [99] formally became a part of 
the SQL:1996. The common table expressions (CTEs), WITH [RECURSIVE ] 
construct, was introduced into SQL:1999 (also called SQL3) to allow recursive que-
ries [100, 101].

Recently, many traditional RDBMSs have been evolving to their multi-model ver-
sions, such as Oracle, MySQL, MS SQL Server, PostgreSQL, IBM Db2, and Mari-
aDB. The query languages of these systems are naturally extended from the SQL 
standard and thus have certain compliance with each other. Table 2 lists several such 
extensions. Consequently, a number of extensions were proposed to handle multi-
model data, and some of them have been accepted by the SQL standard, such as 
SQL/XML [102], SQL/JSON [103], SQL/PGQ [104], and GQL [105–107]. In this 
section, we present three standard extensions such as SQL/XML, SQL/JSON, and 
GQL, and two non-standard extensions such as SQL++ and SPQRSQL.

Fig. 2   A visual representation of the query Q5 in UniBench



42	 Distributed and Parallel Databases (2024) 42:31–71

1 3

3.2 � SQL extensions toward semistructured data

We mainly focus on the SQL extensions toward XML and JSON. In addition to the 
predefined data types (e.g., NUMERIC and CHAR), SQL/XML and SQL/JSON 
introduce the new data type XML and JSON into the SQL standard, where each data 
type associates with a set of constructors, functions, and rules for XML(JSON)-to-
SQL mapping. Even though XML and JSON are somewhat similar—documents 
with nested structures—their integration into SQL is quite different. The most strik-
ing difference is that the standard does not define a native JSON type like it does for 
XML. Instead, the standard uses strings to store JSON data. Other than creating a 
new data type, SQL++ builds a unified data model to capture and manipulate both 
relational data and JSON documents.

3.2.1 � SQL/XML and SQL/JSON

SQL/XML SQL/XML  [102] is a collection of XML-related specifications and 
became part 14 of the ANSI/ISO SQL standard in 2003. It is SQL-centric and lets 
SQL queries create XML structures with a few powerful XML publishing functions. 
It introduces the predefined data type XML together with constructors, functions, 
and XML-to-SQL data type mappings to support the manipulation and storage of 
XML in a relational database. SQL/XML has substantially similar functionality to 
XQuery. The specification defines the data type XML, and functions working on 
XML, including element construction, mapping data from relational tables, com-
bining XML fragments and embedding XQuery expressions in SQL statements. 
Functions that can be embedded include XMLQUERY (which extracts XML or val-
ues from an XML field) and XMLEXISTS (which predicates whether an XQuery 
expression is matched). The existing RDBMSs have their own implementations of 
SQL/XML. As shown in Table  3, they have different compliance with the SQL/
XML standard.

In a nutshell, the SQL/XML extension consists of the following 4 parts: (1) The 
XML data type and related constructors. The SQL/XML standard defines a sin-
gle data type named XML. Its possible values are either null or a document con-
forms to the definition in W3C’s XML recommendation  [19]. DB2, SQL Server, 
and PostgreSQL provide native support for the XML data type. MySQL doesn’t 
support XML data types like SQL Server or PostgreSQL but just takes XML as a 
CLOB (Character Large Object) data type. Oracle entitles the XMLType’ instead of 
‘XML’. (2) Support for XPath/XQuery. In order to retrieve XML data within a SQL 
query, one must incorporate the XPath expressions or XQuery’s FLWOR clauses into 
the standard SQL syntax. Excepting MySQL supports only XPath, other RDBMSs 
provide full supports for XPath and XQuery. (3) Special functions for handling 
XML data. The standard defines 9 functions that allow application to retrieve XML 
directly within SQL queries, including XMLAGG​, XMLCONCAT​, XMLCOMMENT, 
XMLELEMENT, XMLFOREST, XMLPARSE, XMLPI, XMLROOT, and XMLSERIAL-
IZE. Oracle, DB2, and PostgreSQL provide full support for all the XML functions. 
MySQL provide two functions, ExtractValue() and UpdateXML(), to work 
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with XPath. (4) Rules for mapping XML to SQL tables. The standard defines sev-
eral rules for mapping SQL types to XML or in a reversed mapping. For example, 
mapping an SQL table to XML and an XML Schema document.

SQL/JSON SQL/JSON  [103] was introduced into the standard (ISO/IEC 
9075:2016) in 2016. The specification includes a SQL/JSON data model, a set of 
SQL/JSON functions working on the data model, and a SQL/JSON path language 
for navigating the nested data structure. The data model is used by the SQL/JSON 
functions and the path language. There are five standard SQL/JSON functions, such 
as JSON_CONCAT, JSON_KEYCOUNT, JSON_KEYS, JSON_CONTAINS, and 
JSON_EXISTENCE. The SQL/JSON path language use the dot notation and it is a 
query language used by the SQL/JSON operators (JSON_VALUE, JSON_QUERY, 
JSON_TABLE, and JSON_EXISTS) to query JSON text. Unfortunately, the current 
SQL/JSON standard does not define a native data type for JSON, but represents it as 
a VARCHAR or binary formats such as AVRO or BSON.

3.2.2 � SQL++

SQL++ [108, 109] applies to both relational and JSON data. It is backward-compat-
ible with the SQL standard and is extended with a small number of query properties 
for JSON. Differing from the previous extensions, SQL++ creates a unified data 
model for relational tables and JSON.

(1) SQL++ Data Model The SQL++ data model is a superset of both rela-
tional tables and JSON, based on three observations: (a) A SQL tuple corre-
sponds to a JSON object literal; (b) a SQL string, integer, or boolean map to the 
respective JSON scalar; and (c) a JSON array is similar to a SQL table (bag) 
with the order. The model expands JSON with bags (as opposed to having JSON 
arrays only) and enriched values, i.e., atomic values that are not only numbers 
and strings. Vice versa, we can also think of SQL++ as expanding SQL with 
JSON features: arrays, heterogeneity, and the possibility that any value may be 
an arbitrary composition of the array, bag and tuple constructors, hence enabling 
arbitrary nested structures, such as arrays of arrays.

The data operated on and query results of SQL++ are JSON values, which 
can be either primitive values or structured values, as shown in Fig. 3. A primi-
tive value is any of the following: (1) a string like “Hello”, (2) a number like 
42 or −3.14159, (3) a boolean value true or false, or (4) null. A structured 
value could be an object or array, where an object is a list of name-value pairs 

Table 3   Compliance to the SQL/XML standard

Oracle 11g IBM DB2 9.7 MS SQL 
Server 2008

MySQL 5.1.30 PostgreSQL 9.1

XML Datatype XMLType XML XML CLOB XML
XPath/XQuery Syntax Full Full Full XPath Full
Predicates Full Full Partial No Full
Functions Full Full Partial Partial Ful
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separated by a comma and enclosed in curly braces. The name-value pairs are 
also called fields. Each name is a string and each value can be any JSON value. 
An array is an ordered list of items separated by commas and enclosed in square 
brackets. Each item can be any JSON value.

