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Abstract
Truss decomposition is a popular notion of hierarchical dense substructures in 
graphs. In a nutshell, k-truss is the largest subgraph in which every edge is contained 
in at least k triangles. Truss decomposition aims to compute k-trusses for each possi-
ble value of k. There are many works that study truss decomposition in deterministic 
graphs. However, in probabilistic graphs, truss decomposition is significantly more 
challenging and has received much less attention; state-of-the-art approaches do not 
scale well to large probabilistic graphs. Finding the tail probabilities of the number 
of triangles that contain each edge is a critical challenge of those approaches. This 
is achieved using dynamic programming which has quadratic run-time and thus not 
scalable to real large networks which, quite commonly, can have edges contained in 
many triangles (in the millions). To address this challenge, we employ a special ver-
sion of the Central Limit Theorem (CLT) to obtain the tail probabilities efficiently. 
Based on our CLT approach we propose a peeling algorithm for truss decomposi-
tion that scales to large probabilistic graphs and offers significant improvement over 
state-of-the-art. We also design a second method which progressively tightens the 
estimate of the truss value of each edge and is based on h-index computation. In con-
trast to our CLT-based approach, our h-index algorithm (1) is progressive by allow-
ing the user to see near-results along the way, (2) does not sacrifice the exactness of 
final result, and (3) achieves all these while processing only one edge and its imme-
diate neighbors at a time, thus resulting in smaller memory footprint. We perform 
extensive experiments to show the scalability of both of our proposed algorithms.
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1  Introduction

An important category of problems in network analysis is detecting dense or cohe-
sive components in graphs. Studying cohesive subgraphs can reveal important infor-
mation about connectivity, centrality, and robustness of the network. Among differ-
ent notions of cohesive subgraphs in the literature, the notion of truss is particularly 
suited to extracting a hierarchical structure of cohesive subgraphs [1].

In deterministic graphs, the k-truss of a graph G is defined as the largest subgraph 
in which each edge is contained in at least k triangles (or (k − 2) in some works). 
The highest value of k for which an edge is part of the k-truss is called truss value 
of that edge. The collection of all k-trusses for different values of k forms the truss 
decomposition of the graph. This is a hierarchical structure because k-truss is con-
tained in (k − 1)-truss for all k > 1 . Truss decomposition has been used in several 
important applications such as visualization of complex networks [2] and commu-
nity modeling [3]. Truss decomposition can also be used to speed up the process of 
discovering maximum cliques since each k-clique should be in a k-truss.

Probabilistic truss decomposition naturally extends all the applications of deter-
ministic truss decomposition to probabilistic graphs. Another application described 
in [4] is task-driven team formation in probabilistic social networks. It is thus impor-
tant to compute truss decomposition in probabilistic graphs. While truss decom-
position in deterministic graphs is well studied [1, 3, 5], truss decomposition in 
probabilistic graphs is more challenging and has received much less attention. Here, 
we present efficient algorithms for computing truss decomposition in probabilistic 
graphs; the graphs in which each edge has a probability of existence independent of 
the other edges. We use the notion of (k, �)-truss introduced in [4]. Specifically, we 
aim to compute the largest subgraph in which each edge is contained in at least k tri-
angles within that subgraph with probability no less than a user specified threshold 
� . The threshold � defines the desired level of certainty of the output trusses.

1.1 � Challenges and contributions

The standard approach to computing k-truss decomposition is the edge peeling pro-
cess, which is based on continuously removing edges with less than k triangles (cf. 
[4]). This process is repeated after incrementing k until no edges remain [6], which 
results in finding all k-trusses for different values of k. Counting the number of tri-
angles which contain an edge (the “edge support”) is simple in deterministic graphs. 
But, in probabilistic graphs, computing the probability that the edge support is 
above a threshold has a combinatorial nature (see [4, 7]). We refer to this probabil-
ity as support probability of the edge. Computing the support probability becomes 
challenging when the input graph is huge. This is because given an edge e = (u, v) 
its support probability is computed using dynamic programming (DP) as proposed 
in  [4]. The time complexity of computation using DP is O((min {d(u), d(v)})2) , 
where d(u) and d(v) are the deterministic degrees of u and v, respectively. Unfortu-
nately, the values of d(u) and d(v) can be in the millions in many real-world social 
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and web networks, and the quadratic time complexity of DP makes it impractical for 
such graphs.

In this paper, we model each triangle in a probabilistic graph as a Bernoulli ran-
dom variable with an existence probability and design a novel approach based on 
Lyapunov’s special version of the Central Limit Theorem [8] to approximate the 
probability distribution of the support of an edge. We derive an error bound on the 
approximation to demonstrate that the computed probabilities are very close to the 
values obtained through exact computation.

Next, we design a peeling algorithm for probabilistic k-truss decomposition. Our 
algorithm takes advantage of the fast calculation of edge support probabilities in 
time O(min {d(u), d(v)}) using the Central Limit Theorem. It also uses optimized 
array-based data structures for storing edge information of the graph.

While our first approach efficiently computes truss decomposition, it is a peeling 
approach, nevertheless. Edge peeling is associated with a major drawback: the edges 
have to be kept sorted by their current triangle support at all times which requires 
maintaining global information of the graph at each step of the algorithm. Further-
more, if we want to avoid statistical approximations, edge peeling becomes even 
more challenging, since the exact computation of the support probability of an edge 
e is done using dynamic programming. The process is repeated each time the edge 
loses a neighbor during the peeling approach. This leads us to ask whether there is 
an exact and scalable approach to truss decomposition in probabilistic graphs.

We answer the above question positively by introducing an algorithm which 
extends the iterative h-index computation, recently introduced for deterministic 
graphs in [6], to probabilistic graphs.

In deterministic graphs, the triangle supports of the edges are obtained at the 
beginning, and each edge computes the h-index value for the list of its neighbors’ 
triangle supports. Neighbors of an edge are those edges which form a triangle with 
the given edge. This process is repeated on these values until convergence to truss 
values occurs. Upon termination, the final h-index value of each edge equals its truss 
value. The authors in [6] prove that convergence of support values to the truss values 
is guaranteed.

Unfortunately, this idea does not work for probabilistic graphs, since it does not 
consider uncertainty in such graphs, thus resulting in wrong truss values. In this 
paper, we introduce an h-index updating algorithm that works for probabilistic 
graphs. In particular, we design a procedure which considers properties of truss sub-
graphs in probabilistic graphs and maintains proper upper-bounds on truss value of 
edges until convergence to true truss values. In summary, our contributions are as 
follows:

•	 We introduce an efficient approach based on Lyapunov’s Central Limit Theorem 
to compute support probabilities for the edges in the input graph. Using a theo-
retical analysis based on the Berry-Essen Theorem, we obtain an error bound 
that formalizes the tightness of our approximation.

•	 We develop a peeling algorithm based on recursive edge deletions which, by uti-
lizing CLT and efficient data structures, is able to calculate truss decomposition 
in large probabilistic graphs not possible to handle with the DP approach.
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•	 We propose a second algorithm based on h-index updating which works for 
probabilistic graphs. Our proposed algorithm is exact with respect to final result, 
but also progressive allowing the user to see near-results along the way, and it 
works by processing only one edge and its immediate neighbors at a time, result-
ing in smaller memory requirement.

•	 While proving the correctness of the algorithm, we obtain an upper-bound on the 
number of iterations that the algorithm needs for convergence. It shows that the 
convergence to truss values can be obtained after a finite number of iterations.

•	 We evaluate the performance of our approaches on a wide range of datasets. Our 
experimental results confirm the scalability and efficiency of our exact algo-
rithm, significantly outperforming the exact algorithm in [4] for large datasets. 
Furthermore, comparisons with the proposed approximate algorithm show that 
the running time of our exact algorithm is very close to that of the approximate 
algorithm. It is indeed surprising that we can achieve efficiency without sacri-
ficing the exactness of the solution. Moreover, we show the usefulness of the 
probabilistic truss decomposition on the human biomine dataset with respect to 
COVID-19 protein nodes.

2 � Related work

In the literature, much research has been done in the area of mining and querying 
probabilistic graphs [9–15], such as the k-nearest neighbor search over probabilistic 
graphs [16], uncertain graph sparsification [17], and mining top k maximal cliques 
in probabilistic graphs [18].

Recently k-truss has attracted a lot of attention due to its cohesive structure and 
the fact that it can be used to compute other definitions of dense subgraphs, such 
as k-clique. In deterministic graphs, truss decomposition has been studied exten-
sively in different settings (cf. [1, 3, 19, 20]). For instance, Xing et al. in [19], pro-
pose a novel traversal in-memory algorithm for truss decomposition in determinis-
tic graphs. In external-memory setting, Wang and Cheng in [1] propose an efficient 
algorithm for deterministic graphs that do not fit in memory. Huang et al. [3] study 
truss decomposition of dynamic deterministic graphs.

For probabilistic graphs, the notion of (k, �)-truss is introduced by Huang, Lu, and 
Lakshmanan in [4]. Their algorithm for computing (k, �)-truss is based on iterative 
edge peeling and uses dynamic programming for computing the support probability 
of the edges. While this algorithm runs in polynomial time, it does not scale well to 
large graphs, especially those having a high maximum vertex degree. [4] also pro-
poses the notion of global (k, �)-truss based on the probability of each edge belong-
ing to a connected k-truss in a possible world. An algorithm based on sampling is 
proposed in [4] to find global (k, �)-trusses. This notion of probabilistic truss decom-
position falls in the category of #P-hard problems (Table 1).
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3 � Background

3.1 � Trusses in deterministic graphs

Let G = (V ,E) be an undirected graph with no self-loops. For a vertex u ∈ V  , the 
set of its neighbors is denoted by NG(u) and defined as NG(u) = {v ∶ (u, v) ∈ E} . 
A triangle in G is defined as a set of three vertices {u, v,w} ⊆ V  such that all three 
edges (u, v), (v, w) and (u, w) exist. This triangle is denoted by Δuvw . The support of 
an edge e = (u, v) in G, denoted by supG(e) , is defined as the number of triangles in 
graph G containing e. Formally, supG(e) = ||NG(u) ∩ NG(v)

||.
The k-truss of G is defined as the largest subgraph F of G in which each edge e 

has ���F(e) ≥ k . The set of all k-trusses forms the truss decomposition of G, where 
0 ≤ k ≤ kmax , and kmax is the largest support of any edge in G.

