
Vol.:(0123456789)

Distributed and Parallel Databases (2022) 40:559–625
https://doi.org/10.1007/s10619-022-07408-8

1 3

BBoxDB streams: scalable processing of multi‑dimensional
data streams

Jan Kristof Nidzwetzki1  · Ralf Hartmut Güting1 

Accepted: 6 April 2022 / Published online: 2 May 2022
© The Author(s) 2022

Abstract
BBoxDB Streams is a distributed stream processing system, which allows the han-
dling of multi-dimensional data. Multi-dimensional streams consist of n-dimen-
sional elements, such as position data (e.g., two-dimensional positions of cars
or three-dimensional positions of aircraft). The software is an enhancement of
BBoxDB, a distributed key-bounding-box-value store that allows the handling of
n-dimensional big data. BBoxDB Streams supports continuous range queries and
continuous spatial joins; n-dimensional point and non-point data are supported.
Operations in BBoxDB Streams are performed primarily on the bounding boxes
of the data. With user-defined filters (UDFs), custom data formats can be decoded,
and the bounding box-based operations are refined (e.g., a UDF decodes and per-
forms intersection tests on the real geometries of WKT encoded stream elements).
A unique feature of BBoxDB Streams is the ability to perform continuous spatial
joins between stream elements and previously stored multi-dimensional big data.
For example, the dynamic position of a car can be efficiently joined with the static
spatial data of a street network.

Keywords  Distributed stream processing · Spatial stream processing · Continuous
queries · Distributed datastore · Multi-dimensional data

1  Introduction

Data streams consisting of multi-dimensional elements are ubiquitous. For instance,
when the position of a moving object is determined continuously and stored, a data
stream is created. Every observed position can be considered as a two-dimensional
stream element.

 *	 Jan Kristof Nidzwetzki
	 jan.nidzwetzki@studium.fernuni-hagen.de

	 Ralf Hartmut Güting
	 rhg@fernuni-hagen.de

1	 Faculty of Mathematics and Computer Science, FernUniversität Hagen, 58084 Hagen, Germany

http://orcid.org/0000-0002-2650-8019
http://orcid.org/0000-0001-6260-4051
http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-022-07408-8&domain=pdf

560	 Distributed and Parallel Databases (2022) 40:559–625

1 3

Examples of data streams containing multi-dimensional data are: (1) the price of
a stock, (2) the position of a car or a ship, or (3) the position of an aircraft. The first
stream consists of price values; each price can be considered as a point in the one-
dimensional space.1 The second stream consists of coordinates in the two-dimen-
sional space (i.e., longitude and latitude of the vehicle). The last stream consists of
coordinates in the three-dimensional space (i.e., the longitude, the latitude, and the
altitude of the aircraft).

Example  A very simple stream of two-dimensional position data looks as fol-
lows: (54.0044, 8.65926), (53.9336, 8.69052), (53.8972,
8.78316), Each bracket pair represents a stream element, consisting of a
WGS84 [1] coordinate. 	� ◻

Apart from simple bracket structured data, well-known data formats such as CSV
or JSON can be used for the encoding of the stream elements. This makes it possible
to add further information such as the observation time or the id of the entity (e.g., a
license plate or a flight number) to the stream elements.

1.1 � Multi‑dimensional data streams

There are many different types of multi-dimensional data. Such data can have: (1) an
extension in space (e.g., the geometry of a ship) or (2) no extension in space (e.g.,
the coordinates of a point). In the first case, we call the data of the object non-point
data, while in the second case point data. Often, multi-dimensional data describe the
position of an object of the real-world. The position of an object can be described in
the following ways: (1) as a point in space, (2) as an n-dimensional axis-aligned
bounding box, and (3) with the full geometry of the object (see Fig. 1).

Using the complete geometry is the most precise way to describe the position of
an object in space. In contrast, the bounding box2 gives only a rough estimation of
the location of the object in space. However, the simple structure of a bounding box
makes operations like intersection tests fast to calculate; such operations are expen-
sive to compute on the complete geometry of an object.

•

(a) Point in
space

(b) Bounding box (c) Complete
geometry

Fig. 1   Three ways to describe the position of an object (e.g., a ship) in the two-dimensional space

1  One-dimensional data is the type of data that is handled by regular stream processing systems.
BBoxDB Streams can also deal with this type of data.
2  The axis-aligned minimal bounding box is the smallest box in space that encloses the object com-
pletely. In the rest of this paper, the terms axis-aligned minimal bounding box and bounding box are used
as synonyms.

561

1 3

Distributed and Parallel Databases (2022) 40:559–625	

The most inaccurate way to describe an object is a point in space. The whole
object, whether it has an extension or not, is described only by an n-dimensional
point. Many real-world data streams such as: (1) ADS-B (Automatic Dependent
Surveillance-Broadcast), which contain the position data of aircraft, (2) AIS (Auto-
matic Identification System), which contain the positions of ships, or (3) GTFS real-
time (General Transit Feed Specification), which contain the position data of public
transport vehicles, express the position only with point data.3

Definition 1  A multi-dimensional data stream Sn of the dimensionality n is a poten-
tially unbounded continuous sequence of stream elements e, Sn = (e0, e1, e2,… , e∞) .
Each stream element e = (id, t, valuen,…) consists at least of an object identifier,
denoted as id, the event time t when the element was produced, and an n-dimen-
sional value valuen . 	� ◻

1.2 � Processing data streams

Stream processing systems [2] are software systems that are developed to handle
data streams. In contrast to database management systems, which store data first and
answer queries afterward, stream processing systems work in exactly the opposite
way.

In the first step, queries are registered, and afterward, a data stream is processed
[3]. Every element in the data stream that fulfills a query predicate is reported.
Depending on the stream processing system that is used, the query predicate can
contain complex filters or transformations.

The near real-time (low-latency) processing of data streams is essential for many
areas of application. For example, on a stream of position data, the following queries
might be interesting: (1) Is an aircraft about to enter a certain airspace? (2) Which
taxis are located near a passenger? (3) Has a convoy of vehicles broken apart and
the cars do not drive next to each other anymore? All these queries need to process
the stream elements fast (near real-time) so that actions based on these events can be
executed (e.g., warn the aircraft that enters a restricted airspace).

Figure 2 shows a further application from the field of maritime observation. The
figure depicts the real geometries and the bounding boxes of a ship and a reef. A

Fig. 2   Does a ship collide with
a reef? The bounding boxes of
the ship and the reef are shown
as dotted boxes. In addition, the
enlarged bounding box of the
ship is shown as a dashed box

3  When point data (data without an extension in space) is used, the bounding box also degenerates to a
point in space; the point and the bounding box are identical.

562	 Distributed and Parallel Databases (2022) 40:559–625

1 3

continuous query is registered, which should report all ships that come dangerously
close to a reef. To be able to warn the ship about a possible collision, the bounding
box of the ship is enlarged by a constant value.4 Therefore, the intersection between
the enlarged bounding box of the ship and the bounding box of the reef is reported
by the query before the reef is actually hit.

1.3 � Challenges

We have identified four major challenges when multi-dimensional data streams are
processed:

Multi-dimensional data and non-point data: Objects of any dimensionality can
be contained in a data stream. For example, the position of a car is two-dimen-
sional (latitude and longitude); the position of an aircraft also contains an altitude
and is three-dimensional. Therefore, the proposed solution should be able to han-
dle n-dimensional data. In addition, a data stream can contain point and non-point
data; the solution should be able to process both types of data (see Sect. 1.1).
Existing stream processing systems perform the distribution of the stream ele-
ments only based on one-dimensional point data. For the efficient and scalable
processing of multi-dimensional data streams, it should be possible to perform
the stream distribution based on multi-dimensional data (see Sect. 4.1).
Spatial joins: For some applications, the stream elements need to be joined with
already stored data. For example, the position of a car needs to be joined with a
road network to determine in which street the car is currently located. Therefore,
the solution needs to provide efficient access to previously stored multi-dimen-
sional big data. Joining the dynamic stream data with n-dimensional static big
data at scale is a novel topic that is not addressed by other stream processing sys-
tems (see Sect. 4.4.2).
Scalability: The number of elements in a data stream per time unit can fluctu-
ate significantly; a large number of stream elements can occur within a short
period of time. The receiving system needs to process the elements with a low
latency delay. A scalable and distributed approach is required, which is capable
of utilizing the resources of multiple nodes. Handling multi-dimensional stream
data at scale introduces challenges that are not addressed by current systems (see
Sect. 4.5).
Transformations and data distribution: Some continuous queries require the
transformation of stream elements (e.g., the enlargement of the bounding box of
the spatial join as depicted in Fig. 2 in Sect. 1.2). To execute such a join effi-
ciently, the stream data needs to be distributed to nodes that contain the join part-
ners. Joins in distributed stream processing systems are usually performed in two
steps: (1) the data are distributed, and (2) the continuous join queries are executed
by the nodes. The enlargement of the stream elements is performed in the con-
tinuous join query. This means that the enlargement of the stream elements is

4  Instead of enlarging the bounding box of the ship, the bounding box of the reef could also be enlarged.

563

1 3

Distributed and Parallel Databases (2022) 40:559–625	

calculated after they are distributed, which makes it hard to distribute the data to
all needed nodes. However, spatial joins that contain transformations should be
supported by a stream processing system (see Sect. 4.6).

1.4 � Proposed solution

In this paper, we propose BBoxDB Streams [4] as a novel solution to process multi-
dimensional data streams. The paper provides the following major contributions:

–	 A generic stream processing solution for multi-dimensional data, which supports
n-dimensional point and non-point data.

–	 A novel approach for the execution of continuous spatial joins between static
multi-dimensional big data and multi-dimensional data streams.

–	 An efficient way to express queries (e.g., continuous range queries and spatial
joins) and transformations on data streams and stored data.

–	 A solution to distribute stream elements to nodes, even when transformations are
applied and spatial joins should be performed.

–	 A GUI which can be used to execute queries on real-world data streams.
–	 A free implementation that is available under an open-source license on GitHub

[5].

BBoxDB Streams is an extension of BBoxDB [6]; a distributed key-bounding-box
value store, optimized for the handling of multi-dimensional data. To the best of our
knowledge, BBoxDB is the first freely available data store that is capable of han-
dling n-dimensional point and non-point big data efficiently; data can be retrieved
in O(log n + k) time. In contrast to a key-value store, BBoxDB stores each value
together with a bounding box. The space is partitioned dynamically into distribu-
tion regions, and these regions are assigned to the nodes of a cluster. In BBoxDB,
operations are executed primarily on the bounding boxes of the data. User-defined
filters (UDFs) are used to enhance the generic query processor [7]; they refine the
query results and decode custom data formats. In BBoxDB Streams, UDFs are used
to decode the various data stream formats and process the geometries of the stream
elements (see Sect. 3.6).

BBoxDB Streams focuses on the handling of two- and three-dimensional data
streams. However, the data model is generic and data streams of other dimensionali-
ties can be handled. The software concentrates on processing continuous range que-
ries and continuous spatial joins on these data streams. However, some features that
are part of common stream processing systems (e.g., windows or aggregates) are not
implemented in BBoxDB Streams.

BBoxDB was developed in our previous research and provides native support
for the distributed handling of multi-dimensional data. It is one of the first systems
which addresses the problem of storing n-dimensional data in a generic way. How-
ever, the system focuses only on the handling of updates; the processing of data
streams was not covered by the system so far. The system implements a generic

564	 Distributed and Parallel Databases (2022) 40:559–625

1 3

key-bounding-box-value data model that can be re-used to handle multi-dimensional
data streams. In contrast, most existing stream processing systems focus only on the
distribution of one-dimensional data. The data model, query processor, and data dis-
tribution logic are implemented to handle such data, which would make integrat-
ing the required changes to support multi-dimensional data complex. In addition,
the indexed storage of big multi-dimensional data is not covered by these systems,
which is required to realize efficient continuous joins between stream elements and
previously stored data. Therefore, we have chosen BBoxDB as the foundation for
our implementation.

The rest of the paper is organized as follows: Sect. 2 gives an overview of the
related work. Section 3 contains the details of BBoxDB that are required for the
understanding of BBoxDB Streams. Section 4 describes our solution for the han-
dling of data streams. Section 5 shows how queries can be expressed and executed.
Section 6 contains a performance evaluation of BBoxDB Streams, while Sect. 7
concludes the paper.

2 � Related work

The handling of data streams and the execution of continuous queries has related
work in the areas of: (1) database management engines (storing large amounts of
data and allowing the efficient data retrieval), and (2) stream processing systems (the
handling of continuously changing values).

The related work of these areas is discussed in the following sections. The related
systems are compared with BBoxDB (for the data storage part) and BBoxDB
Streams (for the stream handling part).

2.1 � Database management systems

For more than a decade, distributed storage and retrieval of large amounts of data
(big data) has been an important topic in research. The related systems of these
areas are discussed in the following sections.

2.1.1 � Traditional database management systems

Many database management systems (DBMS) that are used today focus on the rela-
tional data model; such systems are called relational database management systems
(RDBMS) [8, 9]. They are optimized for ad-hoc query processing, transactions, and
consistency. However, these features make it hard to scale well across a cluster of
nodes [10]; most RDBMS are only capable of running on one node.

Compared to the relational data model, BBoxDB (and BBoxDB Streams) uses
simpler key-bounding-box-value tuples. The software supports queries such as range
queries or spatial joins on n-dimensional data (see also the discussion in Sect. 2.1.3).
The queries are simpler than the queries supported by RDBMS, but BBoxDB stores

565

1 3

Distributed and Parallel Databases (2022) 40:559–625	

the data in a distributed way and re-distributes unevenly partitioned data automati-
cally in the background. Such concepts are not supported by most DBMS. There-
fore, BBoxDB can work on larger datasets.

DBMS like MySQL can be extended by user-defined functions [11]. Extensible
DBMS like SECONDO [12] can be extended by complete operators or new data
models. User-defined filters (see Sect. 3.6) extend the query processor of BBoxDB.
In BBoxDB Streams, these UDFs can be used to process data streams with custom
data formats like GeoJSON (see Sect. 3.6.2 for an example).

2.1.2 � Key‑value stores

Key-value stores (KVS) belong to the family of NoSQL systems. They use a simple
data model consisting of key and value tuples. To store large amounts of data, they
can be implemented as a distributed key-value store (DKVS), such as Cassandra
[13] or HBase [14].

In a DKVS, the data are distributed across a cluster of nodes and each node stores
only a partition of the data. A partitioning function like a range- or a hash-partition-
ing function is applied to the key of the tuple to determine to which node the tuple
belongs.

(D)KVS provide simple methods to manage large amounts of key-value pairs. For
storing data, they provide an operation such as put(table, key, value). The
given value is stored in a table under a particular key. For retrieving data, another
operation such as get(table, key) is provided. This operation retrieves the
stored value for a key from a table. (D)KVS focus on data storage, data streams are
not supported, and the features to execute queries on the data are limited.

2.1.3 � Multi‑dimensional data in KVS

Most (D)KVS are optimized to handle one-dimensional data; handling n-dimen-
sional data is laborious in these systems. Figure 3 depicts the problem for one- and
two-dimensional data. In the figure, we assume that the shown customer record is
retrieved only via the customer_id attribute. Therefore, this attribute can be used as
the key in the KVS. Choosing the key for a road (two-dimensional non-point data) is
much more difficult.

(D)KVS work with one-dimensional keys, and these keys are the only access path
to the data. Because of this, the key has to support the query processing. For exam-
ple, when the road’s name (e.g., Road 66) is chosen as key for a tuple that stores the
spatial data of a road (see Fig. 3b); the road can be accessed by the name efficiently.
However, the key does not contain information about the location of the road in
space. It is impossible to deduce the needed keys to retrieve the data for a query such
as Which roads are located in the following area? and in such cases, an expensive
full data scan has to be performed.

In general, multi-dimensional range queries are not directly supported in regular
(D)KVS; a full data scan must be performed to answer such queries. A full data scan

566	 Distributed and Parallel Databases (2022) 40:559–625

1 3

is an expensive operation; the complete dataset has to be read from disk. To answer
queries efficiently, full data scans have to be avoided.

Linearization [15] can be used to encode the location of multi-dimensional
point data into a one-dimensional key. Systems like MD-HBase [16] are using this
technique to work with such data. MD-HBase is a multi-dimensional extension of
HBase, which allows the efficient storage of two-dimensional points. A K-D Tree
or a QuadTree partitions the space, and linearization is employed to generate ids
for these partitions. An additional indexing layer maps from these partition ids to
HBase buckets, where the data are stored. Queries like range queries are performed
by determining the required partitions and performing a scan of the affected buck-
ets. BBoxDB works with n-dimensional data and can also store non-point data. In
addition, no bucket scans are performed in BBoxDB. The local index (see Sect. 3.4)
allows retrieving the required tuples directly.

The source code of MD-HBase is not publicly available. With Tiny MD-HBase
[17] an open-source implementation does exist. Tiny MD-HBase is a sample imple-
mentation that shows the implementation aspects of the system. However, this ver-
sion is not designed for handling large amounts of data.

Systems such as EDMI - Efficient Distributed Multi-dimensional Index [18], Pyro
[19], HGrid [20] are also enhancements of HBase, which use an additional index
layer to store multi-dimensional data. M-Grid [21] uses a peer-to-peer overlay net-
work to organize multi-dimensional data. The software also uses HBase as a storage
backend and provides the ability to execute point, range, and kNN queries. However,
all of these systems do not support operations such as spatial joins or continuous
queries. In addition, these systems only support point data.

HyperDex [22] is a distributed key-value store that supports multi-dimensional
point data directly. However, non-point data are not supported by HyperDex. In [23],
a spatio-temporal indexing extension to the key-value store Apache Accumulo [24] is
discussed, which is based on GeoHashing [25]. However, this extension can handle
only spatio-temporal (three-dimensional) data and does not support data streams.

{
"customer id":1234,
"firstname":"John",
"lastname":"Doe",
"email":"jd@example.org"

}

Key 1234

a) Data that is accessed by one dimension (e.g., a customer record)

L
at
it
ud

e

Longitude

Key ?

b) Data that is accessed by two dimensions (e.g., a road)

Fig. 3   Determining a proper key for data in a (D)KVS can be a hard problem

567

1 3

Distributed and Parallel Databases (2022) 40:559–625	

The GeoMesa project [26, 27] has developed a spatio-temporal database built on top
of existing NoSQL databases like Cassandra, HBase, or Accumulo. Two- and three-
dimensional point and non-point data are supported. Also, GeoMesa allows the han-
dling of data streams. However, the software supports only very simple queries on
data streams.

2.1.4 � Further approaches

Array databases such as Rasdaman (raster data manager) [28], SciDB [29], or SciQL
[30] allow the processing of multi-dimensional arrays (data cubes). In addition to
these dedicated software systems, raster data extensions for relational database man-
agement systems such as PostGIS Raster [31] or Oracle GeoRaster [32] exist. Array
databases allow the handling of data like maps (two-dimensional) or satellite image
time series (three-dimensional). These systems are optimized for storing and retriev-
ing data. Handling data streams or continuous queries is not covered by all these
systems.

