
Vol.:(0123456789)

Distributed and Parallel Databases (2023) 41:387–409
https://doi.org/10.1007/s10619-023-07424-2

1 3

Novel insights on atomic synchronization for sort‑based
group‑by on GPUs

Bala Gurumurthy1 · David Broneske2 · Martin Schäler3 · Thilo Pionteck1 ·
Gunter Saake1

Accepted: 10 April 2023 / Published online: 24 April 2023
© The Author(s) 2023

Abstract
Using heterogeneous processing devices, like GPUs, to accelerate relational data-
base operations is a well-known strategy. In this context, the group by operation
is highly interesting for two reasons. Firstly, it incurs large processing costs. Sec-
ondly, its results (i.e., aggregates) are usually small, reducing data movement costs
whose compensation is a major challenge for heterogeneous computing. Gener-
ally, for group by computation on GPUs, one relies either on sorting or hashing.
Today, empirical results suggest that hash-based approaches are superior. However,
by concept, hashing induces an unpredictable memory access pattern conflict-
ing with the architecture of GPUs. This motivates studying why current sort-based
approaches are generally inferior. Our results indicate that current sorting solutions
cannot exploit the full parallel power of modern GPUs. Experimentally, we show
that the issue arises from the need to synchronize parallel threads that access the
shared memory location containing the aggregates via atomics. Our quantifica-
tion of the optimal performance motivates us to investigate how to minimize the
overhead of atomics. This results in different variants using atomics, where the best
variants almost mitigate the atomics overhead entirely. The results of a large-scale
evaluation reveal that our approach achieves a 3x speed-up over existing sort-based
approaches and up to 2x speed-up over hash-based approaches.

Keywords GPU-based DBMS · GPU-accelerated DBMS · GPU-libraries ·
Performance comparison

 * Bala Gurumurthy
 bala.gurumurthy@ovgu.de

1 University of Magdeburg, 39104 Magdeburg, Germany
2 German Center for Higher Education Research and Science Studies, 30159 Hannover, Germany
3 University of Salzburg, 5020 Salzburg, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-023-07424-2&domain=pdf

388 Distributed and Parallel Databases (2023) 41:387–409

1 3

1 Introduction

As data set sizes are bound to grow exponentially [1], computing common database
operations, such as join, aggregation, or selection, becomes highly time-consuming.
One well-established strategy to keep pace with the vast amount of data is utilizing
heterogeneous massively-parallel processing devices, such as GPUs [2–4].

In this paper, we address the problem of parallelizing a group-by operation
followed by a subsequent aggregate. A corresponding example query is shown
in Example 1. The rational for studying this problem is twofold. Firstly, compared
to other database operations, like joins, group-by operations are less affected by
the data movement problem. The data movement problem occurs whenever data is
shipped to or retrieved from a heterogeneous processing device. This may incur a
major cost factor [5–7]. Secondly, computing the grouping and aggregate is highly
compute intensive [8–10], and thus a perfect use case for parallelization.

Example 1 (SQL query with grouped aggregate)
SELECT count(*), l_returnflag
FROM lineitem
GROUP BY l_returnflag
ORDER BY l_returnflag;

However, massively parallelizing a grouping and subsequent aggregate is chal-
lenging – independent of the processing device. The reason is that the data of one
group is arbitrarily distributed over the data set and thus, one requires some kind of
synchronization between the threads. Relying on a GPU increases the difficulties, as
a GPU’s architecture is not designed for efficient inter-thread communication, which
is, e.g., done by atomic operations.

Generally, for grouped aggregation on GPUs, one relies either on sorting or hash-
ing [11] with empirical results suggesting that hash-based approaches are gener-
ally superior [10, 12]. In Fig. 1a, we depict the throughput of a recent hash-based

(a) (b)

Fig. 1 Throughput of different group-by approaches on a RTX 2080 Ti GPU and Intel Xeon CPU on 227
uniformly random input values. Note, the different scale of the y-axis

389

1 3

Distributed and Parallel Databases (2023) 41:387–409

grouped aggregation and a sorting based grouped aggregation (i.e., boost.compute).
We observe that selecting the best algorithm depends on the number of groups. For
reasonable group numbers between 102 and 106 , hashing is best. For smaller num-
bers, boost.compute has the highest throughput. Adding a third approach, a naive
sort-based aggregation using atomic operations (i.e., hardware-based), we observe
that its throughput increases monotonically until each value is assigned uniquely to
a group. From 106 distinct groups, it offers even the best performance. By contrast
in Fig. 1b, we depict the throughput when applying the same techniques to the CPU.
We observe firstly that the performance pattern is entirely different, with the atomic-
based approach being superior for a wide range of group numbers. Secondly, the
CPU versions are more than a magnitude slower, i.e., there is a substantial through-
put benefit one can invest to move data to the GPU, in case it not already resides
there.

Despite this remarkable result, our hypothesis is still that in current sort-based
solutions, all threads aggregate data simultaneously and block each other. This is
supposed to hold especially in the case of small group sizes.

Hence, one does not exploit the massive parallel power that modern GPUs offer.
To this end, we first investigate whether the synchronization overhead is the deci-
sive bottleneck. Then, we aim at proposing a solution that mitigates the synchroniza-
tion overhead, aiming at a throughput that is at least equal to—or even superior—to
a hash-based solution or boost.compute depending on the number of groups. Our
investigations result in the following contributions:

1. Our examination reveals that the synchronization step for merging partial group
results is an important bottleneck for sort-based aggregation.

2. We propose sort-based aggregation approaches that mitigate the synchronization
overhead by reducing the amount of issued atomics. For instance, one approach
requires 2 atomics per GPU thread independent of the data distribution. After-
ward, we examine how the number of concurrent threads and chunk sizes affect
the throughput of our approaches.

3. Our results suggest that atomics-based approaches are, in general, 3x faster than
boost.compute and up to 2x faster than hash-based approaches for a reasonable
number of groups, e.g., found in the TPC-H benchmark.