3.2 � Probabilistic graphs

A probabilistic graph is a triple G = (V ,E, p) , and is defined over a set of vertices V, 
a set of edges E and a probability function p ∶ E → (0, 1] which maps every edge 
e ∈ E to an existence probability p(e). In the most common probabilistic graph 
model [21], the existence probability of each edge is assumed to be independent of 
other edges.

To analyze probabilistic graphs, we use the concept of possible worlds, which 
are deterministic graph instances of G . In each possible world only a subset of edges 

Table 1   Main notations Symbol Description

G = (V ,E, p) Probabilistic graph
G ⊑ G Possible world G of probabilistic graph G
e = (u, v) Edge e with endpoint vertices u and v
p(e) Existence probability of edge e
△ = (u, v,w),△uvw Triangle with vertices u, v, and w
NG(u) Set of neighbor vertices to vertex u in G
NG(u) Set of neighbor vertices to vertex u in G
ke

||NG(u) ∩ NG(v)
|| , for a given edge e = (u, v)

���G(e) ||NG(u) ∩ NG(v)
|| , for a given edge e = (u, v)

���G(e) Integer random variable with range [0, ke]
� User-specified probability threshold
�-���G(e) Largest value of t s.t. Pr[���G(e) ≥ t] ≥ �

(probabilistic support of e in G)
kmax maxe{���G(e)}

kmax,� maxe{�-���G(e)}
��(e) Largest k s.t. e belongs to a (k, �)-truss

(truss value of e in G for threshold �)
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appears. For each possible world G = (V ,EG) ⊑ G , where EG ⊆ E , the probability of 
observing that possible world is obtained as follows:

Example 1  Consider probabilistic graph G in Fig.  1a. A possible world G of G is 
shown in Fig. 1b. Pr(G) = 0.5 ⋅ 0.4 ⋅ 0.3 ⋅ 0.65 ⋅ (1 − 0.25) = 0.02925.

Given edge e = (u, v) , let ke = ||NG(u) ∩ NG(v)
|| . We define an integer random vari-

able ���G(e) with values in [0, ke] and distribution:

where 1(supG(e) = t) is an indicator function which takes on 1 if edge e has support 
equal to t in G, and 0 otherwise.

Given a user-specified threshold � ∈ (0, 1] , the probabilistic support of 
an edge e, denoted by �-���G(e) , is the maximum integer t ∈ [0, ke] for which 
Pr[���G(e) ≥ t] ≥ �.

It should be noted that as t increases (decreases), Pr[���G(e) ≥ t] decreases 
(increases).

Definition 1  Let � be a user defined threshold.

•	 (k, �)-truss of G is the largest subgraph F  of G in which each edge e has probabil-
istic support in F  no less than k, i.e. �-���F(e) ≥ k.

•	 Truss decomposition of G is the set of all (k, �)-trusses, for k ∈ [0, kmax,�] , where 
kmax,� = maxe{�-���G(e)}.

•	 Truss value of an edge e, ��(e) , is the largest integer k for which e belongs to a 
(k, �)-truss.

Proposition 1  (k, �)-truss of G is the subgraph of G containing all and only the edges 
e in G with ��(e) ≥ k.

(1)Pr(G) =
∏

e∈EG

p(e)
∏

e∈E⧵EG

(1 − p(e)).

(2)Pr[���G(e) = t] =
∑

G⊑G

Pr[G] ⋅ 1(sup
G

(e) = t),

(a) (b)

Fig. 1   a Probabilistic graph G , b A possible world G of G
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In this paper (as in [4]) we focus on finding the truss values of the edges in an 
input graph. Then (k, �)-truss for any k is constructed by collecting all edges e with 
��(e) ≥ k.

Example 2  Consider Fig.  2a, edge e = (1, 2) , and � = 0.20 . We have 
Pr[���G(e) ≥ 3] = 1 ⋅ 0.3 ⋅ 0.5 = 0.15 (product of probabilities that △012 , △123 , 
△124 exist), and Pr[���G(e) ≥ 2] = 0.65 . Since 0.65 is greater than � , �-���G(e) = 2.

Figure 2b shows a (2, 0.15)-truss F  of G . Each edge e ∈ F  , is contained in 2 tri-
angles with probability 0.15.

Consider e = (1, 2) and � = 0.15 . Now, �-���G(e) = 3 . Edge e is in (1, 0.15)-truss 
( G itself) and (2, 0.15)-truss ( F  ). There is no (3, 0.15)-truss, thus, ��(e) = 2.

3.3 � Obtaining �‑supG(e) using dynamic programming

To obtain �-���G(e) , we need to compute Pr[���G(e) ≥ t] , which can be written in the 
form of the following recursive formula:

Computing Pr[���G(e) = i] for different values of i can be done using dynamic pro-
gramming as proposed in [4].

4 � Central limit theorem framework

In this section, we describe a CLT-based framework to compute truss decomposition 
in probabilistic graphs.

Pr[���G(e) ≥ t] = Pr[���G(e) ≥ t − 1] − Pr[���G(e) = t − 1],

(a) (b)

Fig. 2   a Probabilistic graph G , b (2,0.15)-truss F  of G
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4.1 � Computing �‑supG(e) using Lyapunov CLT

We first show how a special version of Central Limit Theorem (CLT) can be applied 
to estimate Pr

[
���G(e) ≥ k

]
 . Then, we show theoretical bounds on the accuracy of 

this approximation.
Specifically, we consider a variant of CLT called Lyapunov CLT that can be 

applied when random variables are independent, but not necessarily identically dis-
tributed. The theorem can be formally stated as follows.

Theorem 1  (Lyapunov CLT [8]) Let �1, �2,… , �n be a sequence of independent, but 
non-identically distributed random variables, where �k has finite mean �k and vari-
ance �k . Let

If

for some 𝛿 > 0 , then 1
sn

∑n

k=1
(�k − �k) converges in distribution to a standard normal 

random variable.

Equation (4) is called Lyapunov’s condition which in practice is usually tested for 
the special case � = 1 . The proof of this theorem can be found in [22].

Associated with each edge ej we define a Bernoulli random variable �ej which is 1 
with probability p(ej) and 0 with probability 1 − p(ej) . Since each edge is assumed to 
exist independently of other edges, �ej ’s are independent. Given an edge e = (u, v) , 
let Te be a set of all the common neighbors of u and v in G . We have,

For each common neighbor ti of u and v, let �u,ti and �v,ti be the Bernoulli random var-
iables corresponding to the edges (u, ti) and (v, ti) , respectively. Let Xi = �u,ti ⋅ �v,ti . 
The following observations hold for random variables Xi : (1) Xi ’s are Bernoulli ran-
dom variables which take on 1 with probability pi = p(u, ti) ⋅ p(v, ti) and 0 other-
wise. Note that E[Xi] = �i = pi and Var[Xi] = pi(1 − pi) . (2) Xi ’s are independent, 
due to the assumption that existence of edges (u, ti) and (v, ti) is independent of the 
existence of edges (u, tj) and (v, tj) when i ≠ j , and Xi ’s are not identically distributed, 
as pi ≠ pj when i ≠ j.

Now, consider triangle △uvti
 . With the assumption that e exists, △uvti

 exists if 
both edges (u, ti) and (v, ti) exist, which corresponds to Xi = 1 . On the other hand, 
the triangle does not exist if at least one of two edges, (u, ti) and (v, ti) , does not exist, 
which corresponds to Xi = 0 . Therefore, we have

(3)sn =

√√√
√

n∑

k=1

�2
k
.

(4)lim
n→∞

1

s2+�
n

n∑

k=1

E[||�k − �k
|
|
2+�

] = 0,

Te = NG(u) ∩ NG(v) =
{
t1,… , tke

}
.
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Random variables Xi ’s are independent, but not identically distributed. Thus, if con-
dition (4) is satisfied, we can conclude that 1

ske

∑ke
i=1

(Xi − �i) , where 

ske =

�∑ke
i=1

pi(1 − pi) , converges to standard normal distribution. We prove this in 
Theorem 2.

In order to compute the right-hand side of equation (5), we can subtract 
∑ke

i=1
�i 

from both sides of the inequality, and then divide by ske which results in:

Using Lyapunov CLT and setting

we conclude that Z has standard normal distribution. Thus

where z = 1

ske

(k −
∑ke

i=1
�i) . Using the complementary cumulative distribution func-

tion [23] of standard normal variable Z, we can evaluate the right-hand side of Equa-
tion (8) for each value of k. Thus, to find the probabilistic support for an edge, we 
start with k = 1 , approximate Pr[���G(e) ≥ k] = Pr[���G(e) ≥ k||e exists] ⋅ p(e) using 
Lyapunov CLT (for the first factor), and find the maximum k for which this probabil-
ity is above threshold � . For an edge e, the obtained value of k, which can be in 
range from one to ke , is set as initial �-support for that edge. Given an edge e = (u, v) , 
the time complexity of finding probabilistic support is O(ke).

In the following theorem we show that Lyapunov’s condition in Theorem  1 is 
satisfied for our problem by setting � = 1 in Eq. (4).

Theorem  2  Given a sequence of random variables Xi ∼ Bernoulli(pi) , where 
1 ≤ i ≤ n , the Lyapunov’s condition (4) for � = 1 is satisfied whenever 
sn =

�∑n

k=1
pk(1 − pk) → ∞ as n → ∞.

Proof  Note that the variance of each Bernoulli random variable Xi is �2
i
= pi(1 − pi) . 

Thus, we have s2
n
=
∑n

k=1
pk(1 − pk) according to the Eq. (3). Also, the expected 

value of Xi is �i = pi . By setting � = 1 in (4), E[||Xk − �k
||
3
] can be written as:

(5)Pr[���G(e) ≥ k||e exists] = Pr

[
ke∑

i=1

Xi ≥ k

]

.

(6)Pr

[ ke∑

i=1

Xi ≥ k
]
= Pr

[
1

ske

ke∑

i=1

(Xi − �i) ≥
1

ske

(

k −

ke∑

i=1

�i

)]

.