(2) Query structure and path expressions SQL++ has been adopted by 
many database systems, such as Couchbase’s N1QL-SQL++ alignment  [110] 
and the SQL++ interface of AsterixDB [111, 112]. An SQL++ query is either 
an SFW query or an expression query. Unlike SQL expressions, which are 
restricted to outputting scalar and null values, SQL++ expression queries output 
arbitrary values, and are fully composable with SFW queries.

SQL++ supports simple path queries, which consist simply of an expression 
that evaluates to an object, followed by a dot and an identifier. For example, 
in the expression “person.name”, person is a variable that evaluates to an 
object, and the identifier name is used to find a field in the object whose name 
matches that identifier. Since the result of a path expression is an object, it can 
serve as one step in a longer path expression such as “person.name.first”. 
Since SQL++ supports boolean operators such as NOT, AND, and OR, we can 
issue more complex query patterns by binding several path expressions with 
such operators. Unfortunately, SQL++ doesn’t support complex queries like 
RPQs, CRPQs, and 2CRPQs. Figure  4 shows a cross-model query of SQL++ 
accessing both the relational table and JSON document. The query is a compos-
ite of the relational query and path query. For more examples of SQL++, please 
refer to the technical papers [108, 109] and D. Chamberlin’s tutorial [109].

3.3 � SQL extensions toward graph data

3.3.1 � SQL extension for RDF

The emergence of the Semantic Web is enabling new approaches to federated data 
queries. RDF promotes universally grounded identifiers for data, allowing the 
SPARQL query language for RDF to perform joins across different data sources. 
There is no standard SQL extension towards SPARQL. W3C defines a set of rules 
for mapping between relational data and RDF [113] and the RDBMS vendors can 

Fig. 3   A JSON value and an 
array
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develop their own SQL/SPARQL extensions following these rules. We present two 
extensions, i.e., Oracle’s SQL/SPARQL and OpenLink Virtuoso’s SPASQL [114].

(1) Oracle’s SQL/SPARQL Oracle extends SQL with full SPARQL 1.1 query 
constructs [115]. A SPARQL subquery is embedded within the SQL query follow-
ing the SEM_MATCH statement. As shown in the following query, by integrating 
RDF with existing enterprise data, one can use Oracle’s SQL/SPARQL to JOIN 
with relational data, to create tables/views for RDF data, and to allow SQL con-
structs/functions working on RDF data. 

 (2) Virtuoso’s SPASQL As a multi-model RDBMS, Virtuoso supports native 
stores for a bunch of data models such as relational tables, RDF, and XML. It also 
provides multiple ways to declaratively manipulate data, one of them is called 
SPASQL (SPARQL-in-SQL)  [116], which delivers a built-in blend of SQL func-
tionality with SPARQL functionality. SPASQL is a simple extension of the SQL 
standard, allowing execution of SPARQL queries within SQL statements, typically 
by treating them as a subquery or function clauses. The syntax of SPASQL is as 
follows: 

 In a SPASQL query, a SPARQL subquery is embedded within a SQL query fol-
lowing the keyword “SPARQL”. The subquery draws only from relations represented 

Fig. 4   A SQL++ query
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as RDF statements and returns data in tabular form to an SQL interface. Virtuoso 
has a universal server, which is a middleware that combines the functionalities of a 
traditional RDBMS, an RDF engine, an XML engine, a web server, and even a file 
server in a single system. While processing a SPASQL query, the universal server 
will incur an RDF function call to the RDF engine for handling the SPARQL sub-
query and the result is then returned to the host SQL engine for further processing. 
In this way, one can retrieve both relational and RDF data with a SPASQL query 
like Query 3. 

3.3.2 � SQL extension for property graph

In recent years, a wealth of property graph query languages have been developed 
by database vendors, including Neo4j’s Cypher/openCypher  [117, 118], Oracle’s 
PGQL [65, 66], LDBC’s G-CORE [67], and TigerGraph’s GSQL [68]. In 2019, the 
ISO SQL Committee initiated a new project GQL (Graph Query Language) [106] as 
the standard property query language to unify the previous languages. Prior to GQL, 
WG3, and SC32 have helped to define SQL/PGQ (SQL/Property Graph Queries) as 
a new planned Part 16 of the SQL standard [104], which allows a read-only graph 
query to be embedded inside a SQL SELECT statement and returning a table of data 
values as the result. SQL/PGQ is mainly used for matching a graph pattern using a 
syntax that is very close to Cypher, PGQL, and G-CORE. The GQL project coordi-
nates closely with the SQL/PGQ and its project proposal [105] shows that GQL will 
in general be a superset of SQL/PGQ.

GQL is intended to be useable both as a declarative property graph query 
language as well as in conjunction with SQL [119, 120]. The existing property 
graph query languages and the new GQL standard can fit together with the exist-
ing SQL standard. One key goal is composability—the ability to return the result 
of a graph query as a graph that can be referenced in other graph queries. Query 
syntax follows the syntactic tradition of SQL, i.e., using the SELECT-FROM-
WHERE clauses, and a query is represented as a tree of clauses, each introduced 
by a distinct keyword and optionally further qualified by sub-clauses, expres-
sions, and patterns. According to the working draft [105] of the GQL specifica-
tion in 2019, GQL reuses basic literal and expression syntax from SQL but is 
amended with the following features.

(1) New data types GQL provides new data types for handling graph ele-
ments. Graph types describe the structure of a graph in terms of nodes, edges, 
and their labels and properties. A graph type consists of the following defini-
tions: (i) An (abstract) content type definition that defines a combination 
of required labels, required properties, and the required data types of those 
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properties. (ii) A node type definition that defines a combination of required 
labels, required properties, and the required data types of those properties that 
a node shall have. Node types may be defined as an extension of other node 
types or content types. (iii) An edge type definition that defines a combination of 
required labels, required properties, and the required data types of those proper-
ties that an edge and its endpoints shall have. Edge types may be defined as an 
extension of other edge types or content types. (iv) Graph element constraint 
definitions such as key constraint definitions, where a graph element is either a 
node or an edge.

