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Abstract
Compiling database queries into compact and efficient machine code has proven to 
be a great technique to improve query performance and exploit characteristics of 
modern hardware. Particularly for graph database queries, which often execute the 
exact instructions for processing, this technique can lead to an improvement. Fur-
thermore, compilation frameworks like LLVM provide powerful optimization tech-
niques and support different backends. However, the time for generating and opti-
mizing machine code becomes an issue for short-running queries or queries which 
could produce early results quickly. In this work, we present an adaptive approach 
integrating graph query interpretation and compilation. While query compilation 
and code generation are running in the background, the query execution starts using 
the interpreter. When the code generation is finished, the execution switches to the 
compiled code. Our evaluation of the approach using short-running and complex 
queries show that autonomously switching execution modes helps to improve the 
runtime of all types of queries and additionally to hide compilation times and the 
additional latencies of the underlying storage.

Keywords  Adaptive query compilation · Persistent memory · Graph databases · 
Query execution modes · Adaptive code switching

1  Introduction

Query processing is one of the main tasks of any Database Management System 
(DBMS), along with transaction processing, data storage, and management. For 
decades, relational databases have been the measure of all things when performing 
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these tasks. However, in recent years, there have been developments toward pro-
viding data models that extend, complement, or even replace the relational model. 
Graphs are one such data model. They are specifically designed to process and ana-
lyze relationships between data. Unlike relational DBMSs which rely heavily on join 
operations to capture relationships between data, graph DBMSs store and access 
them inherently. This has some advantages, particularly with regard to the perfor-
mance of query processing. Furthermore, nowadays the actual data of a DBMS is 
stored on different storage types. Today’s memory hierarchy of systems on which 
the DBMSs are executed is characterized by different access speeds and bandwidths 
at each level. This has an impact on the execution of queries, which may be much 
slower than on traditional systems. Persistent Memory (PMem) and different types 
of SSDs are some of these additional storage types. The other characteristics of these 
storage types require adapting requirements for modern DBMSs. Through the work 
presented here, we show a possibility around the higher latencies of these memory 
types. Techniques to hide latencies range from adapting the data structures to the 
characteristics to interleaving the execution of a query with other processes. Another 
technique to achieve the low latency requirement is query compilation, which ena-
bles this by producing highly optimized code for the execution of queries. Further, 
when processing graph queries, it is noticeable that they often involve the process-
ing of similar or the same operators, possibly even in the same order. The code to 
be executed may contain duplicate or dead code. A query interpreter would run all 
of these instructions one after the other, even if some of them do not contribute to 
the query result. This problem can be evaded with query compilation. However, this 
also comes with a further problem: the compilation time. While compilation is not 
an issue for long-running queries, it can be longer than the actual query runtime for 
short-running queries. Adaptive query compilation is one technique to solve these 
problems altogether. Essentially, the idea behind this technique is to integrate query 
interpretation and compilation into the processing. An interpreter is used initially 
while the compilation is carried out in the background. When the compilation com-
pletes, the execution switches to the compiled code [9]. Our work is centered around 
Poseidon1 [8], a hybrid transactional/analytical processing (HTAP) graph database 
that enables transactional graph processing on PMem and DRAM based on a prop-
erty graph model. The design of its storage architecture is mainly tailored to the 
characteristics of PMem, which comes with higher latency and lower bandwidth 
compared to DRAM. In Poseidon, nodes, relationships, and properties are stored 
on PMem to offer similar advantages to an in-memory database while also guaran-
teeing persistence. The underlying data structures are persistent vectors, which are 
organized as linked lists of fixed-size arrays or chunks.

In this paper, we focus on the utilization of efficient techniques to hide both query 
compilation times and PMem access latency in graph query processing. Our contri-
butions are as follows:

–	 We present an approach to generate efficient machine code from graph algebra 
expressions.

1  https://​dbgit.​praki​nf.​tu-​ilmen​au.​de/​code/​posei​don_​core.

https://dbgit.prakinf.tu-ilmenau.de/code/poseidon_core
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–	 As query compilation times and PMem access latency adversely affect perfor-
mance, we demonstrate a technique that autonomously switches execution modes 
after compilation in order to hide compilation times and PMem latency.

–	 To provide a robust query engine and to avoid recurring compilation time over-
head, we introduce the usage of a PMem query code cache.

Our experiments show that executing JIT-compiled code is always faster than ahead-
of-time (AOT) compiled code. The adaptive approach shows promising results 
when executing short-running queries and provides at least the same performance 
as AOT-compiled code. Further, adaptive code compilation is a suitable technique 
to hide additional latencies introduced by PMem. For several queries, the runtime 
of the queries on PMem is the same as the runtime on DRAM when using adaptive 
query compilation.

The remainder of this work is structured as follows. First, the work that has been 
considered as a basis for this thesis is explained. Then the storage architecture and 
the query processing of the graph database Poseidon are shown. The next section 
examines the general design decisions of the query compiler. After that, the adap-
tive approach is presented and techniques are used. In the last part of this work, 
the shown techniques are evaluated in terms of their performance by using standard 
benchmarks.

2 � Related work

Query compilation is an actively researched technique to speed up query process-
ing. There exist two basic approaches for databases to compile queries: high-level 
template-based and low-level intermediate representation (IR)-based compilation.

