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Abstract
GPU accelerated query execution is still ongoing research in the database commu-
nity, as GPUs continue to be heterogeneous in their architectures varying their capa-
bilities (e.g., their newest selling point: tensor cores). Hence, many researchers come 
up with optimal operator implementations for a specific device generation involv-
ing tedious operator tuning by hand. Alternatively, there is a growing availability of 
GPU libraries providing optimized operators for various applications. However, the 
question arises of how mature these libraries are and whether they are fit to replace 
handwritten operator implementations not only w.r.t. implementation effort and port-
ability but also performance. In this paper, we investigate various general-purpose 
libraries that are both portable and easy to use for arbitrary GPUs to test their pro-
duction readiness on the example of database operations. To this end, we develop a 
framework to show the support of GPU libraries for database operations that allows 
a user to plug-in new libraries and custom-written code. Our framework allows for 
easy pluggability of new libraries for query execution using a simple task model. 
Using this framework, we develop multiple libraries (ArrayFire, Thrust, and boost.
compute) supporting many database operations. We use these libraries to experi-
ment with different devices to see the impact of the underlying device. Based on our 
experiments, we see a significant diversity in terms of performance among libraries. 
Furthermore, one of the fundamental database primitives—hashing, and thus hash 
joins—is currently not supported, leaving important tuning potential unused.
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1 Introduction

GPUs are common co-processors of a CPU for offloading graphical computations. 
Recently, GPUs are also used for offloading general-purpose computations, includ-
ing database operators. In order to get maximum performance, researchers have 
adapted database operators for GPUs creating a plethora of operator implementa-
tions, e.g., group-by [1, 2], selections [3, 4], joins [5, 6], or whole engines [7–9].

Developing tailor-made implementations requires a developer to be an expert 
on the underlying device [10]. However, such expert implementations take time to 
develop but ensures the best performance [11]. As an alternative, many expert-writ-
ten libraries are available that can be included in an existing system with only mini-
mal knowledge about the underlying device.

These libraries for GPUs are either written by hardware experts [12] or are avail-
able out-of-the-box from device vendors [13]. In this work, we survey the existing 
libraries and identify more than 40 libraries for GPUs each packing a set of operators 
commonly used in one or more domains. The common benefits of these libraries are 
that they are constantly being updated to perform the best, repeatedly tested to sup-
port newer GPU versions, and their predefined interfaces offer high portability and 
faster development time compared to handwritten operators. This makes the librar-
ies a suitable match for many commercial database systems to offer GPU support 
easily. Some examples of systems using libraries for GPU support are: SQreamDB 
using Thrust [14], BlazingDB using cuDF [15], Brytlyt using the Torch library [16].

Since these libraries are an integral part of GPU-accelerated query processing, 
it is imperative to study them in detail. To this end, we investigate existing GPU-
based libraries w.r.t. their out-of-the-box support of usual column-oriented data-
base operators and analyze their performance in query execution. Hence, we survey 
available GPU libraries and focus on the three most commonly used GPU libraries: 
Thrust, boost.compute, and ArrayFire to study their support for database operators. 
Specifically, we explore available operators to determine the library’s level of sup-
port for database operators, and we present which library operators can be used to 
produce the usual database operators. Using these implementations, we benchmark 
the libraries based on individual operator performance as well as their execution of 
a complete query. Overall, in this work, we make contributions to the following two 
directions in order to assess the usefulness of GPU libraries:

• Usefulness We look for libraries with tailor-made implementations for database 
operators. As a result, we can assess the ad-hoc fit of the libraries for database 
system implementation (cf. Table 2).

• Usability We analyze the performance of the different library-based database 
operators in isolation as well as for queries from the TPC-H benchmark. This is 
a key criterion for deciding which library to use for a developer’s own database 
system (cf. Sect. 5).