This is an extended version of [13] and, in addition to the original contributions, this
paper also features:

1. An investigation how latest advances in GPU’s architecture change the signifi-
cance of our contributions w.r.t. state-of-the-art hash-based approaches. The key
result is that the superiority of our atomic-based solution improves due to the
larger number of available HW-based atomics processing component in the latest
GPU generation.

2. An examination how different data distributions affect the performance of our
contributions. The results suggest that the distribution has only a marginal effect,
and thus our conclusions hold independent of the data distribution.

390 Distributed and Parallel Databases (2023) 41:387–409

1 3

3. We put the GPU results into context of results one can expect on present-day
CPUs. The key insight is that our GPU-based solutions are on average by one
order of magnitude faster.

The remainder of the paper is structured as follows. In Sect. 2, we present prelimi-
naries on the execution of atomics on GPUs and their performance. Afterward, we
introduce several alternative approaches for using atomics for a sort-based group-by
(Sect. 3). In Sect. 4, we detail our extensive evaluation using microbenchmarks and
a comparison of the full-fledged group-by operator with state of the art approaches.
Finally, we review related work in Sect. 5 and conclude in Sect. 6.

2 Atomics in GPU

In this section, we examine our hypothesis that sort-based group-by approaches suf-
fer from the issue that all threads request synchronization simultaneously leading to
lock congestion. To this end, we first investigate the execution of atomics in GPUs.
Then, we conduct an experiment to examine the validity of our hypothesis.

GPUs favor an improved throughput instead of latency [14]. A GPU architecture
contains multiple graphical processing clusters (GPCs), memory partition units
(MPUs) and an off-chip DRAM also known as the global memory. The cores access
global memory and execute atomics over them using the MPUs.

To ease memory bandwidth, there is also limited shared memory or local mem-
ory available that is only accessible within threads of a working group, which is sig-
nificantly faster than using the global memory. Note: we follow the OpenCL naming
conventions for the GPU components and implementation throughout this work. For
example, the execution of any one of our variants would take the input from global
memory (DRAM) and place them into registers. The threads within a work-group
compute partial aggregates and place them in the local memory and finally synchro-
nize them back into the global memory.

In this section, we provide an overview of these components involved in atomic
execution. Note, since the architecture of a GPU is a black box, we explicitely refer
to the work of Aamodt et al. and Glasco et al. [15, 16] for our work. We highly rec-
ommend these articles for more insights.

2.1 Architectural components involved in atomic execution

GPUs contain multiple Memory Partition Units (MPU) to handle upcoming
data access requests (see Fig. 2a). These MPUs favor coalesced memory accesses to
hide memory latency for parallel threads to improve efficiency. Furthermore, it is the
main component, where atomic operations are handled.

Whenever a thread encounters an atomic instruction, it sends an atomic com-
mand to the MPU. The command contains the target operation (add, sub or
exchange) and a payload value. This command is stored in a command buffer until

391

1 3

Distributed and Parallel Databases (2023) 41:387–409

the targeted shared data is fetched. Once fetched, the command buffer forwards
the data and the atomic command to the raster operation unit (ROP) for execution
(see Fig. 2b).

The forwarded atomic command is stored in an atomic command buffer—a FIFO
queue to ensure serialized atomics. Using this queue, the ROP updates the shared
result atomically. Finally depending on the type of atomics, the result is either
returned to the target SM (in case of increments, decrements or addition commands)
or simply stored in the global memory (min, max or exchange commands).

2.2 Profiling atomics

Next, we study the negative impact of atomics on group-by aggregations, determin-
ing an upper bound or the worst case. This shall indicate the general potential we
can expect when mitigating the synchronization overhead.

2.2.1 Upper bound of atomics throughput

Normally, increasing the concurrency in a GPU improves the throughput. In con-
trast, increasing concurrency with atomics creates a backlog of threads waiting to
access a memory location, adversely affecting throughput. Naturally, the severity of
this backlog increases with increasing concurrency. Specifically, the severity is high
when only one shared memory target is accessed, such as when the input contains a
single group or reduction operation. The throughput of such an execution
represents the worst case, allowing us to measure the maximum negative impact of
atomics on a GPU’s throughput. Here, we run reduce operation with increasing con-
current threads. In the case of atomics, we observe a major bottleneck due to which
throughput declines for high numbers of concurrent threads.

(a) (b)

Fig. 2 Components involved in global memory atomics [15]

392 Distributed and Parallel Databases (2023) 41:387–409

1 3

2.2.2 Simple arithmetic operation as optimal throughput

To quantify the impact of atomic execution, we also execute a naive arithmetic oper-
ation on the same location, which incurs no synchronization. As their overall flow
remains the same as atomics, this is a good way of quantifying the impact of atom-
ics. We consider both the global and local memory of GPU for our experiment. The
resultant throughput ranges across different GPU devices is plotted in Fig. 3, using
2
27 integers values as input. The results suggest three insights:

(1) Comparing Fig. 3a–d, the throughput of atomics in local memory in newer gener-
ations has significantly improved (instead of being 60 % slower on GTX 1050 Ti,
local atomics are only half as slow as local arithmetics on RTX 2080 Ti). A
similar trend can also be seen in server-grade devices, with A100 having better
local memory atomics. Overall, we see an increasing throughput with atomics
for each newer generation.

(2) The throughput difference for arithmetics and atomics is large with local atom-
ics having a penalty of 2.0x to 2.6x on commodity GPUs and global atomics
with up to 1.75x on GTX 1050 Ti and up to 77x on RTX 2080 Ti compared to
their simple arithmetic counterparts. In case of server-grade devices, the V100
shows a performance difference of 3x. Hence, we need to mitigate this atomics
penalty to unleash the full parallel power of present-day GPUs. Notably, the

(a) (b)

(c) (d)

Fig. 3 Throughput for naive atomics and arithmetics on four different GPUs. More details on the GPU
specifications are summarized in Table 1

393

1 3

Distributed and Parallel Databases (2023) 41:387–409

A100 features improved local memory atomics, having even nearly the same
performance as arithmetics. It seems that this bottleneck—though still being
true for operations on global memory—will be resolved in all newer versions.