Parallel SECONDO [33] and Distributed SECONDO [34] are distributed ver-
sions of SECONDO. They also allow the handling of multi-dimensional data. How-
ever, the distribution of the data is based on a static grid, and uneven partitions are
not re-balanced automatically. In addition, continuous queries are not supported by
these systems.

MapReduce [35] is an approach for the processing of large amounts of data on a
cluster of unreliable nodes. With Apache Hadoop [36], an open-source implemen-
tation of the MapReduce algorithm does exist. Specialized extensions for the pro-
cessing of spatial data (like SpatialHadoop [37]) or Spatio-Temporal Data (like ST-
Hadoop [38]) were developed.

Apache Spark [39] is another widely used distributed processing engine for big
data. Data are stored in resilient distributed datasets (RDDs). In contrast to Hadoop,
Spark provides a wider range of operations and query processing is performed by
faster in-memory computations. In addition, the handling of data streams (called
Spark Streaming) is supported. Simba [40] extends Spark with the support for spa-
tial data. Range queries and spatial joins are supported. Currently, only two-dimen-
sional points are supported as a data type. SpatialSpark [41] is another software that
extends Spark to process spatial data. The software also supports range queries and
spatial joins on two-dimensional non-point data. GeoSpark [42] and the associated
open-source project Apache Sedona [43] are also extending Spark by the ability to
index spatial data and to execute queries like range queries or spatial joins. However,
these systems focus on processing static datasets and do not support the processing
of data streams. So, they cannot handle the data sources that BBoxDB Streams can
process.

568	 Distributed and Parallel Databases (2022) 40:559–625

1 3

2.2 � Stream processing systems

This section compares popular stream processing systems and common architec-
ture patterns with BBoxDB Streams. Besides, other approaches for the handling of
multi-dimensional stream data are discussed.

2.2.1 � First stream processing systems

The STanford stREamdatA Management (STREAM) system [44] was one of the first
publicly available systems to evaluate continuous queries over data streams. The
system uses a centralized architecture and does not focus on the special character-
istics of multi-dimensional data. In contrast, BBoxDB is a distributed system that is
specialized in the handling of multi-dimensional data.

The Tapestry system [3] introduces the concept of continuous queries. Continu-
ous queries are registered by a user and evaluated as soon as new data are stored.
Tapestry is an append-only database, and the continuous queries are formulated in
the Tapestry Query Language, which is similar to SQL. In contrast to BBoxDB, data
cannot be deleted, and the system can only utilize the resources of a single node.

2.2.2 � Current stream processing systems

The Apache project hosts four of the most widespread stream processing systems:
Apache Flink [45], Apache Spark Streaming [46], Apache Kafka [47], and Apache
Storm [48].

Modern stream processing systems allow splitting up the stream into so-called
windows. A window is a small partition of stream elements (e.g., based on the num-
ber of elements or the time) that are processed at once. On these windows, opera-
tions such as aggregations can be executed. Some systems allow to build up distrib-
uted tables of previous stream elements or with the most recent stream value (e.g.,
KTables in Apache Kafka [49]). These tables are stored in a distributed manner, but
features such as the dynamic re-partitioning of these tables are not supported. How-
ever, stream processing systems provide the ability to store the result of the stream
processing into data sinks such as Cassandra. These stream processing systems are
not optimized to compare the elements of the streams with larger previously stored
datasets. These systems do not support operations such as geometric indexing or
spatial joins. BBoxDB instead re-distributes datasets dynamically in the background
without interrupting access to the data. The system supports multi-dimensional
indexing and spatial joins are supported out of the box. BBoxDB Streams allows
performing continuous spatial joins between the elements of a data stream and
stored data. However, some functions that are implemented in such stream process-
ing systems (e.g., aggregates or windows) are not addressed by BBoxDB Streams.

569

1 3

Distributed and Parallel Databases (2022) 40:559–625	

2.2.3 � Data streams and continuous joins

Joining previously stored data with stream elements is an important topic for many
areas of application. In general, joins in stream processing systems can be divided
into: (1) windowed joins and (2) unwindowed joins [2, p. 254]. In a windowed join,
the data of the stream is joined with a fixed range (e.g., a fixed time range of one
day) or a sliding range (e.g., the last 100 elements of the stream) of the previously
received data. In an unwindowed join, the data of the stream are joined with the
complete history of the stream.

Performing joins on streams is discussed in papers like [50, 51]. Both papers pro-
pose Distributed Hash Tables [52] to distribute the tuples of a data stream in a way
that joins can be efficiently executed. In contrast to BBoxDB Streams, these systems
focus only on point data. Systems such as DEDUCE [53] allow the usage of MapRe-
duce jobs to access large amounts of static data in stream processing systems. These
systems allow joining data streams with static data; however, they focus also on one-
dimensional key-value pairs, which MapReduce can process. Topics such as spatial
data are not covered by these systems.

A unique feature of BBoxDB Streams is the efficient continuous unwindowed
spatial join between a data stream and previously stored n-dimensional big data.

We have chosen Apache Kafka for a more detailed comparison and to discuss
the differences between BBoxDB Streams and a typical stream processing system
in-depth. The architecture of Apache Kafka and the implemented join types are dis-
cussed subsequently. The comparison is also valid for other stream processing sys-
tems like Flink, Storm, or Spark Streaming. These systems are also only capable of
distributing stream data based on a one-dimensional key.

In Apache Kafka, a data stream is called KStream. Each element of a KStream
consists of a key and a value. The key is used to partition the stream elements across
the nodes of the cluster. Each node processes only a partition of the whole data
stream. A KTable is an “abstraction of a changelog stream” [49]; for each key it
contains the most recent value. Just like the data stream, KTables are partitioned
across the nodes of the Kafka cluster. GlobalKTables are similar to KTables, with
the difference that they are not partitioned; each Kafka node stores a full copy of
the table. Therefore, GlobalKTables allow joins over non-key stream attributes.
Regardless of how the stream data are partitioned, the join partners are present on
the nodes.

Apache Kafka supports five different join operations [54]: (1) the KStream-
KStream Join, (2) the KTable-KTable Join, (3) the KStream-KTable Join, (4) the
KStream-GlobalKTable Join, and (5) the KTable-to-GlobalKTable Join. The
KStream-KStream join is a windowed join; the remaining joins are unwindowed.

Similar to a key-value store, Kafka works with simple data types for the key and
the value of the stream elements (e.g., byte, string, int, long) [55]. However,
this leads to the same problems as discussed in Sect. 2.1.3 when multi-dimensional
data or non-point data have to be processed. Determining a proper key is prob-
lematic for such kind of data. Therefore, it is problematic to distribute a stream of
n-dimensional data across a cluster of nodes in a way that KStream-KTable joins

570	 Distributed and Parallel Databases (2022) 40:559–625

1 3

can be performed. To perform this type of join, the stream elements have to be parti-
tioned in the same way as the KTable.

As an alternative, the KStream-Global-KTable join can be performed. However,
in this case, the table is not partitioned and has to be stored on each Kafka node
completely. The resources of the nodes limit the size of the table. Therefore, such
joins can only be performed on small tables.

The spatial join of BBoxDB Streams can be compared to the KStream-KTable
Join of Apache Kafka. The data of the table containing the join partners of the
stream elements are partitioned across the cluster of nodes; the stream is partitioned
in the same way. So, the stream elements are processed by the same nodes that store
the join candidates. The difference between Kafka and BBoxDB Streams is that
BBoxDB Streams uses a partitioned n-dimensional space and n-dimensional bound-
ing boxes of the stream elements to distribute the data. Apache Kafka uses only a
one-dimensional key to distribute the data, which leads to the problems discussed
above.

2.2.4 � Data streams and multi‑dimensional data

The systems PLACE [56] and Tornado [57] are built to handle data streams of spa-
tial data. PLACE focuses on spatio-temporal data streams and supports continuous
queries, and implements operations like spatial joins. However, the system is not a
distributed system. Therefore, the system can only employ the resources of one node
to handle the data stream and to calculate the continuous queries. Tornado focuses
on spatio-textual datasets (e.g., geo-tagged text messages from Twitter). The distrib-
uted architecture allows the system to process data streams and register continuous
queries. In contrast to BBoxDB, the system can handle only point data with two
spatial dimensions and one temporal dimension. In addition, both of these systems
are not publicly available, and they focus only on two- and three-dimensional data.

In [58] an extension of Apache Storm for the handling of spatial data streams is
proposed. However, the paper focuses only on two-dimensional point data. In con-
trast, BBoxDB Streams can handle n-dimensional point and non-point data.

The paper [59] focuses on the handling of continuous spatial joins on moving
objects. However, it does not cover topics such as the handling of previously stored
n-dimensional big data or the distributed computing on a cluster of nodes.

When a data stream of position data is processed, the continuous queries are
evaluated on each position update. This requires a certain amount of resources. To
reduce the needed resources, concepts such as the safe region [60] were introduced.
A safe region is a region in space where the object can move without changing the
result of a continuous query; this reduces the number of calculations required. The
safe region gives only a rough estimation of the location of an object. Applications
that need the exact position of the object cannot work with safe regions. BBoxDB
is a highly scalable system that is designed to handle large amounts of data and
updates. Concepts to reduce the number of updates or query re-calculations are
not implemented at the moment. Instead, more resources can be added easily, and
the existing data are re-distributed in the background without interrupting the ser-
vice. Besides, the GUI of BBoxDB is used to visualize the stream data in real-time.

571

1 3

Distributed and Parallel Databases (2022) 40:559–625	

Therefore, all changes need to be processed by the registered continuous queries
(see Sect. 4.8).

2.2.5 � Software architecture

The lambda architecture [61] is a software architecture pattern that deals with the
low-latency processing of data streams. A stream-processing system and a batch-
processing system are used in parallel to get the best of both worlds: accurate and
up-to-date results. The stream-processing system is used to get the most recent but
inaccurate results. The batch-processing system re-processes the complete data peri-
odically. The output of this system is a bit outdated but accurate. For the batch pro-
cessing component, the complete data history has to be available. The drawback of
the architecture is that the same logic has to be implemented twice: (1) in the batch-,
and (2) in the stream-processing system.

A more recent approach is the kappa architecture [62]. The batch processing
engine is passed, and so, the duplicate implementation of the logic is omitted. The
data are still stored in an append-only way, but everything is treated as a data stream.
The architecture can re-process the historical and the most recent data if needed
(e.g., further aspects of the data should be analyzed). The history data are read entry
by entry and processed as a regular data stream.

In BBoxDB, continuous spatial join queries are performed between stream ele-
ments and previously stored data. The software can store the stream elements
in a persistent way. In this situation, the spatial joins are performed between cur-
rent stream elements and all previously stored stream elements. This means that
BBoxDB Streams is inspired by the kappa architecture.

3 � BBoxDB basics

BBoxDB is a distributed key-bounding-box-value store designed to handle multi-
dimensional big data. In contrast to regular key-value stores, which store key-value
pairs, BBoxDB stores each value together with an n-dimensional bounding box. The
system is optimized for the handling of low-dimensional (e.g., spatial and spatial-
temporal) data.5 BBoxDB is licensed under the Apache 2.0 license and is available
for download on the website of the project [5]. More information about the concepts
can be found in papers such as [7, 6].

Building a highly-available distributed system is a complex and error-prone task.
Failures such as node or network outages have to be handled properly. Apache Zoo-
Keeper [64] is a software that was developed to simplify the implementation of dis-
tributed systems. The software provides a simple tree-oriented structure, which can
be used to realize more complex tasks. BBoxDB uses ZooKeeper for tasks such as

5  In general, BBoxDB can handle data of any dimension. However, due to the “the curse of dimensional-
ity” [63, p. ix] and the increasing volume of hyperrectangles (used as bounding boxes, see Sect. 3.3) the
data model can become inefficient in the high dimensional space.

572	 Distributed and Parallel Databases (2022) 40:559–625

1 3

service discovery (i.e., which BBoxDB nodes are available) or sharing information
(e.g., which part of the space is handled by which node).

3.1 � Tuples and consistency

Definition 2  A tuple t consists of a key, a value, a bounding box and a version;
t = (key, bounding box, value, version) . (1) The key identifies the tuple, (2) the
bounding box is used as a generic description of the location of the tuple in the
n-dimensional space (see Sect. 3.3), (3) the value contains the data, and (4) the ver-
sion is used to identify the newest version of the tuple.6 Table 1 lists the attributes of
a tuple. 	� ◻

BBoxDB uses eventual consistency [65] to deal with outages such as network
partitions or unavailable replicas. The timestamp of the tuple is used to keep track
of the most recent version of a tuple. Eventual consistency means that all replicas
become eventually synchronized with the last version of the data when no updates
are made.

3.2 � Operations

BBoxDB has some similarities to key-value-stores. But in contrast to a KVS,
BBoxDB uses slightly different operations. New data are stored with the
put(table, key, hrect, value) operation. In addition to the already
described parameters, an n-dimensional bounding box (a hyperrectangle; see
Sect. 3.3 for a detailed description) has to be specified when the data are stored.
Data are retrieved using the operation queryByRect(table, hrect), which
retrieves all tuples whose bounding box intersects with the query bounding box.
Besides, further operations such as a spatial join (operation join(table1,
table2, hrect)) are implemented. Table 2 lists BBoxDB operations that are
used in this paper.7

Table 1   The attributes of a tuple in BBoxDB

Name Description

Key The key is a string that identifies the tuple.
Bounding box The bounding box is an n-dimensional hyperrectangle consisting of

double values.
Value The value is a byte array that contains the data of the tuple.
Version The version is a long that identifies the most recent version of a tuple.

7  BBoxDB provides further operations for the management of distribution groups and tables. These
operations are discussed in papers such as [6, pp. 14ff.].

6  The version can be provided by the user; if no version is provided the current timestamp is used.

573

1 3

Distributed and Parallel Databases (2022) 40:559–625	

BBoxDB is a generic data store that can store any kind of data (e.g., a geometry
encoded in GeoJSON or WKT format, or a trajectory encoded in CSV format). Each
stored value is a plain array of bytes for the datastore. Only the bounding box of the
value is encoded in a format that BBoxDB can decode. Therefore, the query proces-
sor takes only the bounding boxes of the tuples into consideration. Some operations,
such as spatial joins on polygons, need to decode the stored values to produce the
correct query result. User-defined filters (UDFs) can decode the value and can refine
the bounding box based operations (see Sect. 3.6).

3.3 � Bounding boxes

In BBoxDB, each value is stored together with an n-dimensional bounding box. To
calculate the bounding box for a value, the minimum and maximum coordinates
have to be determined for each dimension. BBoxDB provides some helper functions
which calculate a bounding box for common data formats like GeoJSON, WKT, or
GTFS.

Definition 3  The n-dimensional axis-aligned minimum bounding box, which
is simply called bounding box in this paper, is represented by an n-dimensional
hyperrectangle consisting of 2n values of the datatype double. The value 2(i − 1)
describes the lowest included coordinate in the dimension i, while the value
2(i − 1) + 1 describes the highest included coordinate in the dimension i. For exam-
ple, the tuple (0.5, 2.5, 0.2, 3.0) describes a two-dimensional hyperrectangle. In the
first dimension, the range [0.5, 2.5] and in the second dimension, the range [0.2, 3.0]
are covered (see Fig. 4). 	� ◻

3.4 � Data distribution

BBoxDB stores tuples in tables. Tables of the same dimensionality can be grouped
together in a distribution group. To address a table in BBoxDB, the complete name
consisting of the name of the distribution group and the table has to be specified.
For example, dgroup_table1 denotes the table table1 of the distribution
group dgroup.

By splitting the space, BBoxDB splits the data of a distribution group into almost
equal-sized partitions (distribution regions) and spreads the data of these partitions

Table 2   The most important
operations of BBoxDB

Most important operations of BBoxDB

put table × string × hrect × bytes → table
delete table × string → table
getByRect table × hrect → stream(tuple)
join table × table × hrect → stream(tuple)

574	 Distributed and Parallel Databases (2022) 40:559–625

1 3

across a cluster of nodes. Therefore, each node stores only a part of the whole
dataset.

Geometric data structures (such as the K-D Tree [66] or the Quad-Tree [67]) are
used as space partitioner to partition the space into distribution regions. The space
is split and merged based on the actual distribution of the stored tuples. The used
partitioning algorithm can be chosen when the distribution group is created.

The global index contains two types of information: (1) the current parti-
tioning that is generated by the space partitioner (space → distribution region)
and (2) the assignment of these partitions to the nodes of the cluster
(distribution region → P(nodes)).8

On the nodes, data are indexed by an R-Tree [68]; this data structure is called the
local index. The local index maps from the n-dimensional space to the stored tuples
(space → tuples) . Both indexes are stored in ZooKeeper.

Figure 5 shows an example of stored tuples, their bounding boxes, and the par-
titioned space. The mapping between the space and the nodes is the global index.
All the tuples whose bounding box belongs to multiple distribution regions (e.g.,
Tuple G in the figure) are duplicated and stored multiple times.

BBoxDB is designed to handle growing and shrinking datasets. To ensure an
equal data distribution, the data are re-partitioned and re-distributed dynamically.
When a distribution group is created, an upper- and a lower threshold ( tupper and
tlower ) are defined. Each node of the BBoxDB cluster calculates the size of the locally
stored distribution regions periodically. When a distribution region becomes larger
than tupper , the region is split. When a region becomes smaller than tlower , the region
is merged. BBoxDB re-distributes the data in the background without interrupting
access to the data.9

When a new distribution group is created, the entire space is covered by one dis-
tribution region. By storing data and the re-partitioning of the space performed by
BBoxDB, the space is partitioned into more and more distribution regions. It takes
some time until the space is partitioned in enough partitions that each node can store
at least the data of one distribution region. Nodes that do not store any distribution

D
im

en
si
on

2

Dimension 1
0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

Roa
d

B
o
u
n
d
i
n
g

B
o
x

(0.5, 2.5, 0.2, 3.0)

Bounding Box of the road

Dimension 1 Dimension 2

Fig. 4   The bounding box for a two-dimensional non-point entity (e.g., a road)

8  When replication is used, one distribution region is mapped to multiple nodes.
9  See [6, pp. 23ff.] for a detailed discussion of this functionality.

575

1 3

Distributed and Parallel Databases (2022) 40:559–625	

regions are idle. To utilize the nodes directly from the beginning and to reduce
the amount of data re-distribution tasks, BBoxDB allows one to pre-partition the
space of a new distribution region into n distribution regions by a provided sample.
BBoxDB determines the distribution of the data from the sample and creates match-
ing partitions. Because no data are stored in the distribution region, the partitions
can be created and assigned to the nodes without re-distributing any data. When
data are stored after the region is pre-partitioned, the data is distributed directly to
all nodes of the cluster.