• Portability We experiment across two different grades of GPU to see the impact 
of libraries from the underlying hardware.
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The paper is structured as follows: In Sect. 2, we classify existing languages and 
libraries for heterogeneous programming. We review existing GPU libraries and 
identify how to use them to implement database operators in Sect. 3. In Sect. 5, 
we compare the performance of library-based database operators. Finally, we 
conclude in Sect. 6.

2  Levels of programming abstractions

For more than a decade now, the database community has been investigating how 
to use GPUs for database processing [17]. In fact, the interest in GPU-accelera-
tion is mainly due to the advancements in its processing capabilities as well as 
the maturity in programming interfaces and libraries. However, for most practi-
tioners, it is hard to assess the impact of choosing a specific interface or library. 
To shed some light on the matter, we compare and review current program-
ming interfaces and libraries. As a result, we broadly categorize them w.r.t. their 
abstraction level: languages, wrappers and libraries. We place them as a hierar-
chy, since each entity in a level is developed using the lower level constructs. Our 
Fig.  1 shows examples of these identified levels, which we characterize in the 
following.

2.1  Low‑level languages

At the bottom of the hierarchy, we place device-specific languages. These languages 
include certain hardware intrinsics, which allow users to access specialized features 
of the underlying hardware. Such intrinsics are commonly provided by the device 
vendor and are combined with general purpose programming languages (e.g., C++, 
ASM). An example of this level are the SSE intrinsics1 that allow to use SIMD fea-
tures in modern CPUs [18]. Similar to CPUs, NVIDIA provides its own proprie-
tary API CUDA that provides specialized access to NVIDIA GPUs. For example, 
CUDA 7.0 and above supports accessing tensor cores. Although these languages 
grant direct access to the underlying hardware, a developer has to be an expert of 
the used device architecture to implement a highly optimized operator. Furthermore, 
changing the device or upgrading to a newer version of the same device might lead 
to additional rework of the implementations using, for instance, new available intrin-
sics (e.g., switching from SSE to AVX-512). Therefore, using such low-level lan-
guages might improve efficiency but comes with the drawback of high development 
cost (including a usually large size of program code) and requires expertise on the 
device features.

1 https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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2.2  Specialized wrappers

To ease high implementation effort when using low-level languages, wrappers have 
been developed to hide performance-centric details that a wrapper can handle auto-
matically. To be used, wrapper-specific constructs are added to the source code that 
will be expanded automatically during execution. One popular example for a wrap-
per is OpenCL, which offers a set of common constructs for all OpenCL-enabled 
devices. A program developed using these constructs will be rewritten during com-
pilation based on the target device. Some other examples are: OpenMP [19], Cilk 
[20] for handling parallelism in CPUs, or oneAPI2 as Intel’s newly pitched wrapper 
for hardware-oblivious programming on CPUs, GPUs and FPGAs. Although these 
abstractions significantly reduce the implementation effort compared to low-level 
languages, they are also susceptible to device changes. For example, OpenCL can 
provide only device portability, but not performance portability [3, 21, 22].

2.3  Libraries

At last, there is a plethora of pre-written libraries developed by domain and hard-
ware experts for different devices [23]. Using a library, all internal details of dif-
ferent operator implementations are hidden behind a set of predefined interfaces. 
Hence, the developer must simply do the right function call based on the underly-
ing scenario. This requires only minimal knowledge on the underlying hardware and 
implementation. Some examples of libraries include the boost libraries in C++ and 
the Thrust library for GPUs. Even though these libraries are developed by experts, 
they are not tailor-made for one underlying use-case. Hence, although a generic 
implementation of operators suit multiple uses-cases, they can be suboptimal com-
pared to handwritten use-case-specific implementations. Furthermore, due to the 

Low-level languages

Specialized wrappers

Libraries

Low

High

Level of expertise

Development time

Optimization capability

Flexibility

Fig. 1  Hierarchy of abstraction levels characterizing languages, wrappers, and libraries for heterogeneous 
computing

2 https://www.oneapi.com/
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predefined interfaces for operators, one cannot freely combine them for a custom 
scenario. Instead, we have to chain multiple library calls, leading to unwanted inter-
mediate data movements. Thus, libraries provide high productivity in development 
with only small necessary knowledge about the underlying device (plus, minimal 
lines of code) but they come with the drawback of potentially suboptimal perfor-
mance from the operator implementations.