(7)Z =
1

ske

ke∑

i=1

(Xi − �i),

(8)Pr
[
���G(e) ≥ k||e exists

]
≅ Pr

[
Z ≥ z

]
,

(9)
E
[
||Xk − �k

||
3
]
= pk(1 − pk)

3 + (1 − pk)p
3

k
,

= pk(1 − pk)[(1 − pk)
2 + p2

k
] ≤ �2

k
,
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where in inequality (9) we have used the fact that (1 − pk)
2 + p2

k
≤ 1 for any value 

of pk . Thus, 
∑n

k=1
E
�
�
�Xk − �k

�
�
3
] ≤ s2

n
 . Setting � = 1 in the Lyapunov’s condition (4), 

and substituting (9) in it, we have E[||Xk − �k
|
|
3
]∕s3

n
≤ s2

n
∕s3

n
= 1∕sn → 0 as n → ∞ 

using the assumption that sn → ∞ as n → ∞ . Thus Eq. (4) holds and the theorem 
follows. 	� ◻

Corollary 1  For our problem, sn =
�∑n

k=1
pk(1 − pk) → ∞ as n → ∞.

Proof  Observe that s2
n
=
∑n

k=1
pk(1 − pk) =

∑n

k=1
�2
k
≥ n�2

min
. Since all the edge 

probabilities, pi’s, are fixed constants, �2
min

= mink{�
2
k
} is bounded away from zero. 

Therefore, as n increases, n�2
min

 goes to ∞ , resulting in sn → ∞ as n → ∞ and hence 
the assumption needed in Theorem 2 holds for our problem. 	�  ◻

From the above corollary and Theorem 2, we conclude that our sequence of Xi 
variables satisfies the Lyapunov conditions in Theorem 1.

4.2 � Accuracy of the approximation

In order to show the accuracy of the approximation, we use the Berry–Esseen theo-
rem stated as follows.

Theorem 3  [24] Let Y1, Y2,… , Yn be a sequence of non identically distributed, inde-
pendent random variables with E(Yi) = 0 , E(Y2

i
) = �2

i
 , and E(||Y

3
i
||) = 𝜌i < ∞ , there 

exists a constant C0 such that the following inequality is satisfied for all n:

where Fn is the cumulative distribution of Sn =
Y1+Y2+⋯+Yn√
�2
1
+�2

2
+⋯+�2

n

 , which is the sum of 

Yi ’s standardized by the variances, and Φ is the cumulative distribution of the stand-
ard normal distribution. In the above inequality �0 is a function given by

where �⃗𝜎 = (𝜎1,… , 𝜎n) , and �⃗𝜌 = (𝜌1,… , 𝜌n) are the vectors of �i ’s and �i ’s 
respectively.

In the following corollary, using the Berry-Esseen theorem, we show how to 
obtain an upper-bound on the maximal error while approximating the true distribu-
tion of the sum of Xi ’s with the normal distribution.

Corollary 2  For each edge e in G with Xi ’s defined as above in this section, where 
i = 1,… , ke , the error bound on the approximation of the right-hand side of Equa-
tion (8) to the standard normal distribution is given as follows:

(10)sup
x∈ℝ

||Fn(x) − Φ(x)|| ≤ C0 ⋅ �0,

(11)𝜓0 = 𝜓0( �⃗𝜎, �⃗𝜌) =

(
n∑

i=1

𝜎2
i

)−3∕2

⋅

n∑

i=1

𝜌i.
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Proof  Let Yi = Xi − pi in Eq. (7). We can apply the Berry–Essen theorem for ran-
dom variables Y1, Y2,… , Yke , since for each Yi , E[Yi] = 0 . In addition,

It should be noted that the random variable

in the Berry–Essen theorem is the same as the random variable Z in Eq. (7).
Substituting �2

i
 and �i in Eq. (11), we obtain:

Using the fact that 1 = (1 − pi + pi)
2 = (1 − pi)

2 + p2
i
+ 2pi(1 − pi) ≥ (1 − pi)

2 + p2
i
, 

we can simplify (14) to have:

Substituting (15) in (10) the stated claim follows. 	�  ◻

4.3 � Peeling algorithm

While solving the challenge of computing probabilistic support is an important step 
forward, we still need an algorithm for computing truss decomposition for large 
probabilistic graphs.

Our algorithm is based on a concept used in truss computation in deterministic 
graphs, which we call “edge peeling”. It involves (1) recursively deleting the edge e of 
smallest support, (2) setting e’s truss value to be equal to its support at the time of dele-
tion, and (3) updating the supports of the edges which form a triangle with e (cf. [25]).

sup
x∈ℝ

|
|
|
Fke

(x) − Φ(x)
|
|
|
≤

C0
√

p1(1 − p1) +⋯ + pke (1 − pke )

(12)

E[Y2

i
] = E[(Xi − pi)

2] = Var[Xi] = 𝜎2

i
= pi(1 − pi),

E
[||Y

3

i
||
]
= E

[
||Xi − pi

||
3
]
= 𝜌i = (1 − pi)

3pi + p3
i
(1 − pi)

= pi(1 − pi)[(1 − pi)
2 + p2

i
] < ∞.

(13)Ske =
(X1 − p1) + (X2 − p2) +⋯ + (Xke

− pke )
√

�2
1
+ �2

2
+⋯ + �2

ke

(14)

𝜓0 = 𝜓0( �⃗𝜎, �⃗𝜌)

=

( ke∑

i=1

pi(1 − pi)

)−3∕2

⋅

( ke∑

i=1

pi(1 − pi)[(1 − pi)
2 + p2

i
]

)

(15)

�0 ≤

( ke∑

i=1

pi(1 − pi)

)−3∕2

⋅

( ke∑

i=1

pi(1 − pi)

)

=

( ke∑

i=1

pi(1 − pi)

)−1∕2

=
1

√
p1(1 − p1) +⋯ + pke (1 − pke )
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We call our proposed algorithm PAPT (peeling-approximate-truss). It consists of 
two main parts: (1) initial probabilistic support computation, and (2) probabilistic 
truss computation which involves deleting the edge of smallest probabilistic support, 
setting its truss value and updating probabilistic support values of other edges once 
it is removed.

In the initial support computation step, the probabilistic support of each edge e 
is computed using CLT and Eq. (8), if ke , the number of triangles containing e, is 
greater than a threshold B, otherwise DP is used. We set threshold B to be 100 in our 
experiments.1

Algorithm 1 PAPT

1: function PAPT(G, η)
2: k ← 0
3: support[e] ← η-supG(e)
4: sort all edges in ascending order of their η-supG(e)

and store them in sortedEdge array
5: while ∃e ∈ E such that support[e] ≤ k do
6: κη(e) ← support[e]
7: u, v ← two endpoints of e
8: for all w ∈ NG(u) ∩NG(v) do
9: euw ← get edge ID of (u,w)

10: evw ← get edge ID of (v, w)
11: if support[evw] ≥ support[e] then
12: Support-Update(G,support, evw, kevw , B)
13: if support[euw] ≥ support[e] then
14: Support-Update(G,support, euw, keuw , B)
15: remove e from G
16: if not all edges in G are removed then
17: k ← k + 1
18: return κη(·)

1  This value was chosen because it was large enough to keep the approximation error obtained from 
Corollary 2 small.
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Algorithm 2 Updating probabilistic supports

1: function support-update(G,support, edge e, ke, B)
2: if ke ≥ B then
3: support[e] ← compute η-supG(e) by CLT
4: else
5: support[e] ← compute η-supG(e) by DP
6: update sortedEdge

Algorithm 1 describes the main steps of PAPT. It sorts the edges in ascending 
order of their probabilistic support and stores them in sortedEdge array (line  4). 
Then, the algorithm starts removing edges with the lowest probabilistic support 
(line 5). The removal of edge e = (u, v) affects the probabilistic support of all edges 
that can constitute triangles with (u, v).

Hence, the algorithm finds all the common neighbors w of u and v, i.e., △uvw 
is a triangle containing edge (u, v). Once a common neighbor w is found, we find 
the edge ID of (u, w) and (v, w) (lines 9-10). Using this information, the probabil-
istic support of edges (u, w) and (v, w) are updated if their probabilistic supports 
are greater than e’s probabilistic support (lines 11 and 13). We do the updating part 
using Algorithm 2. In particular, if the number of remaining triangles which contain 
an edge is greater than B, we perform update phase using CLT approach. Otherwise, 
we apply DP (Algorithm 2 lines 2-5).

Since the probabilistic supports of edges (u,  w) and (v,  w) have changed, we 
update their position in sortedEdge array in constant time while maintaining the 
order of the array (line 6 of Algorithm 2). For the details of this step, we refer the 
reader to [25]. After removing all the edges with probabilistic support equal to k, the 
program increments k by one, and continues (lines 16-17) until all the edges in the 
graph are removed.

4.4 � Time complexity

The running time of initial probabilistic support computation phase is dominated by 
computing probabilistic support using Central Limit Theorem which can be done 
in O(ke) time, where O(ke) ⊆ O(min {d(u), d(v)}) . Note that this phase is faster that 
dynamic programming approach which computes probabilistic supports in O(k2

e
) . In 

the truss computation phase (lines 5-17), when an edge e = (u, v) is removed, the 
support of edges (v, w) and (u, w) should be updated. Thus, for each edge the num-
ber of updates is at most 2 ⋅ ||NG(u) ∩ NG(v)

|| ∈ O(min {d(u), d(v)}) . The time com-
plexity of each single update is O(ke) ⊆ O(min {d(u), d(v)}) . Thus, the updating part 
takes

O

(
∑

(u,v)∈E

(min {d(u), d(v)})2

)

⊆ O

(

dmax

∑

(u,v)∈E

(min {d(u), d(v)}))

)

⊆ O(dmax𝜓m)
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where dmax is the maximum degree, m is the number of edges in graph G , and � is 
minimum number of spanning forests needed to cover all edges of G . Therefore, the 
time complexity of Algorithm 1 is O(dmax�m) . It should be noted that this is the 
worst case running time analysis, our proposed algorithm is quite fast in practice.

5 � H‑Index framework

Here we propose an algorithm based on h-index updating, which has been intro-
duced in the context of deterministic graphs by [6]. Given a set of real numbers, 
the h-index of the set is defined as the largest number h such that there are at least h 
elements in the set that are equal to h or higher. For instance, the h-index of the set 
{1, 2, 3, 3, 5} is 3 because the set includes three numbers no less than 3.