(2) Query syntax, structure, and clauses GQL borrows the syntax from 
Cypher and provides an SQL-like query structure over table or graph data 
that produces a tabular query result set. Specifically, GQL uses the SELECT-
(MATCH)-FROM-WHERE-(RETURN) clauses in which the MATCH and 
RETURN clauses are optional when querying relational tables. Therefore, 
GQL can provide full compliance with the SQL standard. Given a pat-
tern MATCH (p:Person)-[:lives_in]->(c:City), the query result 
returned by the SELECT clause is represented in a tabular fashion. We have 
to use the optional RETURN statement if we need to construct a graph as out-
put. The syntax of GQL’s RETURN clause is given in Query  4. GQL follows 
the definition in Cypher and also provides multiple semantics for graph pat-
tern matching  [121, 122], i.e., isomorphism and homomorphism. In addition, 
GQL borrows the syntax of regular path expressions from PGQL  [66], i.e., 
“(a:Person)-/:friend_of*/->(a:Person)”. 

4 � Document extensions

Many semi-structured data models have been proposed in practice, including the 
ODMG Data Model (ODM) [39, 123], the Object Exchange Model (OEM) [124], 
XML  [19], JSON  [21], and Google’s Protocol Buffers (ProtoBuf)  [125]. The for-
mer 3 models have standard query languages—OQL [126] for ODM data, Lorel for 
OEM data [38, 48], and XPath/XQuery for XML data [40, 127] respectively. Unfor-
tunately, we do not have standard query languages for JSON and ProtoBuf. ProtoBuf 
is mainly used for serializing structured data and Google only provides low-level 
API for programming languages like Go and Java. In this section, we proceed to dis-
cuss document query languages and their extensions toward multi-model data.
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4.1 � XPath/XQuery extensions

Since the late-1990s, a bunch of XML query languages has been proposed, such as 
XPath/XQuery  [40, 41], Xcerpt  [128], XDuce  [129], CDuce  [130], and XTreeQ-
uery [131], among which XPath/XQuery have already become the standards advo-
cated by W3C. In this section, we examine the expressiveness of XPath/XQuery on 
path queries and graph pattern matching. In addition, we describe the extensions of 
XPath/XQuery toward multi-model data.

4.1.1 � Core XPath/XQuery

(1) XPath XPath is a path language designed to both navigate nodes and query data 
from an XML document. It plays a prominent role as an XML navigational lan-
guage and becomes a core component of a number of more expressive languages 
with variables such as XQuery. Essentially, an XPath query is a path expression that 
consists of a sequence of location steps, where each step, /axis::node_label
[predicates], has three components: (i) an axis, (ii) a node test, and (iii) zero or 
more predicate. XPath supports a number of axes: ancestor, ancestor-or-self, attrib-
ute, child, descendant, descendant-or-self, following, following-sibling, parent, pre-
ceding, preceding-sibling, and self. All nodes in an XML document conform to a 
document order in which the data is represented as a hierarchy tree and a path query 
is evaluated in the order with respect to a context node. The axes can be divided into 
a forward axis and a reverse axis according to the direction from the context node. 
For example, child or descendant specifies the two directions for XML navi-
gation respectively. A node test within an XPath query is to retrieve nodes and the 
predicates after the node test is to filter a sequence of values. Apart from using the 
name of a node or a wildcard (to select unknown nodes), we can also use other node 
tests such as node() and text().

(2) XQuery XQuery shares the same data model with XPath and supports the 
same functions and operators. It is a superset of XPath and takes advantage of 
both XPath expressions and SQL-like FLWOR syntax [40, 132]. It extends XPath 
in many ways, in which the most important ones are the capability to specify out-
put query nodes and an introduction of sequences in values. In addition to the path 
expressions, XQuery provides CRUD syntax like SQL. There are several versions of 
XQuery in use. XQuery 1.0 [41] became a W3C Recommendation in 2007, XQuery 
3.0 [127] in 2014 and the revised version XQuery 3.1 became a W3C Recommenda-
tion in 2017. The overall design of XQuery is based on a language proposal called 
Quilt [133], which was significantly influenced by OQL [39, 123] and SQL [134], 
and by previous XML query language proposals such as XQL [135] and Lorel [38].

4.1.2 � Document navigation and the core‑XPath fragment

A simple path query of XPath is a sequence of axis steps (A/B/C). Query 5 presents 
5 simple path queries of XPath. P1 lists the descriptions of all items offered for sale 
by Smith. P2 has the same purpose as P1 but uses a different axis. P3 defines the 



49

1 3

Distributed and Parallel Databases (2024) 42:31–71	

path P1 as a variable description. P4 reuses the variable in P3 to list the status 
attribute of the item that is the parent of a given description. P5 is to list all the items 
that are the parents of a given description but excluding the @status elements. 
We can use predicates in the steps of a path query to filter a sequence of values. 
For example, in the step item[seller = “Smith”], the predicate (seller 
= “Smith”) is used to select certain item nodes and discard others. We will refer 
to the items in the sequence being filtered by a predicate as candidate items. The 
variable description given in P3 is used to bound a node in the document, and 
traverses will start at the nodes bound to the variable. 

 Path expressions can be also written in abbreviated syntax. Within a path expres-
sion, a single dot (.) refers to the context node (self-axis), and two consecutive dots 
(..) refer to the parent of the context node. These notations are abbreviated invoca-
tions of the child (/), descendant (//), and attribute axes (@), respectively.

The navigational capability of the XPath standard can be captured all by a frag-
ment called Core-XPath  [49, 136, 137]. The syntax of Core-XPath is given in 
Table 4. It supports all XPath’s axes, except for the attribute and namespace axes, 
and allows sequencing and taking unions of path expressions and full booleans in the 
filter expressions. Formally, the semantics of Core-XPath queries can be modeled 
by binary relations on the nodes of an XML tree. For example, the path expression 
descendant::p (abbreviated as .//p) denotes in any XML tree T, the set of all 
pairs (m, n) with n a descendant node of m that has tag name p. Thus the binary rela-
tion is equivalent to a conjunctive query: �(x, y) = descendant(x, y) ∧ p(y).

Conversely, the conjunctive query 
�(x, y) = ∃z1 … zn

⋀n

i=1
descendant

�
x, zi

�
∧ pi

�
zi
�
 defines a binary relation that can 

be expressed as a union of the XPath queries, i.e., descendant::p(1)/.../
descendant::p(n)/descendant::q, for all permutations of 1… n . 
Therefore, conjunctive path queries and 2-way conjunctive path queries can be 
naturally supported by all versions of XPath.

XPath standards do not support RPQs, but it can be fixed by adding two opera-
tors, i.e., Kleene star and path equality. The Kleene star allows us to take the 
reflexive transitive closure of arbitrary path expressions and path equalities allow 
us to specify the equality conditions. Formally, the semantics of these operators is 
as follows [49]:

Thereafter, we can use the RPQ expression, (child::p)*/child::q, to list 
all child items or descendant items named q, where (path)* denotes the reflexive 

R∗
PExpr

= reflexive transitive closure of RPExpr

R ≈ SNExpr =
{
x ∣ ∃y ⋅ (x, y) ∈ RPExpr ∩ SPExpr

}
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transitive closure of the binary relation denoted by path. RPQ can be viewed as a 
mix between Core XPath and regular path expressions [16]: it has the filter expres-
sions of the former and the Kleene star of the latter. With the extended operators, 
one can also easily issue CRPQ and 2CRPQ queries.