2.4  Used abstraction levels in database systems

Various GPU-accelerated database systems are developed using the concepts of dif-
ferent levels. Considering low-level languages, GPUQP [17], CoGaDB [7], and the 
system of Bakkum et al. [4] use CUDA. For wrappers, Ocelot [8], HAWK [24] are 
implemented in OpenCL. Finally, many commercial database systems use librar-
ies to implement operators, such as SQreamDB [14] or BlazingDB [15], mainly for 
their robustness and strong vendor support.

Disregarding their low flexibility, libraries give considerable advantages for ad-
hoc development of a GPU-accelerated database system, reducing its development 
cost to an acceptable limit. However, with multiple GPU libraries being available, 
the question remains what library has the best support for a rapid prototyping of 
database operators and which library implementation achieves the best performance.

3  Implementing DBMS operators with libraries

In this section, we review different GPU libraries and assess their ad-hoc usability 
for implementing database operators. To this end, from the selected libraries, we 
discuss the level of support and the offered functions to implement database opera-
tors using these GPU libraries.

3.1  Review of GPU libraries

To collect available GPU libraries, we conduct an extensive survey using google, 
google scholar, and the CUDA website.3 Generally, there are four different frame-
works/languages used by libraries over a GPU namely: CUDA, OpenCL, ROCm, 
and oneAPI. However, ROCm has been not widely adopted and its performance is 
similar to that of OpenCL [25]. Next, oneAPI is still in its early stages of develop-
ment and not all GPUs are currently supported [26]. This shortens our search over 
OpenCL and CUDA. Between these two frameworks, we found 43 libraries that pro-
vide GPU-accelerated operators for various domains. The library details are listed in 
Table 1.

As GPUs are fundamentally graphics machines, their parallel processing is 
perfect for number crunching. Hence, as shown in Fig.  2 many libraries focus on 

3 https://developer.NVIDIA.com/CUDA-zone.
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image processing (7) and math operations (13). Since GPUs were recently adopted 
for machine learning workloads,4 only a few libraries are currently present. With 
databases, libraries that support database operators explicitly are relatively few (5) 
compared to those supporting general vector operations (such as tensor operations 
offered by VexCL or Eigen tensor).

Even from the available libraries, skelCL and OCL-Library are boilerplates to 
OpenCL without any pre-written functions [30]. These have no direct functions 
available for implementing database operations. Therefore, we select the remaining 
ones: boost.compute, Thrust, and ArrayFire for further analysis built over OpenCL, 
CUDA, and both, respectively. Among these, ArrayFire uses lazy evaluation while 
boost.compute transforms high-level functions into OpenCL kernel programs, and 
Thrust operators are transformed into CUDA C functions.

3.2  Operator realization

Since GPUs are predominantly used for column-oriented analytical queries [31–33], 
we consider the operators: projection, (conjunctive) selection, join, aggregation, group-
ing, and sorting (sort-by-key) for our study. Besides these, we also study the parallel 
primitives: prefix-sum, scatter and gather, commonly used for materializing final val-
ues. The level of support (i.e., usefulness) and the possible library call for a database 
operator in the three libraries are listed in Table 2. The level of support is determined 
by the simplicity of the usage of library operators for implementing a database opera-
tor. The full support operators have the least interoperability costs and programming 
effort because they have a direct functional implementation available in the library. In 
the case of partial support ( 

∼
 ), several function calls are needed to implement an opera-

tor. Hence, additional effort is required to pass the intermediate results from one func-
tion to another before retrieving the final result. Detailed information on the functional 
support from these libraries is given in the Function-column of Table 2, where we map 
library functions to the database operators.