2.1 � High‑level code generation

The high-level template-based approach also referred to as template expansion, fills 
operator templates with the appropriate query arguments. A high-level compiler, 
e.g., GCC or Clang, is used to transform the templates into machine code. Hekaton is 
a database engine for Microsoft’s SQL Server [3]. It provides a query compiler that 
transforms algebra plans through several optimization steps into high-level C code. 
An external C code compiler transforms this code into an executable format which 
is called to process the actual query. LegoBase provides another high-level compiler 
[15]. This query compiler also transforms the query plan via multiple steps, where 
declarative elements of the query are replaced with imperative high-level code. It is 
based on the Lightweight Modular Staging framework which converts Scala code to 
a graph-like IR. The code goes through multiple transformations into low-level and 
optimized C code by replacing the graph nodes with instructions or data structures 
used for query processing. LB2 is an extension of LegoBase, which uses Futamura 
Projections to combine an interpreter with a compiler [17].
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2.2 � Low‑level intermediate representations

Compiling high-level code introduces additional compilation time that reduces the 
resulting performance. The low-level IR-based approach avoids a high-level com-
piler and generates IR code instead. Neumann and Leis [13] provides a query com-
piler using the LLVM compiler framework for the HyPer database. The key to the 
success of this work is to process tuples as long as possible in the CPU registers. 
Based on this work, Kohn et  al. [11] proposed an approach to mask the compila-
tion time with an adaptive approach. A special virtual machine that mimics the 
LLVM IR instructions is used to interpret the query while the compilation runs. This 
reduces the waiting time for compilation and can improve the handling of short-
running queries whose compilation time would be longer than their execution time 
[17]. The ideas from this work are the foundation of our approach to graph database 
query processing. Apart from LLVM, there exist other approaches that introduce 
their own low-level IR to compile queries. One of the critical factors when (just in 
time) compiling code is register allocation. Funke et  al. [5] showed an optimized 
approach by providing a lightweight intermediate representation that estimates value 
lifetimes before code generation. The Voodoo IR is a declarative algebra, especially 
for many-core architecture that provides a set of vectorization instructions to gener-
ate OpenCL code [14]. Query compilation is also employed in existing commercial 
graph DBMS like Neo4j and TigerGraph. Neo4j introduced the pipelined (known in 
older versions as compiled) runtime that transforms Cypher queries into Java byte-
code. This bytecode is then executed and optimized at runtime by the HotSpot Java 
virtual machine. Besides a query interpreter, TigerGraph also supports a compiler 
that transforms GSQL queries into C++ code. The generated C++ code is then 
compiled into a dynamic library and linked with the database instance [2].

2.3 � Adaptive query compilation

Further developments for the compilation of queries consider the compilation times 
of LLVM. They are considered too high and therefore LLVM is replaced by self-
developed frameworks. Funke and Teubner [4] developed a compiler with an alter-
native to the LLVM, which consists of Flounder IR and ReSQL, which compiles 
SQL to machine code with very low latency. Kersten et al. [10] developed a system 
that bypasses the slow startup time of a query interpreter and directly generates fast 
code for a query. Among other things, this makes it possible to work without an 
interpreter entirely. Nevertheless, the alternative to LLVM for compiling code with 
the lowest possible latency is to develop a custom IR that is adapted to the DBMS’ 
requirements. Unfortunately, this approach increases the development effort of the 
database, since a complex compiler has to be developed in addition to the actual sys-
tem. Furthermore, the presented system uses multiple execution modes to generate 
low-latency code for each case. Furthermore, the only fast alternative to JIT compi-
lation with LLVM is the direct generation of assembly code with a framework such 
as ASMJit, which also increases the effort for the development and maintenance of 
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the DBMS. However, to our knowledge, there exists no graph DBMS that exploits 
adaptive query compilation to enhance query processing on PMem.

3 � Poseidon graph database

Poseidon is a native graph database based on the property graph data model. An 
example of a property graph with labels is shown in Fig. 1. In the example, individ-
ual nodes are connected via relationships, representing a graph with persons know-
ing each other. The properties of the nodes are assigned directly. The formal defini-
tion of a property graph a given in the following definition.

Definition 1  A graph G consists of nodes N and directed relationships R ∈ N × N , 
denoted by G = (N,R) . A node n ∈ N is identified by a unique identifier 
id ∶ N → ID . From the set of labels L, a label is assigned to each node and relation-
ship using the label function l ∶ (N ∪ R) → L . Further, a property is a key-value pair 
(k, v) ∈ P . The properties P are P = K × D , where K is the set of property names 
and D is the property values. Properties can be assigned using p ∶ (N ∪ R) → P(P) , 
using the powerset P.

In Poseidon, nodes, relationships, and properties are stored in PMem to offer sim-
ilar advantages to an in-memory database while also guaranteeing persistence. The 
nodes, relationships, and properties are stored in separate persistent tables, which 
are organized as linked lists of fixed-size arrays of object records, referred to as 
chunked vectors. The chunked vector is optimized for sequential access to fully uti-
lize PMem. The corresponding data structure design for nodes and relationships is 
illustrated in Fig. 2. Further details of the data structure are given in [8]. At the same 
time, we also provide an implementation for persistent storage on disk as well as a 
non-persistent variant for direct storage on DRAM. The choice of storage medium 
must be specified accordingly before compilation. For storage on disk, we developed 
a buffered vector that stores the respective data from disk for processing in DRAM 
in the same format as a chunked vector for PMem. This allows the storage of trans-
actional graph data on all possible storage media. Nevertheless, all data structures 
were optimized for the exploitation of PMem. However, these methods can also be 
applied to all other storage media and yield a similar result (Table 1).

Fig. 1   Example property graph of three Person-nodes connected via relationships with the label knows
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In a chunked vector, each row in a chunk represents a slot for storing a node, 
relationship, or property record. For efficient reclamation of deleted entries, a bit-
map is used in each chunk to mark empty and used slots. The chunks are linked by 
persistent pointers, forming a linked list. A scan over all nodes in a graph is achieved 
by traversing the linked chunks. On top of this, a sparse index is used which maps 
the offsets (identifiers) of the first records of each chunk to their memory location. 
The internal representation of the example in Fig. 2 is shown in Sect. 3. Not exist-
ing links are represented with the maximum possible value of the field ( ∞ ). Further, 
transaction data stored in records are omitted. Each node record stores the id (off-
set) of the node, its label, the offsets of its first outgoing and its first incoming rela-
tionship, and the offset of its properties. The offsets are used to retrieve the node’s 
relationships and properties from the corresponding chunked vectors. A relationship 
record consists of the relationship’s id (offset), its label, the offset of its properties, 
the offsets of its source and destination nodes, as well as the offsets of the next rela-
tionships of its source and destination nodes. This way, it is possible to traverse all 
relationships of all nodes, i.e., traversing the entire graph. Furthermore, properties of 
nodes and relationships are stored in a separate chunk vector as key-value pairs. The 
linkage between properties and nodes (and relationships) is achieved in the same 
way as demonstrated for the linkage of nodes and relationships.