(3) When using atomics, the best performance is reached with a small num-
ber of concurrent threads. In case of commodity GPUs (GTX 1050 Ti and
RTX 2080 Ti) we see the atomics throughput flat-line after thread count reaches
16. With V100 and A100, the maximum atomic performance is reached at 128
and 256 thread counts respectively. Therefore, increasing the thread count after
this critical threshold may reduce performance. This is the expected undesired
behavior further indicating that one cannot exploit the massive parallel power
GPUs offer.

These results may, at first sight, suggest relying on local atomics rather than on
global ones. Indeed, local atomics are faster as only a limited set of threads access a
local memory space. However, relying on local atomics would require an additional
synchronization step when combining the partial results in the local shared memory
with the final result. Furthermore, the small size of local memory limits its use for
group-by aggregation.

3 Atomics for sort‑based aggregation

As we can infer from the previous section, multiple components are involved in
atomic execution, which incurs considerable overhead. Therefore, minimizing the
number of atomics issued should significantly improve the overall throughput. To
this end, we first present the naive atomic aggregation and, afterward, introduce
optimizations that we apply, which aim at reducing the amount of issued atomic
operations.

3.1 Sort‑based aggregation on a GPU

A traditional (sequential) sort-based aggregation sorts the grouping attribute to iden-
tify the groups inside. This mechanism has two phases: The first phase sorts the
input into clusters according to the group keys, which form a sequence of groups.
The second pass sequentially aggregates the groups present in the sorted input. To
parallelize this processing for GPUs, additional phases are needed, as explained in
the example of a COUNT aggregation below.

Once the data is sorted, aggregating the groups within a GPU requires three addi-
tional phases [11]: map, prefix-sum and aggregate (four, if we consider sorting).
First, the map phase compares two consecutive sorted-input values and returns 0 in
case they match; 1 otherwise. As shown in the example in Fig. 4, this phase marks
the group boundaries of a given sorted input (with a 1).

Next, the exclusive prefix-sum computes the target aggregate location for each
group. As these two phases are well known on a GPU, we use standard operators
for them. The final aggregation phase aggregates the input values according to the

394 Distributed and Parallel Databases (2023) 41:387–409

1 3

target positions from the prefix-sum. For this phase, our atomic-based aggregation is
used to compute aggregated group-by results. We specifically explore atomics as it
is the critical function necessary to aggregate the results in an input.

3.2 Minimizing atomics using private space

The naive sort-based aggregation issues one atomic operation per input value, i.e.,
the amount is equivalent to the data set size. Considering the processing of atomics
on the GPU, it is reasonable to reduce the contention of threads by a more complex
operator design. To this end, we exploit the fact that the group values inside a sorted
array are sequential so that all values of a group appear after one another before
the next group starts. Now, imagine the following hypothetical scenario, where we
chunk the sorted data s.t. all values of a single group are assigned to a single thread.
Hence, no synchronization issues can occur, removing the need for atomic opera-
tions and exploiting the full parallelism of GPUs. Of course, determining such a
perfect chunking creates large overhead and leads to load imbalances. Nevertheless,
as we will see, our solutions get fairly close to this ideal scenario.

The distinction of when and how to synchronize the partial result of a thread
allows proposing two algorithms: (1) using a private aggregate variable and (2)
using a private aggregate array. Both versions are shown in Fig. 5, where two threads
aggregate their own chunk of three values.

The execution flow of both variants is roughly the same. In both, a thread sequen-
tially reads its chunk of the prefix-sum and aggregates the corresponding input val-
ues within its private space until it encounters a group boundary. However, the vari-
ants differ in handling their partial aggregates and thus in the number of required
atomics.

Single private variable result buffer A thread using a private variable as a
result buffer conducts an atomic operation whenever it encounters a group bound-
ary, because it only buffers the aggregate of a single group. Therefore, this variant
issues as many atomics as there are groups in its input chunk. As a result, the best
number of required atomics is 1, in case there only is a single group per thread.
The exact number of atomics and the time when they are issued depends on the

Fig. 4 Three-phase atomic
COUNT aggregation

395

1 3

Distributed and Parallel Databases (2023) 41:387–409

data distribution. This is important, as this leads to the desired effect that, assuming
group boundaries are evenly distributed, the number of concurrent atomics declines.

Private array result buffer variant Instead of using a single variable as buffer, this
variant uses a private array to buffer the aggregates of all groups it processes. In the
private array variant, a thread sequentially traverses its input and aggregates into the
current result buffer position until a group border is found. Then, the next position
is used for the next group aggregate. Since the arrays in a GPU are initialized stati-
cally, the result buffer must have the same size as the input data to cover the case
that all input values belong to a distinct group. This limits the chunk size when the
array is stored in local memory.

Once aggregated, the threads propagate their private result into the shared
memory containing the overall result. To further mitigate the negative effects of
excessive atomics usage, we conduct another optimization reducing the number of
required atomics per thread to exactly 2. This makes the number of required atomics
independent of the data distribution depending only on the number of concurrent
threads.

It works as follows: As the input data is sorted, synchronization issues may only
arise for the first and the last group processed by a thread. The first group may have
already begun in the prior thread’s data input. The final group may continue in the
next thread’s data input. All other groups are only processed within the current
thread. Thus, the approach pushes these result to global memory without synchroni-
zation having the optimal performance shown in Fig. 3 (global arithmetic).