Fig. 2  Proportion of GPU libraries. Left: proportion of libraries across various application domains. 
Right: Proportion of GPU libraries and their underlying implementation language

4 https://developer.NVIDIA.com/tensor-cores.
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3.3  Summary of library usefulness

Overall, when compared to ArrayFire, the other two libraries- boost.compute, and 
Thrust have multiple alternative implementations for selection. Specifically, ArrayFire 
does not directly support prefix-sum, nested-loop join, scatter, and gather operations. 
Regarding functional implementations, it is notable that ArrayFire returns a position 
list for selections, whereas Thrust and boost.compute return bitmaps.

Join implementation A major limitation is that all the libraries lack a custom 
implementation for specialized joins. They lack direct support for hash tables or merge 
join of sorted results. Hence, these important implementations must be developed from 
scratch, or support needs to be added to the libraries. However, the database commu-
nity has shown great performance for hash-based joins [34] and, hence, these libraries 
should be extended by custom operators for hashing in future versions.

Table 2  Mapping of library functions to database operators

+ full support; ∼ partial support; – no support

Database opera-
tors

ArrayFire boost.compute Thrust

Support Function Sup-
port

Function Sup-
port

Function

Selection + where(operator()) ∼ transform() &
exclusive_scan() 

&
gather()

∼ transform() &
exclusive_scan() &
gather()

Nested-Loops
Join

– – + for_each_n() + for_each_n()

Merge Join – – – – – –
Hash Join – – – – – –
Grouped 

Aggregation
+ sumByKey(),

countByKey(),
+ reduce_by_key() + reduce_by_key()

Conjunction &
Disjunction

+ setIntersect(),
setUnion()

+ bit_and<T>(),
bit_or<T>()

+ bit_and<T>(),
bit_or<T>()

Reduction + sum<T>() + reduce() + reduce()
Sort by Key + sort() + sort_by_key() + sort_by_key()
Sort + sort() + sort() + sort()
Prefix Sum – – + exclusive_scan() + exclusive_scan()
Scatter &
Gather

– – + scatter(),
gather()

+ scatter(),
gather()

Product + operator*() + transform() &
multiplies<T>()

+ transform() &
multiplies<T>()
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4  A connecting framework for library operators

As a next step towards rapid prototyping, it is necessary to execute library opera-
tors in a common environment. This is an important step, since we want to assess 
their runtime without any side effects and also allow for an interoperability between 
operators of different libraries if the performance difference is significant. In the fol-
lowing, we describe our generalized task model and adapter pattern that we use for 
interfacing the libraries.

4.1  Task model

Our task model handles the implementation of an operator within a unified inter-
face for all libraries. Currently, our framework supports ArrayFire and Thrust imple-
mented in CUDA, while boost.compute is implemented in C++. Hence, the task 
model implements cross-platform (CUDA and C++) execution of GPU libraries in 
a single code base. Furthermore, our framework can include a new library or hand-
written code with writing a simple additional wrapper. To support extensibility, we 
make use of the adapter design pattern. The detail of the programming structure is 
explained in the next section.

4.2  Adapter pattern

Since the libraries differ in container and operator arguments, our framework needs 
an easy way to interface with these library operators. A promising feature is that 
they support the same data type - a vector. In Fig. 3, we depict the adapter design 
pattern that we use for interfacing the library operators. The idea is that the end-user 
interacts with the target: an interface without implementation. Each library imple-
mentation consists of an adapter and an adaptee. As a result, the adapter bridges 
the incompatibility between the target and the adaptee. For example, the target of 
the container is a C++ STL vector, which can be converted into a thrust::device_
vector<T>, a boost::compute::vector<T>, and an af::array in corresponding adapt-
ers. As a result, we can easily switch between operator implementations of differ-
ent libraries. To this end, the adapter performs library-specific data conversions and 
includes library-specific additional arguments.