3.5 � Efficient data access

The two-level index structure of BBoxDB, consisting of (1) the global index, and
(2) the local index allows the efficient retrieval of tuples. Most of the operations
in BBoxDB take a hyperrectangle as a parameter. The hyperrectangle is compared
with the global index to determine which distribution regions are affected by the
operation. The nodes that are responsible for these regions are contacted, and the
operation is performed on these nodes. The local index on the nodes is used to iden-
tify all the local stored tuples that intersect with the hyperrectangle.10

All tables of a distribution group share the same global index. This means that the
data are spread in the same manner (co-partitioned) across the nodes of the cluster;
the same regions in space are stored on the same nodes.

Tuple H

Tuple G

Tuple A Tuple B

Tuple C

Tuple DTuple E

Tuple F

Distribution
region 0

Distribution region 1

Distribution region 2

Node c

Node b

Node a

Fig. 5   BBoxDB partitions the space into distribution regions and assigns these regions to the nodes of
a cluster. The different symbols of the tuples represent the different values. The box around the symbol
represents the bounding box of the value

10  Operations without a hyperrectangle as a parameter can also be efficiently executed. This is realized
with an additional bounding box index, which is discussed in [6, pp. 32ff.].

576	 Distributed and Parallel Databases (2022) 40:559–625

1 3

Definition 4  For a join ⋈p , we call two partitioned tables R = {R1, ...,Rn} and
S = {S1, ..., Sn} co-partitioned iff R ⋈p S =

⋃
i=1,...,n Ri ⋈p Si . 	� ◻

On co-partitioned data, spatial joins (performed by the join() operation) can
be efficiently performed. No data need to be transferred through the network; all
join partners are stored on the same node. The join() operation also takes a
hyperrectangle as a parameter. This hyperrectangle determines the area in space
where the spatial join is performed. The global index is employed to determine
the distribution regions on which the operation needs to be performed. These
nodes are contacted and the local index on these nodes is used for an index nested
loop join. Figure 6 illustrates a spatial join on two co-partitioned tables.

3.6 � User‑defined filters

As a generic data store, BBoxDB is unable to interpret the bytes of the stored val-
ues. The bounding box is stored in a standardized format that BBoxDB can inter-
pret. Therefore, the query processor can only perform operations on the bounding
boxes of the data.

Example  Performing a spatial join on spatial data, which only considers the bound-
ing boxes, leads to incorrect results. Intersecting bounding boxes is a necessary cri-
terion but not a sufficient criterion for a spatial join (see Fig. 7). 	� ◻

To solve this problem, user-defined filters (UDFs) are supported by the query
processor of BBoxDB. These filters contain the knowledge to decode a certain
data format (e.g., GeoJSON encoded values) and to perform a certain operation
on the data. UDFs refine the bounding box-based output of the generic query pro-
cessor by applying a further filter step on the values (see Fig. 8). These filters are
deployed to the nodes of the cluster and executed directly in the query processor.
Therefore, UDFs are executed in a distributed manner on different nodes, and the
data is filtered before it is transferred to the client.

�
��

��

�

�
�

�

Dimension 1
Di

mens
ion

2

Relation A

��

�

�

�

Relation B

The spatial join operation

Fig. 6   Executing a spatial-join on two co-partitioned tables

577

1 3

Distributed and Parallel Databases (2022) 40:559–625	

3.6.1 � Implementation details

UDFs are developed by the user of the system. Only the user who has stored the data
knows how to interpret the values of the data. However, BBoxDB contains some
pre-defined UDFs for common data formats (e.g., for decoding GeoJSON data or
WKT). UDFs are written in Java and they can use existing libraries. The filters are
deployed and executed on the BBoxDB nodes. A UDF is a class that implements
the interface UserDefinedFilter, which is provided by BBoxDB. The interface
contains two methods that need to be implemented by every UDF (see Listing 1).

Listing 1 The interface UserDefinedFilter.

1 public interface UserDefinedFilter {
2
3 public boolean filterTuple(Tuple tuple , byte[] customData);
4
5 public boolean filterJoinCandidate(Tuple tuple1 , Tuple

tuple2 , byte[] customData);
6 }

–	 The method filterTuple in Line 3 of the listing is used to refine range que-
ries: filterTuple ∶ tuple × bytes → bool . For each tuple that has a bounding box
that intersects with the query rectangle, the method is called.

–	 The method filterJoinCandidate in Line 5 is used to refine spatial join
queries: filterJoinCandidate ∶ tuple × tuple × bytes → bool . The method is
called for all join candidates that have intersecting bounding boxes.

(a) Two non-intersecting
spatial objects.

(b) Two intersecting spa-
tial objects.

Fig. 7   Two spatial objects (solid line) with intersecting bounding boxes (dashed line). In a the spatial
objects do not intersect, while in b the spatial objects do intersect

Q
u
e
r
y

P
r
o
c
e
s
s
o
r

U
s
e
r
-
D
e
f
i
n
e
d

F
i
l
t
e
rAll tuples

Query result based
on bounding boxes

Refined
query result

Fig. 8   Refining the bounding box based result of the generic query processor with a user-defined filter.
In a spatial join, a user-defined filter can consider the real geometries and let only the intersecting geom-
etries pass

578	 Distributed and Parallel Databases (2022) 40:559–625

1 3

When these methods return true, the tuple is part of the final query result. Other-
wise, the tuple is not part of the final result. In addition, both methods accept a user
defined value customData, which can be used for further operations (e.g., test a
property like the name of the road in the GeoJSON encoded value).

3.6.2 � A UDF for GeoJSON encoded data

In this paper, many examples work with GeoJSON encoded data. In this section, a
UDF is discussed, which decodes GeoJSON encoded data. The UDF can be used:
(1) to refine range queries and (2) to refine bounding box-based spatial joins to spa-
tial joins on the real geometries.

The range query refinement is done by performing an intersection test between
the real geometry of a tuple and a provided geometry. The spatial join refinement is
done by performing intersection tests on the real geometries of the elements. Ele-
ments that have only intersecting bounding boxes and no intersecting geometries
(see Fig. 7) are removed from the result. The ESRI Geometry API for Java library
[69] is used by the UserDefinedGeoJsonSpatialFilter UDF to perform
the intersection test. The UDF is used later in Sect. 5 to refine continuous queries.
For a good understanding of the examples, this UDF is described in this section in
greater detail.

The UDF performs the following filter tasks on range queries:

–	 When the filterTuple method is called with only a tuple, all tuples can pass
the filter.

–	 When the filterTuple method is called with a tuple and a GeoJSON element
as custom value, an intersection test is performed between these objects.

The UDF performs the following filter tasks on spatial join queries:

–	 When the filterJoinCandidate method is called with two tuples, the per-
formed operation depends on the type of the GeoJSON geometries:

–	 When both geometries are regions, an intersection test is performed.
–	 Otherwise (e.g., for a point and a region), a distance test of the geometries is

performed. Geometries that are closer than five meters are treated as inter-
secting and can pass the filter. The distance test for lines or points is imple-
mented for situations where a position of a car (a point) should be compared
with a road (a line). Due to measurement tolerances, the geometries do not
really intersect but they become close (see Listing 12 in Sect. 5.5.5 for an
example). The distance of 5 meters is the default value and can be changed by
the user.

–	 When the filterJoinCandidate method is called with two tuples, and a
custom value, the same calculation as described above is performed. In addition,
it is assumed that the custom value is in the format key:value. GeoJSON ele-

579

1 3

Distributed and Parallel Databases (2022) 40:559–625	

ments can contain a property map of key-value pairs.11 The filter tests that the
provided key and value are contained in at least one of the property maps of the
tuples. For example, with the custom value name:road66 the name of the road
is restricted to road66. By specifying bridge:yes the road has to be a bridge,
and by specifying lanes:4 the road has to have four lanes. Only tuples with a
matching property and intersecting geometries can pass the filter.

In addition to the UserDefinedGeoJsonSpatialFilter, BBoxDB contains a
more strict version of the filter called UserDefinedGeoJsonSpatialStrict-
Filter. This UDF performs only the real intersection test of both geometries; no
distance check is performed. This filter can be used when it is required to test that
a point is really inside of another geometry, like the position of a car (a point) in a
forest (a region).

It is a common pattern in spatial join algorithms to evaluate the bounding box of
an object in the first step and evaluate the full geometry only if required. For exam-
ple, the calculation of a spatial join is often divided into a filter step and a refinement
step [71]. The filter step is cheap to calculate and detects all possible join candidates
by intersecting bounding boxes. The refinement step is more expensive to calculate,
works on the real geometries, and eliminates all join candidates that do not really
intersect.

4 � BBoxDB streams

The introduction lists several challenges in the handling of multi-dimensional data
streams (see Sect. 1.3). To solve these problems, we have developed a new data
stream processing solution called BBoxDB Streams. The system is an extension of
the key-bounding-box-value store BBoxDB. BBoxDB is used for data distribution
and storage. Features such as the decoding of stream elements or the support for
continuous queries are part of our BBoxDB Streams implementation.

The handling of data streams consists of two major tasks: (1) the data stream
needs to be captured and handled, and (2) continuous queries need to be evalu-
ated. Both tasks are fulfilled by our implementation and described in the next sec-
tions. The upper part of Fig. 9 depicts the capturing of data streams (which will
be described in Sect. 4.1). The middle part depicts the handling of multi-dimen-
sional data in BBoxDB, which was already described in Sect. 3. The lower part in
the image contains the execution of queries (see Sect. 4.2) and the visualization
of results (see Sect. 4.8). The types of queries that can be executed is covered in
Sects. 4.3, 4.4, 4.5, and 4.7. Section 4.6 discusses strategies to distribute the stream
elements to the nodes of the cluster.

11  In the examples of this paper, we work on data fetched from the OpenStreetMap project. Details of the
properties of these objects can be found in the wiki of the project [70].

580	 Distributed and Parallel Databases (2022) 40:559–625

1 3

4.1 � Handling data streams

To handle a data stream, the stream has to be: (1) read from an input source, (2)
decoded and converted into a data format that can be handled by BBoxDB Streams,
and (3) partitioned and distributed to the nodes that are responsible for the tuples.

4.1.1 � Decoding and processing streams

BBoxDB Streams contains a stream capturing tool. The stream capturing tool
allows the user to read data streams from input sources like network sockets, named
pipes, or files. The goal of the stream capturing tool is (1) to read data from an input
source ( input source → string ), and (2) to decode the content and generate a stream
of BBoxDB compatible tuples ( string → tuple ). To decode the data of the input
sources, BBoxDB Streams contains decoder for GeoJSON, ADS-B, and GTFS real-
time. Therefore, many streams can be handled out of the box. Support for additional
data formats or stream inputs can be integrated by creating a Java class that imple-
ments the interface TupleBuilder.

The stream capturing tool uses the BBoxDB client library for communicating
with the BBoxDB cluster. The client library is written in the programming language
Java. This library connects to the ZooKeeper installation, reads the global index and
the state of the BBoxDB nodes (i.e., alive or failed). The operations are redirected to
the nodes that are alive and responsible for the required area in space (see [6, pp. 30
ff.]). When a distribution group is stored in a replicated manner, node failures can be

Stream
Capturing

Query
Processing

Data stream
(File, Pipe, Network Socket)

Stream capturing tool

BBoxDB-Client

Node a Node b Node c

BBoxDB-Client

Continuous Query Consumer

Stream elements

put()Tuples

continuousQuery()Tuples

BBoxDB-Cluster

Fig. 9   Handling a data stream with BBoxDB Streams. The data stream is captured, converted into tuples,
and written to the nodes of the BBoxDB cluster. Afterward, the continuous queries are executed and the
results are delivered to the clients

581

1 3

Distributed and Parallel Databases (2022) 40:559–625	

compensated. During the regular operation of the cluster, data are transmitted and
continuous queries are registered on all affected replicas. Once one node fails, the
remaining replica(s) ensure that the stream elements and the continuous queries can
still be processed. Duplicates that are generated by the handling of the data on multi-
ple replicas are filtered automatically (see Sect. 4.7).

After starting the stream capturing tool, the following steps are performed
continuously:

–	 Read data: The data stream is read continuously from the input source.
–	 Parse data: The read data are parsed, and the stream elements are decoded and

converted into tuples, consisting of a key, a bounding box, a value, and a version
(see Sect. 3.1).

–	 Ordering: A version for the tuple is determined. When the stream elements con-
tain a version field, this value is used. Otherwise, the current timestamp is used
as a version. Taking the original version honors the order of the tuple at the crea-
tion time. By generating a new version, the receiving order of the tuples is taken.

–	 Distribution: The tuple is distributed to the nodes of the BBoxDB cluster. To
perform this action, the capturing tool executes the put() operation together
with a table name. Afterward, the tuple is sent to the nodes that are responsible
for storing data for the region in space which is described by the bounding box of
the tuple. Non-point data that belongs to multiple distribution regions are repli-
cated and sent to multiple nodes (e.g., see Tuple G in Fig. 5). Due to the fact that
a table name is associated to the stream elements in this step, continuous queries
can be registered on these stream elements by specifying the table name.

–	 Continuous queries: When a node receives a new tuple, the tuple is processed
and the execution of the registered continuous queries is performed (see Fig. 9
for an illustration).

–	 Store: After the tuple is processed, the tuple can be stored on disk or discarded.
The desired action for the tuples can be configured by the user of the system in
the stream capturing tool.12

4.1.2 � Data storage and index updates

The capabilities of BBoxDB are used to store the elements of the data stream.
How the storage structures work and the two-level index structure (see Sect. 3.4) is
affected by new data is described in this section.

Local index: Memtables and String Sorted Tables (SSTables) [72] are employed
as data structures to store data; both data structures are optimized for writes. Memta-
bles are located in memory, and SSTables are located on disk. Tuples are stored in a
Memtable first. When a threshold is reached, the tuples are sorted by key and writ-
ten to disk as an SSTable. Tuples are never updated; instead, new versions of a tuple

12  As in a KVS, tuples are overwritten when a new tuple with the same key is stored. In addition,
BBoxDB supports the automatic deletion of tuples after a particular time (time to live-based tuple
removal). This feature can be used to ensure that the persistent data of the stream elements is automati-
cally removed after some time when the element is no longer contained in the stream.

582	 Distributed and Parallel Databases (2022) 40:559–625

1 3

are stored. Old versions of the tuples are removed periodically in a cleanup task
called compactification.

SSTables are optimized for key-based retrieval operations. For efficient hyperrec-
tangle-based retrieval operations (e.g., range queries), an R-Tree is created for each
Memtable and SSTable (the local index).

Global index: The global index determines which node is responsible for which
distribution region (a partition of the space). Updating the global index is an expen-
sive operation because the data between the nodes need to be re-distributed and
transferred between the nodes. Therefore, the global index is only updated when a
partition becomes unbalanced. Two threshold values (the upper and the lower limit)
are defined when a partition is considered as unbalanced. These values are config-
ured when the distribution group is created. In addition, it can be configured if tuples
or the amount of the stored data is used as the size of the region. The global index
also determines how the data stream is partitioned and distributed in the BBoxDB
cluster. Therefore, when the global index is changed, the stream is distributed in a
different manner. The global index is split in a way that the data is evenly distributed
across the cluster. Therefore, the data stream is also distributed in a way that reflects
the distribution of the stream elements in the n-dimensional space.

The data re-distribution was already implemented in BBoxDB. Also, the han-
dling of read- and write-operations during the data re-distribution was implemented.
These implementations are re-used by BBoxDB Streams. More about the storage
management and the data re-distribution of BBoxDB can be found in [6].

4.2 � Performing continuous queries

BBoxDB Streams enhances BBoxDB by two operations for the handling
of continuous queries: (1) continuousQuery(queryPlan) and (2)
cancelQuery(id) (see Table 3). The first operation registers a new query while
the second operation cancels a previously registered continuous query.

The operation continuousQuery takes a query plan as a parameter. This
query plan describes how the tuples of the stream are processed and which result
tuples are returned by the continuous query. How the execution of the query plan
is done is described in Sect. 4.4. How a continuous query plan can be constructed
(e.g., which transformations are performed and the specification of the area where
the query is registered) is described in Sect. 5. The operation returns an id of the
continuous query together with a stream of result tuples. The query id can be used as
a parameter for the operation cancelQuery to stop the execution of the continu-
ous query. Listing 5 of Sect. 5.1 demonstrates the usage of these operations.

These operations are fully integrated in the BBoxDB client and also track the
state of the global index (the data distribution). When a continuous query is reg-
istered and the data distribution is changed (e.g., a distribution region is split or
merged), the query is automatically re-registered on the new distribution regions.

583

1 3

Distributed and Parallel Databases (2022) 40:559–625	

4.3 � Tuple transformations

Tuple transformations are an important part of the evaluation of continuous queries.
BBoxDB Streams supports two types of transformations: (1) Modifying Transforma-
tions and (2) Filter Transformations.

4.3.1 � Modifying transformations

Modifying transformations allow the user to change the tuples of the stream (see
Sect. 4.4); they are applied on the bounding box b of a tuple and return a modi-
fied bounding box b′ . Depending on the transformation, additional parameters can
be passed to the transformation: f (b[r1,… , r2n], …) = b�[r�

1
,… , r�

2n
] . f is the modi-

fying transformation, b is the original bounding box, b′ is the transformed bound-
ing box, [ r1, … , r2n ] and [r�

1
,… , r�

2n
] are the values of the n-dimensional bounding

boxes (see Sect. 3.3).
The following modifying transformations are supported in BBoxDB:

Enlarge bounding box by factor: This transformation enlarges the bounding
box by a constant factor c. In each dimension the extension is calculated and
multiplied by c. Half of the enlargement is subtracted from the start coordinate
of the bounding box and the other half is added to the end coordinate. So, the
bounding box is enlarged and the location of the center remains unchanged:
f (b[r1, r2,… , r2n], c) = b�[r1 −

c(r2−r1)

2
, r2 +

c(r2−r1)

2
,… , r2n +

c(r2n−r2n−1)

2
].

Enlarge bounding box by value: The bounding box b is enlarged by a constant
value v in each dimension. As in the factor transformation, half of the value is
subtracted from the start coordinate and half the value is added to the end value
in each dimension: f (b[r1, r2,… , r2n], v) = b�[r1 −

v

2
, r2 +

v

2
,… , r2n +

v

2
].

Enlarge WGS84 bounding box by meter: Enlarge the two-dimensional bound-
ing box b that uses WGS84 coordinates by a certain value v in meters. The exten-
sion on the latitude axis is specified as elat ; the longitudinal extension is speci-
fied as elon . These meter based values are converted into the proper changes of
the WGS84 coordinates e′

lat
 and e′

lon
 . The bounding box is changed as follows:

f (b[r1, r2, r3, r4], v) = b�[r1 −
e�
lat

2
, r2 +

e�
lat

2
, r3 −

e�
lon

2
, r4 +

e�
lon

2
].

4.3.2 � Filter transformations

Filter transformations decide whether or not a tuple t should be further processed or
omitted from the query result. Depending on the filter, additional parameters (e.g.,

Table 3   The operations
implemented for BBoxDB
Streams

Operations of BBoxDB streams

continuousQuery queryPlan → id × stream(tuple)
cancelQuery id → bool

584	 Distributed and Parallel Databases (2022) 40:559–625

1 3

name of a key to filter) can be passed to the filter function: f ∶ tuple ×… → bool .
Filter transformations can be applied on the stream and on the previously stored
tuples.