3.1 � Query processing

The query processing engine of Poseidon provides different ways to execute que-
ries expressed in graph algebra. We refer to them as execution modes. As the stor-
age layout of Poseidon aims to exploit PMem and the read access on PMem is 
slower than on DRAM, it requires hiding latencies by efficient cache utilization and 

Fig. 2   Data structure for storage of graph data
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multi-threading. Additionally, we use the execution modes for further latency hid-
ing. We now describe the query engine of Poseidon.

3.1.1 � Graph algebra

Graph algebra is the starting point of the query engine of Poseidon. We adopted the 
graph algebra proposed by [7], which extends the relational algebra by two main 
graph operators. The main reason why this algebra was chosen in Poseidon to answer 
graph queries is that this algebra is based on relational algebra, which requires only 
an additional structure (graph relation). Furthermore, this algebra provides only two 
additional operators (GetNodes, Expand), which simplifies the implementation. The 
basic idea of the operators was adopted for Poseidon. Only the functionality and 
naming were changed to the be conform with internal structures. The two additional 
operators for processing graph relations are:

–	 GetNodes: scans the nodes of the graph.
–	 Expand: visits neighboring nodes by traversing incoming and outgoing relation-

ships.

Since this algebra also extends the concept of a relation – a graph relation, the usual 
operators from relational algebra can be further applied to the results of the graph 
operators. We provide these graph algebra operators as well as the traditional rela-
tional algebra operators in our query engine. For reasons of clean separation of the 
operators’ functionality, we split the original Expand operator of [7] into two opera-
tors: ForeachRelationship and Expand. The ForeachRelationship operator trav-
erses over all relationships of a node of the given direction (to, from). With the new 
Expand operator, we get the source or the destination of an edge. These two opera-
tors enable to traverse through a connected graph without the usage of join opera-
tors with the nodes and relationship table. In addition, we implement a simple query 
language based on this algebra. However, this query language is used for internal 
processing. Based on these operators other query languages like Cypher or GQL can 
be implemented. An example query using the described graph algebra language for 

Table 1   Node and relationship table layout

NodeID FromID ToID PropertyID Label

0 0 2 21 42
1 1 1 22 42
2 2 0 23 42

RshipID SrcNode DstNode NextFrom NextTo PropertyID Label

0 0 1 1 ∞ 24 84
1 0 2 ∞ ∞ 25 84
2 1 2 ∞ ∞ 26 84
3 2 0 ∞ ∞ 27 84
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the graph given in Fig. 1 is shown in the following. The shown indentation of the 
operators of the query is optional and serves only for the purpose of adequate visu-
alization of the example.

This query tries to find all pairs of friends by traversing all the outgoing relation-
ships of type ":knows" for each person node to retrieve the person nodes con-
nected to it. the individual operators in this language are formulated in the same 
order as they are processing, starting in reversed order in order to be compliant with 
the push-based query processing. For the execution of multiple sub-queries, which 
are merged with a join and a predicate, the queries can be defined in a similar way. 
For this, the respective sub-queries are passed in as input parameters of the join with 
an additional join predicate. The join algorithm can be selected directly as an opera-
tor. At the time of writing, Poseidon supports cross join, nested loop join, hash join, 
and left outer join. The following example combines the result of the previous query 
with all person nodes of the graph using a cross-product.

This set of operators is sufficient to answer queries on a graph, which can be written 
without effort and are similar to the well-known relational algebra.

3.1.2 � Push‑based query processing

We scan the underlying persistent storage sequentially in order to retrieve nodes or 
relationships from a graph. As PMem is not block-oriented but rather byte-address-
able, there is a need for optimized sequential access. Therefore, we opt for a multi-
threaded push-based query engine. Besides the advantage that the data flow corre-
sponds to the control flow, in contrast to the classic iterator model, this choice also 
has advantages for code generation, as shown by [16]. The access paths of algebra 
queries are scans (NodeScan, RelationshipScan, IndexScan) and create (Creat-
eNode, CreateRship) operations. Figure 3 shows the structure of push-based query 
processing. Scan operations initiate graph traversals by scanning the node or rela-
tionship tables. Each node (or relationship) that matches the given label and satisfies 
the property filter predicate will be forwarded separately to the subsequent operator. 
In the case of a create operation, the newly created node or relationship will be for-
warded to the next operator. Subsequent operators append their result (i.e., generated 
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tuple element) to the existing tuple, forming a list of tuple elements. An operator can 
access any element in the tuple from the previous operator. The tuples are pushed 
until a pipeline breaker is reached. A pipeline breaker is the last operator in a query 
pipeline that stores the tuples from the registers in (intermediate) storage. We have 
implemented all graph algebra operators in C++ and refer to these functions as our 
AOT-compiled query engine. This makes it convenient to run queries directly with 
high performance, as the AOT-compiled code is optimized (using -O3 as the optimi-
zation flag for the compiler). This code builds the basic blocks for the interpretation 
execution mode.