We also have the notion of the h-index of an edge which is an integer variable 
initialized to the edge’s initial support (as a first approximation of the edge’s truss 
value). Then the algorithm iterates multiple times over the edges tightening up 
their h-index as described below. In fact, truss values are related to h-indices. For 
instance, truss value of an edge can be defined as the largest k such that it is con-
tained in at least k triangles (or with probability ≥ � in the probabilistic context) 
whose edges have truss value of at least k.

Let e be an edge and (e, e�, e��) be a triangle supporting e. For such a triangle, we 
define its support to e as the minimum of h-indices of e′ and e′′ . The support values 
of all triangles supporting e are collected in a set L and its h-index is computed. At 
each iteration, the h-index of e is updated to the smallest of its current value and the 
h-index of L.

In our algorithm, we refer to this process as Phase I. This phase corresponds 
to the h-index based algorithm of [6] for the deterministic case. In deterministic 
graphs, once the process terminates, the h-index of each edge becomes equal to the 
truss value of that edge. However, we show that this does not solve our problem.

5.1 � Deterministic h‑index updating, Phase I

In the following we provide explanation of Phase I of our algorithm, which is based 
on [6].

Definition 2  Given a set K of natural numbers, H(K) is the largest k ∈ ℕ such that at 
least k elements of K are greater than or equal to k.
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Algorithm 3 Phase I

1: function Phase I(G, h, scheduled)
2: update Phase I ← true
3: while update Phase I do
4: update Phase I ← false
5: for all edge e ∈ E do
6: L ← empty set
7: for all � containing e do
8: e′, e′′ ← the two edges in � other than e
9: ρ� ← min

{
h(e′), h(e′′)

}

10: L.add(ρ�)
11: updated-he ← H(L)
12: if updated-he < h(e) then
13: update Phase I ← true
14: h(e) ← updated-he

15: scheduled[e] ← true

Let h(e) denote the h-index value of edge e at each iteration of our algorithm. 
Phase I tightens h(e) values for each edge e and iterates until no further updates 
occur for any h(.) value irrespective of edge probabilities. The flag update_Phase 
I is used to check termination of Phase I   (line 3). The flag is initially set to true 
(line 2), and stays true as long as there is an update on a h(.) value (lines 4,12, and 
13). For each triangle △ = (e, e�, e��) which contains e, the algorithm computes its 
�△ value that is the minimum value of h(e�) and h(e��) and collects them in a set L 
(lines 7-10). Then, function H is applied on set L (line 11). If the h-index of set L is 
smaller than h(e), it is assigned as a new index for edge e in array h (line 11). The 
validity of the assigned value is checked by Phase II in the next iterations of our 
proposed proHIT algorithm using the scheduled array (line 15).

We demonstrate how Phase I works in the following example:

Example 3  To illustrate how h-index works on deterministic graphs, we refer 
to Fig.  3. The figure shows a deterministic graph with 6 vertices. Initially, 
the triangle counts of all the edges are computed and are set as initial val-
ues on the h-index of the edges. Let h0 be the list of these initial values, which 
are shown with blue color in the figure. Then, the algorithm starts updat-
ing the h-indices based on the initial values. Let h1 be the list of updated values 
at this step (red). Edge e = (0, 2) , for instance, participates in 4 triangles and in 
each of them, the algorithm finds the edge neighbor to (0,  2) with minimum h0  
value and records this value in an array. Then the algorithm updates the h-index 
of e. So, L = {min(h0(0, 1), h0(1, 2)), min(h0(0, 3), h0(2, 3)), min(h0(0, 4), h0(2, 4)),
min(h0(0, 5), h0(2, 5))} = {1, 2, 3, 2} . As a result, h1(0, 2) = H(L) = 2 . The h-index 
of edges (0,  4) and (2,  4) are updated similarly. No more updates happen in the 
next iteration. Since the given graph is a deterministic graph, at the end, each edge 
obtains its truss value (green).
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5.2 � Phase II

Since Phase I does not take into account an edge having enough support probability 
to be part of a (k, �)-truss, it may not converge to the true truss value of the edge.

For an example, consider Fig.  2a and � = 0.2 . In Table  2 we show the execu-
tion of our algorithm at each phase. The first column shows edges in the 
graph. The last shows their truss values. Column ph_I shows the h-index val-
ues at the end of Phase I. Initially h-index, h(e), of each edge e is set to �
-���G(e) (second column). Now, consider edge e = (1, 2) . For each trian-
gle containing e, Phase I finds the minimum h-index of the two edges other 
than e in the triangle, and adds this minimum to a set L. For e, we have 
L = {min(h(0, 1), h(0, 2)), min(h(1, 3), h(2, 3)), min(h(1, 4), h(2, 4))} = {1, 2, 2}.

Since there are two numbers on this list that are equal to 2, Phase I sets 2 as the 
h-index of edge e. Further execution of Phase I cannot produce any updates. How-
ever, the truss value of edge e is in fact 1 (see last column of Table 2) as we explain 
later in this section. Therefore, Phase I is not able to converge to the truss value of 
e. Nevertheless, we prove that Phase I can be used to provide upper-bounds to true 
truss values. The proof of this fact, Theorem 4, is presented in Sect. 5.4.

Fig. 3   A running example of h-index algorithm on a deterministic graph

Table 2   �-���G(e) , values 
obtained by Phase I (Ph_I) and 
Phase II (Ph_II), respectively, 
truss values. � = 0.2 for Fig. 2a

edge e h-index h(e)

�-���G(e) ph_I ph_II Truss value

(i, j), 1 ≤ i < j ≤ 4 2 2 1 1
(0, 1), (0, 2), (1, 4), (1, 5) 1 1 1 1
(2, 6), (3, 6), (3, 7), (4, 7) 1 1 1 1
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Algorithm 4 Probabilistic h-index Truss (proHIT)

1: function Probabilistic h-index updating(G,support,η)
2: for all edge e ∈ E do
3: h(e) ← η-supG(e), scheduled [e] ← true

4: Phase I (G, h, scheduled) � Deterministic h-index
5: updated ← false � True if any h(e) is updated
6: while true do
7: Phase II (G, h, scheduled)
8: if updated is false then break
9: else

10: Phase I (G, h, scheduled), updated ← false
11: for all edge e ∈ E do κη(e) ← h(e)
12: return array of κη(·)

Algorithm 5 Phase II

1: function Phase II(G, h, scheduled)
2: for all edge e ∈ E do
3: if scheduled [e] is false then continue
4: Γ ← ConstructGamma(e)
5: he-changed ← false
6: while Pr[sup(e) ≥ h(e)‖Γ] < η and h(e) ≥ 0 do
7: he-changed ← true
8: h(e) ← h(e)− 1
9: Γ ← ConstructGamma(e)

10: if he-changed is true then
11: updated ← true
12: for all edge e′ ∈ EΓ \ {e} do
13: scheduled[e′] ← true
14: scheduled[e] ← false
15: function ConstructGamma(e)
16: Γ ← empty set
17: for all � containing e do
18: e′, e′′ ← the two edges in � other than e
19: ρ� ← min

{
h(e′), h(e′′)

}

20: if ρ� ≥ h(e) then Γ.add(�)
21: return Γ

We tackle the problem by introducing a process we call Phase II. Although Phase 
I is not able to compute exact truss values, it can provide good upper-bounds which 
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can be used in Phase II. Therefore, we combine Phase II with Phase I to speed up 
convergence as Phase I runs faster than Phase II.

The major steps of our algorithm, probabilistic h -index truss (proHIT), are sum-
marized in Algorithm 4. At a high level, we maintain an array h indexed by edges 
where we initially store the h-index value for each edge. Then, we tighten up these 
values using Phase I and Phase II, and by the end of the iterations, we have the out-
put truss values in array h.

Checking whether an edge requires processing or not is done by array scheduled, 
which is initialized to true for each edge. Variable updated records whether there is 
some edge with its h(.) value changed or not. Line 4 invokes Phase I. Then, Phase II 
starts and processes the h(.) values (upper-bound on truss value) of all the edges for 
the possibility of gap between current value and truss value (line 7). If after Phase 
II terminates, there is some edge with its h(.) value updated, Phase I (line 10) starts 
again. The process continues until each h(.) value achieves convergence (lines 6-10). 
The final truss value of each edge is set to the final h-index.

Phase II of our approach is given in Algorithm 5. This part crucially differenti-
ates our approach from h-index based algorithms for deterministic graphs.

Let e be an edge. We define Γ to be the set of (e, e�, e��) triangles that contain e 
and h(e�), h(e��) ≥ h(e) . It is only the triangles in Γ that can contribute to updating 
h(e).

Also, we denote by Pr
[
���(e) ≥ h(e)||Γ

]
 the probability that e is contained in at 

least h(e) triangles selected from Γ . Now, in order to possibly tighten up the current 
upper bound value of e, we check the condition

For each scheduled edge e, line  4 constructs the set Γ using function Construct-
Gamma, and the above condition is checked in line (6). Checking the condition pre-
sents its own challenges and is presented in detail later in this section. If the condi-
tion fails, integer values less than h(e) are checked one at a time until we find a value 
for h(e) for which the condition is true. Set Γ is updated each time to correspond to 
the h(e) value being used for edge e (lines 8-9). This guarantees that the assigned 
value does not go below the true truss value of each edge. Variable he-changed 
records whether a new h(e)-value for e is obtained or not, and initially is set to false 
(line 5).

For instance, let us consider again the example in Fig.  2a. For e = (1, 2) in 
Table 2 with h(e) = 2 (which is obtained by Phase I, see third column in Table 2), 
we verify the condition Pr[���(e) ≥ 2||Γ] ≥ � , where Γ = {△123,△124} (set of tri-
angles containing e with other edges having an h(.) value of at least 2). We have 
Pr[���(e) ≥ 2||Γ] = 0.3 ⋅ 0.5 = 0.15 < 0.2 . As a result, e cannot have a truss value 
of 2. As such, we update h(e) to be 1 and check the condition again. We have 
Pr[���(e) ≥ 1||Γ] = 1 > 𝜂 , where Γ = {△012,△123,△124} (set of triangles contain-
ing e with other edges having an h(.) value of at least 1). Since the new probability is 
greater than � , h(e) is settled to 1.