4 Experiments

In this section, we evaluate our approaches using micro benchmarks and comparison
to state-of-the-art competitors. For both parts, we use the same setup: Since the GPU
hardware has direct influence on atomics, we profile our atomic-based aggregation
on four GPU versions with varying degrees of usage—NVIDIA GTX 1050 Ti,

(a) (b)

Fig. 5 Using private space in aggregation phase

396 Distributed and Parallel Databases (2023) 41:387–409

1 3

NVIDIA RTX 2080 Ti, NVIDIA V100 and NVIDIA A100. The device details are
given in Table 1. We implement GPU driver code in C++ with variants in OpenCL1.
All our experiments are executed on a Linux machine compiled with GCC 6.5 and
OpenCL 2.1. The input dataset contains 227 (due to boost.compute’s data size limi-
tation) randomly generated integers representing our group-by keys. While for the
micro benchmark and the first comparison, data is presorted (i.e., sorting time is dis-
regarded), the unordered data is used for fairness for the final competitor compari-
son. Each measurement is repeated 100 times and we present the average throughput
for all variants. For brevity, we present results for count aggregation, but the result
also holds for different aggregate functions and also data sizes.

4.1 Micro benchmark

The parameters affecting performance are (1) thread size per work group and (2)
chunk size of input data per thread. To this end, we conduct experiments to examine
their influence and find an optimal configuration used in the remainder.

4.1.1 Examining optimal thread size for naive atomics

In this experiment, we identify the optimal thread size per workgroup for naive
atomics serving as the baseline. Notably, the implementation of the naive atomics
variant on global memory is straightforward (i.e., the aggregation step in Fig. 4 uses
an atomic operation on the global memory). However, the atomic variant on local
memory needs an additional merging step. This step is to merge the partial aggre-
gates inside the workgroup’s local memory into the final result in the global mem-
ory. In this naive local variant, we perform merging similar to the approach used for
our private array variant, where only the first and last positions are merged atomi-
cally. The throughput ranges for this experiment across GPU devices is depicted in
Fig. 6.

Though, the specific throughput varies highly among the GPUs as expected, the
overall result pattern is uniform across all devices. Concisely, the primary observa-
tion is that we observe the best throughput for large input groups, when spawning

Table 1 Device information of the GPUs used in our experiments

Device Type Architecture Compute units Local memory
size (KiB)

Global
memory size
(GiB)

GTX 1050 Ti Commodity Pascal 6 48 3.939
RTX 2080 Ti Commodity Turing 68 48 10.76
V100 Server-grade Volta 80 48 31.75
A100 Server-grade Ampere 108 48 39.5.59

1 Code available here: https:// git. iti. cs. ovgu. de/ bala/ DBPV/-/ tree/ master/ Dispa tcher/ openC LDisp atcher.

https://git.iti.cs.ovgu.de/bala/DBPV/-/tree/master/Dispatcher/openCLDispatcher

397

1 3

Distributed and Parallel Databases (2023) 41:387–409

the maximum number of threads. This holds for the local and global atomics variant.
The rational is that multiple threads efficiently hide memory latency. Furthermore, a
higher number of groups (i.e., a larger spread of target locations in memory) create
less concurrency on atomic writes. Next, our results also clearly suggest an improve-
ment from using local memory as cache for partial aggregates. The magnitude of
the improvement is however device specific, ranging from approximately a factor of

(b)(a)

(d)(c)

(f)(e)

(h)(g)

Fig. 6 Impact of varying group and thread sizes on the baseline variants. The left side contains the
throughput of the local atomics variant, the right side the global atomics variant

398 Distributed and Parallel Databases (2023) 41:387–409

1 3

2 for the GTX 1050 Ti and A100 to almost a factor of 5 for the RTX 2080 Ti. The
improvement, thus, is smaller, as the pure speed difference of global and local GPU
memory in isolation promises. The reason is the requirement of the extra merging
step in the local atomics variant, which significantly reduces the overall throughput.
Nevertheless, in any case, the improvement is significant.

As an overall result, the best thread sizes are 256 for GTX 1050 Ti & V100 and
1024 for RTX 2080 Ti & A100, which we then use to compare naive atomics with
our approaches and the competitors.

4.1.2 Best thread and chunk size for atomic variants

In addition to thread sizes, our variants—using a private array/variable (either in
local or global memory)—are also influenced by the number of input values per
thread (chunk size). Hence, we experimentally study the impact of this parameter
on the throughput of our variants considering different chunk sizes and number of
threads. To this end, we average the variants’ throughput over all tested number of
groups and plot the results in Fig. 7.2

In Fig. 7, we depict the heatmap that describes the impact of varying chunk
and thread sizes on the throughput for all four private array/variable variants and
all four GPU devices. Part (a) of Fig. 7 contains the results of all variants for the
GTX 1050 Ti and part (b) contains the results for the RTX 2080 Ti, etc.

Universally, across all devices, we see that the private variable variant works bet-
ter with medium-sized chunks (i.e., 22 − 2

7). This is in opposition to the results of
the naive atomics variants, where large chuck sizes are beneficial. Such a poor per-
formance behavior with large chunk sizes for our variants is because of a bottleneck
within the memory controller. The bottleneck arises due to too many requests from
threads that fetch input data from global memory and from the execution of atomic
operations. Since the MPU incurs coalesced accesses, fetching bigger chunks of data
for multiple threads requires multiple cycles, which degrades performance. The neg-
ative impact of this effect increases for the variants running in local memory. This
explains why the local memory variants prefer very small chunk sizes (21 − 2

3),
whereas global memory benefits from slightly larger ones (22 − 2

7).
An additional interesting observation is that there is only a small difference

between using a private variable and a private array to store intermediate results. On
the contrary, the throughput behavior changes stronger w.r.t. devices, since there is a
wide spectrum of well-performing variants on GTX 1050 Ti, which shrinks for the
RTX 2080 Ti. This indicates that variants are sensitive to the underlying hardware
and need a smart variant tuning procedure [17].