3.1.3 � Parallelism

In order to utilize modern multicore systems, the engine is able to process queries in 
parallel. The basic principle of parallelism is adapted to the underlying storage lay-
out of Poseidon. As mentioned before, nodes and relationships are stored in a chunk 
vector data structure. The number of existing chunks is always known beforehand 
and each chunk can be accessed individually. Thus, we implemented parallelization 
according to Morsel-driven parallelism [12], whereby chunks (Morsels) are assigned 
to fine-grained task packages. The task packages are then pushed onto a task pool, 
where workers (threads) pull the task to perform the work, i.e., the actual query. To 
each task, the start and end chunks are assigned, which enables the processing of a 
range of chunks in one task. In the case of single-threaded execution, all chunks are 
assigned to a single task. The last step of the query merges all results from the work-
ers and returns them to the caller. The actual execution of the query can be done 
with different execution modes described in the following.

Fig. 3   Push-based query engine for the execution of graph algebra queries
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4 � Adaptive query compilation

The database system described so far is able to process queries using AOT-compiled 
code defined in C++. In this section, we describe the design of the query compiler 
with different execution modes and the adaptive mode combining the execution 
modes to provide suitable performance for all workloads and to hide latencies intro-
duced by PMem.

4.1 � Query interpretation

Query interpretation is a straightforward way to execute queries, whereby for each 
operator of a given query, the appropriate AOT-compiled function is called. For this 
purpose, we use the visitor pattern [6]. For each operator, we provide at least one 
AOT-compiled function which executes the operator with given parameters. These 
AOT-compiled operator functions are can be linked together, forming a cascade of 
functions that executes the actual query. The linkage is done through the function 
arguments of the operator functions, i.e., the following operator is the given argu-
ment of the current operator functions. A downside of this approach is the additional 
effort in the implementation of each query operator. Further, each possible tuple ele-
ment type must be handled explicitly in the code, which increases the development 
effort and maintenance of the database code. The resulting code is heavily template-
based and requires runtime type information (RTTI).

4.2 � Query compilation

Query compilation is a well-known technique to speed up query processing. How-
ever, it comes with various accompanying factors that must be treated appropriately 
in order to achieve this speedup. These include the selection of the compiler back-
end, intermediate representation (IR) language, and the general control flow of the 
program. The following describes the query compiler engine of Poseidon and the 
handling of these factors.

4.2.1 � Compiler design

We chose LLVM as the compiler backend for generating code for queries just-in-
time (JIT). LLVM has several advantages over other compiler backends like lib-
Firm2 or C–.3 First, it provides a low-level IR language for code generation. The 
compilation of low-level code is faster than high-level code like C++. Second, 
LLVM enables architecture-independent optimizations to improve the resulting 
code performance by executing optimization passes on the IR code. Optimization 
passes optimize IR code using well-known code compiler optimization techniques 
like dead code elimination, loop unrolling, and instruction combining. The resulting 

2  https://​github.​com/​libfi​rm/​libfi​rm.
3  https://​www.​cs.​tufts.​edu/​~nr/​c--/.

https://github.com/libfirm/libfirm
https://www.cs.tufts.edu/%7enr/c--/
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code exhibits higher performance as it uses fewer and more efficient instructions. 
Third, it provides tools for implementing a JIT compiler. Generating and compil-
ing code at run-time is the major requirement of a query compiler. Implement-
ing these tools is a challenging task because problems like register allocation and 
instruction selection/scheduling require efficient solutions [1]. Lastly, LLVM pro-
vides a backend for several architectures like X86, ARM, or GPU. Using LLVM 
enables to provide the compiler for other architectures with low effort. Based on the 
LLVM backend, we outline four requirements that must be fulfilled in order to gen-
erate high-performance query code. These requirements are derived from the work 
of Kersten et al. [9] and Kohn et al. [11], and our experiments with different code 
generation and compiler setups. 

(RQ1)	� Processing of tuple results as long as possible in registers

(RQ2)	� Pre-processing required initializations and space

(RQ3)	� Tuple element type handling at code generation

(RQ4)	� Full compatibility with AOT-compiled code

To meet (RQ1), all instructions of the generated code have to be inlined in 
a single function. This is crucial to processing the tuples as long as possible in 
registers without materialization. As the push-based approach processes one 
tuple result at a time, the actual tuples can be dematerialized directly into reg-
isters and only materialized at pipeline breakers. Besides, the work of Kersten 
et al. [9] shows that this approach requires fewer instructions, thereby enhancing 
performance with respect to query runtimes. (RQ2) specifies memory allocations 
in initialization to be done outside of the generated code. Allocating memory is 
a costly process and can hinder the resulting performance of the code. Keeping 
allocations out of the generated code reduces execution times. The necessary 
space to process a query is known before code generation and can be obtained 
by analyzing the query, e.g., by the number of projections or tuple element types. 
One disadvantage of using query interpreters is the explicit type handling of tuple 
elements during query processing. For each possible tuple element type, there 
must exist the appropriate function to process it according to the given query. 
The type of the tuple element must be checked to call the corresponding func-
tion. This introduces additional control flow and increases the processing time 
of the query. Query compilation can eliminate this behavior by generating code 
only for the needed tuple element type, in conformity with (RQ3). The informa-
tion of each tuple element type in the query is known before code generation, 
e.g., a projection of the id property of a node is of integer type. This can be used 
to generate only the code necessary for the tuple processing without explicit type 
checking. It is not necessary to generate query code completely in LLVM IR. For 
example, the aggregation operator processes the same operations in every query. 
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Therefore, there is not much room for further optimization steps. Hence, it can be 
implemented in C++ and called from the generated code. However, this requires 
the generated code to be fully compatible with the AOT-compiled query engine, 
as outlined in (RQ4) and is also beneficial when switching between execution 
modes. For the implementation of transactions, Poseidon uses an MVCC pro-
tocol. To hide the latencies as much as possible, this was implemented using a 
hybrid implementation. For example, changed nodes or relationships are man-
aged in a dirty list, which is managed in DRAM memory to achieve the lowest 
possible latencies. Whenever a transaction is complete, the records of the dirty 
list are propagated to the appropriate persistent storage. The code is constant 
for most operations, which simplifies the implementation of the operators since 
AOT-compiled code can be used, which also reduces the compilation time. These 
AOT-compiled functions are called by function calls when they are needed by an 
operator.