(16)Pr
[
���(e) ≥ h(e)||Γ

]
≥ �.
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Let EΓ be the edges of the triangles in Γ . If a new h(e) value is obtained and 
checked in line 10, the edges in EΓ ⧵ {e} may change their h(.) values and thus are 
scheduled to be processed in the next iteration (lines 12-13).

In the following sections we provide the proof of the correctness of the algorithm 
as well as time complexity analysis.

The main challenge in Phase II is efficient checking of condition 16 for differ-
ent values of h(e) until a proper value is obtained. For this, we introduce a modi-
fied dynamic programming (DP) process to avoid computation of these probabilities 
from scratch.

5.3 � Modified DP

This process is invoked when we check the condition on line 6 of Algorithm 5.
Let H = h(e) , and Γ be the set of (e, e�, e��) triangles as defined earlier. For a tri-

angle △ = (e, e�, e��) ∈ Γ , we denote by �△ the minimum value of h(e�), h(e��) . We 
have �△ ≥ H.

The probability Pr[���(e) ≥ H||Γ] is computed using DP [4]. However, Γ changes 
in each iteration of the while loop (see line 9). We would like to avoid the computa-
tion of Pr[���(e) ≥ H||Γ] from scratch each time. It should be noted that the prob-
ability computation is valid if e exists, with existence probability p(e). So, based on 
statistics we can write:

Initially, the following probabilities are computed

We now cache these probabilities.
Given a Γ set, let Pr(H,Γ) = Pr[���(e) ≥ H||Γ] . For H − 1 , we define 

T
(H−1) =

{
△1,… ,△j

}
 to be the set of △ triangles which contain e, and 

�△ = H − 1 . Let Γnew be the set of all triangles △ which contain e, and have 
�△ ≥ H − 1 . Clearly, Γnew = Γ ∪ T

(H−1) . Now, we need to compute Pr(H−1,Γnew) effi-
ciently using the probabilities in Eq. 18. For this, we only need to look at set T(H−1) , 
which is usually small (i.e., not more than 50 in our tested real graphs). As such, the 
computation is done very fast.

Given an edge e = (u, v) , let us assume that we have computed 
Pr[���(e) = k||Γ, e exists] , where k = 0,… ,H , and Γ is as before. We have:

By T(j, k) we denote the probability that e participates in k triangles selected from 
Γ ∪

{
△1,… ,△j

}
 , given that e exists.

Let △l = (u, v,wl) , where l ∈ [1, j] , be a triangle in T(H−1) . With the assumption 
that e exists, we consider the following two exclusive events (in terms of possible 

(17)Pr[���(e) ≥ H||Γ] = p(e) ⋅ Pr[���(e) ≥ H||Γ, e exists],

(18)Pr[���(e) = 0||Γ, e exists],… , Pr[���(e) = H||Γ, e exists],

Pr[���(e) = k||Γ
new

, e exists] = Pr[���(e) = k||Γ ∪ T
(H−1)

, e exists]

= Pr
[
���(e) = k||Γ ∪

{
△1,… ,△j

}
, e exists

]
= T(j, k).
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worlds). Event 1: △l exists and e participates in k − 1 other triangles of T(H−1) . 
Event 2: △l does not exist and e participates in k other triangles of T(H−1) . The sum 
of probabilities of events (1) and (2) gives us the probability that e participates in k 
triangles in T(H−1) . Formally,

The base cases for the above formula are: (1) T(0, k) = Pr[���(e) = k||Γ, e exists],
0 ≤ k ≤ H , (2) T(j,−1) = 0.

As can be seen, in the recursive formula, we use the previously computed sup-
port probabilities to compute new probability values. This significantly speeds 
up the process. By multiplying T(j,  k) by p(e) we obtain the desired probability 
Pr[���(e) = k||Γ

new].

5.4 � Proofs of correctness

In this section, we present the proofs of correctness of our algorithm, proHIT, 
propsed in Sect.  5. In particular, we show that convergence can be obtained in a 
finite number of iterations. We start by showing that the values obtained by Phase I 
are upper-bounds on the truss values.

Theorem  4  In every iteration, Phase I provides upper-bounds on truss values of 
edges in the input probabilistic graph. 	�  ◻

Proof  Given an edge e, let assume that the index value by Phase I is fixed at H. 
This means that H is the maximum value such that there exists at least H triangles 
(regardless of their existence probability), which contain e, and have �△ ≥ H for 
each triangle △.

Let Γ be the set of (e, e�, e��) triangles that contain e and h(e�), h(e��) ≥ h(e).
Given the threshold � , the probability Pr[���(e) ≥ H||Γ] might be either (1) less 

than � or (2) greater than or equal to �.
If the first case holds, the truss value of e should be in the interval [0,H).
Now, let us consider the second case. Since H is the maximum value obtained 

by Phase I , e cannot be contained in H′ > H triangles, with �-value at least H′ 
because otherwise, Phase I would have produced an estimate of H′ for e. Thus, 
the probability that the truss value of e is equal to H′ is 0. Furthermore, since 
Pr[���(e) ≥ H||Γ] ≥ � , we can conclude that the truss value of e should be in the 
interval [0,H] , i.e. the truss value of e can be H but also can be lowered in future 
iterations.

Therefore, considering the first and second cases, we can conclude that the true 
truss value of e should be in the interval [0,H] . As a result, the theorem follows. 	� ◻

In the following, we first generalize some definitions and properties of determin-
istic truss decomposition to the probabilistic context.

(19)
T(j, k) = p(u,wl)p(v,wl)T(j − 1, k − 1)

+ (1 − p(u,wl)p(v,wl))T(j − 1, k).
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Let G be a probabilistic graph, and � be a user-defined threshold. Given an edge 
e, recall that by ��(e) we denote the largest integer k for which e belongs to a (k, �)
-truss. Also, the probabilistic support of e, �-���G(e) , is the maximum integer 
t ∈ [0, ke] for which Pr[���G(e) ≥ t] ≥ � , where ke = |

|NG(u) ∩ NG(v)
|
| , and NG(u) and 

NG(v) are the set of neighbor vertices to u and v, respectively. Let ��(G) be the mini-
mum probabilistic support in G ; i.e. ��(G) = mine{�-���G(e) } . Thus, we have:

We use E(G) to denote the set of edges in graph G . Moreover, let W be the set of all 
the triangles in G which contain e. We note that the computation of Pr[���G(e) ≥ k] 
is done by considering the triangles which contain e. Thus, the values obtained by 
Pr[���G(e) ≥ k] and Pr[���(e) ≥ k||W] are basically the same, and as a result we use 
Pr[���G(e) ≥ k] interchangeably with Pr[���(e) ≥ k||W] to refer to same concept. We 
have the following proposition.

Proposition 2  Given a subgraph G′ ⊆ G and an edge e = (u, v) in G′ , let W and W ′ be 
the sets of all the triangles in G and G′ , respectively, which contain e. We have that 
Pr[���(e) ≥ k||W

�] ≤ Pr[���(e) ≥ k||W] , where k = 0,… , ke . (As mentioned earlier, 
this is equivalent to Pr[���G� (e) ≥ k] ≤ Pr[���G(e) ≥ k] ) [4].

The following Lemma is a generalization of a property of truss values in deter-
ministic graphs [6] to the probabilistic context.

Lemma 1  Given threshold � , for all e ∈ E(G) , we have

where G′ is a subgraph of G which contains e (i.e. e ∈ E(G�)).

Proof  Let F  be the (��(e), �)-truss which contains e. By the definition of truss subgraph 
we have: ��(F) = ��(e) . Thus, ��(e) ≤ maxG� ��(G

�) , for any G′ which contains e.
Now, we show that �(e) ≥ maxG� ��(G

�) . We use proof by contradiction. Let G′′ be 
the largest subgraph of G that contains e and has 𝛿𝜂(G

��) > 𝜅𝜂(e) . Based on Eq. 20 we 
have Pr[���G�� (e�) ≥ ��(G

��)] ≥ � , for any edge e� ∈ E(G��) , including e. Hence, G′′ is 
a (��(G

��), �)-truss and contains e. This is a contradiction by the definition of ��(e) 
which is the largest value of k such that e is contained in a (k, �)-truss. 	�  ◻

Following  [6], we define the concept of degree (support) levels of edges in a 
probabilistic graph. First, we start with some technical definitions. Let G be a proba-
bilistic graph, and � be a user-defined threshold. Also, let C(G) be the set of edges 
and their containing triangles. We define the following features for edges and trian-
gles in C(G):

•	 Triangle △ ∈ C(G) , if ∀e ∈ △ , e ∈ C(G).
•	 If e is removed from C(G) , all △ ⊃ e are also removed from C(G).

(20)Pr[���G(e) ≥ ��(G)] ≥ �, ∀e ∈ E(G),

(21)𝜅𝜂(e) = max
G
�⊆G

𝛿𝜂(G
�),
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Remark 1  We could have created two separate sets for edges and triangles, but doing 
so would significantly complicate the notation and its use in the proof as maintain-
ing the relationship between these two sets would be cumbersome. This definition 
of C(G) is chosen purely for notational convenience and is similar to the definition 
used in [6] where it is defined as the set of all r-cliques and s-cliques.

Definition 3  (Degree Levels) We define degree levels in a recursive way in a proba-
bilistic graph G . Let set Li denote the i-th degree level. L0 is defined as the set of 
edges e which have minimum probabilistic support in C(G) . L1 is defined as the 
set of edges which have minimum probabilistic support in C(G) ⧵ L0 , and so on. In 
general, Li contains the set of edges which have minimum probabilistic support in 
C(G) ⧵

⋃
j<i Lj . The maximum value of i for which Li can be non-empty is equal to 

kmax,� . We recall that kmax,� = maxe{�-���G(e)}.

Theorem 5  Given integers i and j such that i ≤ j and a threshold � , for any ei ∈ Li 
and ej ∈ Lj , ��(ei) ≤ ��(ej).