When the filter returns true, the tuple can pass the filter; otherwise, the query
processing for this tuple is stopped and the tuple will not be part of the query result.
The following filter transformations are supported in BBoxDB:

Filter by key: If the key of a tuple is equal to a certain value, true is returned;
false otherwise: f ∶ tuple × value → bool.
Filter by bounding box: If the bounding box of the tuple does intersect with
a constant hyperrectangle, the filter function returns true; false otherwise:
f ∶ tuple × hrect → bool.
Filter by user-defined filter: This is a generic filter operation that delegates the
real filter operation to a user-defined filter with a custom value (see Sect. 3.6.1)
and returns the result of the UDF: f ∶ tuple × UDF × custom value → bool.

4.4 � Continuous queries

BBoxDB Streams supports two types of queries: (1) continuous range queries and
(2) continuous spatial join queries. These queries are discussed in the following
subsections.

4.4.1 � Continuous range queries

The continuous range query qcr is used to filter stream elements that intersect with a
given query rectangle. The stream elements can also be transformed and filtered (see
Sect. 4.3). The query performs a selection on the n-dimensional data stream Sn and
returns all stream elements that intersect with the range � where the query is regis-
tered and matches the selection function �cr:

Table 4 describes the notations of the equation. Section 5 discusses the elements of
the query in greater detail and gives some examples.

The query is registered on all nodes that are responsible for the area � . This is
determined by reading the global index and determining all distribution regions that
are intersecting with � . Because the data stream is also partitioned and distributed
according to the global index (see Sect. 4.5), all needed stream elements are pro-
cessed by the query. After a tuple s of a data stream is received by a BBoxDB node,
the continuous queries are executed. When the bounding box of the tuple intersects
with the area in space � where the continuous query is registered, the following steps
are executed:

1.	 The transformations � for the bounding box of the tuple s are executed.

qcr(Sn, �, �cr) = {s | s ∈ Sn ∧ s ∩ � ≠ �

∧ �cr(s, �, �, �)}

585

1 3

Distributed and Parallel Databases (2022) 40:559–625	

2.	 After the transformations are applied and no filter has stopped the execution of
the query (see Sect. 4.3.2), the bounding box of the tuple is compared with the
query hyperrectangle �.

3.	 If the bounding box of the tuple and the query hyperrectangle do intersect and
positive matches should be reported � , the tuple is sent to the query client. The
same is performed if the bounding boxes do not intersect, and negative matches
should be reported.

Example  With this type of query, the ships of a static region of the ocean can be
observed. The position data of the ships is written to a table; on this table, the con-
tinuous range query is registered. The region where the query is registered � and the
query rectangle � are identical. � is set to true so that all ships that are intersecting
with the query rectangle are reported. So, all ships that enter the region are detected
by the query. Transformations on the stream elements � are not performed in this
example. 	� ◻

By using the continuous range query, more complex queries can also be executed.
This is shown in the following example.

Example  Again, all ships that are heading to an island should be reported. But in
addition, ships that are in the direct neighborhood of the island should be ignored
by the query. For instance, these are ships waiting for a free berth in the harbor, or
these are ships that are maneuvering in the harbor area. The situation is depicted in
Fig. 10. The continuous query should report all ships that are in the light grey area;
Ship 1 should be detected and Ship 2 should be ignored.

Again the data stream containing the position of the ships is written to a table.
On this table, the query is registered in the area � . This is the part of the ocean that
is observed, the area around the island is � , � is set to false. Therefore, only ships
are reported by the query that are inside of � but not intersecting with � . The query
reports the ships that are inside of the region � ⧵ � . 	� ◻

Table 4   The notations of the continuous range query

Symbol Description

S
n

The n-dimensional data stream.
s A tuple of the data stream S

n
.

� The hyperrectangle in space in which the query is registered.
� The query hyperrectangle.
� A set of transformations that are applied to the stream tuples.
� A boolean value which determines whether the query reports

positive or negative matches.

586	 Distributed and Parallel Databases (2022) 40:559–625

1 3

4.4.2 � Continuous spatial join queries

The continuous spatial join query qcj is used to compare stream elements with previ-
ously stored static multi-dimensional data. Because BBoxDB is used for data stor-
age, the join operation can efficiently join the data stream with large amounts of
already stored data, which is a unique feature of BBoxDB Streams. Like the con-
tinuous range query, the continuous spatial join query can filter and transform the
elements of the stream. The query performs a spatial join between the n-dimensional
data stream Sn and the table Rn of the same dimensionality in the area � using the
selection function �cj:

Table 5 describes the notations of the equation. Section 5 discusses the elements of
the query in greater detail and gives some examples.

For the previously stored tuples, only filter transformations are supported;
applying modifying transformations is not supported. Otherwise, the stored tuples
would need to be accessed to calculate the enlargement of the resulting bounding
boxes (e.g., multiply the length of the bounding box by a value of two). Since it
is unknown in advance how the transformation will change the bounding box and
whether the resulting bounding box is relevant for the query afterward, the trans-
formation has to be applied to all stored tuples. The calculation would be very
inefficient because all already-stored tuples have to be loaded. Therefore, modify-
ing transformations on previously stored tuples are not implemented in BBoxDB
Streams; modifying transformations can only be applied to the stream elements.

Like the continuous range query, the continuous spatial join query is executed
every time a stream tuple s is received by a BBoxDB node. If the bounding box of

qcj(Sn,Rn, �, �cj) = {(r, s) | r ∈ Rn ∧ s ∈ Sn

∧ s ∩ � ≠ �

∧ �cj(r, s, �, �)}

Fig. 10   A continuous range
query that determines all ships
that are heading to an island.
Ships in the direct neighborhood
of the island are ignored

Ship 1

Ship 2

Area where the query is registered (α)

Query rectangle (τ)

587

1 3

Distributed and Parallel Databases (2022) 40:559–625	

the tuple and the range where the query is registered � do intersect, the query is
executed. The following steps are executed:

1.	 The transformations � on the bounding box of the stream tuple are applied.
2.	 Afterward, the transformed bounding box is used for a range query on the table

Rn . Details of this operation are discussed in Sect. 4.6.
3.	 For each result tuple t of the range query, the persistent tuple filter transformations

� are applied.
4.	 If the tuple t is not eliminated by a filter operation, the intersection between the

bounding box of t and the bounding box of the stream tuple s is calculated.
5.	 If the bounding boxes do intersect, both tuples are sent to the query client (see

Sect. 5.1 for a detailed example). Due to the transformations � , the bounding
boxes might no longer be intersecting.

Due to the global index and the local index, this type of query can be executed effi-
ciently (see Sect. 3.5). The stream elements are partitioned, distributed according to
the global index to the required distribution regions, and joined with the stored data.
The join is performed on the bounding boxes of the data in the first step and can be
refined afterward. So, this type of query is an adapted version of a partition based
spatial-merge join [73] between static data and dynamic stream elements.

Example  With this type of query, the problem that is depicted in Fig. 2 on Page 4
can be solved. In the figure, collisions between ships and the reefs of the ocean
should be detected before they occur. The stream Sn contains the position of the
ships and the table Rn contains the spatial data of the reefs. The observed region of
the ocean is � . The transformation of the stream elements � is used to enlarge the
bounding box of the ships to detect a possible collision before it occurs. Transforma-
tions on the persistently stored data � are not used in this example. 	� ◻

Table 5   The notations of the continuous spatial join query

Symbol Description

S
n

The n-dimensional data stream.
R
n

The n-dimensional table of stored tuples.
s A tuple of the data stream S

n
.

r A tuple of the table R
n
.

� The hyperrectangle in space in which the query is registered.
� A set of transformations that are applied to the stream tuples.
� A set of transformations that are applied to the previously

stored tuples. Only filter transformations are supported.

588	 Distributed and Parallel Databases (2022) 40:559–625

1 3

4.5 � Distributing stream elements

A challenge in the scalable handling of data streams is the efficient distribution of
the stream elements to the nodes of the cluster (see the stream capturing part in
Fig. 9 on Page 22). To execute efficient continuous spatial join queries, the stream
elements need to be spread to the nodes that store the join partners. So, the stream
elements are be co-partitioned with the stored data (see Definition 4). Listing 2
shows in pseudocode how the stream elements are distributed in BBoxDB Streams.

According to the global index, the stream elements are distributed to all nodes
responsible for the area of the bounding box of the tuple. This means that the stream
elements are partitioned in the same way as the tables of the distribution group. This
leads to the same partitioning of the stream elements and the stored data of this dis-
tribution group; the tables and the stream elements are co-partitioned.

Listing 2 Spreading stream elements to the nodes.

1 for(e ∈ stream) {
2 b = bounding box of e
3 r = distribution regions that are intersecting with b
4 n = nodes that are storing r
5 forward e to the nodes n
6 }

Technically, the distribution is implemented as follows:

1.	 The stream is converted into tuples and stored in a table in BBoxDB by calling
the put() operation.

2.	 The BBoxDB client queries the global index of the distribution group with the
bounding box of the tuple. The tuple needs to be sent to all distribution groups,
which intersect with the bounding box of the tuple (Line 2 and 3 in Listing 2).

3.	 The nodes that are responsible for these distribution regions are determined. The
BBoxDB client contains a robust implementation that handles changes in the
global index (i.e., splits or merges of distribution regions, or failed and newly
started nodes) automatically (Line 4).

4.	 The tuple is sent to all of these nodes that process the tuple (Line 5).
5.	 After the tuple is sent to the required nodes, the registered continuous queries are

executed (see Sect. 4.4).

The architecture of BBoxDB Streams is highly scalable. The basic algorithms for
the scalability are already implemented in BBoxDB. BBoxDB re-partitions the
space automatically in the background if the data are unevenly distributed. This is
performed without interrupting read or write access to the data (see [6] for a more
detailed discussion of this functionality). BBoxDB Streams re-uses these algorithms
for the distribution of the stream elements. BBoxDB Streams automatically adapts
changes of the global index and registers already started continuous queries on
newly created (split or merged) distribution regions.

589

1 3

Distributed and Parallel Databases (2022) 40:559–625	

When the stream contains an area in space in which many stream elements are
located, the nodes that are responsible for this area have to do more work than other
nodes. The nodes have to process a large number of stream elements in the continu-
ous queries, and they have to store the stream elements on disk. Storing the stream
elements on disk leads to growing distribution regions. BBoxDB recognizes these
regions and they are split automatically after some time (see Sect. 3.4). The split of
a distribution region leads to a changed distribution of the stream. The dense area is
now distributed and handled by more nodes.

4.6 � Data in different distribution regions

To perform continuous spatial joins between a data stream and previously stored
data, the stream elements and the previously stored data need to be co-partitioned.
This means that the stream elements are spread to the nodes that store the possi-
ble join partners (see Sects. 3 and 4.5). Transformations (e.g., enlargements of the
bounding box) can be applied to the bounding boxes of the stream elements (see
Sect. 4.3). Enlargement transformations are executed on the BBoxDB node that
executes the continuous query. The transformation of the bounding box can lead to
the situation where the enlarged bounding box intersects with another distribution
region. In this case, the stream element and the join partner are located on different
nodes. This behavior is shown in Fig. 11.

In the figure, the spatial data of the ocean are stored in a cluster of BBoxDB
nodes. A continuous spatial join covering almost the entire space is used to find all
ships that are about to hit a reef. To get notified about this before the ship has actu-
ally hit the reef, the bounding box of the ship is enlarged by a constant value.

As described in Sect. 4.1, the stream elements are distributed to the nodes that
are responsible for the region in space. In the figure, the position of the ship belongs
to the Distribution region 1, which is stored on Node a. The continuous query for
the stream element is performed on this node, and the bounding box of the ship is
enlarged. With the enlarged bounding box, a spatial join is performed. However, the
enlarged bounding box also belongs to the Distribution region 2. In this region, the
join partner Reef b is located. If the stream element is only joined with the local data
on Node a, the intersection between the bounding boxes of the ship and Reef b will
not be detected.

In general, when a transformation enlarges a bounding box of a stream element,
the enlarged bounding box can intersect with additional distribution regions. The
join partners of these regions need to be included in the join to calculate the correct
result. The strategies of the following subsections are implemented in BBoxDB to
solve the problem.

4.6.1 � Fetch data from nodes—FETCH

This strategy fetches the missing join partners from other nodes via the network.
When the bounding box of a stream element intersects with another distribution
region, all data stored in this area are fetched from the nodes. Listing 3 shows the

590	 Distributed and Parallel Databases (2022) 40:559–625

1 3

algorithm of this strategy. The advantage of this strategy is that no special distribu-
tion of the stream elements is required. The drawback is that data have to be trans-
ferred through the network when the continuous spatial join query is evaluated.
Transferring data through a network has high latency, and the network bandwidth
can become a bottleneck.

Example  Figure 12 depicts the situation, the light grey area is fetched via the net-
work by Node a from Node c. Therefore, the spatial data of Reef b is transferred
to Node a and the intersection between the reef and the enlarged bounding box is
detected. 	� ◻

Reef a

Reef b

Distribution
region 0

Distribution region 1

Distribution region 2

Node c

Node b

Node a

Complete Space
Query Rectangle
Bounding Box
Enlarged Bounding Box

Fig. 11   A stream of position data of ships is joined with the reefs of the ocean. The position data of the
ship belongs to Distribution region 1 and is distributed to Node a. The spatial data of the Reef b belongs
to Distribution region 0 and Distribution region 2 and is stored on Node b and Node c 

591

1 3

Distributed and Parallel Databases (2022) 40:559–625	

4.6.2 � Enlarge by static padding—STATIC

When a stream element is processed by the stream capturing tool (see Fig. 9), the
bounding box that is used for the distribution is enlarged by a static padding. The
enlargement of the bounding box ensures that the tuple is distributed to all required
nodes. On these nodes, the execution of the continuous query is also performed and
the join with the locally stored data is executed. The static padding has to be cal-
culated and specified by the user. The drawback of this strategy is that continuous
queries that perform tuple transformations that are larger than this enlargement still
lead to incorrect results.

Example  When the stream element of the ship is distributed in Fig. 11, the bounding
box of the ship is enlarged by the same padding as used by the transformation in the
continuous query. Therefore, the ship is distributed to Node a and Node c and the
possible collision is detected by the continuous join. 	� ◻

4.6.3 � Enlarge by dynamic padding—DYNAMIC

The strategy is similar to the STATIC strategy. The main difference is that the
enlargement of the bounding boxes is automatically determined. The enlargement is
determined by calculating the largest enlargement of all currently registered continu-
ous queries. When a user registers a continuous query that uses a bigger enlargement
than the already registered queries, the stream capturing tool automatically uses the
biggest enlargement. The strategy is illustrated in Fig. 13.

Each BBoxDB client tracks its continuous queries. When a new continuous query
is executed, the BBoxDB client determines the maximum enlargement of all of his
continuous queries per table and per modifying transformation type (see Sect. 4.3.1).
These enlargement values are stored in ZooKeeper for every running BBoxDB cli-
ent (see Sect. 3).

As soon as the continuous query is canceled, the maximum enlargement of all
remaining queries is recalculated and updated properly in ZooKeeper. In Zoo-
Keeper, the enlargements are stored as ephemeral nodes [64, p. 3]. This means that
this node is automatically deleted as soon as the BBoxDB client disconnects or
crashes. Therefore, outdated enlargements are automatically removed.

The stream capturing tool takes the maximum of all stored enlargement values
per transformation type from ZooKeeper and uses these values to enlarge the bound-
ing boxes of the stream elements. Due to the watcher functionality of ZooKeeper
[64, p. 3], the stream capturing tool gets notified about changes automatically and
adapts the maximum enlargement.

Listing 4 contains the algorithm of the dynamic padding in pseudocode. The
maximum enlargement of the supported modifying transformations is applied, and
the bounding box of these bounding boxes is determined.13 The resulting bounding
13  The distribution of the stream elements is performed based on an axis parallel n-dimensional hyper-
rectangle in BBoxDB. The union of the individual bounding boxes can create a more complex polygon.
Therefore, the bounding box of these bounding boxes is calculated, which is the smallest rectangle that
encloses all individual bounding boxes.

592	 Distributed and Parallel Databases (2022) 40:559–625

1 3

box is the maximum enlargement of the bounding box of the tuple, after all trans-
formations of the currently registered continuous queries are applied. The tuple is
distributed according to this bounding box.

The advantage of this strategy is that the stream elements are always distributed
with the correct padding. The drawback is a more complex implementation and the
necessity to determine the maximum enlargement of all registered continuous que-
ries. The advantages and the drawbacks of these strategies are discussed in the eval-
uation in Sect. 6.9.

Listing 4 Spreading stream elements to the nodes using dynamic padding.

1 for(e ∈ stream) {
2 b = BBox.of(e)
3
4 eb1 = enlargeByMaxFactorPadding (b)
5 eb2 = enlargeByMaxValuePadding (b)
6 eb3 = enlargeByMaxMeterPadding (b)
7
8 enlargedBBox = BBox.of(eb1, eb2, eb3)
9

10 r = distribution regions that are intersecting with
enlargedBBox

11 n = nodes that are storing r
12 forward e to the nodes n
13 }

Reef a

Reef b

Distribution
region 0

Distribution region 1

Distribution region 2

Node c

Node b

Node a

Fig. 12   By using the FETCH strategy, the data of the light grey area is fetched via the network during the
spatial join

593

1 3

Distributed and Parallel Databases (2022) 40:559–625	

4.7 � Performing queries in multiple regions

A bounding box of a stream element can intersect with multiple distribution regions.
In this case, the element is replicated and sent to multiple BBoxDB nodes (see
Sect. 4.6). Also, a query rectangle can intersect with multiple distribution regions.
In this case the continuous query is registered on several nodes (see Fig. 16).

The duplication of the stream elements and the execution of the query on multiple
nodes in parallel could lead to the situation that a tuple is contained multiple times
in a query result, which is incorrect. To prevent this, a hash map in the BBoxDB
client is used to detect and filter duplicates (see the lower part of Fig. 9). The hash
map is built over the keys and version timestamps of the query result tuples. When
the client detects an already known tuple, the tuple is discarded before it is reported
to the user.

4.8 � The GUI

The GUI of BBoxDB provides information about the cluster, the data distribution,
and allows one to perform queries. BBoxDB Streams enhances the GUI in a way
such that continuous queries are supported.