XML path query and tree pattern query Essentially, there are two types of 
structural XML queries [138]: (1) the no branching path query, and (2) the XML 
tree pattern query (also known as twig query). Query 6 shows three XML que-
ries, where Q1 is a simple path query, but Q2 and Q3 are two twig queries for-
mulated with XPath and XQuery respectively. Using the boolean operators pro-
vided by XPath/XQuery, one can issue more complex queries by a combination 
of XPath expressions. XPath provides full support to the SPQs and SPQs with 
wildcards, but unfortunately the current version of it does support any RPQ and 
its extensions. 

An XML tree pattern query is a special case for the graph pattern query. For-
mally, a twig query is a pair Q = (T ,F) , where T is a node-labeled and edge-labeled 
tree with a distinguished node x ∈ T  and F is a boolean combination of constraints 
on nodes. Node labels are variables such as $x and $y . Edge labels are one of PC, 
AD indicating parent–child or ancestor–descendant. Node constraints are of the 
form $x.tag = TagName or $x.datarelOpval , where $x.data denotes the data content 
of node $x , and relOp is one of = , <, >, ≤ , ≥ , ≠ . Twig queries can be seen as an 
abstraction of a core fragment of XPath and XQuery [139]. Therefore, a substantial 

Table 4   Syntax of Core-XPath

MMDBs Data models Query languages

Axis := self | child | parent | right | left | descendant
:=    | ancestor | following | preceding
:=    | following sibling | preceding sibling

NameTest := QName | *
Step := Axis::NameTest
PathExpr := Step

:=    | PathExpr/PathExpr
:=    | PathExpr union PathExpr
:=    | PathExpr[NodeExpr]
:= PathExpr
:=    | not NodeExpr
:=    | NodeExpr and NodeExpr
:=    | NodeExpr or NodeExpr
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amount of work on XML query evaluation and optimization  [70, 140, 141] using 
tree patterns as a basis.

4.1.3 � Graph pattern matching with XPath/XQuery

An XML tree can be viewed as a special directed acyclic graph (DAG), so its query 
languages XPath/XQuery can be also used to query graph data. Several works have 
been done to extend the XPath to query graph data [142–144]. Path expressions of 
the core graph XPath, denoted by GXPathcore , are stated as:

Similary, path expressions of regular graph XPath, denoted by GXPathreg , are given

We call this fragment “Core graph XPath” since it is natural to view edge labels 
(and their reverse) in data graphs as the single-step axes of the usual XPath on trees. 
For instance, a and a- could be similar to “child” and “parent”. Thus, in our core 
fragment, we only allow transitive closure over navigational single-step axes, as is 
done in Core XPath on trees. Note that we did not explicitly define the counterpart 
of node label tests in GXPath node expressions to avoid notational clutter, but all 
the results remain true if we add them. According to the investigation  [142–144], 
GXPath provides full support to the navigational queries and graph pattern queries.

4.1.4 � Querying relational data with XPath/XQuery

When XPath is used to query relational data, relational tables are treated as 
though they are XML documents, and path expressions work in the same way as 
they do for XML. Since relational data have a flat structure, path expressions used 
for tables are usually simple. XQuery extends XPath with the FLWOR clauses. 
To extend it to relational data, three essential perspectives must be taken into 
account: (i) The mapping between relational tables and XML data; (ii) The syn-
tax difference between XQuery and SQL, especially the returned clause; (iii) The 
correspondence between the built-in functions for XQuery and SQL. The SQL/
XML standard  [102] defines the rules for mapping between relations and XML 
data, so an XPath/XQuery-based extension can follow these rules to provide sup-
port for relational data. Many database systems implement the SQL/XML map-
ping rules but have different built-in XQuery functions, so their supports for rela-
tional data vary a lot. For example, the XQuery engines for MarkLogic [145] and 
DataDirect [146] have very different supports for relational data.

DataDirect’s XQuery DataDirect treats all data to look like XML. Notice that 
while the syntax between the XQuery expression and the SQL statement differs, 
the semantics are the same—the FOR clause has been translated as part of the 
SELECT FROM statement; the where clause has been translated as the predicate; 
and so on. Another difference that must be taken into account when using XQuery 
to query relational data is structure—the output of a SQL statement is a table (a 

𝛼, 𝛽 ∶= 𝜀|−|a|a−|a∗|a−∗|[𝜑]|𝛼 ⋅ 𝛽|𝛼 ∪ 𝛽|𝛼̄

𝛼, 𝛽 ∶= 𝜀|−|a|a−|[𝜑]|𝛼 ⋅ 𝛽|𝛼 ∪ 𝛽|𝛼̄ ∣ 𝛼∗
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flat structure), but the typical XML value is a tree. To achieve the required trans-
formation of the result from a flat structure to a tree structure, DataDirect XQuery 
translates the query into two parts: an XML construction part and a SQL part. 
Query 7 illustrates a such query, in which the XML construction part adds XML 
tags to the results retrieved from the database to create the hierarchy requested in 
the query. 

4.2 � JSON‑oriented extensions

Navigational queries on JSON documents are similar to that on XML or graph 
databases. Similar to Core-XPath and Core-GXPath, we can also define a JSON 
navigation logic(JNL) to capturing the navigation capability  [20]. We can reuse 
results devised for other semi-structured languages such as XPath/XQuery, but the 
nature of JSON and the functionalities present in query languages also demand new 
approaches or refinement of these techniques. A bunch of query languages has been 
proposed for JSON data, such as MongoDB’s query language  [85], JAQL  [147], 
JSONPath [148], JSONiq [149], and SQL++ [108]. To note that there is no standard 
query language for JSON and most of these languages are inspired either by XPath/
XQuery (e.g, JSONPath and JSONiq) or SQL (e.g., SQL++).

4.2.1 � Document navigation with JSONPath

JSON documents can be also retrieved in the way of XPath. JSONPath [148] covers 
the essential parts of XPath 1.0  [40] and hence shares a lot of common characteris-
tics with it. The correspondence of syntax elements between JSONPath and XPath can 
be found in the language specification [148]. JSONPath expressions always refer to a 
JSON structure in the same way as XPath expressions are used in combination with 
an XML document. The “root member object” in JSONPath is always referred to as $ 
regardless if it is an object or array.