Proof  Let L� =
⋃

r≥i Lr be the union of all levels i and above. Also, let G′ be the 
graph such that L� = E(G�) . Based on definition of levels, for ei ∈ Li , we have �-
���G� (ei) = ��(G

�) . Moreover, ej ∈ Lj implies �-���G� (ej) ≥ �-���G� (ei) . Since the 
truss value of ei is ��(ei) , there should exist a (��(ei), �)-truss F  which contains ei . 
We can have two following cases:

(1) E(F) ⊆ L� . Using Proposition 2 and the fact that each edge in F  is in G′ (because 
L� = E(G�) ), we have Pr[���F(e) ≥ k] ≤ Pr[���G� (e) ≥ k] . For edge ei , ��(ei) = ��(F) . 
Thus, setting k = ��(F) , we have � ≤ Pr[���F(ei) ≥ ��(F)] ≤ Pr[���G� (ei) ≥ ��(F)] . 
Since �-���G� (ei) is the maximum value of k such that Pr[���G� (ei) ≥ k] ≥ � , we have 
�-���G� (ei) ≥ ��(F) . Thus, we obtain that �-���G� (ei) = ��(G

�) ≥ ��(F) = ��(ei) . On 
the other-hand, based on Lemma  1, for G′ ⊆ G which contains ej , ��(G

�) ≤ ��(ej) . 
Combining the above, ��(ei) ≤ ��(ej).

(2) E(F) ⧵ L� ≠ � . This means that there should exist at least one edge in 
E(F) , but not in L′ (e.g. in the levels < i ). Let e′ be one of these edges such that 
e� ∈ E(F) ∩ Lb with the minimum value of b, where b < i . Since e� ∈ F  and F  is a 
(��(ei), �)-truss, then �-���F(e�) ≥ ��(ei) . Set M =

⋃
r≥b Lr . It should be noted that 

E(F) ⊆ M . Let Q be the corresponding subgraph such that M = E(Q) . We have �
-���Q(e�) ≥ �-���F(e

�) ≥ ��(ei) . Also, �-���Q(e�) = ��(Q) , because e� ∈ Lb . Since 
j > b and ej ∈ M , ��(ej) ≥ ��(Q) (based on Lemma 1). Combining the above, we 
conclude ��(ei) ≤ ��(ej) . 	�  ◻

We prove the convergence of our proposed algorithm using ideas similar to 
the proof of deterministic h-index algorithm in [6]. In Theorem 4 we showed that 
Phase I provides upper-bounds on truss values of the input probabilistic graph. In 
the following, we prove that upper-bounds are monotonically non-increasing and are 
lower-bounded by truss values.
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Theorem  6  For all t and all edges e in G , we have (1) ht+1(e) ≤ ht(e) , (2) 
ht(e) ≥ ��(e) , where by ht(e) we denote the h-index of e after the t-th iteration of 
Phase I and Phase II together.

Proof  (1) We prove this by induction on t. Initially, when t = 0 , h0(e) is equal to 
�-���G(e) . Let hp

1
(⋅) be the processed values after completion of Phase  I at itera-

tion 1. As shown in [6], throughout Phase I, the upper-bounds can only decrease, so 
h
p

1
(e) ≤ h0(e) , for each edge e. The hp

1
(⋅) values are passed to Phase II. The block of 

steps 6–9 of Phase II (Algorithm 5) checks all the values equal or less than hp
1
(e) for 

each edge e, and finds the maximum value for which the condition in line 6 holds. 
Let h1(e) be the obtained maximum value. Thus, we have h1(e) ≤ h

p

1
(e) ≤ h0(e) . 

Assume the property is true up to t. For iteration t + 1 , Phase I needs to process 
the values ht(⋅) obtained from the previous iteration (i.e. t) by Phase II. Let hp

t+1
(e) 

be the processed values after completion of Phase I at iteration t + 1 . For an edge 
e, by the induction hypothesis, and monotonicity of Phase  I itself  [6], we have 
h
p

t+1
(e) ≤ ht(e) ≤ ht−1(e) . Then, this value is passed through Phase II. As discussed 

above, this value is processed using lines 6–9 in Algorithm 5 which make sure that 
ht+1(e) ≤ h

p

t (e) . Thus, we have ht+1(e) ≤ ht(e).
(2) We prove the property by induction on t. For t = 0 , h0(e) = �−���G(e) ≥ ��(e) . 

Let us assume that for t, ht(e) ≥ ��(e) . Now, we focus on the computation of ht+1(e) . 
Using the induction step and the fact that Phase I provides an upper-bound on 
��(e) for each edge e (please refer to Theorem  4), we can write: hp

t+1
(e) ≥ ��(e) . 

Consider the computation of ht+1(e) by Phase II which is based on the value 
produced by Phase I (i.e. hp

t+1
(e) ). Let F  be (��(e), �)-truss which contains e. 

Also, let S be the set of all supporting triangles △ in F  for edge e, such that 
∀e�, e�� ≠ e ∈ △ , min(��(e

�), ��(e
��)) ≥ ��(e) . Using the property of truss value we 

know that Pr[���(e) ≥ ��(e)
||S] ≥ � . To obtain ht+1(e) , Phase II checks the condition 

Pr[���(e) ≥ h
p

t+1
(e)||Γ] ≥ � (line 6, Algorithm 5), where Γ is the set of all the trian-

gles that contain e, and is detected by Phase II since �△ ≥ h
p

t+1
(e) , for each △ ∈ Γ , 

where �△ is the minimum h-index value of the edges other than e in △ (line 19, 
Algorithm  5). If Pr[���(e) ≥ h

p

t+1
(e)||Γ] ≥ � holds, then ht+1(e) = h

p

t+1
(e) ≥ ��(e) . 

Otherwise, all the k values smaller than hp
t+1

(e) are checked. In the worst case, con-
sider the computation of the probability when k becomes equal to ��(e) . Let Γ be 
the updated set to contain all △ with �△ ≥ k . We claim that S ⊆ Γ . For each trian-
gle △ ∈ S , and ∀e�, e�� ≠ e ∈ △ , we have ��(e�), ��(e��) ≥ ��(e) . In addition, based 
on Theorem  4, hp

t+1
(e�) ≥ ��(e

�) ≥ ��(e) = k , and hp
t+1

(e��) ≥ ��(e
��) ≥ ��(e) = k . 

Thus, �△ = min(h
p

t+1
(e�), h

p

t+1
(e��)) ≥ k = ��(e) , which results in △ ∈ Γ . 

Using Proposition  2, Pr[���(e) ≥ k||Γ] ≥ Pr[���(e) ≥ k||S] . If for k = ��(e) , 
Pr[���(e) ≥ 𝜅𝜂(e)

||Γ] < 𝜂 , then Pr[���(e) ≥ 𝜅𝜂(e)
||S] < 𝜂 , which is a contradiction 

with the definition of ��(e) . As a result, we should have Pr[���(e) ≥ ��(e)
||Γ] ≥ � . 

Thus, ht+1(e) ≥ ��(e) . 	�  ◻

Theorem 7  Given any level Li , for all t ≥ i , and e ∈ Li , we have ht(e) = ��(e).
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Proof  We prove this by induction on i. For i = 0 , let us consider the set 
of edges e with minimum �-���G(e) in G . For these edges, ht(e) = �-
���G(e) = maxk{Pr[���G(e) ≥ k] ≥ �} = ��(e) . Assume that the theorem is true up 
to level i. As a result, ∀t ≥ i , and ∀e ∈

⋃
j≤i Lj , ht(e) = ��(e) . Let ea be an arbitrary 

edge in level i + 1 , and L� =
⋃

j≥i+1 Lj.
Consider the partition of all the triangles which contain ea into two sets Sl and 

Sh . Triangles in Sl contain some edge outside L′ , and those in Sh have all their edges 
contained in L′ . For each triangle △ ∈ Sl , there is some eb ≠ ea ∈ △ such that 
eb ∈ Lk , where k ≤ i . Using induction hypothesis, we have ht(eb) = ��(eb) . Also, 
since ea ∈ Li+1 , using Theorem 5, we have ht(eb) = 𝜅𝜂(eb) < 𝜅𝜂(ea) ≤ ht(ea) , where 
for the last inequality we have used the property (2) in Theorem 6.

Let us focus on the computation of ht+1(ea) (lines  6–9, Algorithm  5). The 
algorithm checks the condition Pr[���(ea) ≥ r||Γ] ≥ � , where Γ is the set of tri-
angles △ which contain ea , and have �△ ≥ r , where r = ht(ea) . We recall that 
�△ = min{ht(e

�), ht(e
��)} (line  19, Algorithm  5), where e�, e�� ≠ ea ∈ △ . Set Γ is 

updated each time to correspond to the r value being used for computation of the 
condition. For every △ ∈ Sl , by the previous argument, there is some eb ≠ ea ∈ △ , 
such that ht(eb) < ht(ea) . Thus, 𝜌△ < ht(ea) , and these triangles are not consid-
ered in the computation. As a result set Γ will consist of triangles from set Sh only; 
Γ ⊆ Sh . Let G′ be the graph such that L� = E(G�) . Using Proposition 2, we can write

Since ea ∈ Li+1 , �-���G� (ea) = ��(G
�) . Thus, we have

The above equations are based on the definition of probabilistic support of an edge: 
�-���G� (ea) = maxk{Pr[���G� (ea) ≥ k] ≥ �} . By definition of Sh , edges contained in 
the triangles of Sh are part of L� = E(G�) . Thus, triangles in Sh are contained in G′ . 
As mentioned earlier, since computation of Pr[���G� (ea) ≥ r�] is done by considering 
triangles in Sh , the values of Pr[���G� (ea) ≥ r�] and Pr[���(ea) ≥ r�||Sh] are the same. 
Therefore, Pr[���(ea) ≥ r�||Sh] < 𝜂 . Combining this with Eq.  22, for r > 𝛿𝜂(G

�) we 
obtain:

Since Pr[���(ea) ≥ r||Γ] < 𝜂 , the algorithm checks r values less than or equal 
to ��(G

�) , thus ht+1(ea) ≤ ��(G
�) . In addition, based on Lemma  1, we have 

��(G
�) ≤ ��(ea) . Thus, ht+1(ea) ≤ ��(ea) . On the other-hand, based on property 

(2) in Theorem  6, we have ht+1(ea) ≥ ��(ea) . Combining ht+1(ea) ≤ ��(ea) and 
ht+1(ea) ≥ ��(ea) , we conclude that ht+1(ea) = ��(ea) . Since ea was an arbitrary edge 
in Li+1 , this concludes the proof by induction. 	�  ◻

(22)Pr[���(ea) ≥ r||Γ] ≤ Pr[���(ea) ≥ r||Sh], for any r,

(23)Pr[���G� (ea) ≥ ��(G
�)] ≥ �,

(24)Pr[���G� (ea) ≥ r�] < 𝜂, for any r� > 𝛿𝜂(G
�),

(25)Pr[���(ea) ≥ r||Γ] ≤ Pr[���(ea) ≥ r||Sh] < 𝜂,
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Based on the above theorem, we can express the following corollary which shows 
that convergence is guaranteed in a finite number of iterations.