The GUI is optimized to handle two-dimensional GeoJSON encoded data. On
the GUI, a user can define a query rectangle and execute queries. BBoxDB Streams
integrates the support for continuous queries into the GUI. With the enhancement,

Stream Capturing Tool
Stream

ZooKeeper

Query
enlargement

Global
index

Node c

Node b

Node a

Tu
pl
e

Tuple

Tuple

Client

Query

Query

Qu
er
y

Query 1

Query 2

Query 3

Maximum enlargement
per table and type

Bounding Box
Enlargement

Fig. 13   To distribute the stream elements to the proper nodes, the bounding boxes are enlarged in the
stream capturing tool, and the distribution is performed based on the enlarged bounding boxes. To deter-
mine the needed enlargement, each BBoxDB client registers the maximum enlargement of all of his que-
ries per table and enlargement type in ZooKeeper. The maximum enlargement is used by the stream cap-
turing tool to enlarge the bounding box

594	 Distributed and Parallel Databases (2022) 40:559–625

1 3

continuous range queries and continuous spatial join queries can be executed. The GUI
executes the specified continuous query and processes the received result tuples. The
geometries of the tuples are shown as an overlay over the map. In addition to the loca-
tion, the stream elements contain further information. Placing the mouse cursor over
an element opens a tooltip containing all the information that is contained in the GeoJ-
SON object (e.g., the altitude of an aircraft or the trip id of a bus). The area of the GUI
under the map shows details about the used cluster (i.e., IP, software version, available
disks, disk space, CPUs).

Real-world queries can be performed and observed using the GUI. The stream cap-
turing tool of BBoxDB can decode some real-world streams, such as ADS-B encoded
data (i.e., aircraft position data) or GTFS real-time encoded data (e.g., public trans-
port vehicles). Queries such as Which aircraft is currently in the airspace over Ber-
lin? (Fig. 14) or Which public transport vehicle drives currently through a forest? (see
Fig. 15 and Listing 11 on Page 44) can be performed.

In addition queries, such as Which buses are located on the Elizabeth Street in Syd-
ney? (see Listing 12 on Page 45) can be performed. More details about these data
streams can be found in Sect. 6.1. Additional real-world use-cases of BBoxDB Streams
are described in the demo paper [4] and in the documentation of BBoxDB Streams
[74].

5 � Continuous queries

This section describes how continuous queries can be expressed and executed.
Besides, some example queries are discussed. Before a continuous query can be
executed, a query plan needs to be created. In BBoxDB Streams, the query plan
can be specified directly in the programming language Java. A query plan builder
ensures that the created query is syntactically correct.

After the query plan is built, it is serialized into JSON (see Fig. 16) and sub-
mitted to the required BBoxDB nodes. As an alternative to the query plan builder,
the query plan can be directly written in JSON. However, the query builder per-
forms some basic checks, and we recommend using this class to create the query
plans.

5.1 � Execute continuous queries

To support continuous queries, the BBoxDB Java client was enhanced by two meth-
ods for the handling of continuous queries (see Sect. 4.2). These methods are used in
Listing 5. In the listing, the creation, registration, execution, and the cancellation of
a continuous query is shown.

595

1 3

Distributed and Parallel Databases (2022) 40:559–625	

Listing 5 Create and register a continuous query.

1 // Build query
2 ContinuousQueryPlan queryPlan =

QueryPlanBuilder .[...]. build();
3
4 // Register query
5 TupleListFuture queryFuture =

bboxDBClient.continuousQuery(queryPlan);
6
7 // Handle query results
8 for(MultiTuple tuple : queryFuture) {
9 [...]

10 }
11
12 // Cancel query
13 UUID queryId = queryPlan.getQueryId ();
14 bboxDBClient.cancelContinuousQuery (queryId);

In Line 2, the query plan is created and serialized into JSON. To keep this exam-
ple clear, the actual specification of the query plan is omitted; in the following list-
ings, the calls to build a query are shown. In Sect. 5.4 the methods of the Query-
PlanBuilder are described in detail.

Fig. 14   Visualizing aircraft traffic over Berlin, Germany in the BBoxDB GUI

596	 Distributed and Parallel Databases (2022) 40:559–625

1 3

The QueryPlanBuilder allows the creation of continuous queries by using
the builder pattern [75, pp. 97ff.].14 In Line 5, the created query plan is passed
to the BBoxDB client and registered on all required nodes. A future15 is returned
that can be used to fetch the results of the query. In Line 8, the result tuples are
fetched. When no unprocessed tuple is available, the iterator blocks and waits until
the next tuple is available. When a result tuple is available, the tuple is assigned to
the variable tuple. In Line 9, the tuple can be accessed and processed by the actual

Fig. 15   A continuous spatial join between the forests and public transport vehicles in Sydney, Australia

QueryBuilder BBoxDB Client
JSON

BBoxDB Node

BBoxDB Node

BBoxDB Node

Que
ry

Query

Query

Fig. 16   The query plan is built by the QueryBuilder, serialized into JSON, and registered on the required
BBoxDB nodes

14  The builder pattern is often used in complex object oriented software systems to provide a convenient
way for creating objects that have complex constructors.
15  BBoxDB uses the future pattern [76]; complex operations return a future instead of a concrete value.
The calling application code can wait until the concrete result is computed or can process other tasks
during that time. This creates a high degree of parallelism in the client code and helps to utilize the
resources as much as possible.

597

1 3

Distributed and Parallel Databases (2022) 40:559–625	

application code. In Line 13, the query id of the continuous query is determined,
and in Line 14, the query id is used to cancel the running query.

The result type of a continuous query is a MultiTuple (see Line 8). A
MultiTuple contains an ordered set of tuples. Depending on the query type,
each MultiTuple consists of one or more tuples. For range queries, the Mul-
tiTuple contains only one tuple; this is the stream tuple that matches the query
hyperrectangle. For spatial join queries, the MultiTuple contains two tuples:
(1) the tuple of the stream and (2) the tuple from the static dataset. The Mul-
tiTuple abstraction can also be used by further operations to return more than
two result tuples.

5.2 � Building continuous range queries

To build a continuous range query with the QueryPlanBuilder, the static
method createQueryOnTable has to be called with the table name on which
the continuous query has to be registered (see Line 2 of Listing 6).

Listing 6 Building a continuous range query.

1 ContinuousQueryPlan qp = QueryPlanBuilder
2 .createQueryOnTable("dgroup_table")
3 .forAllNewTuplesInSpace (2.0, 3.0)
4 .enlargeStreamTupleBoundingBoxByFactor (2.0)
5 .compareWithStaticSpace (1.0, 4.0)
6 .build();

The area in space where the query is registered (symbol � in Table 4 on Page 27)
is passed to the forAllNewTuplesInSpace method (Line 3). In this example,
this is a one-dimensional hyperrectangle. Transformations of the stream elements
� are specified by methods like enlargeStreamTupleBoundingBoxByFac-
tor (Line 4). The method compareWithStaticSpace takes the query hyper-
rectangle � as a parameter (Line 6). The query building is finished by calling the
build method (Line 7), which returns the query plan serialized to JSON.

A continuous range query can report positive or negative matches � . A positive
match is an intersection between the stream element and the query rectangle; oth-
erwise, it is a negative match. The behavior of the query can be specified with the
methods reportNegativeMatches and reportPositiveMatches. If
none of these methods are called, positive matches are reported.

The QueryPlanBuilder implements the fluid interface pattern [77, pp.
343ff.]. All methods can be written fluently in a chain. The next method is called
directly on the result of the last method (e.g., in Listing 6 the method enlarg-
eStreamTupleBoundingBoxByFactor is directly called on the result of the
method forAllNewTuplesInSpace).

598	 Distributed and Parallel Databases (2022) 40:559–625

1 3

5.3 � Building continuous spatial join queries

Continuous spatial join queries can also be built with the QueryPlanBuilder.
Building such queries is similar to the building of continuous range queries. List-
ing 7 contains an example of a continuous spatial join query.

Listing 7 Building a continuous spatial join query.

1 ContinuousQueryPlan qp = QueryPlanBuilder
2 .createQueryOnTable("dgroup_table1")
3 .forAllNewTuplesInSpace (3.0, 4.0)
4 .spatialJoinWithTable("dgroup_table2")
5 .enlargeStoredTupleBoundingBoxByFactor (2.0)
6 .build();

The methods called in Lines 1–3 are equal to the last example. In contrast to
the range query, the method spatialJoinWithTable is called (Line 4). The
method takes a table name as a parameter; this is the table of join partners (sym-
bol Rn in Table 5 on Page 29). Every stream element is compared with the tuples
of the table. In spatial join queries, transformations on the stored tuples � can also
be applied. This can be done by methods like enlargeStoredTupleBound-
ingBoxByFactor (Line 5). The building of the query is finished by calling the
method build (Line 6).

5.4 � The query plan builder

This section describes all methods of the QueryPlanBuilder. This class is used
to construct continuous query plans in BBoxDB Streams. The available methods are
listed in Table 6 with a description. Calling a method multiple times overrides the
older value. An exception are the methods addStreamFilter(..) and add-
JoinFilter(..), which can be called multiple times to add additional filters.

5.5 � Query examples

This section shows some query examples and the wide range of practical problems
that can be solved with BBoxDB Streams.16

5.5.1 � Is the price of the stock “Apple” above €100?

This is a query in the one-dimensional space. The price of a stock is treated as a
point in space and the stream is written into the table dgroup_stock (see List-
ing 8). The query is registered on this table (Line 2). The query observes the price of

16  Further examples can be found in the demo paper [4] and in the documentation of BBoxDB Streams
[74].

599

1 3

Distributed and Parallel Databases (2022) 40:559–625	

the stock of the company Apple (Line 3) and produces query results as soon as the
stock is traded for more than €100 and less than €999917 (Lines 4 and 5).

Listing 8 Does a stock raise above a certain price?

1 ContinuousQueryPlan qp = QueryPlanBuilder
2 .createQueryOnTable("dgroup_stock")
3 .filterStreamTupleByKey("Apple")
4 .forAllNewTuplesInSpace (100.0 , 9999.99)
5 .compareWithStaticSpace (100.0 , 9999.99)
6 .build();

5.5.2 � Do two vehicles drive side by side?

In this scenario, two cars are equipped with GPS receivers. They send their positions
every few seconds to a BBoxDB cluster. The query in Listing 9 is used to test if the
vehicles with the ids vehicle1 and vehicle2 are closer to each other than 10
meters.

Listing 9 Do two vehicles drive side by side?

1 ContinuousQueryPlan qp = QueryPlanBuilder
2 .createQueryOnTable("dgroup_car")
3 .filterStreamTupleByKey("vehicle1")
4 .enlargeStreamBoundingBoxByWGS84Meter (10.0, 10.0)
5 .spatialJoinWithTable("dgroup_car")
6 .filterStoredTupleByKey("vehicle2")
7 .build();

For each stream element, it is tested that it contains a position update for vehicle1
(Line 3). The two-dimensional bounding box of the vehicle is extended by 10 meters
in both dimensions (Line 4). Then a spatial join is executed in this area (Line 5).
The join partners are filtered by the key; only tuples with the key vehicle2 (Line 6)
are valid join partners. The query returns results as long as vehicle1 and vehicle2 are
closer than 10 meters.

The spatial join is performed between the stream elements of dgroup_car and
the elements of the table dgroup_car (Lines 2 and 5). This is a self-join between
the current position of a car and the historical positions.

In the query, the current position of vehicle1 is joined with the last known posi-
tion of vehicle2. The query also works when the roles of vehicle1 and vehicle2 are

17  The upper limit of €9999 is used because the bounding box needs to have an upper end, any large
number can be used here (e.g., Integer.MAX_INT).

600	 Distributed and Parallel Databases (2022) 40:559–625

1 3

Ta
bl

e 
6  

T
he

 m
et

ho
ds

 a
nd

 p
ar

am
et

er
s o

f t
he

 Q
ue

ry
Pl

an
B

ui
ld

er
 th

at
 c

an
 b

e
us

ed
 to

 c
re

at
e

a
qu

er
y

pl
an

M
et

ho
d

Pa
ra

m
et

er
D

es
cr

ip
tio

n

c
r
e
a
t
e
Q
u
e
r
y
O
n
T
a
b
l
e
(
.
.
)

St
rin

g
Th

is
 m

et
ho

d
sp

ec
ifi

es
 o

n
w

hi
ch

 d
at

a
str

ea
m

 th
e

qu
er

y
is

 c
re

at
ed

 (s
ee

 S
n
 in

Ta

bl
e

5
on

 P
ag

e
29

).
f
o
r
A
l
l
N
e
w
T
u
p
l
e
s
I
n
S
p
a
c
e
(
.
.
)

H
yp

er
re

ct
an

gl
e

Th
e

re
gi

on
 in

 sp
ac

e
w

he
re

 th
e

qu
er

y
is

 re
gi

ste
re

d
(�
) .

e
n
l
a
r
g
e
S
t
r
e
a
m
T
u
p
l
e
B
o
u
n
d
i
n
g
B
o
x
B
y
V
a
l
u
e
(
.
.
)

D
ou

bl
e

En
la

rg
e

bo
un

di
ng

 b
ox

 o
f t

he
 st

re
am

 tu
pl

e
by

 a
 c

er
ta

in
 v

al
ue

 ( �
).

e
n
l
a
r
g
e
S
t
r
e
a
m
T
u
p
l
e
B
o
u
n
d
i
n
g
B
o
x
B
y
F
a
c
t
o
r
(
.
.
)

D
ou

bl
e

En
la

rg
e

bo
un

di
ng

 b
ox

 o
f t

he
 st

re
am

 tu
pl

e
by

 a
 c

er
ta

in
 fa

ct
or

 (  �
).

e
n
l
a
r
g
e
S
t
r
e
a
m
T
u
p
l
e
B
o
u
n
d
i
n
g
B
o
x
B
y
W
G
S
8
4
M
e
t
e
r
s
(
.
.
)

D
ou

bl
e ×

 D
ou

bl
e

En
la

rg
e

th
e

bo
un

di
ng

 b
ox

 o
f t

he
 st

re
am

 tu
pl

e
by

 a
 c

er
ta

in
 n

um
be

r o
f m

et
er

s.
Th

e
bo

un
di

ng
 b

ox
 o

f t
he

 st
re

am
 tu

pl
e

ha
s t

o
be

 tw
o-

di
m

en
si

on
al

 a
nd

 W
G

S8
4

co
or

di
na

te
s h

av
e

to
 b

e
us

ed
 in

 th
e

bo
un

di
ng

 b
ox

 (  �
).

fi
l
t
e
r
S
t
r
e
a
m
T
u
p
l
e
B
y
K
e
y
(
.
.
)

St
rin

g
Fi

lte
rs

 th
e

str
ea

m
 tu

pl
e

by
 th

e
gi

ve
n

ke
y

( �
).

fi
l
t
e
r
S
t
r
e
a
m
T
u
p
l
e
B
y
B
o
u
n
d
i
n
g
B
o
x
(
.
.
)

H
yp

er
re

ct
an

gl
e

Th
e

str
ea

m
 tu

pl
e

an
d

th
e

pr
ov

id
ed

 h
yp

er
re

ct
an

gl
e

ha
ve

 to
 in

te
rs

ec
t (

  �)
.

a
d
d
S
t
r
e
a
m
F
i
l
t
e
r
(
.
.
)

U
D

F
×

 U
D

F-
Va

lu
e

Th
e

str
ea

m
 tu

pl
e

ha
s t

o
pa

ss
 th

e
pr

ov
id

ed
 U

D
F

( �
).

b
u
i
l
d
(
.
.
)

–
Th

is
 m

et
ho

d
fin

is
he

s t
he

 c
on

str
uc

tio
n

of
 th

e
qu

er
y

pl
an

 a
nd

 re
tu

rn
s t

he
 c

on
-

str
uc

te
d

pl
an

.
C

on
tin

uo
us

 r
an

ge
 q

ue
ry

 sp
ec

ifi
c

m
et

ho
ds

 c
o
m
p
a
r
e
W
i
t
h
S
t
a
t
i
c
S
p
a
c
e
(
.
.
)

H
yp

er
re

ct
an

gl
e

Th
e

qu
er

y
re

ct
an

gl
e (
�
) .

 r
e
p
o
r
t
P
o
s
i
t
i
v
e
M
a
t
c
h
e
s
(
.
.
)

–
St

re
am

 tu
pl

es
 th

at
 d

o
in

te
rs

ec
t w

ith
 th

e
qu

er
y

re
ct

an
gl

e
sh

ou
ld

 b
e

re
po

rte
d

( �
).

 r
e
p
o
r
t
N
e
g
a
t
i
v
e
M
a
t
c
h
e
s
(
.
.
)

–
St

re
am

 tu
pl

es
 th

at
 d

o
no

t i
nt

er
se

ct
 w

ith
 th

e
qu

er
y

re
ct

an
gl

e
sh

ou
ld

 b
e

re
po

rte
d

(  �
).

C
on

tin
uo

us
 sp

at
ia

l j
oi

n
qu

er
y

sp
ec

ifi
c

m
et

ho
ds

 s
p
a
t
i
a
l
J
o
i
n
W
i
t
h
T
a
b
l
e
(
.
.
)

St
rin

g
Th

e
na

m
e

of
 th

e
ta

bl
e

of
 th

e
jo

in
 p

ar
tn

er
s (

  R
n
).

 fi
l
t
e
r
S
t
o
r
e
d
T
u
p
l
e
B
y
K
e
y
(
.
.
)

St
rin

g
Fi

lte
rs

 th
e

jo
in

 p
ar

tn
er

 o
f t

he
 ta

bl
e

by
 th

e
gi

ve
n

ke
y

( �
).

 fi
l
t
e
r
S
t
o
r
e
d
T
u
p
l
e
B
y
B
o
u
n
d
i
n
g
B
o
x
(
.
.
)

H
yp

er
re

ct
an

gl
e

Th
e

jo
in

 p
ar

tn
er

 o
f t

he
 ta

bl
e

an
d

th
e

pr
ov

id
ed

 h
yp

er
re

ct
an

gl
e

ha
ve

 to
 in

te
rs

ec
t

(  �
).

 a
d
d
J
o
i
n
F
i
l
t
e
r
(
.
.
)

U
D

F
×

 U
D

F-
Va

lu
e

Th
e

str
ea

m
 tu

pl
e

an
d

th
e

jo
in

 p
ar

tn
er

 h
av

e
to

 p
as

s t
he

 p
ro

vi
de

d
U

D
F

( �
).

601

1 3

Distributed and Parallel Databases (2022) 40:559–625	

swapped. In this case, the current position of vehicle2 would be joined with the last
known position of vehicle1.

5.5.3 � Which ships are heading to an island?

This example is the same as shown in Fig. 10 on Page 29. The ships heading to an
island should be reported while the ships that are already near the island should be
ignored by the query. The query is registered on a larger bounding box and nega-
tive matches for a given query rectangle are calculated. Listing 10 contains the calls
required to construct such a query.

Listing 10 Which ships are heading to an island?

1 ContinuousQueryPlan qp = QueryPlanBuilder
2 .createQueryOnTable("dgroup_ships")
3 .forAllNewTuplesInSpace (1.0, 2.0, 1.0, 2.0)
4 .compareWithStaticSpace (1.2, 1.8, 1.2, 1.8)
5 .reportNegativeMatches ()
6 .build();

In this example, the query is registered on the table ships (Line 2). In Line 3, the
space where the query is registered is defined. The query rectangle is specified by
the method compareWithStaticSpace in Line 4; this is the bounding box �
of the island. A slightly larger space � is passed to the method forAllNewTup-
lesStoredInSpace. All ships that are inside of this space but are not inside the
bounding box of the island are reported by the query. These are the ships that are
heading toward the island.