JSONPath expressions can use the dot-notation “.store.book[0].title” 
and the bracket-notation “[‘store’][‘book’][0][‘title’]” to formulate 
path queries as well. Internal or output paths will always be converted to the more gen-
eral bracket notation. JSONPath allows the wildcard symbol * for member names and 
array indices. It borrows the descendant operator ‘.’ from E4X and the array slice syntax 
proposal [start:end:step] from ECMASCRIPT 4. Expressions of the underly-
ing scripting language (<expr>) can be used as an alternative to explicit names or 
indices as in “.store.book[(@.length-1)].title”. Filter expressions are 
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supported via the syntax ?(<boolean expr>) as in “.store.book[?(@.price < 
10)].title”.

4.2.2 � Querying document data with JSONiq

JSONiq  [149–151] is a query language that mimics XQuery. It borrows ideas from 
XQuery, such as the structure and semantics of a FLWOR construct, the language’s 
functional aspect, the semantics of comparisons in the face of data heterogeneity, and 
declarative, snapshot-based updates. For example, Query 8 is used to calculate the aver-
age score for each question in a test. 

5 � Graph extensions

In this section, we present the graph extensions toward multi-model data.

5.1 � Graph query languages

A variety of graph languages have been proposed for querying graph data in vari-
ous applications such as knowledge graphs, social networks, and real-time road net-
works [9–11, 25, 32, 54, 61, 144, 152–154]. Most of the relatively early graph lan-
guages originated from the research community such as Lorel [38], StruQL [155], 
UnQL [156], G [157], and GraphLog [50]. The most recent ones are mainly from 
the industry, including W3C’s SPARQL  [59–61], Cypher/openCypher  [29, 62, 
117, 118, 158], TinkerPop’s Gremlin  [63, 64], Oracle’s PGQL  [65, 66], LDBC’s 
G-CORE  [67], and TigerGraph’s GSQL  [68, 69]. The modern graph query lan-
guages are proposed and implemented for interrogating specific graph data mod-
els—SPARQL for RDF graphs and the rest for property graphs respectively. 
SPARQL [59, 60] and Cypher [29, 62, 117] are the standard query languages for the 
RDF graph and property graph respectively, so we concentrate on the extensions of 
SPARQL and Cypher toward multi-model data.

The graph query languages are mainly based on the notation of graph pattern 
matching, with which we can express graph patterns and path queries against the 
data. Table 5 shows the core query syntax of property graph query languages—they 
all have SQL-like syntax and SQL-like functionalities. The queries given in this 
table are to list the pairs of persons who are friends or friend-of-friend along with the 
:follows relationship (of length 2) and one person in each pair had commented 
on the other’s post. PGQL pioneered support for full regular path expressions [66]. 
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Cypher was influenced by XPath [40] and SPARQL [43, 59], but it only supports 
a restricted form of RPQs: the concatenation and disjunction of single relation-
ship types, as well as variable length paths (i.e., transitive closure). For example, 
(a:Person)-[:knows*2]->(b:Person) describes paths of fixed length 
of 2, (a:Person)-[:knows*3..5]->(b:Person) represents paths have 
variable lengths from 3 to 5, and (a:Person)-[:knows*]->(b:Personb) 
stands for paths of any length. GSQL and G-CORE combine the ASCII-art syn-
tax from Cypher and the regular path expression syntax from PGQL. With the 
PGQL’s regular path expression, we can express RPQ and CRPQ queries. By using 
the boolean operators such as conjunction ( A&B ), disjunction (A|B), negation (!A), 
and grouping/nesting ( (A&B)|C ), we can express even more complex graph queries. 
In addition, we can issue 2CRPQs by removing the direction of relationships, e.g., 
(a)-[:knows]-(b) implies a and b know each other.

5.2 � SPARQL extensions

RDF is the standard data model for Semantic Web and is widely adopted by knowl-
edge graphs. SPARQL [59, 60, 115] is the standard query language for RDF data-
bases. We refer the readers to Karvounarakis et al.’s paper [159] and Haase et al.’s 
paper  [160] for a comparison of RDF query languages. Syntactically, SPARQL 
adopts the SELECT-FROM-WHERE query structure and uses one or more 
PREFIX(s) to define the abbreviations of resource URIs. Particularly, the SELECT 
clause returns a table of variables and values that satisfy the query; each variable 
is a string starting with a question mark “?”. The FROM clause states the targeted 
RDF graph to be queried. The WHERE clause specifies the query pattern to the 
targeted RDF graph; each pattern consists of a set of triple patterns. Since SPARQL 
1.1 [58, 115], it can supports complex queries such as RPQs [11] and graph patterns 
matching.

So far, a handful of extensions SPARQL are available for multi-model data, 
including relational, key-value, GeoSpatial, and XML data. Table  6 summarizes 
supported data models, query languages, and new functionalities of these exten-
sions. In the following, we introduce these extensions in detail.

(1) Extending SPARQL with SQL SPARQL allows one to call built-in SQL 
functions or stored procedures in the SELECT and WHERE clauses. The call starts 
with a prefix sql: before a function name. In this way, one can blend SQL and 
SPARQL queries for richer data access. As we can see from Query 9, the Virtuoso2 
data system allows to call a SQL function ComposeInfo in the SELECT clause for 
concatenating the bindings of first name and last name from the Berners–Lee person 
graph. 

2  https://​virtu​oso.​openl​inksw.​com/.

https://virtuoso.openlinksw.com/
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Table 5   Core query syntax of 
PGQL, Cypher, G-CORE, and 
GSQL

Language Core query syntax and Example query

PGQL SELECT-FROM-MATCH-WHERE
SELECT a.name, b.name, x.id
FROM social_network
MATCH (a:Person)-/:follows(1,2)/->(b:Person)
WHERE (a)-[:hasPost]->(x:Post)<-[:comment]-(b)

Cypher FROM-MATCH-WHERE-RETURN
FROM social_network
MATCH (a:Person)-[:follows*1..2]->(b:Person)
WHERE (a)-[:hasPost]->(x:Post)<-[:comment]-(b)
RETURN a.name, b.name, x.id

G-CORE SELECT-MATCH-ON-WHERE
SELECT a.name, b.name
MATCH (a:Person)-[:follows*1..2]->(b:Person) ON 

social_network
WHERE EXISTS (
CONSTRUCT ()
MATCH (a)-[:hasPost]->(x:Post)<-[:comment]-(b) )

GSQL SELECT-FROM-WHERE
SELECT a.name, b.age, x.id
FROM social_network
WHERE (a:Person) -/:follows*1..2/-> (b:Person)
(a) -[:hasPost]-> (x:Post)
(b) -[:comment]-> (x)
ORDER BY a.name

Table 6   A summary of SPARQL extensions

Multi-model data Query language Functionality

RDF+Relational SPARQL+SQL SQL procedures and aggregation
RDF+Text SPARQL+Full-Text Search Keyword search over RDF triples
RDF+XML SPARQL+XQuery FLWOR expressions on RDF
RDF+Geo-Spatial SPARQL+Geo-Spatial Operations on geometric objects
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 The query results of SPARQL are tuple-like triples, so we can easily integrate 
them with the aggregation functionalities. Virtuoso’s SPARQL supports GROUP 
BY, ORDER BY, LIMIT, and OFFSET. It also provides a set of aggregation func-
tions (e.g., COUNT, MIN, MAX, AVG, and SUM) in the result clause. Query 10 
is to list out the town or city in the UK that has the largest proportion of students, 
where the GROUP BY clause operates on two variables: town and graduate, and the 
ORDER BY clause sorts the number of graduates by town in descending order. 