Fig. 3  Adapter design pattern 
used for adding libraries

Client

Target

operation()

Adapter

operation()

Adaptee

specific operation()

Extends
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5  Performance comparison

An essential requirement for using library operators for a database system is that 
they deliver acceptable performance (i.e., usability). Hence, in this section, we study 
the libraries’ performance for different database workloads. We split our evaluation 
into two main sections: first, we benchmark the performance of individual operators 
in micro-benchmarks using a synthetic dataset. Afterward, we measure the overall 
performance of the libraries with complete TPC-H queries.

Experimental setup All our experiments are conducted on a commodity - 
NVIDIA GeForce RTX 2080 Ti with 10 GB memory and server-grade - NVIDIA 
V100 with 32 GB memory GPU respectively. We use the following library versions: 
boost.compute-v1.71, ArrayFire-v3.7.2, Thrust-v11.0. All these libraries run on top 
of OpenCL 1.2 and CUDA 10.1. Our evaluation framework is written in C++ and 
compiled with GCC 9.3.0 running on Ubuntu 18.04.5

Dataset we synthesize datasets for our micro-benchmark. our synthetic dataset 
consists of 228 randomly generated integer values unless specified otherwise and the 
TPC-H dataset is generated with a scale factor of 10. Note: This is the maximum 
scale factor up to which the execution across libraries is supported. Any larger scale 
factors are not executed due to space limitations from boost.compute.

5.1  Transfer time

Since each library has a custom wrapper for accessing the data present in the GPU, 
they incur different overhead when transferring data to the GPU. Hence, we analyze 
the data transfer rate of the individual libraries before analyzing the actual operator 
performance. We test the transfer time with input sizes ranging from 220 integer val-
ues (5 MB) up to 230 integer values (5 GB) and plot it in Fig. 4.

Foremost, the results show a considerable overhead when transferring data to the 
GPU using Thrust when compared to boost.compute or ArrayFire on both devices. 
However, while transferring back, ArrayFire shows poor transfer rates. We believe 
that the additional steps taken by these libraries in allocating / de-allocating the data 
lead to such poor performance. Even though transfer rates are significant, buffer-
ing input columns can easily avoid this overhead. Furthermore, intermediate or final 
query results that need to be retrieved from the GPU are usually significantly smaller 
than the input and, hence, this overhead is mostly negligible. Finally, we see that the 
transfer rates for V100 are considerably faster than RTX 2080 Ti, even though these 
two systems use the same PCI-e 3.0 standards for data transfer. However, we see an 
identical profile for CPU to GPU transfer in both devices - Thrust takes more time to 
transfer data. We believe this is mainly due to the implementation of the copy opera-
tor in this library. Whenever a host-to-device copy is made (which can be achieved 
using a simple assignment operator, = ), it calls CUB’s uninitialized_copy() function 
that allocates data space followed by data transfer, which leads to poor performance. 

5 The source code is available here: https:// github. com/ harish- de/ cross_ libra ry_ execu tion

https://github.com/harish-de/cross_library_execution
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However, when copying results back, it simply does a data copy on the pre-allocated 
memory in the CPU space.

5.2  Micro‑benchmark: individual operators

In this section, we measure the performance impact of operator-specific parameters 
on the different library implementations. Due to space limitations, we focus on the 
most common and complex database operators. We exclude sorting, prefix-sum, and 
map as there are already several papers that analyze the performance of these opera-
tors [35, 36].

5.2.1  Selection

As the selection operator is sensitive to the selectivity of the incoming predicate, we 
evaluate the libraries with varying the selectivity from 1 to 100%. The final result of 
our selection is the materialized column of matching values. Since Thrust and boost.
compute create a bitmap and need an additional prefix-sum for materialization, we 
also show their single performance for creating the bitmap.
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The results in Fig. 5 show that the performance of ArrayFire is far better than the 
performance of Thrust and boost.compute for a materialized filtered column (solid 
line) across both devices. The main benefit in ArrayFire is that it can directly gen-
erate filtered results without additional prefix-sum and gather steps to arrive at the 
final results. Instead, ArrayFire generates position lists from which we can directly 
materialize the result. Interestingly, boost.compute has the best performance when 
creating a bitmap, but is the worst when materializing the result. This is due to the 
bad performing gather, which is consistent to our following results.