4.2.2 � IR code generation

The starting point of our query compiler is a query expressed in graph algebra. To 
fulfill the requirement (RQ4), the query engine provides a data-centric code gen-
eration approach, where each graph algebra operator uses the (inlined) push-based 
interface. We similarly make use of the visitor pattern to generate the appropri-
ate IR code for each operator. (RQ1) requires that the complete query pipeline is 
inlined into a single (IR) function. Therefore, operators are handled differently 
from linking the callback functions in the AOT/interpretation approach. Figure 4 
illustrates the whole transformation process from a given graph algebra query into 
LLVM IR. In the LLVM IR, each function comprises multiple basic blocks that 
contain the instructions to be executed. The last instruction of a basic block is a 
terminator that either branch to another basic block or returns to the caller. In our 
approach, an operator consists of at least two basic blocks. The first basic block is 
the entry point of the operator and it executes the actual work. A complex oper-
ator with different control flows (conditions, loops) introduces additional basic 
blocks. The last basic block of an operator is the consume block. An emitted tuple 
result of an operator can only reach this basic block if it should be pushed to the 
next operator, e.g., when the predicate of the filter operator is fulfilled for this 

Fig. 4   Transformation steps from graph algebra to LLVM IR code
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tuple. The purpose of the consume block is to branch to the next operator via its 
entry basic block. However, whenever a condition is not fulfilled, the control flow 
branches back to the previous operator, which is defined as the re-entry point and 
is usually the condition block (loop head) of the previous operator. Ultimately, 
this forms a chain of operators that represents the given query in IR. An example 
basic block chain from a query plan is shown is Fig. 4. The chain of basic blocks 
needs to be adapted when the query pipeline contains multiple sub-pipelines, 
by way of pipeline breakers like join or aggregation operators. When generating 
code for joins, we choose the right side of the pipeline to be processed first, for 
simplicity. In other words, the tuples of the right pipeline materialized before the 
tuples of the left pipeline. LLVM makes the conversion of this inline pipeline into 
IR code easy. The right side of the pipeline can be processed independently from 
the left side. Only the concatenation of the entry basic block and the pipeline 
breaker must be adapted. For this purpose, the entry point of the function is fixed 
to the entry basic block on the right side and the finish basic block is linked to the 
entry basic block on the left side. This approach allows for code generation for a 
query pipeline with multiple sub-pipelines in one inlined function.

BasicBlock PContext : : wh i l e l o op ( Function parent ,
Funct ionCal l ee get beg in ,
Funct ionCal l ee get next ,
Funct ionCal l ee reached end ,
Value i t a l l o c a , Value cond param ,
BasicBlock nextBB ,
BodyFunction &loop body ,
Bas icBlock l oop body cond i t i on )

Listing 1 Code Abstractions for Loops in IR Code

Nevertheless, generating efficient IR code requires more effort than implementing 
the operators in a high-level language like C++. We implemented different abstrac-
tions to facilitate the implementation of the operators in the LLVM IR code. Loops 
are an often-used control flow pattern in query operator code. Therefore, we provide 
several loop abstractions that help to write IR code for query operators. An IR loop 
consists of at least two basic blocks: the loop head where the condition will be eval-
uated, and the body where the instructions of the loop are executed. There are basi-
cally two types of loops in the generated query code: a for-loop with a counter and a 
head-controlled while-loop. For both types, we provide a high-level interface to gen-
erate the appropriate code. The loop body can be passed as a C++ function where 
further IR code will be generated. Listing 1 shows the signature of a code abstrac-
tion to generate a head-driven loop in IR code. This function generates each of the 
basic branching statements of a loop as well as checks a given loop condition. The 
actual body, which will be executed only if the given condition matches, is passed as 
a C++ function. This allows the specification of a function in C++ which generates 
loop constructs in low-level IR code. Overall, in spite of these abstractions bringing 
the code style closer to high-level, there is still operator-dependent code that must 
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be handled directly in low-level IR code. Pointer arithmetic is another common con-
struct that occurs in query code. To get the fields of the records like IDs, labels, or 
offsets, the address to the corresponding memory area must be obtained. In LLVM 
IR, this can be accomplished by using the GetElementPointer (GEP) instruction. 
Since this is an often-used instruction when processing tuples, we implemented 
further abstractions for this purpose to ease the development. For each occurring 
record field, we provide an abstraction that executes the GEP instruction to retrieve 
the pointer to the field value. The value of the field can be loaded into a register, by 
using a load instruction with the pointer as an argument. Figure 5 shows generated 
IR code generated from a graph algebra expression. To start each query, the corre-
sponding storage is scanned, which can be on DRAM, disk, or PMem. The calls to 
the respective storage are performed by external function calls, similar to the calls 
for the management of transactions. This again leads to less effort for the generation 
of IR code. The nodes (or relationships) are loaded individually into registers. Sub-
sequent operators, such as the ForeachRelationship operator, then access the respec-
tive register. Since the registers of a CPU can be accessed very fast, this improves 
the runtime of the query processing.

Fig. 5   LLVM IR code generation for graph algebra expressions
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4.3 � Code optimization

The main advantage of query compilers over query interpreters is the execution of 
efficiently generated code. For example, when executing code for a selection opera-
tor, an interpreter cannot recognize the connection between instructions. Thus, it can 
happen that some instructions are needlessly executed several times. The execution 
of unoptimized IR code leads to similar results as the execution of interpreted code. 
Therefore, optimization of IR code using optimization passes is needed. This will 
have a similar effect to compiling C++ code using the -O3 optimization level, rather 
than -O0. Generated IR code contains multiple branches, which may be unused 
because the condition is never fulfilled. By applying LLVM optimizations (passes), 
this code can be improved, the memory usage reduced, and in general, the execu-
tion of a query accelerated. Combining, deleting, or replacing instructions improves 
the code efficiency and the resulting query processing performance. We use the fol-
lowing cascade of optimization passes to improve the code efficiency regarding the 
query performance and size:

–	 Promoting memory to register Changes stack allocated memory for variables 
to memory registers which are faster to access because registers are near to 
the CPU.