(2) Extending SPARQL with full-text search The second extension to SPARQL 
is a full-text search, which has been supported by two RDF-based databases: Vir-
tuoso and Semantic Server.3 For example, Query 11 would match all subjects whose 
foaf:Name starts with Tim. In Virtuoso, we can add an index on the RDF graph by 
defining a rule DB.DBA.RDF_OBJ_FT_RULE_ADD over the target variable. The 
function takes three arguments that define the IRI’s for the RDF graph, the target 
predicate, and the application name. If NULL is given then all graphs or predicates 
match. To invoke the created full-text index, the built-in function bif:contains needs 
to be used with target text for retrieving the wanted triples. 

3  http://​www.​intel​lidim​ension.​com/​devel​opers/​libra​ry/​sparql-​exten​sions.​aspx#​funct​ions.

http://www.intellidimension.com/developers/library/sparql-extensions.aspx#functions
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(3) Extending SPARQL with Geo-Spatial data This extension comes from 
Virtuoso 7.1.4 Table  7 summarizes the extension for Geo-Spatial data, including 
common geometric data types such as point, line, and polygon, and functions for 
querying these objects. Query 12 is to find the geometry objects in the dataset that 
intersects the given polygon object.

GeoSPARQL5 is another geographic query language for RDF which defines a 
vocabulary for representing geospatial data in RDF. In particular, it introduces an 
extension to the SPARQL query language for processing geospatial data. Query 13 
is to list the nearby objects within 1 km of a given location. 

(4) Extending SPARQL with XQuery The extension comes from XSPARQL 
[161]—a query language that integrates XQuery to SPARQL for transformations 
between RDF and XML. As shown in the following abstractions of XSPARQL, the 
DWMC (Dataset, Where, Modifier, Construct) syntax of SPARQL is extended with 
FLWOR (For, Let, Where, Order, Return) expressions of XQuery. XSPARQL intro-
duces two concepts of “lifting” and “lowering” which translate data from XML to 
RDF and vice versa. In particular, the construct (C) clause in XSPARQL transforms 
the XML data to an output RDF graph for the “lifting”. 

Table 7   SPARQL extensions to GeoSpatial data

Supported data types Extended functions

Point, Multipoint, LineString, MultiLineString, Poly-
gon, MultiPolygon, GeometryCollection

equals, disjoint, intersects, touches, within, 
contains, overlaps, crosses, nearby, distance

4  Virtuoso 7.1. https://​docs.​openl​inksw.​com/​virtu​oso/​virtc​lient​refin​tro/.
5  GeoSPARQL. https://​www.​ogc.​org/​stand​ards/​geosp​arql.

https://docs.openlinksw.com/virtuoso/virtclientrefintro/
https://www.ogc.org/standards/geosparql
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5.3 � Cypher extensions

Cypher is designed for querying property graphs. Syntactically, it adopts the 
MATCH-WHERE-RETURN syntax, where the MATCH clause specifies the 
query pattern, the WHERE clause includes filters for labels and properties, and the 
RETURN clause retrieves the intended results. Regarding path queries, Cypher 
allows transitive closure (recursive operator ∗ ) over a single edge label in a property 
graph, as well as the shortest paths between two nodes. Semantically, Cypher follows 
a non-repeated-edges isomorphism semantics  [11], where the edge variables must 
have one-to-one relationships but node variables can have repeated bindings in the 
results. Table 8 summarizes the up-to-date Cypher extensions toward relational data 
and machine learning models. We proceed to discuss the two extensions in detail.

(1) Extending cypher with SQL This extension originates from Agens-
Graph6 and Apache AGE,7 where both are built on top of PostgreSQL to pro-
vide graph database functionalities—mapping the graph to the vertex and edge 
tables through a Cypher query engine. Therefore, AgensGraph and Apache AGE 
can ingest Cypher queries, SQL queries, or a hybrid of them. Typically, a hybrid 
query performs aggregation and statistical processing on tables and columns by 
using SQL query, and the Cypher query to replace the relational Join operations. 
Specifically, Cypher and SQL are mixed together via the following two ways: (1) 
embedding Cypher in a SQL query (i.e., Cypher-in-SQL), or (2) embedding SQL 
in a Cypher query (i.e., SQL-in-Cypher). AgensGraph supports both manners but 
Apache AGE supports only the first one. The ways to extend Cypher with SQL 
in AgensGraph and Apache AGE are much simple than that used by SQL/PGQL 
and GQL (see Sect. 3.3 for details).

Table 8   A summary of cypher extensions

Data models Language Functionality

Property graph + Relational Cypher + SQL SQL-in-Cypher, Cypher-in-SQL
Property graph + ML models Cypher + UDF/Procedure Regression, Classification, 

Graph embeddings

6  AgensGraph. https://​bitni​ne.​net/​agens​graph/.
7  Apache AGE. https://​age.​apache.​org/.

https://bitnine.net/agensgraph/
https://age.apache.org/
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Cypher-in-SQL Since the result of a Cypher query is a relation, we can directly 
place it in the FROM clause of a SQL query. The syntax is shown in Query 15. In 
this way, we are able to use Cypher syntax inside the FROM clause to utilize a set of 
vertex or edges stored in a graph database as data in a SQL statement. 

SQL-in-Cypher The syntax is shown in Query  16, in which a SQL query is 
placed in the WHERE clause of a Cypher query as an input for the filters of pattern 
matching. When querying the content of a graph database with Cypher queries, one 
can use the SQL query to search specific data from a relational database. However, 
the usage of SQL-in-Cypher queries is restricted since the result of the SQL query 
can only be a single row of results. 

(2) Extending cypher with ML models As machine learning (ML) techniques 
become more and more important in making sense of data, an emerging extension 
of Cypher is to support ML models. This is done by defining user-defined proce-
dures in Cypher queries and the procedures can be deployed to Neo4j as plugins. As 
shown in Query 17, a predefined logistic regression model iris is used to predict the 
unknown species of the flowers based on four features. 