5.5.4 � Which buses are driving through a forest in Sydney?

This example performs a spatial join between (1) a data stream, which contains the
positions of several buses, and (2) an already stored dataset, which contains the spa-
tial data of the forests of Australia. The spatial join is used to join the position of the
bus with the forests. The result of the query are all buses that are currently inside of
a forest. To ensure that the bus is really inside the polygon of the forest and not only
inside the bounding box, a UDF is used to refine the query (see Fig. 7 on Page 19).
The refinement is done by the UDF, which is discussed in Sect. 3.6.2.

Listing 11 shows the building of the query plan. This query will also be used in
the experiments on recorded bus trajectories and the spatial data of the roads of Syd-
ney in Sect. 6.1.

602	 Distributed and Parallel Databases (2022) 40:559–625

1 3

Listing 11 Which buses are driving through a forest?

1 UserDefinedFilterDefinition udf
2 = new UserDefinedFilterDefinition (
3 "UserDefinedGeoJsonSpatialStrictFilter ", "");
4
5 ContinuousQueryPlan qp = QueryPlanBuilder
6 .createQueryOnTable("dgroup_bus")
7 .forAllNewTuplesInSpace (150.56 , 151.34 , -34.09, -33.60)
8 .spatialJoinWithTable ("dgroup_forest")
9 .addJoinFilter(udf)

10 .build();

In Lines 1–3, a transformation with a user-defined filter is created. The query is
evaluated when new data are stored in the table dgroup_bus (Line 6). For every
new tuple in the region of Sydney (Line 7) a spatial join with the table dgroup_
forest is performed (Line 8). In Line 9, the UDF is referenced to refine the spatial
join result.

5.5.5 � Which buses are driving currently on the “Elizabeth Street” in Sydney?

This query is identical in many aspects to Listing 11. Again the positions of
buses are joined with static data. This time, the spatial data of the roads in Aus-
tralia are used. In contrast to the last query, it is not just a spatial join that is
performed. In this query, one of the join partners has to contain a certain prop-
erty value. As described in Sect. 3.6.1, the customData value of the User-
DefinedGeoJsonSpatialFilter is used to check the property map for a
certain value.

In Lines 1–4, the UDF is created and initialized. The name of the street and
the associated key of the property map (name:Elizabeth Street) are
passed as custom data to the UDF (see Sect. 3.6.2). In this example, the proper-
ties of both join candidates are tested to determine whether or not the key and
the value are contained in the property map of one of the GeoJSON objects. If
one of the join candidates matches, the intersection test on the real geometries is
executed.18

18  The position of the bus is a point in space, the geographical data of the road a line. As discussed in
Sect. 3.6.2, a distance test is performed for these data types to refine the query. Join candidates that are
closer than five meters are treated as intersecting.

603

1 3

Distributed and Parallel Databases (2022) 40:559–625	

Listing 12 Which buses are driving on the Elizabeth Street?

1 UserDefinedFilterDefinition udf
2 = new UserDefinedFilterDefinition (
3 "UserDefinedGeoJsonSpatialFilter",
4 "name:Elizabeth Street");
5
6 ContinuousQueryPlan qp = QueryPlanBuilder
7 .createQueryOnTable("dgroup_bus")
8 .forAllNewTuplesInSpace (150.56 , 151.34 , -34.09, -33.60)
9 .spatialJoinWithTable ("dgroup_road")

10 .addJoinFilter(udf)
11 .build();

6 � Evaluation

The evaluation of BBoxDB Streams is performed on a cluster of five nodes. These
nodes contain an Intel Xeon E5-2630 CPU with eight cores, 32 GB of memory,
and four 1-TB hard disks. All nodes are connected via a 1 Gbit/s switched Ether-
net network and running Java 8 on a 64 bit Ubuntu Linux. Unless stated otherwise,
before the experiments are performed, the space is pre-partitioned (see Sect. 3.4)
into 40 distribution regions to utilize all nodes of the cluster. Since not all distribu-
tion regions might be equally utilized, more distribution regions than nodes are cre-
ated. In the used environment, each of the five nodes is responsible for eight regions,
which leads to an almost equal utilization of the nodes (see Sect. 6.10 for a detailed
discussion).

The pre-partitioning is performed with samples from the stored datasets to gen-
erate a good data distribution. Taking random samples is not possible when a data
stream is processed sequentially. How a data stream can be used to pre-partition
the space is discussed and evaluated in Sect. 6.10. The data streams are imported
(unless stated otherwise in the experiment) by one instance of the stream capturing
tool. This is done in the same way as a real-world data stream would be read from a
network socket, with the exception that the data are read from a disk.

In most of the experiments, the throughput of the stream elements is measured.19
These experiments show how a variation of some parameters (e.g., number of nodes,
number of queries) affects the throughput of the stream element processing.

In a real-world scenario, stream elements have to be processed at the speed at
which they are delivered. So, the design of the experiments differs from the real-
world scenario. However, we have chosen to process a stored data stream and meas-
ure the element throughput because: (1) the same stream elements are processed in

19  This paper focuses on the handling of data streams. An experimental evaluation of the BBoxDB core
and a comparison with other systems can be found in the paper [6].

604	 Distributed and Parallel Databases (2022) 40:559–625

1 3

all experiments, which makes it possible to compare the experiments. (2) The meas-
ured throughput is more meaningful than simply stating that a certain amount of
resources is insufficient to fully process the stream.

Usually, BBoxDB Streams skips stream elements when not enough resources are
available to process the stream at the required speed. For the following experiments,
this behavior of the software was changed. All stream elements have to be processed.
When not enough resources are available, the stream capturing tool has to wait for
the processing of further stream elements. The change in the stream processing
makes it possible to measure the processing time of the complete data stream.

6.1 � Used datasets

For the evaluation of BBoxDB Streams, two two-dimensional, one three-dimen-
sional, and one four-dimensional stream datasets are used. Two stream datasets are
captured from real-world data sources, and two stream datasets are synthetically gen-
erated. These datasets are described in detail in the following subsections. Besides,
two static datasets are used to evaluate the spatial join between a data stream and
previously stored data.

6.1.1 � BerlinMOD stream dataset

BerlinMOD [78] is a benchmark for spatio-temporal database management systems.
The benchmark contains a data generator that generates positions of moving vehi-
cles within the Berlin (Germany) metropolitan area. For the evaluation, the dataset
was calculated with a scale factor of 5.0, which covers a time period of 2 months
(5,184,000 s). The trips are stored as CSV data on disk, and WGS84 coordinates are
used. The moving object id of the vehicle (Moid) is used as the key when the data is
written to BBoxDB, and the two-dimensional position of the vehicle is used to cal-
culate the bounding box of the elements.

6.1.2 � NSW transport stream dataset

The government of the state of New South Wales in Australia operates the NSW
open data portal [79]. On this portal, real-time data about buses, ferries, metros, and
trains of the Sydney (Australia) metropolitan area are published. A GTFS encoded
real-time feed of the data can be subscribed. The elements of the feed contain,
among other things, an id, a position, the speed, and a tour number (see the tooltip
in Fig. 15). In this paper, we use the position data of the buses since they provide the
majority of the elements in the stream. The stream content was captured for a whole
week (604,800 s) 21 January 2020–28 January 2020 and stored as GeoJSON. The
id of the trip (TripID) is used as the key when the data is written to BBoxDB, and
the two-dimensional position of the bus is used to determine the bounding box.

605

1 3

Distributed and Parallel Databases (2022) 40:559–625	

6.1.3 � ADS‑B stream dataset

An aircraft continuously determines its position. The position is broadcasted period-
ically via radio as automatic dependent surveillance – broadcast (ADS-B) transmis-
sions. In addition to the position, the transmissions contain the altitude, the callsign,
the heading, and some more information. These ADS-B transmissions can be cap-
tured with an antenna on the ground. However, an ADS-B receiver captures only the
transmissions in a radius of a few miles around the antenna. Websites such as https://​
www.​adsbh​ub.​org [80] provide a service to aggregate the feeds of several individual
stations into a global feed.

For creating the ADS-B dataset, the global ADS-B data stream of the website
adsbhub.org was captured for a whole day (86,400 s) on 16 February 2020 and the
data are stored as CSV on disk.

ADS-B messages are typed. Depending on the message type, different informa-
tion is contained in the message. Three messages of different types need to be read
to construct one stream element. The callsign of the aircraft is used as the key when
the data is written to BBoxDB. The two-dimensional position of the aircraft and the
altitude are used to calculate the three-dimensional bounding boxes of the aircraft
that are contained in this dataset.

6.1.4 � Synthetic bounding boxes stream dataset

To evaluate the behavior of BBoxDB Streams with four-dimensional non-point data,
a synthetic stream dataset that contains bounding boxes in the four-dimensional
space was generated. The dataset consists of 50,000,000 elements that represent dif-
ferent 100,000 entities. Each entity is represented by a key, a bounding box, and
a random value of 200 bytes. The bounding boxes are uniformly distributed, have
equal sides, and each bounding box covers 0.01% of the space. The dataset is stored
in TSV format (tab-separated values) on disk and can be reproduced by using the
SyntheticDataStreamGenerator, which is included in BBoxDB Streams.

6.1.5 � Open streetmap static dataset

This dataset is a copy of the planet dataset of the Open Streetmap Project (OSM)
[81]. The dataset contains the spatial data of the whole world. In contrast to the
last three datasets, this dataset consists of static data. The spatial data of the roads
(denoted as OSM roads) and forests (denoted as OSM forests) are used for the evalu-
ation of BBoxDB Streams.

For the experiments, the dataset was converted into GeoJSON.20 The GeoJSON
elements contain properties (key-value pairs) with additional information about the
objects. For example, roads are annotated with the maximum speed, the name, and
the coating. The id of each element is used as the key of the tuple when the data is
written to BBoxDB. The two-dimensional bounding box of the geometry is used as
bounding box of the tuple.
20  BBoxDB includes a converter that converts OpenStreetMap Protocolbuffer Binary Format (.osm.pbf)
encoded data into GeoJSON (see [82] for more details about the converter).

https://www.adsbhub.org
https://www.adsbhub.org

606	 Distributed and Parallel Databases (2022) 40:559–625

1 3

6.1.6 � Synthetic bounding boxes static dataset

To be able to evaluate continuous spatial joins in the four-dimensional space with
the synthetic stream dataset (see Sect. 6.1.4), also a static four-dimensional dataset
was generated. The dataset consists of 50,000,000 elements that represent different
50,000,000 entities. Like the synthetic bounding boxes stream dataset, each entity is
represented by a key, a bounding box, and a random value of 200 bytes. The bound-
ing boxes are uniformly distributed, have equal sides, and each bounding box covers
0.01% of the space. The dataset is stored in TSV format on disk and can be repro-
duced by using the SyntheticDataGenerator, which is included in BBoxDB
Streams.

6.1.7 � Summary

The described datasets are used in the evaluation of BBoxDB Streams. Table 7 sum-
marizes the properties of these datasets.

Each dataset contains a different amount of additional information, which leads
to different sizes per tuple. Table 8 contains an overview about the different element
sizes.

6.2 � Processing data streams

In the first experiment, the data streams are imported into the cluster of BBoxDB
nodes. The time to perform the data import is measured and the throughput of the
stream element processing is calculated. In addition, the number of BBoxDB nodes
is varied between the experiments, and the data are imported: (1) one time with
writing the data to disk and (2) one time without writing the data to disk. In the
experiment, only the data stream is imported and processed by BBoxDB Streams.
No continuous queries are registered during the stream processing. The evaluation
of the continuous query will be part of the following experiments. The result of this
experiment can be seen in Fig. 17.

It can be seen in the figure that increasing the number of nodes increases the
throughput of stream element processing. The reason is that with additional nodes,
more resources for processing the stream are available. The figure also shows that
writing the data to disk takes some time. So, only processing the stream elements
without writing the data to disk can speed up the processing. In addition, the stream
datasets are stored in different data formats and each stream element has a different
size (see Table 8). The NSW transport dataset is stored as GeoJSON values, the syn-
thetic BBox dataset is stored as TSV values, and the ADS-B dataset and the Berlin-
Mod dataset are stored as CSV values. Different parsers and techniques are used to
read the data, which leads to different throughputs in the stream element processing.
For instance, the ADS-B format decoder also has to merge different ADS-B mes-
sages into one stream element (see Sect. 6.1.3).

607

1 3

Distributed and Parallel Databases (2022) 40:559–625	

The system utilization of the cluster was observed during the experiment. At any
time, all nodes have some free disk, CPU, and memory resources. Therefore, only
a small speed-up factor can be achieved in the experiment. The limiting resource
is the parsing and distributing of the input stream. However, in this experiment, no
continuous queries are registered. Therefore, the nodes do not have to evaluate such
queries. This will be covered in the following experiments (see Sect. 6.8), and the
data of this experiment show the basic system behavior. Processing multiple data
streams is discussed in the experiment of Sect. 6.3.

6.3 � Importing multiple data streams in parallel

In the last experiments, only one data stream was imported. The workload to parse
the data and to write the data to the BBoxDB cluster was only performed by one
node. BBoxDB Streams is able to process multiple data streams in parallel. For
the preparation of this experiment, the stored data streams are split into two to five
pieces. The stream capturing tool is executed on different nodes, and the partial
streams are imported in parallel. Therefore, the work to parse the data streams and to
write the data to the network is parallelized. In the experiment, the data are written
to the disks of the cluster, and no continuous queries are registered. As in the last

Table 7   The datasets that are used in the experiments. The column total elements denotes the absolute
number of elements in the dataset; the number of different elements denotes how many different ele-
ments (e.g., cars or aircraft) are contained

Dataset Type Dim. Covered area Total elements Different ele-
ments

Size Real time [s]

BerlinMod Stream 2d Berlin 259,841,059 4473 23 GB 5,184,000
NSW transport Stream 2d Sydney 49,538,352 44,406 21 GB 604,800
ADS-B Stream 3d Planet 56,299,586 81,047 16 GB 86,400
Synthetic

BBox
Stream 4d Synthetic 50,000,000 100,000 17 GB –

OSM roads Static 2d Planet 146,060,493 146,060,493 67 GB –
OSM forests Static 2d Planet 5,187,592 5,187,592 5.4 GB –
Synthetic

BBox
Static 4d Synthetic 50,000,000 50,000,000 17 GB –

Table 8   The average size per
element and stream dataset

Dataset Aver-
age size
(Byte)

BerlinMod 92
NSW transport 446
ADS-B (per message) 96
ADS-B (per stream element) 289
Synthetic 352

608	 Distributed and Parallel Databases (2022) 40:559–625

1 3

experiment, the time to process the complete dataset is measured and the through-
put of the stream processing is calculated. The result of the experiment is shown in
Fig. 18.

It can be seen in the figure that the throughput increases when more instances
of the stream capturing tool are executed in parallel. By using more instances, the
workload to parse the data and to communicate with the BBoxDB cluster (e.g.,
determine to which nodes a tuple needs to be sent and serialize the tuple into a byte
stream) is distributed between multiple nodes.

In addition, each BBoxDB node handles each connection (i.e., the connections
from the stream capturing tool) in a separate thread. This thread reads the bytes from
the network connection, parses the data, performs the requested operations (e.g.,
inserting a tuple), and writes the answers (e.g., acknowledging a successful opera-
tion) back to the client. Executing multiple instances of the stream capturing tool
leads to more connections and a higher degree of parallelism on the BBoxDB nodes.
However, expensive tasks (e.g., the evaluation of the continuous queries or writing
the data to disk) are performed in separate threads, and executing multiple instances
of the stream capturing tool cannot speed up these operations.

The BerlinMod data stream benefits mostly from parallelization. The elements
of the data stream have the smallest tuple size (see Table 8 on Page 49). Due to the
small tuple size, more network operations are required to process this data stream
than the other data streams.

6.4 � Continuous range queries on data streams

In this experiment, continuous range queries on data streams are performed, and the
throughput of processed stream elements is measured. During the experiment, the
amount of queries and the size of the query range are varied.

Fig. 17   Importing the data streams into a cluster of BBoxDB nodes. The number of nodes was varied
during the experiments

609

1 3

Distributed and Parallel Databases (2022) 40:559–625	

In the first step of the experiment, the bounding box of the stream dataset is deter-
mined. The query range in the experiment covers a certain percentage (0.1–2.0%) of
this bounding box. To make the throughput comparable, only one bounding box is
created per size and reused in all experiments. Afterward, the bounding box is used
to register a certain amount (10–100) of continuous range queries. The result of the
experiment is shown in Fig. 19.

The result of the experiment shows that the throughput decreases with an increas-
ing number of queries and an increasing query range. The reason for this behavior
is that with more registered queries, more query predicates need to be evaluated.
With an increasing query range, the registered queries are called more often and
they produce more results that have to be created and sent back to the query client.
For example, with 100 registered continuous range queries and a query range of 2%
per query, ≈ 2n result tuples are produced by processing a stream of n elements.
For example, 1,332,861,131 tuples are returned in total by 100 range queries with a
query range of 2% per query on the NSW transport dataset consisting of 49,538,352
elements.

6.5 � Continuous range queries and user‑defined filters

By using a User-Defined Filter (UDF), the query processor of BBoxDB can be
extended (see Sect. 3.6). UDFs can decode the value of the tuple and filter the tuples
based on this value.

In this experiment, the UDF from Sect. 3.6.2 is used to filter the JSON values
of the ADS-B, BerlinMod, and NSW transport datasets based on a property value.
Therefore, the values of the stream elements are to be parsed into JSON objects.
Afterward, the stream of the ADS-B dataset is filtered for the call sign QTR3WM,
the BerlinMod dataset is filtered for the vehicle id 4093, and the NSW transport
dataset is filtered for the route id 2436_N60. The synthetic BBox stream dataset

Fig. 18   Importing data streams in parallel using multiple instances of the stream capturing tool

610	 Distributed and Parallel Databases (2022) 40:559–625

1 3

contains random characters as values. Due to the different data format, the User-
DefinedGeoJsonSpatialFilter cannot be used to refine the dataset. Instead,
the dataset is refined by using the UserDefinedKeyFilter UDF. The UDF
allows restricting the keys of the stream elements to a certain value. In this experi-
ment, the keys are restricted to the value 10000. The result of the experiment can
be seen in Fig. 20.

Like in the last experiment, a varying amount of queries is registered with vary-
ing query ranges and the time to process the stream datasets is measured. In this
experiment, evaluating the UDF causes some additional work because the values of
the stream need to be handled. However, the additional filter step reduces the num-
ber of result tuples significantly.

Fig. 19   Performing continuous range queries on the datasets with a varying query range and number of
registered queries

611

1 3

Distributed and Parallel Databases (2022) 40:559–625	

In the ADS-B dataset, only 2013 tuples can pass the UDF, in the BerlinMod data-
set 24,608 tuples can pass the UDF, in the NSW transport dataset 76,129 tuples can
pass the UDF, and in the synthetic BBox dataset 500 tuples can pass the UDF.