As a result, Thrust and boost.compute are the best choice for multiple predicates 
on the same table, because combining bitmaps is faster than intersecting position 
lists. For single predicates and if subsequent operators work with position lists or 
materialized columns, ArrayFire should be chosen.

5.2.2  Group By

In this experiment, we focus on group-by aggregation, where the performance varies 
according to the spread of groups. We use a uniform distribution of input values and 
vary the group size from 1 to 100% where 1% has nearly all values belonging to the 
same group and 100% contains one group per input value.

The performance in Fig.  6 shows that ArrayFire and Thrust have the best per-
formance. Nevertheless, the superior method changes according to the number of 
groups with ArrayFire performing best for a small amount of groups and Thrust per-
forming best for many groups. Further, the performance of V100 shows a drop after 
a group size of 30%. This shows that V100 can manage multiple data writes effi-
ciently when repeatedly accessing a single location.

5.2.3  Joins

Joins being complex operator, generally requires a considerable time for execution. 
In the case of libraries, we can only support nested loop joins (cf. Table  2). Our 
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nested loop join uses for_each() - a function to parallelize an operation based on the 
given input size.

We measure the performance of join implementations varying the cardinality of 
the left table (|R|) in a range of 21 to 219 using a uniform distribution.6 We vary 
the input size, as it directly impacts the degree of parallelism during the execu-
tion of a join. Additionally, the execution also depends on the size of the right-side 
table. Therefore, we keep the size of the right table (|S|) as 228 . Finally, only Thrust 
and boost.compute support join operations in the form of a nested loop join. Since 
ArrayFire does not offer a custom for_each() function, it is not part of the evaluation.

We plot the execution time for joins over the two devices in logscale in Fig. 7. 
From the results, we see that boost.compute is comparatively better in terms of par-
allelization, as its results are linear for a range of inputs for RTX 2080 Ti. How-
ever, even with its linear increasing execution time, Thrust is considerably better for 
smaller input sizes. In contrast, in case of bigger data sizes, boost.compute is supe-
rior. Considering the results on the V100, Thrust is clearly the winner as we can see 
a huge difference in the runtime of the two libraries in Fig. 7.

Furthermore, results pertaining to boost.compute show a near-constant growth in 
performance. This is mainly due to the way the execution spawns threads for exe-
cuting the custom function. Until a data size of 29 , the framework uses a different 
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6 Note that 219 is the maximum data size until which we get a reasonable execution time.
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number of threads to spawn, while for any data size greater they process the data 
using multiple iterations.

5.2.4  Scatter and gather

Our final micro-benchmark is to measure the performance of scatter and gather 
operations, as they are useful in realizing a hashing operation. Hence, we evaluate 
the performance of scatter and gather giving as positions the results of multiplicative 
hashing of the input items. We chose multiplicative hashing as it is a function that is 
commonly used for scattering/gathering keys into hash tables.

The performance comparison in Fig. 8 shows clearly that Thrust has a better scat-
ter and gather time compared to boost.compute for RTX 2080 Ti. Here, the poor 
performance in boost.compute is due to the additional kernel compilation time, 
whereas Thrust does not have this additional time. Considering the V100 results, we 
see that scatter operations take longer than gather operations for both libraries. Such 
poor behavior for scatter shows the overhead of executing random memory accesses 
on global memory. This behavior indirectly represents the bottleneck in the memory 
controller of V100 in resolving memory accesses to the global memory.