6 � Native multi‑model query languages

In recent years, there have emerged several native MMDBs [3]. The native MMDBs 
treat the supported data models as the “first-class citizen” and implement native 
multi-model query languages for issuing MMQs, as shown in Table 9. In contrast 
to single-model-based query languages like SQL, XQuery, and Cypher, they deliver 
new query syntax for manipulating multi-model data. Moreover, their processing 
diagrams are different from the aforementioned multi-model query languages, from 
the expressive power to query evaluation. In this section, we introduce three repre-
sentatives. Namely, ArangoDB Query Language (AQL), OrientDB Query Language 
(OrientQL), and Kusto Query Language (KQL).
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6.1 � ArangoDB query language

ArangoDB Query Language (AQL) [36] is a declarative query language developed 
by ArangoDB, which is a multi-model database supporting key-value, document, 
and graph models. Particularly, it is implemented on a key-value storage engine, 
RocksDB. The documents in ArangoDB follow the JSON format, and they are 
organized and grouped into collections. Moreover, the graph data is stored in vertex 
and edge collections as well. Table  10 gives the multi-model functionalities sup-
ported by AQL.

AQL is a pure data manipulation language (DML) allowing for operations 
such as selection, filtering, projections, aggregation, and joining. The basic 
building block of AQL is the FOR-FILTER-RETURN (FFR) expressions where 
the FOR operation is used for data iteration, FILTER for data filtering and join-
ing, and RETURN for data projection and returning. In particular, the results can 
be returned as JSON or table, or be visualized as graphs. In addition to advanced 
array operations, AQL also provides the syntax of graph traversal for named 
graphs and edge collections using the FFR expressions. Such a feature allows 
for navigational path queries, pattern matching queries, and shortest path que-
ries expressed in AQL. Interestingly, AQL can also specify a single statement to 
retrieve and combine data from JSON, key-value, and graph. Query 18 shows an 
example of AQL query, in which we can naturally handle cross-model queries. 

Table 9   A summary of native multi-model query languages

Query language Supported data models Query syntax

AQL (ArangoDB) Key-Value, JSON, Graph, GeoSpatial FFR (For, Filter, Return)
OrientQL (OrientDB) Key-Value, JSON, Graph SQL-like syntax with dot(. )
KQL (Kusto) Relational, Time series, GeoSpatial Dataflow operators with pipe( | )

Table 10   Multi-model functionalities of AQL

Data models Syntax/Operator

Key-Value Return (@collection, @key)
JSON FOR @doc IN @collection FILTER Boolean_function(@doc) RETURN @doc
Graph FOR @vertex,@edge,@path IN @min..@max OUTBOUND|INBOUND|ANY @

startVertex GRAPH @graph RETURN {@vertex, @edge, @path}
GeoSpatial GEO_LINESTRING(), GEO_MULTILINESTRING(), GEO_MULTIPOINT(), 

GEO_POINT(), GEO_POLYGON(), GEO_MULTIPOLYGON(),DISTANCE(), 
GEO_CONTAINS(), GEO_DISTANCE(), GEO_AREA(),GEO_EQUALS(), GEO_
INTERSECTS(), IS_IN_POLYGON()
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The above query is from UniBench Q5, which finds a given person (id=1)’s 
3-hop friends and feedback. These friends have bought products with a given 
brand b, i.e., name=“Nike”, and the feedback should have 5-star ratings. Spe-
cifically, line 1–3 operates on the graph, JSON, and key-value data, respectively. 
In the graph traversal, the min and max length is 1 and 3, the direction is out-
bound from the starting person with Id 1 in the “knowsgraph” which is an edge 
collection. The filtering conditions and equijoin predicates are specified in the 
Filter clause accordingly during lines 4–6. In line 4, the JSON orders are joined 
with persons in the graph on Ids. line 5, it uses the [*] operator to access to the 
brand element in items array. In line 6, the persons in the graph are joined with 
feedback that has a 5-score rating. Finally, the filtered persons and feedback are 
returned as a JSON array.

6.2 � OrientDB query language

OrientDB Query Language (OrientQL) [87] is a declarative multi-model query lan-
guage developed by OrientDB, which utilizes the object records to persist the data 
and links the records by pointers. Particularly, an object record can be a document, 
a bytes record (BLOB), a vertex, and an edge. Consequently, it can support the data 
models that include document, graph, object, and key-value models simultaneously. 
Table 11 gives the multi-model functionalities supported by OrientQL.

OrientQL is a SQL-like language with a SELECT-FROM-WHERE structure. 
However, it does not completely follow the standard SQL syntax. For instance, the 
JOIN syntax is not supported while relationships are represented by links. Thus, it 

Table 11   Multi-model functionalities of OrientQL

Data models Syntax/Operator

Key-Value SELECT * FROM #rid
JSON SELECT [ <Projections> ] [ FROM <Target> ] [ WHERE <Condition> ] [ GROUP BY 

<Field> ][ ORDER BY <Fields> ] [ UNWIND <Field>]
Graph TRAVERSE < relationship> [FROM <target>] [MAXDEPTH <number> | WHILE < 

condition>] [STRATEGY <strategy>]
Geo-Spatial Point(), Line(), Polygon(), MultiPoint(), MultiLine(), MultiPolygon(), ST_AsText(), 

ST_GeomFromText(), ST_AsGeoJSON(), ST_GeomFromGeoJSON(), ST_Within(), 
ST_Contains(), ST_Disjoint(), ST_Intersects(), ST_AsBinary()
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uses the dot (.) notation to navigate links or embedded documents. For the graph 
traversal, it provides a TRAVERSE command that recursively navigates the graph in 
either depth-first or breadth-first search. Query 19 illustrates an implementation of 
UniBench Q5 in OrientQL’s syntax. 

The query combines data from tabular, graph, and JSON. Specifically, in line 
1, the SELECT clause returns the person and feedback. In lines 3–5, it leverages 
the TRAVERSE-FROM-WHERE syntax to traverse the graph with the start ver-
tex (PersonId=56) within a max traversal depth of 3. In line 6, two filtering condi-
tions are specified in the WHERE clause. In particular, the Order is associated with 
the person implicitly because the person is the source table in FROM clause. The 
nested brand is accessed via a chain of path-oriented dot operations. In line 7, it flat-
tens the embedded JSON document to multiple single-row documents by using the 
UNWIND operator.

6.3 � Kusto query language (KQL)

Kusto Query Language (KQL)8 is a declarative query language introduced by 
Microsoft Azure Data Explorer. It is a scalable data analytics service in Microsoft 
Azure Cloud, aiming for interactive analysis of big data. KQL adopts a pipelined 
syntax with a sequence of operators to filter, transform, join, and aggregate the data. 
Particularly, KQL has a number of operators for tabular, time series, and Geo-Spa-
tial data analysis. Table 12 lists the multi-model functionalities supported by KQL.