2 Note that not all combinations of chunks and threads are possible as they cross the physical limit of
local memory that can be allocated.

399

1 3

Distributed and Parallel Databases (2023) 41:387–409

4.2 Comparative experiments

Based on the inferences above, now we can set the tunable parameters for each of our
variants (and devices) to its optimal value. With this optimal setup, we can perform
experiments to compare against state-of-the-art systems. Our experiments first study
the performance impact across different variants. Next we compare against other state-
of-the-art techniques (hashing and boost.compute’s sort-based aggregation), which we
then test in the following experiment for different data distributions and, finally, com-
pare our GPU variants against CPU variants.

4.2.1 Comparison of variants

To compare against other baselines, we first identify the best variant of our
approaches per device. To this end, we compare the throughput of different variants
with their respective optimal parameter values. The results are shown in Fig. 8.

(a) (b)

(c) (d)

Fig. 7 Impact of varying chunk and threads sizes on the throughput for all four private array/variable
variants and all four GPU devices

400 Distributed and Parallel Databases (2023) 41:387–409

1 3

Our results show that the global array and local variable variants have higher
throughput than the naive atomic variants for almost all group sizes. The only excep-
tion from this observation occurs for a large number of groups.

When comparing the GPU generations, we see the trend that throughput increases
with newer versions of GPU. However, we also see that each device has its own
throughput profile for variants. First in GTX 1050Ti, we see that global array is the
fastest performing variant until the group size of 105 , afterwards, naive local atom-
ics takes over. The drop in global array performance is due to increasing number
of atomic inserts from threads to the global memory. On the contrary, this is not
a problem for naive local atomics as the push down from local to global has less
atomic inserts. The variant also further benefits from local memory atomics in case
of larger group sizes.

Next with RTX 2080 Ti, we see that local variable atomics is the fastest, except
for group size 108 where again local atomics takes over. The change in variant per-
formance can be inferred from the improvement in local memory bandwidth (cf.
Fig. 3). The same inference can be made for the high throughput ranges for the local
variable variant. Here, atomics over local memory is faster than accesses to global
memory. The variant, which is a mix of these high bandwidth accesses, gives the
best throughput ranges.

Finally, with the server-grade devices, we again see the local atomics to be the
fastest performing variants altogether. With closer inspection, we see the throghput

(a) (b)

(c) (d)

Fig. 8 Performance comparison of atomic variants

401

1 3

Distributed and Parallel Databases (2023) 41:387–409

for the variant improves with groups for V100 whereas A100 seems to be consist-
ent across the group sizes. We beleive that V100 behaves the same as RTX 2080Ti
but runs with bigger bandwidth rates, as their architectures are similar (Volta and
Turing, respectively). However for A100, local memory atomics have a minor
impact leading to a nearly constant throughput range.

In summary, our variants reach a speed-up of 6x–12x compared to the naive
global memory atomics and a speed up of 1.5–2.6x compared to the naive local
memory atomics. Overall, we also see only a small improvement using local mem-
ory for our variants on the GTX 1050 Ti, whereas with the newer devices we see
local memory atomics improving significantly. This is consistent with the through-
put results from local and global memory atomics given in Sect. 2.2. Finally, for
very high amounts of groups, the overhead of internal synchronization for the pri-
vate aggregate variants does not pay off. Hence, naive local atomics perform best in
this case.

4.2.2 Comparison with hashing

As a next evaluation, we compare our performance with other state-of-the-art mech-
anisms. To this end, our best-performing atomic variants now include a sorting step
(using boost.compute’s sorting mechanism) before the aggregation step. We com-
pare these against a sort-based aggregation of boost.compute (using sort_by_key()
and reduce_by_key() functions, which we call boost.compute in the graph) and the
hash-based aggregation by Karnagel et al. [12] (called Hashing). While the hash-
based aggregation uses a pre-aggregation step in local memory up to 5120 groups,
for bigger group sizes that do not fit local memory, the hash table is directly stored
and accessed in global memory. As an additional indicator of performance bounda-
ries, we also include the throughput for naive sorting for comparison to study the
impact of the aggregation phases.

Our results in Fig. 9 reveal that our complex atomic variants mostly lead to the
best performance. Also comparing naive sorting with atomic aggregation, we see
that aggregation has a significant impact on throughput. Nearly 50 % to 75 % of the
execution comes from executing atomics. On the GTX 1050 Ti, we reach on aver-
age 20 % speed-up over naive global atomics and boost.compute, while it reaches
nearly 2x the speed of hash-based aggregation. We see a similar speed-up on the
RTX 2080 Ti except that our variant using a local variable reaches up to 1.25x the
performance of boost.compute. Interestingly, the state-of-the-art hash-based aggre-
gation delivers its best performance for groups numbers between 1000 and 100,000.
Here, the result pattern clearly differs from the result pattern of all variants using
atomics. However, only on RTX 2080 Ti hashing is superior to the best atomics var-
iant. This is because a smaller number of groups leads to a synchronization overhead
when accessing the shared global hash table concurrently and a larger number of
groups increases the hash table beyond a manageable size. Our experimental results
further suggest two additional insights. First, the throughput gains on server GPUs
(i.e., V100 & A100) are larger than those gained on commodity GPUs. We attribute
this to the increased number of atomic operations/sec that (more expensive) server
GPUs support. Second, on server GPUs, the technical progress between V100 and

402 Distributed and Parallel Databases (2023) 41:387–409

1 3

A100 of about three years has notable impact on the throughput of our atomic vari-
ants. Specifically, we observe an increase of about 50 percent. Instead, the through-
put of the hashing-based approach remains almost the same. That is, technical pro-
gress appears to increases the benefit of our solutions.

So far, we saw the performance of our variants with only random distribution.
Next, we expand our evaluation with different data distributions.