5.2.5  Summary

Overall, we see that there is no one good library that gives consistent performance 
benefits for all database operations. For selection, ArrayFire is the clear winner 
being nearly 2x faster than the other libraries. In the case of group-by, both Thrust 
and ArrayFire perform similarly. In case of joins, boost.compute gives constant 
performance across various table sizes; however Thrust gives a better performance 
compared to boost.compute in commodity GPUs. Finally, with scatter and gather 
operations, Thrust’s performance is better in commodity GPU and both Thrust and 
boost.compute behave the same in server-grade GPUs. Based on these results, we 
can now devise the execution of TPCH queries with a single library as well as cross-
library calls.

Fig. 8  Performance for scatter and gather
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5.3  TPC‑H performance

Extending the previous experiments with individual operators, in this section we use 
the operator implementations to execute complete queries. We use the TPCH dataset 
with scale factor 10 (SF 10) for executing two query types: group-by (Q1, Q6) and 
join (Q3, Q4) queries. In the case of the join queries, we substitute ArrayFire with 
Thrust implementation as the former does not support joins. Finally, we experiment 
with two different scenarios: single-library and cross-library executions. The results 
from the execution are explained in the sections below.

5.3.1  Single library performance

In this experiment, we execute TPCH queries using single homogeneous library 
calls. The resultant execution time across the considered devices is depicted in 
Fig. 9. The results depict only the time taken to execute the operator (as in Table 2) 
and exclude the data transfer time into the device memory.

Group-By Depending on the cardinality and complexity of the operator clauses 
(like multiple group-by or multiple conjunctive predicates), the execution character-
istics vary. This is evident from the results of Q1 with more time invested in com-
puting group-by aggregates whereas Q6 has most of its time spent in the selections. 
Though the rank of the fast-performing libraries remains the same across RTX 2080 
Ti and V100, there is a significant difference in their performance profile. Specifi-
cally, we see that ArrayFire performs significantly better in V100. This is in accord-
ance with its performance difference from group-by experiments (cf. Fig. 6). Since 
the V100 is equipped with much more cuda cores, a larger data size fits the execu-
tion in the device and more aggregates are resolved at a given timespan. Overall, we 
see that boost.compute performs well with selection operations whereas ArrayFire 
works well with group-by aggregation.

We see that with Q1 in Fig. 9c, ArrayFire shows an improved performance for 
group-by aggregation compared to other approaches. However, the throughput pro-
file for Q6 remains the same for the libraries. Still, we see an increase in execu-
tion time for group-by aggregation on Thrust and boost.compute for the device. We 
believe such behavior is due to hardware sensitivity during execution. Specifically, 
the longer group-by duration is again from the random access to the global memory 
while grouping the input. As we have seen in Fig.  8 for V100, random access to 
global memory is a bottleneck, which is also the case with group-by queries here.

Join As we have seen earlier, joins are considerably more expensive than other 
database operations when executed using libraries. This is also reflected in the query 
results. Almost 90% of the overall time is invested in executing join operations. 
Unlike with group-by queries, changing devices reflects in the performance pro-
file across the libraries. This is again mainly due to the increase in CUDA cores in 
V100. Overall, we see that V100 increases the performance by about 10x compared 
to RTX 2080 Ti. Clearly, we see that libraries are not a suitable solution for execut-
ing join operations. The current solutions in research [37, 38] are faster than the 
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naive library counterparts. However, we also believe this is mainly due to the lack of 
support for more sophisticated join algorithms like hash joins and sort-merge joins.

The execution over V100 also has the same performance characteristics as above, 
except, Q4 shows differences in execution time compared to RTX 2080 Ti. Here, 
ArrayFire performs poorly compared to other libraries. Again, we believe the differ-
ence in performance arises due to the penalty of random access in V100.