–	 Control flow simplification Merges conditional branches when necessary.
–	 Dead-code elimination Deletes unused code which reduces the compilation 

time and size of the code.
–	 Instruction combining Combines instructions that are similar or share the 

same conditions.
–	 Dead-store elimination Removes unused store operations for unused mem-

ory.

After executing these passes, the resulting query code contains only the instruc-
tions needed to process the query.

4.4 � Code caching

Compiling every query each time into machine code would be too costly. When 
compiling similar queries every time, i.e., queries with the same operators but 
different arguments like labels, the repeated compilation negatively affects per-
formance. To solve this problem, we have implemented a cache for storing the 
code of compiled queries persistently. It can be stored on disk or other persis-
tent storage like PMem. For this purpose, we use a persistent map to store and 
retrieve compiled code. Before compilation, a query is assigned a unique key 
which, for simplicity, is the concatenation of the names of its constituent opera-
tors. This key is used to find existing compiled code for the query. The compiled 
code is used for query processing if it is present in the map. Otherwise, the new 
query will be compiled and the code will be stored in the persistent map with the 
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already obtained key. Only the generated machine code is cached persistently, 
allowing it to retrieve and call it with different parameters, i.e., different labels 
or properties for each operator. Compiled code is stored directly in memory in 
its binary form with all additional references (symbols, external functions, data). 
The overall workflow using cached code is the same as with code compilation, 
except that the code is available immediately. It can be executed directly by the 
functions provided by the LLVM framework.

4.5 � Adaptive query processing

Although the compiled query code is fast, a problem arises when executing short-
running queries that touch only a few tuples. The compilation process would con-
sume more time than the actual query runtime.

Table 2 shows the overhead of compiling graph queries with different lengths, 
which correspond to the number of hops through the graph. As the query length 
increases, the effort required to compile the query also increases. During this 
time, without further adaption, the processing would have to wait for the compila-
tion to be completed, although the results could already be available or the query 
could have been processed already. In this section, we show an approach to hide 
the compilation times and additionally the PMem access latency. The goal is to 
bring closer the runtimes on PMem to those on DRAM.

4.6 � Parallelism

As our adaptive query engine makes use of parallelism, we first describe how 
it is implemented. To switch between different modes, we make use of parallel 
execution of chunks, which are previously assigned to tasks and made available to 
workers for pooling in a task pool. The granularity of the switch is a task, which 
means that the tasks (or chunks) are finished in the mode in which they were 
started. This has the advantage that no further information has to be exchanged 
between two executions. Figure  6 shows the extension of the push-based and 
Morsel-driven query engine by the compiled mode. Morsel-driven parallelism 
can fully utilize sequential access to PMem storage. Therefore, it is well suited 
to fulfill our requirements. Additionally, it provides a solution to enable NUMA 
locality, which also enhances the query processing performance.

Table 2   Compilation times for a 
graph query finding paths with 
different lengths (hops)

No. of hops Compilation 
time (ms)

1 112
2 153
3 183
4 208
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4.7 � Switching modes

In order to fully utilize the benefits of query compilation, we provide an adaptive 
query compilation approach. In contrast to the approach by [11], we dispense of 
implementing a virtual machine but use the AOT-compiled code for interpretation. 
Each query is initially executed in interpretation mode while a thread working in the 
background compiles the query into machine code. This approach enables hiding 
latencies of the underlying storage technology which improves the overall perfor-
mance of the query processing. Furthermore, we make use of morsel-driven paral-
lelism to switch the mode at query processing.

A complete overview of the adaptive query compilation flow is shown in Fig. 7. 
At first, a query compilation process is initiated with the given graph algebra query 
as input. Meanwhile, the engine initializes the task pool with the morsels to task 

Fig. 6   Adaptive query compilation

Fig. 7   Adaptive compilation flow
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assignments and the interpreter. Each morsel is pinned to its respective task which 
calls a static function that executes the given query on the morsel. Initially, the static 
function is set to the interpreter that concatenates the AOT-compiled operators to 
interpret the query. After compilation, the task function is switched to the newly 
compiled query code. When the workers process the next morsel the compiled query 
function will be executed. Queries that introduce pipeline-breakers require more 
effort. Each sub-pipeline needs to be compiled into a single function that can be 
called by the workers. The reason for this lies in the fact that an inlined function exe-
cuting multiple query pipelines cannot efficiently be scheduled. Considering joins as 
an example, the left side of the pipeline can only be executed when the right side has 
been completely materialized into intermediate storage. A possible solution would 
be to schedule the task with blocking methods that reduce the parallelization. To 
provide a solution without blocking we generate an individual IR function for each 
sub-pipeline and switch the static task function to the appropriate sub-pipeline func-
tion after materialization.

This method is our basic idea to hide the latencies of the underlying storage 
medium, such as PMem, to get an approximation of DRAM runtime. If we com-
pare the execution of a query using this method on DRAM as well as on PMem, for 
example, it is noticeable that the number of chunks executed on the different modes 
differ. Schematic comparison between the execution of adaptive query compilation 
on different storage types is shown in Fig. 8. It shows that when executing adaptive 
query compilation on a storage type with higher latencies like disk or PMem, the 
number of chunks executed with the optimized and compiled code is higher, than 
when executing the same query on DRAM. This is because processing the individ-
ual chunks requires more processing time due to the additional latencies of storage. 
Therefore, the processing stays at an early stage of the processing pipeline and there 
are more queries available to process using the faster compilation mode. With this, 
the execution time for processing the individual chunks is saved, which hides the 
latencies of Disk or PMem storages.