4.2.3 Comparison across data distributions

In the previous section, we compared the different approaches with varying group
sizes generated using random distribution. In this section, we expand our experi-
ments by comparing the performance of our variants and other techniques with
four different data distributions. Once again, we consider the input to be 227 inte-
ger values. The distributions considered are: heavy hitter (90 % of input is a sin-
gle group, total groups 6710886), random (10001 groups), exponential(lambda =
0.05, 6551904 groups), weibull (a=2.0 & b=4.0, 133958786 groups) and normal
(134217733 groups). The corresponding throughput ranges across the different
GPU devices is given in Fig. 10.

First, we can see a similarity between the results of RTX 2080 Ti and V100
while the other two devices behave differently. The similarity in the results

(a) (b)

(c) (d)

Fig. 9 Overall comparison against state-of-the-art competitors. The performance of atomic variants now
includes sorting

403

1 3

Distributed and Parallel Databases (2023) 41:387–409

confirms that the underlying architecture for RTX 2080 Ti and V100 are quite
similar except their bandwidth.

Looking at the variants individually, naive global atomics performs poorly
with heavy hitter & random distribution, but reaches better throughput ranges—
comparable even to other variants for the remaining distributions. Better through-
puts are only reached for larger groups in the input data. As we saw earlier, with
larger groups, atomics congestion in the system is reduced—leading to a faster
aggregation of results.

Additionally, naive atomics for heavy hitter & random distribution in
GTX 1050 Ti is considerably faster than running on other devices. This is mainly
because of the smaller internal bandwidth in the device. With newer generations,
this bandwidth’s impact is clear.

Next, with global variable, local variable and global array variants, the data dis-
tribution has a smaller impact. Again, depending on the number of groups present in
the input, we see slight variations in the performance. However, there is no signifi-
cant difference in the throughput ranges.

(a) (b)

(c) (d)

Fig. 10 Performance of aggregation techniques across various data distributions

404 Distributed and Parallel Databases (2023) 41:387–409

1 3

The local array variant has a drop in performance with weibull and normal distri-
butions across all the devices. Again, looking at the number of groups, we see that
there are more than 99 % of the input only unique values. This again explains the
poor behavior of the variant as the number of inserts to the global memory is high,
leading to multiple pushes into the global memory, thereby affecting performance.

Compared to our variants, the other techniques boost.compute & hashing fair
poorly in terms of throughput. boost.compute shows only little impact due to dis-
tributions, as previously seen (cf. Fig. 9). Such behavior is because of the internal
aggregation function used that follows a non-atomics based aggregation, which is
unaffected by groups. On the contrary, hashing is affected by both the distributions
as well as the device it is run on. We can see that distributions with large groups
sizes leads to poor throughput performance of the hashing technique, which is
expected. In A100, hashing has the worst throughput across all devices. We believe
this is mainly due to the random access of locations/buckets for both insertion and
aggregation. Here, the device cannot pack the values together that they insert and
aggregate one data at a time, leading to the poor performance.

Furthermore, the results for server-grade GPUs are consistent with each other in
terms of their relative performance. The throughput ranges are higher for A100 com-
pared to V100 due to its higher CUDA core count. However, in the case of commod-
ity GPUs, hashing is comparatively faster for RTX 2080 Ti than for GTX 1050 Ti
when subjected to random distribution.

4.2.4 Comparison with CPU

Due to a high degree of parallelism, GPUs are surely expected to have a higher
throughput than a CPU. Nevertheless, with our experiments comparing all our atom-
ics variants on GPUs to their counterpart on CPUs, we intend to study two objec-
tives. Firstly, we want to examine whether our approaches and the results presented
above are GPU specific, or whether one can generalize them. Secondly, we examine
whether there is a significant improvement of using a GPU compared to a CPU, i.e.,
whether buying special hardware pays off.

To compare against the CPU, we run the same atomic-based aggregation and
hash-based techniques in the Intel-Xeon Gold 5220R CPU (using all cores) and
compare its throughput against the A100 GPU. That is we compare the newest GPU
we consider to the latest CPU model, we have at hand.

As we see in Fig. 11, the throughput ranges of a GPU is in the order of 10x faster
than that of a CPU. Additionally, the throughput of aggregation using a GPU has
a clear difference in throughput across atomics and other techniques, whereas the
hash-based and boost.compute-based aggregation in CPU are competitive with each
other. In general, aggregation runs orders of magnitude faster, even with atomics,
due to the efficient serialization of aggregation from parallel threads. Furthermore,
we see a significant impact of the aggregation step, as the throughput drops signifi-
cantly when comparing the naive sorting with sorted aggregation.

405

1 3

Distributed and Parallel Databases (2023) 41:387–409

4.3 Discussion of core results

In summary, we observe that for the common use case of up to some hundred
groups,3 a sort-based aggregation using atomics is the superior variant to be used.
This is remarkable, as usually hashing is the best variant [10, 12]. We argue for a
change of this general assumption for the following three reasons:

• There are a lot of circumstances where presorted data is grouped (due to sort-
merge join or a clustered index) or data has to be sorted after executing the
grouping (due to an order-by statement). In these cases, it would be the natural
option to also employ a sort-based grouping.

• Although the sorting time dominates the throughput of our variant in Fig. 9
(making up 80 % of the execution time), it is still the most stable strategy on the
GPU across the group sizes. The reason is a more cache-friendly access pattern
and a better fit for the SIMT processing model of the GPU [18].

• Due to increased local memory performance of modern GPUs, the overhead of
atomic operations can be effectively mitigated. Our results have also shown that
with newer GPU versions, this performance advantage even increases.

As a result, optimizing sort-based group-by operators is a reasonable future work
not only for GPUs, but also CPUs.

4.4 Discussion of threats to validity

The core results presented above are primarily supported by empirical observations,
i.e., experiments comparing our solutions to the state-of-the-art on present-day hard-
ware. This method naturally faces threats to validity. This holds for the global find-
ings and specifically for the identified break-even points. Therefore, to strengthen

Fig. 11 Throughput comparison of grouped aggregation in CPU (Intel Xeon) and GPU (A100)

3 For instance, 11 out of 16 queries in the TPC-H do group-by with results less than 500 groups. Seven
of them operate on less than 10 groups.