Summary For group-by queries over RTX 2080 Ti (cf. Fig. 9a, we see a similar 
performance across libraries. However, with conjunctive predicates, boost.compute 
is the fastest, followed by Thrust and finally ArrayFire. Since conjunctive predicates 
in boost.compute and Thrust use bitmaps as intermediate values, the conjunction 
of these predicates is considerably faster. However, boost.compute’s better selection 
performance for Q1 is compensated by its bad aggregation performance, as we have 
already seen in Fig. 6. However, this is not the case with the V100 device. Over-
all, boost.compute is better for queries with conjunctive selections, whereas for sin-
gle predicates Thrust or ArrayFire should be used. ArrayFire is better for group-by 
operations and, finally, the nested-loops join operation is quite expensive on all the 

Fig. 9  Performance of TPC-H queries
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libraries. Finally, the libraries are also sensitive to the underlying device (even to the 
generations).

5.3.2  Cross library performance

As our final experiment, we evaluate the combined performance of executing 
TPCH queries across various libraries. To this end, we evaluate the two TPCH 
queries Q1 and Q3 as samples for group-by and join queries respectively. The 
execution plan considers the best-performing library for the different operators 
in the query.

From our previous experiments, we identify that selection is best executed 
with boost.compute and join & group-by with Thrust. Hence, a reasonable goal 
is to enable cross-library execution by using our adapter pattern, which we 
described in Sect.  4.2. Additionally, using mixed libraries for execution also 
introduces the overhead of translating data from one library format to another. 
However, this overhead is negligible, as we switch the logical data format 
instead of physically moving the data. The result of TPCH execution with this 
mixed library execution is given in Fig. 10. The overall performance, when com-
pared with the ones in Fig. 9, shows a considerable decrease in execution time. 
A decrease of around 25% for Q1 and Q6 can be observed while for join queries, 
the improvement is not that significant due to the overhead of executing joins.

6  Conclusion

GPUs are more often integrated into database processing both academically and 
commercially. However, building a system from scratch to support database oper-
ators is highly time-consuming and requires expert knowledge. Therefore, in this 
work we review different expert-written libraries to be used for faster prototyp-
ing of a GPU-accelerated database system. Based on our review, we identify 43 
GPU libraries out of which 6 support database operators. From these, we study 
in-depth the support for DBMS considering the following three libraries built 
over CUDA and OpenCL: Thrust, boost.compute, and ArrayFire. Based on our 
study, we show that not all database operators are supported out-of-the-box by 
these libraries and one requires additional re-work for operator realization. Our 
evaluation shows there is no single library that provides the best performance for 
all supported database operators. Each of the libraries has its own advantages & 
disadvantages and their functions must be combined in query execution. we see a 
lack of support for joins from these libraries making the operator the most time-
consuming one. As a final observation, we see a change in the performance of the 
libraries across different GPU generations. Based on our observations, we con-
clude the following:

• Usefulness The usefulness of libraries for DBMS is fairly restrictive. Not all 
database operations are supported out-of-the-box through these libraries. Dur-
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ing our study, we especially identified hash-based or sort-based joins to be a 
pain point, which calls for future work in library implementations.

• Usability Based on our evaluations, not all library functions are performance 
efficient. Apart from the obvious deficiency of joins, also the performance of 
other operators across libraries varies heavily. Hence, to reach the best per-
formance, users would need to test all libraries and combine their operators 
based on the query. Since interfacing between libraries is still manual work, 
future work needs to create a solution for inter-library execution and auto-
matic library/operator selection.

• Portability Libraries can be executed across various devices out-of-the-box 
with fewer rework. However, our evaluation shows that new devices have a 
different performance profile for the same operator. Hence, this poses another 
challenge to the library/operator selection problem.

Fig. 10  Performance of TPC-H queries using inter-library execution
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For our future work, we would like to extend our work with libraries built on top 
of other low-level wrappers like OneAPI and do a comprehensive study of all 
libraries w.r.t. their support for database operators. Furthermore, building an opti-
mizer that chooses the best-performing library-based operator during runtime is 
another important tuning task.
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