4.8 � Code caching latency

Caching code in persistent memory is beneficial for later query execution, as no rec-
ompilation is necessary. However, retrieving code from PMem or SSD also intro-
duces an overhead. The overhead is on the one hand the additional access latency of 
the storage and the setup time for the retrieved code, e.g., for memory management 

Fig. 8   Comparison of adaptive query compilation on different storage types on a timeline
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and linking. The adaptive query compilation approach treats this overhead similarly 
to the compilation. The query engine starts with the interpretation while the process 
of retrieving code from the cache starts. This hides the additional code caching over-
head and the storage latencies effectively.

5 � Evaluation

We now present our experimental evaluation. We show that both JIT compilation 
and adaptive compilation speed up query execution in comparison with AOT-com-
piled code. Then we showcase how the adaptive approach tackles the problem of 
query compilation for short-running queries, where the query compilation time 
could potentially be more than the actual query execution time. We compare the 
execution time of all queries on DRAM with the execution using PMem in order to 
show the benefit of the adaptive approach in hiding the additional access latency.

5.1 � Environment and workload

We conducted our experiments on a dual-socket Intel Xeon Gold 5215. Each socket 
has 10 cores running at a maximum of 3.40 GHz. The system is equipped with 384 
GB DRAM, 1.5 TB Intel Optane DCPMM, and 4x 1.0 TB Intel SSD DC P4501 Series 
connected via PCIe 3.1. It runs on CentOS 7.9 with Linux Kernel 5.10.6. For directly 
accessing the PMem device, which is operating on AppDirect mode, we use the Intel 
Persistent Memory Development Kit (PMDK) version 1.9.1 and libpmemobj-cpp ver-
sion 1.11. Furthermore, we have created an ext4 filesystem on the PMem DIMMs, 
mounted with the DAX option to enable direct loads and stores. We use LLVM version 
12.0.1 for the compilation.

For our workload, we use the Linked Data Benchmark Council’s Social Network 
Benchmark (LDBC-SNB). Since the benefit of the adaptive approach in hiding com-
pilation time is more pronounced for short-running queries, we specifically target the 
SNB Interactive Short Read queries, which perform lookups and short graph travers-
als, the Interactive Update queries, that update node, and relationship objects, and the 
subset of the Business Intelligence (BI) queries for complex queries to show the full 
potential of our query compiler. The subset of BI queries consists of queries 1–13, for 
which the query compiler can generate executable code at the time of the writing of 
this work. However, these queries are sufficient to demonstrate the performance of the 
techniques shown in this paper, since they have a higher complexity than the short-read 
due to multiple sub-pipelines, joins, and aggregations. We ran the queries on the SNB 
data at scale factor 10 for the short-reads and interactive updates with different param-
eters and access the message class from the post and comment subclasses, referred to 
in the benchmark results as post and cmt respectively. The number of total chunks for 
nodes is 1602, for relationships 121,219, for the node properties 3762, and for relation-
ship properties 2936. Each chunk contains up to 80 entries. The total size of the graph 
is 13.5 GB.
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5.2 � Benchmark results

In the following benchmarks the execution of the mentioned LDBC queries is based on 
the SNB dataset. We focus on single-threaded, multi-threaded, and index-based execu-
tion. The single-threaded execution is intended to show the quality of the generated 
code, where no adaptive switching is used. The multi-threaded execution will dem-
onstrate adaptive switching and compare it to AOT-compiled code. The index-based 
execution will be executed on the SNB short reads and will compare the quality of 
the generated code with optimal execution times. Furthermore, one execution each on 
DRAM and PMem will be shown to illustrate the behavior for hiding PMem latencies.

5.2.1 � Single‑threaded

We first ran single-threaded executions of the SNB Interactive Short Read queries 
with JIT-compiled code and single-threaded. No adaptive switching between execu-
tion modes is done, and thus, the query execution waits for the compiled code.

Figures 9 and 10 show that the JIT-compiled code always results in faster execu-
tion than AOT-compiled code on both PMem and DRAM. For most queries, it is 
still faster even with the compilation time combined, i.e. only in the first runs of the 
queries. In subsequent runs of the queries, however, there is even no compilation 
time overhead since the cached code is executed. Figures 11 and 12 show the results 
of the approach with more complex BI queries. The BI queries contain multiple sub-
pipeline with joins and aggregations. The compilation time of these queries ranges 
between 150 and 500 ms. The runtimes of both executions are similar. However, the 
increase in compile time reduces the overall performance of the JIT execution, so 
adaptive execution is necessary for complex queries.

Fig. 9   SNB short read queries on PMem (single-threaded)
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5.2.2 � Multi‑threaded

Next, we evaluate the adaptive and (non-adaptive) JIT compilation while utilizing 
multi-threading. Figures 13 and 14 depict the evaluation results of the queries on 
DRAM and PMem respectively. The results clearly show that the adaptive approach 
yields performance benefits both on PMem and DRAM. For most of the queries, 
it exhibits shorter execution times than the optimized AOT-compiled code, while 
in some of them, it results in at least the same execution times. Additionally, the 
figures also highlight how much of the total adaptive execution time is spent on 
the compilation. During this time, the query is executed in the interpretation exe-
cution mode before switching to the compilation execution mode. Furthermore, it 
can be observed from the figures that with the adaptive execution on PMem, we 
achieve near-DRAM execution times for queries 1, 2-cmt, 2-post, and 3. This dem-
onstrates the effectiveness of the adaptive approach in hiding PMem access latency. 