It can be seen in the result of the experiment that the throughput of the stream
elements is higher than in the last experiment without using the UDF. Besides, the
throughput does not decrease as much with an increasing amount of queries as in
the last experiment. This is caused by the filtering step of the UDF and, therefore,
the reduced amount of results of the continuous queries. This leads to fewer result
tuples that need to be produced, transferred through the network, and consumed by
the continuous query client. This saves more resources than the additional effort to
invoke the UDF.

Fig. 20   Performing continuous range queries with a filter UDF on the datasets with a varying query
range and number of registered queries

612	 Distributed and Parallel Databases (2022) 40:559–625

1 3

6.6 � Continuous spatial joins on data streams

In this experiment, the behavior of BBoxDB Streams is evaluated when continuous
spatial joins are executed. The experiment is performed by using the BerlinMod, the
NSW transport, and the Synthetic BBox datasets. The spatial joins of the first two
datasets are performed between the stream elements and the forests and roads of the
OSM dataset. The ADS-B dataset is not used in the spatial join experiments. The
bounding box of the positions of the aircraft are three-dimensional, and the bound-
ing boxes of the OSM dataset are two-dimensional. Therefore, the datasets cannot
be joined directly.21 The spatial join of the Synthetic BBox stream dataset is per-
formed with the Synthetic BBox static dataset (see Sect. 6.1.6).

During the experiment, the number of queries and the size of the region where
the spatial join is performed is varied. The join is performed on the bounding boxes
of the elements. A spatial join that uses a UDF and works on the real geometries
of the data will be discussed in Sect. 6.7. The result of the spatial join is shown in
Fig. 21.

The results show that an increasing amount of registered continuous queries
and an increasing query range decreases the stream processing throughput. This is
caused by the increasing amount of elements that are processed by the continuous
queries and the increasing amount of result tuples produced by the queries. In gen-
eral, a spatial join takes more time to calculate than a range query. This is caused by
the disk access to retrieve the needed join partners.

The join result sizes of the spatial joins will be discussed in more detail in
Table 9, which is contained in the following experiment.

6.7 � Continuous spatial joins with user‑defined filters

In this experiment, a spatial join between two stream datasets and the OSM data-
set is performed. In contrast to the last experiment, the spatial join is refined by
the UDFs, which are discussed in Sect. 3.6.2. These UDFs decode the GeoJSON
encoded elements and refine the spatial join by performing an intersection test on
the real geometries. Because the synthetic BBox dataset consists only of bound-
ing boxes, no refinement is needed. Therefore, this dataset is not used in this
experiment.

The spatial join between the stream dataset and the roads is refined by
the UserDefinedGeoJsonSpatialFilter UDF, which allows up to
a five meter distance between the position of the stream element and the road.
The spatial join between the stream dataset and the forests is refined by the

21  However, the bounding box of the aircraft can be reduced to two dimensions by only using the posi-
tion to calculate the bounding box. With these two-dimensional bounding boxes, a spatial join between
this position and the roads and the forests could be performed. Even though the spatial join could be cal-
culated, the results of the join are more constructed than an actual result because the flying aircraft is not
really inside of a forest or on a particular street. Therefore, we decided not to use the ADS-B dataset for
the evaluation of the spatial joins.

613

1 3

Distributed and Parallel Databases (2022) 40:559–625	

Fig. 21   Performing continuous spatial join queries with a varying query range and number of registered
queries

614	 Distributed and Parallel Databases (2022) 40:559–625

1 3

UserDefinedGeoJsonSpatialStrictFilter, which requires that the
position of the stream element is inside of the forest.

The decoding of the GeoJSON elements and calculating the intersection per-
formed by the UDFs take some additional time compared with the last experi-
ment. However, the UDFs remove many join candidates. This reduces the size of
the result and the number of tuples that need to be transferred to the query client
(see Fig. 7 on Page 19). The result of the experiment is shown in Fig. 22.

The throughput of the processing is lower as in the last experiment. This is
caused by the additional computations performed by the UDFs. For the stream
positions and the forest (a point and a polygon), the UDF has to calculate whether
or not the position is inside or outside of the polygon of the forest. For the stream
positions and the roads (a point and a line), the distance is calculated. Table 9
shows how many result tuples are produced with and without the refinement per-
formed by the UDFs.

By joining the stream elements with the roads, the cardinality of the result is
larger than the cardinality of the stream dataset. This is caused by multiple join
partners with overlapping bounding boxes. When the UserDefinedGeoJson-
SpatialFilter UDF refines the result, the cardinality of the result decreases.
The UDF lets all join candidates pass, which have geometries that are closer than
five meters. Not all stream positions have a road located in this area. Therefore,
the cardinality of the refined join result is smaller than the cardinality of the
stream dataset.

6.8 � Scaling‑up continuous join queries

In this experiment, the continuous spatial join is performed on a varying number
of nodes. It is evaluated how horizontal scaling can be used in BBoxDB Streams
to speed-up a continuous join operation. The spatial join in the experiment uses a
query range of 50% of the space that is covered by the stream dataset. Three par-
allel continuous queries are registered; the result is refined by a UDF that refines
the spatial join (as described in the experiment of Sect. 6.7). In all experiments,
the same query range is used to ensure the same amount of stream elements are
processed by the queries, and the same amount of spatial join results are calcu-
lated. The throughput of the processed stream elements is taken during the exper-
iment and shown in Fig. 23.

An increasing number of nodes speeds-up the spatial join. This is caused by the
additional resources of the additional systems that can be used to calculate the spa-
tial join. The experiment shows that a speed-up factor of ≈ 3 is reached by scaling-
up the number of nodes from one node to five nodes.

6.9 � Distributing data

In Sect. 4.6, different data distribution modes of the stream capturing tool are
described. In this section, these strategies are evaluated. The first subsection focuses

615

1 3

Distributed and Parallel Databases (2022) 40:559–625	

on the FETCH strategy, whereas the second subsection focuses on the STATIC and
DYNAMIC strategies.

Fig. 22   Performing UDF refined continuous spatial join queries with a varying query range and number
of registered queries

Table 9   The result size of the
spatial join when the result (1) is
performed only on the bounding
boxes, and (2) refined by a UDF
on the real geometries

Stream dataset Static dataset Resulting tuples
without refine-
ment

Resulting tuples
with refinement

BerlinMod Road 786,266,377 152,136,430
BerlinMod Forest 5,880,667 1,501,017
NSW transport Road 110,072,568 36,473,212
NSW transport Forest 2,530,673 105,187

616	 Distributed and Parallel Databases (2022) 40:559–625

1 3

6.9.1 � The FETCH strategy

In this experiment, the behavior of the FETCH strategy is evaluated. When this strat-
egy is used, the stream capturing tool distributes the tuples unchanged. During the
calculation of a spatial join, missing join partners are requested via the network (see
Sect. 4.6.1). In this experiment, the strategy is compared with the STATIC and the
DYNAMIC strategies. These strategies distribute the elements to the required nodes
and don’t perform a network access during the spatial join.

This experiment compares: (1) the stream element throughput to perform a spa-
tial join without executing a network access (denoted as STATIC/DYNAMIC strat-
egy) with (2) the stream element throughput to perform a spatial join when join
partners need to be fetched via the network (denoted as FETCH strategy). The over-
head that is caused by the STATIC/DYNAMIC strategy in the stream capturing tool is
discussed in the next section.

For the evaluation, the continuous spatial join is performed with a vary-
ing enlargement of the bounding box. Again, the throughput of the stream ele-
ment processing is measured. The continuous spatial join is performed between
the stream datasets and the OSM forest dataset. The OSM forest dataset is used
because it is smaller compared to the OSM road dataset. Therefore, increasing
the size of the bounding box of the stream element increases the space where the
spatial join searches for join partners. Due to the small cardinality of the static
dataset, this change does affect the cardinality of the spatial join result much.
However, with an increasing enlargement of the bounding box, the spatial join
has to perform more and more network operations to fetch the missing join part-
ners from other nodes.

In this experiment, the enlargement of the bounding box of the stream ele-
ments is performed by calling the enlargeStreamTupleBoundBoxByWGS-
84Meter(..) method. One continuous query is registered, which covers the

Fig. 23   Scaling a UDF refined continuous spatial join queries with a varying number of nodes

617

1 3

Distributed and Parallel Databases (2022) 40:559–625	

complete space. In addition, the spatial join is refined by the UserDefinedGeo-
JsonSpatialStrictFilter UDF. The results of the experiment are shown
in Fig. 24.

The figure shows that the throughput of the FETCH strategy is lower than the
STATIC or DYNAMIC strategy. This is caused by the network access that is required
by using the FETCH strategy. The network access causes: (1) some latency to pro-
cess the query and (2) time to transfer the join partners. Performing a range query
on another node took around 65.07 ms on average in the experiment. In the worst
case, when all stream element tuples require a network access, this strategy leads to
a throughput of 1 000

65.07
= 15.36 elements per second. Without performing any network

access (as done by the STATIC and DYNAMIC strategy), a throughput of ≈ 14, 000
elements per second is reached when the operations are performed sequentially.
However, this operation could be parallelized to increase the throughput. Never-
theless, the network access requires additional resources and increases the latency
of the stream processing. Due to these reasons, the FETCH strategy is not recom-
mended to process a data stream.

6.9.2 � The STATIC and DYNAMIC strategies

In this experiment, it is determined how the padding of the bounding boxes (as
performed by the STATIC or DYNAMIC strategy) affects the throughput of the
stream capturing tool. To measure the throughput of the stream capturing tool, the
data were only processed by this tool; no data were written to the BBoxDB nodes.
Otherwise, the network and the disks of the BBoxDB nodes would decrease the
throughput. Only the registered padding for the queries is read from ZooKeeper
and used for the padding of the bounding boxes. For the evaluation, the datasets
are processed using the various strategies, and the throughput of the stream ele-
ments is determined.

Fig. 24   Performing a continuous spatial join only on local data or by fetching non-local data via the net-
work

618	 Distributed and Parallel Databases (2022) 40:559–625

1 3

The DYNAMIC strategy was performed in three different configurations: (1)
with one client and one registered query (DYNAMIC 1C-1Q), (2) with one client
and 100 registered queries (DYNAMIC 1C-100Q), and (3) with 100 clients and
each client is running 100 queries (DYNAMIC 100C-100Q). The UNCHANGED
strategy does not modify the bounding boxes. The strategy is used to show the
throughput when no modifications on the bounding boxes are made. The result of
the experiment can be seen in Fig. 25.

The experiment shows two important points: (1) the used dataset affects the
throughput of the stream capturing tool, and (2) modifying the bounding box
slows down the throughput only slightly. Each dataset contains a different size per
element, which causes the different throughput (see Table 8 on Page 49). Which
strategy determines the padding does not affect the throughput; both strategies
modify the bounding box in the same way. Because only the maximum enlarge-
ment of all registered continuous queries is used, the number of registered queries
or clients does not affect the throughput too. The modification of the bounding
box can be performed without decreasing the throughput significantly.

6.9.3 � Recommended distribution strategy

Three data distribution strategies are implemented in BBoxDB Streams. In the
experiments of the last subsections, the behavior of these strategies was evaluated.
The FETCH strategy does not need additional logic for the distribution of the tuples.
However, the continuous spatial join is slower when using this strategy because the
join has to perform a network operation. The STATIC and the DYNAMIC strategies
do not introduce significant overhead in the distribution of the tuples and spatial
joins can be performed efficiently using locally stored data only. The drawback of
the STATIC strategy is that the enlargement that is used in the continuous queries

Fig. 25   Throughput of the BBoxDB Streams capturing tool

619

1 3

Distributed and Parallel Databases (2022) 40:559–625	

needs to be determined manually. The DYNAMIC strategy determines these val-
ues automatically and adapts changes when the registered continuous queries are
changed. Therefore, we have chosen the DYNAMIC strategy as the default data dis-
tribution strategy in BBoxDB Streams.

6.10 � Pre‑partitioning the space

A key feature of BBoxDB Streams is the distribution of a data stream to the nodes of
a cluster. To distribute the data stream, the space has to be partitioned. The created
partitions determine how the stream elements are distributed. BBoxDB re-partitions
unevenly distributed data automatically in the background by splitting and merg-
ing the space (see Sect. 3.4). However, re-partitioning is a slow process because the
stored data need to be transferred between the nodes.

When a distribution group is created, only one partition exists, and only the nodes
that store this partition are utilized when data are stored. To utilize all nodes directly
after a new distribution group is created, the space can be pre-partitioned. This is
usually done by taking a small number of random samples from the dataset and cre-
ating an initial partitioning. We call this sampling-based pre-partitioning. However,
when a stream is processed, no random samples can be taken to create the pre-par-
titioning. A stream can only be accessed sequentially and not randomly. Therefore,
another technique is needed to pre-partition the space for a data stream.

To pre-partition the space using a data stream, we propose an element-based pre-
partitioning approach. By using the element-based pre-partitioning, the first n-ele-
ments are captured from the stream, and these elements are used to create the parti-
tions. In contrast to the sampling-based method, all fetched elements are used. The
quality of this method is evaluated in this section.

For this experiment, a varying amount of elements are taken from the stream, and
a varying amount of partitions are created and assigned via round-robin to the nodes
of the cluster. Afterward, the remaining stream is processed, and the distribution of
the elements is determined. The distribution of the elements per node for 40 parti-
tions is shown in Fig. 26.

The quality of the data distribution can be quantified by calculating the standard
deviation ( � ). A high standard deviation means that high differences between the
number of elements per node do exist. In contrast, a low standard deviation means
that the nodes process an almost equal size of elements. Figure 27 shows the stand-
ard deviation when the amount of read stream elements is varied and the number
of created partitions is varied. In the experiment, the created partitions are mapped
via round-robin to the five nodes of the cluster, and the resulting standard deviation
between the processed stream elements of the nodes is calculated.

It can be seen in the figures that the stream element distribution becomes more
balanced when more partitions are created (indicated by a lower standard deviation).
It can also be seen that the amount of read stream tuples has only a slight effect on
balancing the stream elements. For example, reading 20,000 or 50,000 stream ele-
ments results in the almost identical standard deviation.

620	 Distributed and Parallel Databases (2022) 40:559–625

1 3

Fig. 26   Pre-partitioning the space with the datasets using 40 partitions

Fig. 27   The standard deviation of the stream element distribution of the datasets

621

1 3

Distributed and Parallel Databases (2022) 40:559–625	

The data streams that are used in the experiments contain the position data of sev-
eral entities. These entities are contained repeatedly in the data stream with different
positions. The entities move, new entities appear (e.g., aircraft that have taken off),
and other entities disappear (e.g., aircraft that have landed) from the data stream.
However, the entities are distributed across the area covered by the data stream at
any time. Taking the first n elements from a data stream to pre-partition the space
generates a proper partitioning of the space.

In the last three figures, also the standard deviation of the sampling-based pre-
partitioning approach is depicted for a comparison. The sampling based pre-parti-
tioning takes 0.2% of the data as samples and creates 40 partitions. It can be seen,
that the element-based pre-partitioning approach generates a pre-partitioning of the
same quality. Therefore we recommend this strategy when a data stream should be
used to pre-partition the space. However, this only works when the stream has a
stable data distribution which is equivalent to the data distribution of the first n ele-
ments of the stream. For the data streams that are discussed in this paper, this is
given.

7 � Conclusion

In this paper, we have presented an extension to the datastore BBoxDB called
BBoxDB Streams. The extension allows the handling of n-dimensional data streams
in an efficient and distributed manner. Data streams of any dimension can be han-
dled. Point and non-point data are supported. Data streams are imported by a stream
capturing tool. The stream capturing tool reads the data stream, converts it into
BBoxDB tuples, and spreads them to a cluster of nodes. Converter for common data
stream formats such as ADS-B or GTFS real-time encoded data are shipped with
BBoxDB Streams. In contrast to existing stream processing systems, the stream is
partitioned and distributed based on the location of the stream elements in space.
This allows the efficient handling of n-dimensional data streams.

Two types of queries are implemented: (1) continuous range queries, which allow
comparing the stream with a query rectangle, and (2) continuous spatial joins, which
allow the comparison of the stream elements with previously stored big data.

Transformations of the queries can manipulate the bounding boxes of the stream
elements. To the best of our knowledge, we provide with this paper the first stream
processing system that is optimized for the handling of n-dimensional data and capa-
ble of comparing stream elements with previously stored data. Additional topics,
such as the efficient distribution of stream objects to the cluster nodes, are discussed.
The evaluation of the software has shown that BBoxDB Streams is a scalable solu-
tion for processing multi-dimensional data streams.

BBoxDB Streams enhances the GUI of BBoxDB. Several real-world data streams
can be observed, and queries can be executed on these streams. For instance, aircraft
movements can be observed (ADS-B data) by continuous range queries, or buses
in Sydney (NSW transport data) can be observed and continuously joined with a
road network or spatial data like forests. At the moment, queries are expressed by
(1) writing query plans in JSON, (2) by using the QueryPlanBuilder, and (3)

622	 Distributed and Parallel Databases (2022) 40:559–625

1 3

by using the GUI. An enhancement for the next version of the software could be
a query language to allow more interactive queries. Besides, the experiments were
performed in a small cluster of five nodes. There are plans to evaluate the system in
a cluster with more hardware nodes.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visithttp://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 National Imagery and Mapping Agency, Department of Defense. World Geodetic System 1984: Its
Definition and Relationships with Local Geodetic Systems. Technical Report TR8350.2, St. Louis,
MO, USA (1984)

	 2.	 Akidau, T., Chernyak, S., Lax, R.: Streaming Systems: The What, Where. When and How of Large-
Scale Data Processing. O’Reilly Media, Incorporated (2018)

	 3.	 Terry, D., Goldberg, D., Nichols, D., Oki, B.: Continuous queries over append-only databases. SIG-
MOD Rec. 21(2), 321–330 (1992)

	 4.	 Nidzwetzki, J.K., Güting, R.H.: BBoxDB streams: distributed processing of real-world streams of
position data (demo-paper). In: Velegrakis, Y., Zeinalipour-Yazti, D., Chrysanthis, P.K., Guerra, F.
(eds.) Proceedings of the 24th International Conference on Extending Database Technology, EDBT
2021, Nicosia, Cyprus, March 23–26, 2021, pp. 662–665. OpenProceedings.org (2021)

	 5.	 BBoxDB. Website. http://​bboxdb.​org (2021). Accessed 03 Jan 2021
	 6.	 Nidzwetzki, J.K., Güting, R.H.: BBoxDB: a distributed and highly available key-bounding-box-

value store. Distrib. Parallel Databases 38, 439–493 (2020)
	 7.	 Nidzwetzki, J.K., Güting, R.H.: Demo paper: large scale spatial data processing with user defined

filters in BBoxDB. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 4125–4128
(2019)

	 8.	 Obe, R., Hsu, L.: PostgreSQL: Up and Running. O’Reilly Media Inc, Sebastopol (2012)
	 9.	 Widenius, M., Axmark, D.: MySQL Reference Manual, 1st edn. O’Reilly & Associates Inc, Sebas-

topol (2002)
	10.	 Brewer, E.: CAP twelve years later: how the “rules’’ have changed. IEEE Comput. 45(2), 23–29

(2012)
	11.	 MySQL Reference—Features of the User-Defined Function Interface. https://​dev.​mysql.​com/​doc/​

refman/​8.0/​en/​udf-​featu​res.​html (2021). Accessed 17 Jan 2021
	12.	 Güting, R.H., Behr, T., Düntgen, C.: Secondo: a platform for moving objects database research and

for publishing and integrating research implementations. IEEE Data Eng. Bull. 33(2), 56–63 (2010)
	13.	 Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. SIGOPS Oper. Syst.