406 Distributed and Parallel Databases (2023) 41:387–409

1 3

validity of our results, we discuss the most relevant threats next. The threats are
competitor implementation, used sorting technique, and programming interface.

4.4.1 Competitor implementation

In our study, we rely on the publicly available implementation of the hashing
approach of Karnagel et al. [12] as state-of-the-art competitor. This approach uses a
pre-aggregation in local memory for all use cases where the number of groups fit the
local memory. Then, in a second step, the final result is computed by merging the
local pre-aggregates in global memory. On the hardware that we use, this is possible
until a group cardinality of 5120 groups. The rational for this two-step approach is
that any work done in local memory is significantly faster than in global memory.
When having more groups, one stores the hash table in global memory only.

Our experiments suggest that there is only a small benefit of using local mem-
ory. The reason is that the bottleneck is the final aggregation step in global memory,
which is issuing too many atomic operations. Thus, in our plots, we do not distin-
guish between both variants.

We hypothesize that all work-groups, aggregating over the same amount of
data, approximately finish simultaneously in local memory. Then, they simultane-
ously want to propagate their local results to the global memory. Since the number
of groups they want to write to is small, they all access the same or similar mem-
ory locations causing heavy congestion of concurrent write accesses. Logic coun-
termeasures within the approach of Karnagel et al. [12], such as using a different
hash function per work group provoking a heavier distribution of accessed memory
locations, do not shown an observable improvement. The same holds for trying to
balance concurrent access (e.g., not all work groups start propagating their result
starting with the first group). Nevertheless, it may be possible with more fine-tuned
hashing techniques that the threshold of when sorting beats hashing can change.
This, however, would mean to change core components of the approach of Karnagel
et al. [12], which is, according to understanding, a novel approach.

4.4.2 Used sorting technique

Our contributions aim at fast merging of sorted runs to efficiently compute aggregates.
Despite of this, the used sorting technique has a pivotal impact on the overall perfor-
mance. In our experiments, we chose the best sorting technique available in OpenCL.
Generally, any sorting technique can be used. Assuming there is a more efficient sorting
technique, e.g., proposed in the future work or in NVIDIA-specific CUDA, this would
strengthen the impact of our contribution. That is, the overall throughput of our sort-
based aggregation would depend even more on the right atomic variants to be used, as
the bottleneck of sorting is reduced. Therefore, we argue that our results of investigat-
ing the best atomic aggregation variant hold independent of the sorting technique and
potential future improvements of sorting techniques.

407

1 3

Distributed and Parallel Databases (2023) 41:387–409

4.4.3 Programming interface

Another impact factor to the reported performance is the used programming inter-
face. Our variants are implemented using OpenCL, which is known to be portable,
but also lacks performance compared to NVIDIA-specific CUDA. We make this
choice since (1) many libraries have been written in OpenCL, which gives a variety
of implementation alternatives to choose from and (2) also the competiting hashing
technique has been implemented in OpenCL. Of course, CUDA-based implementa-
tions are valid alternatives (e.g., the implementations of the CUB library) and, thus,
are an important future work.

5 Related work

Since the usage of GPUs as general-purpose accelerators, many researchers use
GPUs to accelerate DBMS operations. In the following, we list work that closely
relates to us.

Modeling performance of atomics Hauck et al. propose to buffer atomic updates
to reduce contention in a reduction [19]. Hoseini et al. explore the impact for atom-
ics on CPUs [20]. Our approach combines these two approaches in exploring atom-
ics for aggregation in modern GPUs. Our results show the benefits of using atomics
for aggregation in GPUs.

Sort-based aggregation on GPUs Sort-based aggregation on a GPU was first
devised by He et al. [11]. A similar method is followed by Bakkum et al. [2] using
CUDA in SQLite. However, our result shows that their additional passes over the
data cause more data access costs than using atomics. Instead of these passes, our
work uses atomics to reduce the number of data access.

Hash-based aggregation on GPUs Alternatively to sort-based aggregation,
hashing can be used for computing aggregates. Hence, there are several related
approaches that tune hash-based aggregation for GPUs [10, 21–23]. However, our
results show that random access in hashing degrades performance whereas sort-
based aggregation has uniform access assisting in improving performance.

Non-grouped aggregation on GPUs Simple aggregation has the same execution
pattern as grouped aggregation, where a single output location is accessed by all
threads. To mitigate contention, there are various approaches [12, 24].

6 Conclusion

GPUs with their massively parallel processing have been used for more than a dec-
ade now to accelerate compute-intensive database operators. One such compute-
intensive database operator is a grouped aggregation. Although, up to now, hashing
is the predominant technique for grouped aggregations even on the GPU, a sort-
based grouped aggregation is an important alternative to be considered—especially
with an improved performance of atomics.

408 Distributed and Parallel Databases (2023) 41:387–409

1 3

In this paper, we investigate how far we can tune a sort-based grouped aggrega-
tion using atomics in the aggregation step. To this end, we design two alternative
variants using a private variable or array and investigate their performance improve-
ment when using local or global memory followed by an atomic-based propagation
of private aggregates.

Our results show that our variants speed up grouped aggregation compared to a
naive usage of atomics by a factor of 1.5 to 2, when well configured. Furthermore, a
sort-based grouped aggregation using atomics can outperform a hash-based aggre-
gation by 1.2x to 2x for most used group sizes.

Acknowledgements This work was partially funded by the DFG (Grant nos. SA 465/51-2 and PI
447/9-2).