Fig. 10   SNB short read queries on DRAM (single-threaded)

Fig. 11   SNB BI queries on PMem (single-threaded)
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Multi-threaded execution of queries brings the execution times on PMem closer to 
those on DRAM, as also seen in the execution time of AOT-compiled code. Adap-
tive query compilation bridges the latency gap even further, as the execution of the 
AOT-compiled code at the same time as the compilation also helps to hide PMem 
access latency. The non-adaptive execution approach yields a performance between 
that of the adaptive and AOT-compiled approaches. This is due to the blocking 
compilation process and additional overhead which arises from the management of 
resources (threads, memory). In general, the difference between the non-adaptive 
and adaptive approaches is the compilation time. Figures 15 and 16 show the multi-
threaded execution of the adaptive and AOT-compiled with complex BI queries on 
DRAM and PMem respectively. Multi-threaded execution of these queries on both 
memory types solves the problems of single-threaded execution. Furthermore, for 
some queries on DRAM and PMem, such as queries 1, 2, 3, and 5, the runtimes are 
similar, which in turn can be attributed to the hiding of the PMem latencies.

Fig. 11   SNB BI queries on DRAM (single-threaded)

Fig. 13   SNB interactive short read queries on DRAM (multi-threaded)
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With the next queries, we show the worst-case of query compilation, i.e., when 
the actual processing time is less than the compilation time. Figures 17 and 18 show 
the execution of the SNB Interactive Update queries using index scans as access 
paths. Using scans as access paths results in similar behavior as the Short Read que-
ries. The compilation time of these queries lies around 5–10 ms. However, as we 
execute the queries with indexes to retrieve the nodes with the appropriate prop-
erties, the processing time is below 1 ms. Waiting for the compiler here is not an 
option, as it lasts 100 times the actual processing time. The adaptive approach uses 
only the interpreter for these queries. Therefore, adaptive query compilation is 
a suitable technique to hide the compilation time for the Short Read queries. Our 
experiments with code caching have shown a small overhead when retrieving the 
code. The overhead on DRAM is around 5 ms and between 10 and 15 ms on PMem. 
Consequently, the time of compilation and retrieving the short queries are similar 
and also result in a similar performance. Though, code caching is more beneficial 
for queries with longer compilation times.

Fig. 14   SNB interactive short read queries on PMem (multi-threaded)

Fig. 15   SNB BI queries on DRAM (multi-threaded)
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5.3 � Indexed execution

Figures 19 and 20 show the same queries but with the usage of an index to look up 
the appropriate nodes on PMem and DRAM respectively. If the compilation time 
is longer than the actual execution time of the query, it will be executed completely 
with AOT-compiled code. This results in slower execution time, as the adaptive exe-
cution would be the same as execution with AOT-compiled code. Only the process-
ing of the limit operator is faster in compilation mode than in the execution of AOT-
compiled code. The JIT-compiled code leaves the processing immediately after the 
limit is reached, unlike the AOT-compiled code. For some queries (4, 5, 6), the exe-
cution times of the adaptive approach are slightly higher than the execution times of 
the AOT code. Among other things, this is due to the additional effort required to 
start the adaptive compiler, such as starting multiple threads (compile thread, query 
thread, etc.) However, this overhead is a few nanoseconds and is negligible due to 
the performance gain in the other cases. The adaptive approach can provide reliable 
performance for most of the queries since it provides at least the same runtime as 

Fig. 16   SNB BI queries on PMem (multi-threaded)

Fig. 17   SNB interactive update queries on DRAM (indexed)
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the AOT-compiled code for all cases. Therefore, this approach is suitable for hiding 
compilation time, particularly for short-running queries, in addition to hiding PMem 
latency.

5.4 � Latency analysis

The following benchmark is intended to examine in more detail the point at which to 
switch to optimized and compiled code. To show this, we analyze the LDBC queries 
1–4 using the SNB dataset with scale factor 10 since these benefit particularly from 
adaptive switching. The number of total chunks for the nodes is 1602. We compare 
the execution of these queries on DRAM and PMem respectively. For this, we meas-
ure only the number of executed chunks in the appropriate execution mode (inter-
pretation and compilation mode). Table 3 shows the process of executing the chunks 
in interpretation mode and the time at which the optimized and JIT-compiled code 
is switched to. When comparing the two executions on DRAM and PMem, the dif-
ferent number of executed chunks in the respective modes is noticeable. Most of 
the chunks are executed with the compiled code. Comparing the execution with the 
interpretation mode on DRAM and PMem shows that on PMem fewer chunks are 
executed in this mode, for all of the considered queries.

6 � Conclusion

In this paper, we demonstrated an approach to transform graph algebra expressions 
into optimized machine code using LLVM. A common problem with query com-
pilation is in the execution of short-running queries. The compilation time can be 
much higher than the actual query execution time. In this regard, we showed an 
approach to solve this problem with adaptive query compilation. This approach 
simultaneously interprets the graph query using AOT-compiled code and compiles 
it in the background into fast machine code. Upon completion of the compilation, 

Fig. 18   SNB interactive update queries on PMem (indexed)
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it autonomously switches the execution to the compiled code. This approach inher-
ently provides fast runtimes through efficient machine code. Moreover, this tech-
nique allows hiding access latencies of memories, such as PMem, thereby enabling 
similar performance to DRAM for query execution for some queries. For short que-
ries where the compilation time would exceed the processing time, we can guar-
antee the performance of interpretation, which is a worthwhile tradeoff. The pre-
sented approach is also a tradeoff to keep the development and maintainability of 
the DBMS as simple as possible, but at the same time to provide the best possi-
ble performance of a query compiler. While other systems require the development 
of multiple query engines, such as a query interpreter and different compilers for 
the additional execution modes, the system presented here uses only two execution 
modes that serve the same purpose. This work has shown adaptive query compila-
tion for the graph database Poseidon. Nonetheless, this technique is also suitable to 
hide the compilation time on other DBMSs.

Fig. 19   SNB interactive short read queries on PMem (indexed)

Fig. 20   SNB interactive short read queries on DRAM (indexed)
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