Rev. 44(2), 35–40 (2010)
	14.	 Apache HBase Project—Website. https://​hbase.​apache.​org/ (2021). Accessed 12 Jan 2021
	15.	 Morton, G.M.: A Computer Oriented Geodetic Data Base and a New Technique in File Sequencing.

International Business Machines Company, New York (1966)
	16.	 Nishimura, S., Das, S., Agrawal, D., Abbadi, A.E.: Md-hbase: a scalable multi-dimensional data

infrastructure for location aware services. In: Proceedings of the 2011 IEEE 12th International

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://bboxdb.org
https://dev.mysql.com/doc/refman/8.0/en/udf-features.html
https://dev.mysql.com/doc/refman/8.0/en/udf-features.html
https://hbase.apache.org/

623

1 3

Distributed and Parallel Databases (2022) 40:559–625	

Conference on Mobile Data Management, vol. 01, MDM ’11, pp. 7–16. IEEE, Washington, DC,
USA (2011) Computer Society

	17.	 The Tiny MD-HBase Project on Github. https://​github.​com/​shoji​nishi​mura/​Tiny-​MD-​HBase (2021).
Accessed 26 Jan 2021

	18.	 Zhou, X., Zhang, X., Wang, Y., Li, R., Wang, S.: Efficient distributed multi-dimensional index for
big data management. In: Proceedings of the 14th International Conference on Web-Age Informa-
tion Management, WAIM’13, pp. 130–141. Springer, Berlin (2013)

	19.	 Li, S., Hu, S., Ganti, R.K., Srivatsa, M., Abdelzaher, T.F.: Pyro: a spatial-temporal big-data stor-
age system. In: 2015 USENIX Annual Technical Conference, USENIX ATC ’15, July 8–10, Santa
Clara, CA, USA, pp. 97–109 (2015)

	20.	 Han, D., Stroulia, E.: HGrid: a data model for large geospatial data sets in HBase. In: 2013 IEEE
Sixth International Conference on Cloud Computing, pp. 910–917 (2013)

	21.	 Kumar, S., Madria, S., Linderman, M.: M-grid: a distributed framework for multidimensional
indexing and querying of location based data. Distrib. Parallel Databases 35(1), 55–81 (2017)

	22.	 Escriva, R., Wong, B., Sirer, E.G.: HyperDex: a distributed, searchable key-value store. In: Proceed-
ings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM ’12, pp. 25–36. ACM, New York, NY, USA
(2012)

	23.	 Fox, A., Eichelberger, C., Hughes, J., Lyon, S.: Spatio-temporal indexing in non-relational distrib-
uted databases. In: 2013 IEEE International Conference on Big Data, pp. 291–299 (2013)

	24.	 Apache Accumulo Project—Website. https://​accum​ulo.​apache.​org/ (2021). Accessed 20 Jan 2021
	25.	 The Wikipedia article about Geohashing. https://​en.​wikip​edia.​org/​wiki/​Geoha​sh (2021). Accessed

14 Jan 2021
	26.	 GeoMesa Project—Website. http://​www.​geome​sa.​org (2021). Accessed 20 Jan 2021
	27.	 Hughes, J., Annex, A., Eichelberger, C., Fox, A., Hulbert, A., Ronquest, M.: Geomesa: a distributed

architecture for spatio-temporal fusion. In: Geospatial Informatics, Fusion and Motion Video Ana-
lytics V, 94730F, Proceedings SPIE, vol. 9473, pp. 9473–9473 (2015)

	28.	 Baumann, P., Furtado, P., Ritsch, R., Widmann, N.: The rasdaman approach to multidimensional
database management. In: Proceedings of the 1997 ACM Symposium on Applied Computing, SAC
’97, pp. 166–173. ACM, New York, NY, USA (1997)

	29.	 Stonebraker, M., Brown, P., Becla, J., Zhang, D.: Scidb: a database management system for applica-
tions with complex analytics. Comput. Sci. Eng. 15(3), 54–62 (2013)

	30.	 Zhang, Y., Kersten, M., Manegold, S.: SciQL: array data processing inside an RDBMS. In: Proceed-
ings of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD ’13,
pp. 1049–1052. ACM, New York, NY, USA (2013)

	31.	 PostGIS. The documentation of the raster datatype. https://​postg​is.​net/​docs/​RT_​refer​ence.​html
(2021). Accessed 22 Jan 2021

	32.	 Oracle. The Documentation of the spatial GeoRaster feature. https://​docs.​oracle.​com/​cd/​B19306_​
01/​appdev.​102/​b14254/​geor_​intro.​htm (2021). Accessed 22 Jan 2021

	33.	 Güting, R.H., Lu, J.: Parallel SECONDO: scalable query processing in the cloud for non-standard
applications. SIGSPATIAL Spec. 6(2), 3–10 (2015)

	34.	 Nidzwetzki, J.K., Güting, R.H.: Distributed Secondo: an extensible and scalable database manage-
ment system. Distrib. Parallel Databases 35(3–4), 197–248 (2017)

	35.	 Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM
51(1), 107–113 (2008)

	36.	 Apache Hadoop Project—Website. https://​hadoop.​apache.​org/ (2021). Accessed 20 Jan 2021
	37.	 Eldawy, A., Mokbel, M.F.: SpatialHadoop: A MapReduce framework for spatial data. In: 31st IEEE

International Conference on Data Engineering, ICDE 2015, Seoul, South Korea, April 13–17, 2015,
pp. 1352–1363 (2015)

	38.	 Alarabi, L., Mokbel, M.F., Musleh, M.: ST-Hadoop: a MapReduce framework for spatio-temporal
data. Geoinformatica 22(4), 785–813 (2018)

	39.	 Apache Spark. Website. https://​spark.​apache.​org/ (2021). Accessed 22 July 2021
	40.	 Xie, D., Li, F., Yao, B., Li, G., Zhou, L., Guo, M.: Simba: efficient in-memory spatial analytics.

In: Proceedings of the 2016 International Conference on Management of Data, SIGMOD ’16, pp.
1071–1085. ACM, New York, NY, USA (2016)

	41.	 You, S., Zhang, J., Gruenwald, L.: Large-scale spatial join query processing in cloud. In: IEEE 31st
International Conference on Data Engineering—Workshops, ICDE ’15, pp. 34–41. IEEE Computer
Society (2015)

https://github.com/shojinishimura/Tiny-MD-HBase
https://accumulo.apache.org/
https://en.wikipedia.org/wiki/Geohash
http://www.geomesa.org
https://postgis.net/docs/RT_reference.html
https://docs.oracle.com/cd/B19306_01/appdev.102/b14254/geor_intro.htm
https://docs.oracle.com/cd/B19306_01/appdev.102/b14254/geor_intro.htm
https://hadoop.apache.org/
https://spark.apache.org/

624	 Distributed and Parallel Databases (2022) 40:559–625

1 3

	42.	 Yu, J., Zhang, Z., Sarwat, M.: Spatial data management in apache spark: the GeoSpark perspective
and beyond. Geoinformatica 23(1), 37–78 (2019)

	43.	 Apache Sedona—Website. https://​sedona.​apache.​org (2022). Accessed 07 Jan 2022
	44.	 Babu, S., Widom, J.: Continuous queries over data streams. SIGMOD Rec. 30(3), 109–120 (2001)
	45.	 Friedman, E., Tzoumas, K.: Introduction to Apache Flink: Stream Processing for Real Time and

Beyond, 1st edn. O’Reilly Media Inc, Sebastopol (2016)
	46.	 Nabi, Z.: Pro Spark Streaming: The Zen of Real-Time Analytics Using Apache Spark, 1st edn.

Apress, Berkely (2016)
	47.	 Narkhede, N., Shapira, G., Palino, T.: Kafka: The Definitive Guide Real-Time Data and Stream Pro-

cessing at Scale, 1st edn. O’Reilly Media Inc., Sebastopol (2017)
	48.	 Apache Storm Project—Website. https://​storm.​apache.​org/ (2021). Accessed 20 Jan 2021
	49.	 Apache Kafka—KTables. https://​kafka.​apache.​org/​20/​docum​entat​ion/​strea​ms/​devel​oper-​guide/​dsl-​

api.​html#​strea​ms_​conce​pts_​ktable (2021). Accessed 03 Jan 2021
	50.	 Idreos, S., Liarou, E., Koubarakis, M.: Continuous multi-way joins over distributed hash tables. In:

Proceedings of the 11th International Conference on Extending Database Technology: Advances in
Database Technology, EDBT ’08, pp. 594–605. ACM, New York, NY, USA (2008)

	51.	 Palma, W., Akbarinia, R., Pacitti, E., Valduriez, P.: DHTJoin: processing continuous join queries
using DHT networks. Distrib. Parallel Databases 26(2), 291 (2009)

	52.	 Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-peer
overlay network schemes. IEEE Commun. Surv. Tutor. 7(2), 72–93 (2005)

	53.	 Vibhore, K., Henrique, A., Bugra, G., Kun-Lung, W.: DEDUCE: at the intersection of MapReduce
and stream processing. In: EDBT 2010, 13th International Conference on Extending Database Tech-
nology, Lausanne, Switzerland, Proceedings, pp. 657–662 (2010)

	54.	 Apache Kafka—Joining data. https://​kafka.​apache.​org/​20/​docum​entat​ion/​strea​ms/​devel​oper-​guide/​
dsl-​api.​html#​joini​ng (2021). Accessed 03 Jan 2021

	55.	 Apache Kafka—Datatypes. https://​kafka.​apache.​org/​10/​docum​entat​ion/​strea​ms/​devel​oper-​guide/​
datat​ypes (2021). Accessed 03 Jan 2021

	56.	 Mokbel, M.F., Xiong, X., Hammad, M.A., Aref, W.G.: Continuous query processing of spatio-tem-
poral data streams in PLACE. GeoInformatica 9(4), 343–365 (2005)

	57.	 Mahmood, A.R., Aly, A.M., Qadah, T., Rezig, E.K., Daghistani, A., Madkour, A., Abdelhamid,
A.S., Hassan, M.S., Aref, W.G., Basalamah, S.: Tornado: a distributed spatio-textual stream pro-
cessing system. Proc. VLDB Endow. 8(12), 2020–2023 (2015)

	58.	 Zhang, F., Zheng, Y., Xu, D., Du, Z., Wang, Y., Liu, R., Ye, X.: Real-time spatial queries for moving
objects using storm topology. ISPRS Int. J. Geo-Inf. 5(10) (2016)

	59.	 Zhang, R., Lin, D., Ramamohanarao, K., Bertino, E.: Continuous intersection joins over moving
objects. In: 2008 IEEE 24th International Conference on Data Engineering, pp. 863–872 (2008)

	60.	 Qi, J., Zhang, R., Jensen, C.S., Ramamohanarao, K., He, J.: Continuous spatial query processing: a
survey of safe region based techniques. ACM Comput. Surv. 51(3) (2018)

	61.	 Marz, N.: How to beat the cap theorem. http://​natha​nmarz.​com/​blog/​how-​to-​beat-​the-​cap-​theor​em.​
html (2011). Accessed 03 Jan 2021

	62.	 Kreps, J.: Questioning the lambda architecture. https://​www.​oreil​ly.​com/​ideas/​quest​ioning-​the-​
lambda-​archi​tectu​re (2014). Accessed 03 Jan 2021

	63.	 Bellman, R.: Dynamic Programming. Dover Publications, New York (1957)
	64.	 Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordination for internet-scale

systems. In: Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Confer-
ence, USENIXATC’10, pp. 11–25. USENIX Association, Berkeley, CA, USA (2010)

	65.	 Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–44 (2009)
	66.	 Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM

18(9), 509–517 (1975)
	67.	 Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval on composite keys. Acta Inf.

4(1), 1–9 (1974)
	68.	 Guttman, A.: R-trees: a dynamic index structure for spatial searching. SIGMOD Rec. 14(2), 47–57

(1984)
	69.	 The Esri Project. Esri Geometry API for Java. https://​github.​com/​Esri (2021). Accessed 03 Mar

2021
	70.	 Open Street Map Project—Object Properties. https://​wiki.​opens​treet​map.​org/​wiki/​Categ​ory:​Prope​

rties (2021). Accessed 15 Jan 2021

https://sedona.apache.org
https://storm.apache.org/
https://kafka.apache.org/20/documentation/streams/developer-guide/dsl-api.html#streams_concepts_ktable
https://kafka.apache.org/20/documentation/streams/developer-guide/dsl-api.html#streams_concepts_ktable
https://kafka.apache.org/20/documentation/streams/developer-guide/dsl-api.html#joining
https://kafka.apache.org/20/documentation/streams/developer-guide/dsl-api.html#joining
https://kafka.apache.org/10/documentation/streams/developer-guide/datatypes
https://kafka.apache.org/10/documentation/streams/developer-guide/datatypes
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
https://www.oreilly.com/ideas/questioning-the-lambda-architecture
https://www.oreilly.com/ideas/questioning-the-lambda-architecture
https://github.com/Esri
https://wiki.openstreetmap.org/wiki/Category:Properties
https://wiki.openstreetmap.org/wiki/Category:Properties

625

1 3

Distributed and Parallel Databases (2022) 40:559–625	

	71.	 Orenstein, J.: A comparison of spatial query processing techniques for native and parameter spaces.
SIGMOD Rec. 19(2), 343–352 (1990)

	72.	 Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes,
A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput.
Syst. 26(2), 4:1-4:26 (2008)

	73.	 Patel, J.M., DeWitt, D.J.: Partition based spatial-merge join. SIGMOD Rec. 25(2), 259–270 (1996)
	74.	 BBoxDB. Documentation—Stream processing tutorial. https://​jnidz​wetzki.​github.​io/​bboxdb/​doc/​

tutor​ial-​strea​mdata.​html (2022). Accessed 25 Jan 2022
	75.	 Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of Reusable Object-

Oriented Software, 1st edn. Addison-Wesley Professional, New York (1994)
	76.	 Baker, H.C., Hewitt, C.: The incremental garbage collection of processes. In: Proceedings of the

1977 Symposium on Artificial Intelligence and Programming Languages, pp. 55–59. ACM, New
York, NY, USA (1977)

	77.	 Fowler, M.: Domain Specific Languages, 1st edn. Addison-Wesley Professional, Boston (2010)
	78.	 Düntgen, C., Behr, T., Güting, R.H.: Berlinmod: a benchmark for moving object databases. VLDB

J. 18(6), 1335–1368 (2009)
	79.	 The Website of the Open Data Hub for New South Wales Transport data. https://​opend​ata.​trans​port.​

nsw.​gov.​au (2021). Accessed 20 Jan 2021
	80.	 The Website of the adsbhub.org Project. http://​adsbh​ub.​org (2021). Accessed 12 Jan 2021
	81.	 Open Street Map Project—Website. http://​www.​opens​treet​map.​org (2021). Accessed 15 Jan 2021
	82.	 BBoxDB. Documentation—OpenStreetMap data to GeoJSON converter. https://​jnidz​wetzki.​github.​

io/​bboxdb/​tools/​datas​et.​html (2021). Accessed 07 Mar 2021

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://jnidzwetzki.github.io/bboxdb/doc/tutorial-streamdata.html
https://jnidzwetzki.github.io/bboxdb/doc/tutorial-streamdata.html
https://opendata.transport.nsw.gov.au
https://opendata.transport.nsw.gov.au
http://adsbhub.org
http://www.openstreetmap.org
https://jnidzwetzki.github.io/bboxdb/tools/dataset.html
https://jnidzwetzki.github.io/bboxdb/tools/dataset.html

	BBoxDB streams: scalable processing of multi-dimensional data streams
	Abstract
	1 Introduction
	1.1 Multi-dimensional data streams
	1.2 Processing data streams
	1.3 Challenges
	1.4 Proposed solution

	2 Related work
	2.1 Database management systems
	2.1.1 Traditional database management systems
	2.1.2 Key-value stores
	2.1.3 Multi-dimensional data in KVS
	2.1.4 Further approaches

	2.2 Stream processing systems
	2.2.1 First stream processing systems
	2.2.2 Current stream processing systems
	2.2.3 Data streams and continuous joins
	2.2.4 Data streams and multi-dimensional data
	2.2.5 Software architecture

	3 BBoxDB basics
	3.1 Tuples and consistency
	3.2 Operations
	3.3 Bounding boxes
	3.4 Data distribution
	3.5 Efficient data access
	3.6 User-defined filters
	3.6.1 Implementation details
	3.6.2 A UDF for GeoJSON encoded data

	4 BBoxDB streams
	4.1 Handling data streams
	4.1.1 Decoding and processing streams
	4.1.2 Data storage and index updates

	4.2 Performing continuous queries
	4.3 Tuple transformations
	4.3.1 Modifying transformations
	4.3.2 Filter transformations

	4.4 Continuous queries
	4.4.1 Continuous range queries
	4.4.2 Continuous spatial join queries

	4.5 Distributing stream elements
	4.6 Data in different distribution regions
	4.6.1 Fetch data from nodes—FETCH
	4.6.2 Enlarge by static padding—STATIC
	4.6.3 Enlarge by dynamic padding—DYNAMIC

	4.7 Performing queries in multiple regions
	4.8 The GUI

	5 Continuous queries
	5.1 Execute continuous queries
	5.2 Building continuous range queries
	5.3 Building continuous spatial join queries
	5.4 The query plan builder
	5.5 Query examples
	5.5.1 Is the price of the stock “Apple” above €100?
	5.5.2 Do two vehicles drive side by side?
	5.5.3 Which ships are heading to an island?
	5.5.4 Which buses are driving through a forest in Sydney?
	5.5.5 Which buses are driving currently on the “Elizabeth Street” in Sydney?

	6 Evaluation
	6.1 Used datasets
	6.1.1 BerlinMOD stream dataset
	6.1.2 NSW transport stream dataset
	6.1.3 ADS-B stream dataset
	6.1.4 Synthetic bounding boxes stream dataset
	6.1.5 Open streetmap static dataset
	6.1.6 Synthetic bounding boxes static dataset
	6.1.7 Summary

	6.2 Processing data streams
	6.3 Importing multiple data streams in parallel
	6.4 Continuous range queries on data streams
	6.5 Continuous range queries and user-defined filters
	6.6 Continuous spatial joins on data streams
	6.7 Continuous spatial joins with user-defined filters
	6.8 Scaling-up continuous join queries
	6.9 Distributing data
	6.9.1 The FETCH strategy
	6.9.2 The STATIC and DYNAMIC strategies
	6.9.3 Recommended distribution strategy

	6.10 Pre-partitioning the space

	7 Conclusion
	References