Author contributions Conceptualization: BG, DB, MS; Methodology: BG, DB, MS, TP, GS; Formal
analysis and investigation: BG, DB, MS, TP, GS; Writing—original draft: GB, DB; Writing—review and
editing: BG, DB, MS, TP, GS; Funding: TP, GS; Supervision: DB, GS.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 2, 171–209 (2014)
 2. Bakkum, P., Skadron, K.: Accelerating SQL database operations on a GPU with CUDA. GPGPU

94–103 (2010)
 3. Govindaraju, N.K., Lloyd, B., Wang, W., Lin, M., Manocha, D.: Fast computation of database oper-

ations using graphics processors. In: SIGMOD, pp. 215–226 (2004)
 4. Wu, H.: Acceleration and execution of relational queries using general purpose graphics processing

unit. In: GPGPU (2015)
 5. Arefyeva, I., Broneske, D., Campero, G., Pinnecke, M., Saake, G.: Memory management strategies

in CPU/GPU database systems: a survey. In: BDAS, pp. 128–142. Springer, New York (2018)
 6. Becher, A., Bg, L., Broneske, D., et al.: Integration of FPGAs in database management systems:

challenges and opportunities. Datenbank-Spektrum 18, 145–156 (2018)
 7. Breß, S., Funke, H., Teubner, J.: Robust query processing in co-processor-accelerated databases. In:

SIGMOD, pp. 1891–1906 (2016)
 8. Boncz, P., Neumann, T., Erling, O.: TPC-H analyzed: hidden messages and lessons learned from an

influential benchmark. In: TPCTC, pp. 61–76 (2013)
 9. Gurumurthy, B., Broneske, D., Pinnecke, M., Durand, G.C., Saake, G.: SIMD vectorized hashing

for grouped aggregation. In: ADBIS, pp. 113–126 (2018)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

409

1 3

Distributed and Parallel Databases (2023) 41:387–409

 10. Behrens, T., Rosenfeld, V., Traub, J., Breß, S., Markl, V.: Efficient SIMD vectorization for hashing
in OpenCL. In: EDBT, pp. 489–492 (2018)

 11. He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N.K., Luo, Q., Sander, P.V.: Relational query
coprocessing on graphics processors. ACM Trans. Database Syst. 34(4), 1–39 (2009)

 12. Karnagel, T., Müller, R., Lohman, G.M.: Optimizing GPU-accelerated group-by and aggregation.
In: ADMS, pp. 1–12 (2015)

 13. Gurumurthy, B., Broneske, D., Schäler, M., Pionteck, T., Saake, G.: An investigation of atomic syn-
chronization for sort-based group-by aggregation on gpus. In: ICDE Workshops 2021, pp. 48–53.
IEEE (2021)

 14. Owens, J.: Gpu architecture overview. SIGGRAPH 10 (2007)
 15. Aamodt, T.M., Fung, W.W.L., Rogers, T.G.: General-purpose graphics processor architectures.

Synth. Lect. Comput. Architect. 13(2), 1–140 (2018)
 16. Glasco, D.B., Holmqvist, P.B., Lynch, G.R., Marchand, P.R., Mehra, K., Roberts, J.: Cache-based

control of atomic operations in conjunction with an external ALU block. Google Patents. US Patent
8135926 (2012)

 17. Rosenfeld, V., Heimel, M., Viebig, C., Markl, V.: The operator variant selection problem on hetero-
geneous hardware. In: ADMS (2015)

 18. Kim, C., Kaldewey, T., Lee, V.W., Sedlar, E., Nguyen, A.D., Satish, N., Chhugani, J., Di Blas, A.,
Dubey, P.: Sort vs. hash revisited: fast join implementation on modern multi-core CPUs. Proc.
VLDB Endow. 2(2), 1378–1389 (2009)

 19. Hauck, M., Paradies, M., Fröning, H.: Software-based buffering of associative operations on ran-
dom memory addresses. In: IPDPS, pp. 943–952 (2019)

 20. Hoseini, F., Atalar, A., Tsigas, P.: Modeling the performance of atomic primitives on modern archi-
tectures. In: ICPP, pp. 1–11 (2019)

 21. Tome, D.G., Gubner, T., Raasveldt, M., Rozenberg, E., Boncz, P.A.: Optimizing group-by and
aggregation using GPU-CPU co-processing. In: ADMS, pp. 1–10 (2018)

 22. Yuan, Y., Lee, R., Zhang, X.: The yin and yang of processing data warehousing queries on GPU
devices. Proc. VLDB Endow. 6(10), 817–828 (2013)

 23. Lee, R., Zhou, M., Li, C., Hu, S., Teng, J., Li, D., Zhang, X.: The art of balance: a RateupDB expe-
rience of building a CPU/GPU hybrid database product. Proc. VLDB Endow. 14(12), 2999–3013
(2021)

 24. Lauer, T., Datta, A., Khadikov, Z., Anselm, C.: Exploring graphics processing units as parallel
coprocessors for online aggregation. In: DOLAP, pp. 77–84 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Novel insights on atomic synchronization for sort-based group-by on GPUs
	Abstract
	1 Introduction
	2 Atomics in GPU
	2.1 Architectural components involved in atomic execution
	2.2 Profiling atomics
	2.2.1 Upper bound of atomics throughput
	2.2.2 Simple arithmetic operation as optimal throughput

	3 Atomics for sort-based aggregation
	3.1 Sort-based aggregation on a GPU
	3.2 Minimizing atomics using private space

	4 Experiments
	4.1 Micro benchmark
	4.1.1 Examining optimal thread size for naive atomics
	4.1.2 Best thread and chunk size for atomic variants

	4.2 Comparative experiments
	4.2.1 Comparison of variants
	4.2.2 Comparison with hashing
	4.2.3 Comparison across data distributions
	4.2.4 Comparison with CPU

	4.3 Discussion of core results
	4.4 Discussion of threats to validity
	4.4.1 Competitor implementation
	4.4.2 Used sorting technique
	4.4.3 Programming interface

	5 Related work
	6 Conclusion
	Acknowledgements
	References