Corollary 3  Given a probabilistic graph G , and threshold � , let l be the maxi-
mum value for the degree level, such that Ll ≠ ∅ . There exists some t ≤ l such that 
ht(e) = ��(e) , for all edges.

5.5 � Complexity analysis

In this section we present the time complexity of our proposed algorithm, proHIT.

Theorem 8  Given a probabilistic graph G , proHIT computes the truss decomposi-
tion of G in O

(
tkmax,��m

)
 , where t is the total number of iterations kmax,� = maxe{�

-���G(e)} , � is the minimum number of spanning forests needed to cover all edges of 
G , and m is the number of the edges.

Proof  The time complexity of Algorithm  4 is dominated by the time complexity 
of Phase II, since h-index computation of edges is done by dynamic programming 
(DP) algorithm which has quadratic time complexity. In contrast, the h-index com-
putation in Phase I can be done in linear time.

To analyze the time complexity of Phase II (given in Algorithm 5), we should 
note that for each edge e = (u, v) , the first time computation of the probabil-
ity Pr[���(e) ≥ H||Γ] in line  6 (Algorithm  5), takes O(Hj0) time, where j0 = ||Γ|| , 
H = h(e) , and Γ is as given in the algorithm. For the next iterations in the while 
loop (line 6, Algorithm 5), using Modified DP, the computation is performed on Ti 
only, where i = H − 1,… , 0 , and Ti is as before. In the worst case, the while loop 
is repeated H times. Let us assume that j1 = ||T

H−1|| , j2 = ||T
H−2|| , … , jke =

||T
0|| . It 

is obvious that j0 + j1 +⋯ + jke = ke , where ke is the number of common neigh-
bors of u and v. We have that ke ⊆ O(min {d(u), d(v)}) , where d(u) and d(v) 
are the degree of vertices u and v, respectively. Therefore, the while loop takes 
O(j0H) + O(j1(H − 1)) +⋯ + O(jke−11) time. In the worst case then, the time com-
plexity of the while loop is bounded by O(j0kmax,�) + O(j1kmax,�) +⋯ + O(jke−1kmax,�) , 
which is equal to O(kmax,𝜂ke) ⊆ O(kmax,𝜂 min {d(u), d(v)}).

Moreover, the iteration over each neighbor of edge e in line 12 (Algorithm 5), 
takes O(min {d(u), d(v)}) . As a resul, the time complexity of Phase II is bounded by

Thus, the time complexity becomes:

∑

e∈E

(
O
(
kmax,� min {d(u), d(v)}

)
+ O

(
min {d(u), d(v)}

))

∑

e∈E

O
(
kmax,𝜂 min {d(u), d(v)}

)
⊆ O

(
kmax,𝜂𝜓m

)
.
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It should be noted that � ≤ min
�
dmax,

√
m
�

 , where dmax is the maximum degree in 
the graph. Let t be the total number of iterations. The total time complexity is 
O
(
tkmax,��m

)
 . In the worst case the number of iterations, t, is bounded by the degree 

levels as discussed in Theorem 7 and Corollary 3 in Sect. 5.4. The number of degree 
levels are bounded by � = kmax,� . 	�  ◻

The running times of the baseline algorithms, PDT and PAPT are dominated by 
O(dmax�m) . However, proHit algorithm performs much better in practice. This is 
because � in the above proof is worst-case upper-bound on t, the number of itera-
tions, and is not representative of practical performance. As shown in our experi-
ments t is much less than � in practice as the h-index of several edges will decrease 
simultaneously in each iteration.

For example, let us consider the flickr dataset, with � = kmax,� = 49 . However, as 
can be seen in Fig. 7, for flickr with � = 0.1 , the total number of iterations is about 
18 which is much smaller than � . This trend is also evident for other datasets.

6 � Experiments

In this section, we present our experimental results. Our implementations are in 
Java and the experiments are conducted on a machine with Intel i7, 2.2Ghz CPU, 
and 12Gb RAM, running Ubuntu 18.04. The statistics for the datasets are shown 
in Table 3. We report the number of vertices ||V|| , the number of edges ||E|| , and the 
number of triangles ||△|

| . Datasets with real probability values are flickr, dblp, and 
biomine.

flickr is a popular online community for sharing photos. Nodes are users in the 
network, and the probability of an edge between two users is obtained based on the 
Jaccard coefficient of the interest groups of the two users [16, 21].

dblp comes from the well-known bibliography website. Nodes correspond to 
authors, and there is an edge between two authors if they co-authored at least one 
publication. The existence probability of each edge is measured based on an expo-
nential function of the number of collaborations between two users [16, 21].

Table 3   Dataset statistics Graph |
|V

|
|

|
|E
|
| |

|△
|
| References

flickr 24,125 300,836 8,857,038 [21]
dblp 684,911 2,284,991 4,582,169 [21]
biomine 1,008,201 6,722,503 93,716,868 [21]
uk-2014-tpd 1,766,010 15,283,718 259,040,749 [26, 27]
itwiki-2013 1,016,867 23,429,644 89,901,299 [26, 27]
in-2004 1,382,908 27,182,946 464,257,245 [26, 27]
ljournal-2008 5,363,260 49,514,271 411,155,444 [26, 27]
enwiki-2013 4,206,785 91,939,728 304,083,160 [26, 27]
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biomine contains biological interactions between proteins. The probability of an 
edge represents the confidence level that the interaction actually exists [21].

The rest of the datasets are social networks and web graphs which are obtained 
from Laboratory of Web Algorithms [26, 27]. For these datasets we generated prob-
ability values uniformly distributed in (0, 1].

6.1 � Efficiency evaluation

In this section, we report the running time of our proposed algorithms, PAPT and 
proHIT, versus the state-of-the-art peeling algorithm, which we refer to as PDT 
(peeling-DP-truss). PDP is based on an iterative edge removal process which 
removes edges e with smallest probabilistic support, �-���G(e) , and updating proba-
bilistic support, �-���G⧵{e}(e�) , of the affected edges e′ in G ⧵ {e} . PDT uses dynamic 
programming for computing and updating probabilistic support of edges. We use DP 
as an abbreviation for dynamic programming.

In our experiments, we set threshold � = 0.1,… , 0.5 . The running times in log-
scale are shown in Figs. 4 and  5. In Fig. 4 we present the running times for flickr, 
dblp, biomine, and ljournal-2008 using � = 0.1 as an example. In Fig. 5, we sepa-
rate the running times for the rest of the datasets due to different scales in their plot 
of running times. For these datasets we show the results for � = 0.2,… , 0.5 , since 
PDT cannot complete in reasonable time for � = 0.1 . Moreover, for each dataset, 
we obtain the average of the maximum probabilistic support, avg�{kmax,�} , and the 
average of maximum truss value, avg�{maxe{��(e)}} , over � = 0.1,… , 0.5 . These 
statistics are shown in Table 4, second and third columns, respectively.

As can bee seen in Figs. 4 and  5, proHIT and PAPT algorithms are significantly 
faster than PDT, especially on networks containing a large number of triangles, 
and having large value of avg�{kmax,�} . For instance, for biomine (Fig. 4) which is 
such a dataset, the gain of proHIT and PAPT compared to PDT is 84% and 67%, 
respectively. This makes proHIT and PAPT six and three times faster than PDT. For 
biomine with � equal to 0.1 and 0.2, proHIT is better than the approximate algorithm 
PAPT, which, we recall, is an approximate algorithm. For the other � ’s for biomine, 
proHIT is slightly slower than PAPT. To reiterate, this is a welcome surprise because 
proHIT achieves a similar performance as PAPT, but without sacrificing the exact-
ness of the solution.

In terms of running time on the smaller datasets, flickr and dblp, proHIT produces 
the results in 1.5 minutes and 1 minute, respectively. The number of triangles in 
flickr is twice larger than in dblp while having much less edges. We observe that 
proHIT has a similar performance as PAPT. Both proHIT and PAPT are faster than 
PDT, except on dblp. We recall that dblp is the smallest dataset in terms of proba-
bilistic support and truss value of its edges, and as such it does not cause too much 
work for Dynamic Programming needed for PDT. As we see in the rest of the charts 
in Fig. 5 proHIT significantly outperforms PDT and PAPT as the datasets get larger.

The running times of all algorithms increase for ljournal-2008, which is reason-
able, because this graph has 49 million edges with avg�{kmax,�} equal to 911. For 
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ljournal-2008, proHIT computes truss decomposition faster than PDT with a gain of 
40 percent.

The running times continue to increase for the remaining datasets. This is because 
for these datasets avg�{kmax,�} is much larger as shown in Table 4. For instance, for 
itwiki-2013, avg�{kmax,�} is 4574. Moreover, for uk-2014-tpd and in-2004 the ratio of 
the number of triangles to the number of edges is much higher than ljournal-2008.

Fig. 4   Running time of our proposed algorithms, proHIT and PAPT versus PDT (baseline) for truss 
decomposition in probabilistic graphs

Fig. 5   Running time of our proposed algorithms, proHIT and PAPT versus PDT edge peeling (baseline) 
for truss decomposition on larger datasets with different values of �
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As can be seen, for these graphs, proHIT is again significantly faster than its 
counterpart PDT (as an exact method). For instance, for uk-2014 and itwiki-2013 
with � = 0.3 , proHIT is about 2 and 3 times faster than PDT. Comparing proHIT 
with PAPT (which is an approximate method) shows that proHIT is on average 24% 
faster than PAPT without sacrificing the exactness of the solution. For itwiki-2013 
with � = 0.5 , proHIT can complete truss decomposition in about 4 h, while PAPT 
takes about 7 h. Also, truss decomposition of in-2004 using proHIT is 30 min faster 
than the one using PAPT. A similar trend can be observed for other values of �.