Query 20 is an example of KQL query for analyzing the data stored in a table 
called StormEvents. Specifically, line 1 declares the data source. Line 2 defines 
a function named distance_1_to_100  m to compute the shortest distance 
between two geospatial coordinates. Line 3 gives the range of the distance that 
should be between 1 and 100 m. Line 4 contains another filtering condition in the 
where operator that requires the events should take place between 2007-11-01 and 
2007-12-01. Finally, the last line projects the results on three columns: distance_1_
to_100m, State, and EventType. In addition to the single-source analysis, KQL sup-
ports cross-database and cross-cluster queries for complex data analysis. 

8  https://​docs.​micro​soft.​com/​en-​us/​share​point/​dev/​gener​al-​devel​opment/​keywo​rd-​query-​langu​age-​kql-​
syntax-​refer​ence.

https://docs.microsoft.com/en-us/sharepoint/dev/general-development/keyword-query-language-kql-syntax-reference
https://docs.microsoft.com/en-us/sharepoint/dev/general-development/keyword-query-language-kql-syntax-reference
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7 � Open challenges and problems

In contrast to the single-model-based query languages (e.g., SQL), most of the 
MMQLs we have investigated are built for practical purposes and thus lack of solid 
foundation. There are many open challenges and problems related to these lan-
guages. In this section, we show a compiled list of these challenges.

(1) Expressivity The most important feature of an MMQL is the capability to 
express multi-model queries. An open problem is to determine the expressivity of 
the MMQL—how much the mixtures of the fundamental queries can be expressed 
with the language. Unfortunately, none of the existing MMQLs are full-fledged to 
support all the fundamental queries listed in Sect. 2.2. Most of the existing MMQLs, 
including the native ones, provide support for multi-model data by introducing vari-
ous informal operations, e.g., the traversal operations for document data and the 
matching operations for graph data, whose expressivities still need better investiga-
tion. Moreover, there is no accepted notion of completeness for document and graph 
query languages. The relational completeness was established by the relational alge-
bra (or calculus) [93], but we do not have that counterpart in any existing MMQLs. 
It has a serious restriction on the application of these languages, and so far we 
haven’t seen any measurement of the expressive power of MMQLs.

(2) Universal data model The second challenge is about designing a univer-
sal data model to encapsulate the difference between multi-model data. The exist-
ing NoSQL data models can be viewed as extensions or simplifications of the rela-
tional model. In general, we have several ways to extend the relational model  [5]: 
(1) The simplest way is to add new data types into the primitive type set, such as 

Table 12   Multi-model functionalities of KQL

Data models Syntax/Operator

Relational Source Table 1 | [ Tabular operators* ] [ union | join ] [Source Table n | [ Tabular opera-
tors* ][ union | join]]*

Time series make-series, avg(), count(), max(), min(), percentile(), stdev(), sum(), variance(), 
series_fir(), series_iir(), series_fit_line(), series_outliers(), series_periods_detect(), 
series_stats(), series_fill_backward(), series_fill_const(), series_fill_forward(),series_
fill_linear()

Geo-Spatial geo_distance_2points(),geo_distance_point_to_line(),geo_line_densify(), geo_point_in_
circle(),geo_point_in_polygon(),geo_point_to_geohash(), geo_point_to_s2cell(),geo_
polygon_to_s2cells(),geo_polygon_densify()
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literal, hypertext, and URI. (2) One can also include other type constructors such 
as lists, multisets, and arrays to generate other data models such as JSON [17, 21, 
22]. (3) By repeatedly using the relation constructor, one can yield the nested rela-
tional model [162]. The nested relational model (or complex value model) contains 
nested type constructors that allow building nested relations from atomic types by 
using tuple constructors and set constructors [162, 163]. (4) By separating the set 
and tuple of the relation constructor, one can support the complex object and hence 
yields the object-relation model [123, 126, 164–166]. In this model, we can inte-
grate structured data with semi-structured data [167].

By mixing the aforementioned methods we can create many of the existing data 
models. However, it is still a challenging task to create a universal data model for 
multi-model data. In the MMQLs we have investigated, only SQL++ [109] creates a 
unified model for both relational data and JSON. The consequence is that the under-
lying multi-model data cannot be processed in a unified logic and hence has a signif-
icant impact on query processing and optimization. In recent years, several research 
groups (e.g., Fleming et al. [168], Spivak et al. [169, 170], and Lu et al. [171, 172]) 
tried applying category theory as a unifying formalism (to create an abstraction from 
a higher level) to multi-model data. But these methods are still too complicated to be 
implemented in MMDBs.

(3) Cross-model query processing and optimization Query processing in most 
MMDB systems relies on data exchange, which can be done in two ways: (1) des-
ignating a local data model as the primary model and the rest are translated into the 
format as the primary model, or (2) creating a super-model to describe the local data 
models. Most MMDB systems implement the first solution and the relational model 
is typically taken as the primary model. For instance, in an MMDB extended from 
a relational DBMS, the NoSQL data involved in a query will be mapped into rela-
tional tables according to the specifications in the SQL standard (e.g., SQL/XML, 
SQL/JSON, and SQL/PGQ). Consequently, we may observe many types of data 
exchange schemes, i.e., XML-to-relation, JSON-to-relation, and graph-to-relation 
mappings, in a cross-model query in that database.

Alternatively, Bugiotti et al. were to create an abstract model like NoAM (NoSQL 
Abstract Model) [173], which is a super-model that specifies the underlying NoSQL 
databases. However, the proposal covers only a few types of NoSQL databases (i.e., 
key/value, column, and document). Similarly, Atzeni et  al.  [174, 175] leverage a 
meta-model to facilitate the data exchange for multi-model data. The meta-model is 
a formalism for the definition of data models and uses a small set of commonly used 
meta-constructs such as lexical types, abstract types, aggregation, and function to 
define data models. Data exchange in can be accomplished in two steps: (1) from the 
source model to the supermodel; and (2) from the meta-model to the target model. 
The super-model/meta-model approach can be used efficiently to facilitate schema 
mapping, but query processing under this approach still results in significant over-
heads. Recently, several approaches have been proposed to optimize query evalu-
ation of MMQs, such as efficient enumeration of execution plan  [176] and query 
augmentation that supports automatic enrichment of the answer [177, 178]. Cross-
model query processing and optimization of MMQs are still open for MMDBs.
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8 � Conclusions

It is a challenging task to design a query language for MMDBs that allows users to 
express multi-model queries. Throughout the previous sections, we investigated a 
number of multi-model query languages from the syntactical perspective, which can 
be divided into four types: SQL extensions, XPath/XQuery extensions, graph exten-
sions, and native ones. The investigation of existing multi-model query languages, 
from the syntactical and application perspectives, makes this article useful for moti-
vating new multi-model query languages, as well as serving as a technical refer-
ence for formulating multi-model queries. This survey also shows that the existing 
MMQLs are still far from a mature query language compared to the single-model-
based languages.
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