In general, as the number of edges and triangles in the input graph increase, the 
running times of the algorithms become larger. The conclusion that we get is that 
for large graphs the performance of the proHIT algorithm is better than the peeling 
approaches since they require updating probabilistic supports many times during the 
algorithm process to obtain the truss values of the edges. Also, our PAPT which uses 
Lyapunov CLT for approximating tail probability of support of edges outperforms 
PDT approach.

6.1.1 � Effect of � values

It should be noted that as � increases, probabilistic support and truss values of edges 
decrease which lead to decrease in the running times of the algorithms. In Table 5, 
we show the trend for one of our dataset, biomine , in which kmax,� and maxe{��(e)} 
decrease as � increases.

Next, we discuss why proHIT is faster than PDT. The most expensive part of 
both algorithms is executing DP routines, with quadratic run-times in the number 
of triangles containing each edge. However, their number and sizes are different in 
proHIT and PDT. Step  6 in Phase II (Algorithm  5) of proHIT uses DP to check 
the validity of the upper-bounds on the truss value of edges at each iteration of the 
algorithm. Also, at the beginning of proHIT, the upper-bound of each edge e is set to 
its �-���G(e) which is obtained using DP (Algorithm 4, line 3). In PDT, DP is used 
after each edge removal, and all the edges that are neighbors of a peeled edge need 
to have their probabilistic support recomputed using DP.

Given a probabilistic graph G , and edge e = (u, v) , let ke be the number of com-
mon neighbors of u and v used for computing probabilistic support of e in G . The 

Table 4   The values 
of avg�{kmax,�} , and 
avg�{max

e
{��(e)}} over 

� = 0.1,… , 0.5

Dataset avg�{kmax,�} avg�{max
e
{��(e)}}

flickr 48 47
dblp 38 11
biomine 135 27
ljournal-2008 911 35
uk-2014-tpd 1252 51
in-2004 1890 35
itwiki-2013 4574 6
enwiki-2013 14429 8
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time complexity of the computation by DP is O(k2
e
) [4]. We refer to ke as the size of 

DP. In proHIT, in Phase II, not all neighbors of u and v are used for DP but rather 
only those neighbors that can contribute to the final truss value of e (recall set Γ and 
Eq. 16 in Sect. 5). As such, in proHIT, the size of DP is typically smaller than the 
total number of all the common neighbors of u and v. This is in contrast to PDT, 
which runs DP using all the remaining neighbors of an edge at that point in the peel-
ing process. In essence, proHIT performs DP on smaller and only the effective set of 
neighbours for each edge, resulting in a considerable speedup.

We report the average and maximum sizes of DP for both algorithms in Table 6, 
for flickr, dblp, biomine, and ljournal-2008 . As can be seen, for all the selected 
datasets, these sizes are much smaller for proHIT than for PDT. This is particularly 
important in large datasets, biomine and ljournal-2008 , in which the average size for 
proHIT is about 3.5 and 4 times smaller than for PDT. In addition, in the last col-
umn of Table 6, we report the number of times DP is performed for both PDT and 
proHIT algorithms. The difference is noticeable for large datasets. For instance, on 
ljournal-2008, the number of executions of DP by proHIT is half of those performed 
by PDT.

6.1.2 � Memory usage

In Fig. 6, we compare the memory consumption of proHIT and PAPT versus that of 
PDT on selected datasets. The trend can be verified for other datasets as well. Our 
PAPT approach requires a slightly more memory compared to PDT since it stores 
mean and standard deviation of distribution of the support of edges during execution 
of the algorithm. On the other hand, proHIT consumes much smaller memory com-
pared to PDT and PAPT. For instance, for biomine the memory consumption of pro-
HIT is 12 times and 6 times smaller than those of PAPT and PDT, respectively. This 
also holds for other datasets such as ljournal-2008. This is because PDT and PAPT 
are edge peeling based algorithms which require maintaining the global information 
of the graph at each step of the algorithm, while proHIT uses local information only.

6.2 � Convergence speed

In this section we further evaluate the execution of proHIT as it unfolds with time. 
We look at the average distance from the truss values over the sequence of iterations 
for selected small to large datasets (see Fig. 7). The average distance decreases fast 

Table 5   kmax,� , max
e
{��(e)} , � Dataset kmax,� max

e
{��(e)} �

biomine 151 33 0.1
143 30 0.2
135 28 0.3
125 25 0.4
121 18 0.5
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for flickr, dblp, and biomine, and more gradually for ljournal-2008, in-2004, and uk-
2014-tpd. These results show that proHIT can produce high-quality near-results in 
only a fraction of iterations needed for completion. For instance, for ljournal-2008 
with � = 0.1 , the average distance becomes less than 0.01 at iteration 20, about one 
third of the total number of required iterations (about 60, see the end of the curve). 
This can be a desirable property in graph mining where the user would like to see 
near-results as the execution progresses.

6.3 � Case study

In this section, we show an application of the probabilistic truss notion. Most of 
applications showcased for probabilistic core and truss decompositions in the lit-
erature are based on datasets in which the edge probabilities may be synthetic or 
not conditionally independent. Here, we consider the human biomine dataset [28], 
which has 861,812 nodes and 8,666,287 edges. The nodes are proteins and the edges 
represent protein interactions and their probability of occurrence. We investigate 
how probabilistic truss can be used in detecting proteins/genes that interact with 
the SARS-CoV-2 coronavirus. Bouhaddou et al. [29] found that during the SARS-
CoV-2 virus infection, changes in activities can happen for human kinases. We con-
sider two tyrosine kinase-related proteins, P17844 and P0CG48. They come from 
UniProt, which is a freely accessible database of protein sequences and functional 
information. These proteins have received literature support for interaction with the 
SARS-CoV-2 coronavirus [30, 31]. We refer to them as proteins of interest and we 

Table 6   Average and maximum 
sizes of dynamic programming 
(DP), as well as the number of 
executions of DP for PDT and 
proHIT 

Dataset Size of DP # of times

Avg Max Avg Max DP is executed

PDT proHIT PDT proHIT

flickr 154 452 85 280 12 M 1.7 M
dblp 28 220 6 114 2.8 M 3.6 M
biomine 249 27970 62 17042 85.6 M 19.7 M
ljournal-2008 159 4324 44 503 505 M 247 M

Fig. 6   Memory usage of proposed algorithms versus the state-of-the-art edge peeling approach
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find the probabilistic truss subgraph which contains these proteins of interest. Also, 
we compare the obtained subgraph with its counterpart, the probabilistic core sub-
graph [21], in terms of the number of vertices and edges, and probabilistic density 
and clustering coefficient. Probabilistic density (PD) is the ratio of the sum of edge 
probabilities to the possible number of edges in the graph G [4]:

Probabilistic clustering coefficient (PCC) measures the level of tendency of the 
nodes to cluster together [4, 32]:

PD and PCC are important measures of cohesiveness in a probabilistic graph.
Table 7 shows the size of the graphs obtained by probabilistic truss and core as 

well as their cohesiveness values. We set threshold � = 0.1 . We find the largest value 
of k for which the subgraph contains the proteins of interest. As can be seen, proba-
bilistic truss gives much higher quality results than probabilistic core in terms of 
density and clustering coefficient. For instance, PCC for the probabilistic truss sub-
graph is about 4.5 times larger than the one obtained for the probabilistic core sub-
graph. Moreover, in terms of the nodes and edges, the probabilistic truss subgraph is 
much smaller than the probabilistic core subgraph.

Furthermore, using gene enrichment analysis through Metascape,2 we see which 
kind of biology function/process our detected probabilistic truss subgraph repre-
sents. Metascape [33] is a web-based portal that provides comprehensive gene list 
annotation and analysis resources. Figure  8 shows the top disease terms related 
to the proteins in the detected probabilistic truss subgraph. For instance, the top 

(26)PD(G) =

∑
e∈E p(e)

1

2
��V��⋅(��V��−1)

.

(27)PCC(G) =
3
∑

△uvw∈G
p(u, v) ⋅ p(v,w) ⋅ p(u,w)

∑
(u,v),(u,w),v≠w p(u, v) ⋅ p(u,w)

.

Fig. 7   Average difference between the truss value and the upper bound over iterations for different values 
of � for our datasets

2  https://​metas​cape.​org/​gp.

https://metascape.org/gp
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associated diseases are Anemia and Diamond-Blackfan (a kind of rare anemia dis-
ease). The p-value of the association is about 10−30 , which is statistically very sig-
nificant. These findings are useful to biologists in order to perform targeted tests for 
checking whether drugs for the treatment of these diseases can also be repurposed 
for treating COVID-19 [30].

Note Metascape was unable to process the max core due to its excessive size 
hence the need for a smaller and denser subgraph, such as the one produced by truss 
decomposition.

7 � Conclusions

We presented a peeling algorithm, PAPT, for computing truss decomposition for 
large probabilistic graphs. A novel contribution of our work is the use of Lyapunov’s 
Central Limit Theorem to obtain the probabilistic support for an edge. Unlike the 
DP approach, PAPT does not rely on incremental evaluation of support probabilities. 
We evaluated PAPT and showed that it is significantly faster than DP for large data-
sets. We believe that the CLT techniques we proposed in this paper are of independ-
ent interest and can find new applications to other computationally intensive tasks 
on probabilistic data.

Next we presented proHIT a truss decomposition algorithm based on an h-index 
updating approach. Unlike the edge peeling strategy, proHIT accesses the edges in 
a local fashion which makes it memory efficient. proHIT includes two main phases. 
Phase I is responsible for updating the edges’ h-index without considering edge 
probabilities. This phase can provide a fast-to-compute upper-bound on truss values 

Table 7   Comparison of truss and core subgraphs in terms of maximum k for which the subgraph con-
tains the proteins of interest, number of nodes and edges, and PD and PCC

Notion Max k Nodes Edges PD PCC

Core 78 3,677 2,060,774 0.032 0.080
Truss 17 569 56,733 0.133 0.367

Fig. 8   Top enriched terms related to diseases in the detected subgraph by probabilistic truss decomposi-
tion. Variable P on the x-axis refers to p-value
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of the edges. Phase II takes care of the probabilistic nature of truss decomposition 
and further tightens the upper-bounds obtained in the previous phase. While being 
an exact algorithm, proHIT can also produce near-results in only a fraction of itera-
tions needed for computing the full exact solution.
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