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Abstract
The sensor-based recognition of Activities of Daily Living (ADLs) in smart-home 
environments enables several important applications, including the continuous mon-
itoring of fragile subjects in their homes for healthcare systems. The majority of 
the approaches in the literature assume that only one resident is living in the home. 
Multi-inhabitant ADLs recognition is significantly more challenging, and only a 
limited effort has been devoted to address this setting by the research community. 
One of the major open problems is called data association, which is correctly asso-
ciating each environmental sensor event (e.g., the opening of a fridge door) with the 
inhabitant that actually triggered it. Moreover, existing multi-inhabitant approaches 
rely on supervised learning, assuming a high availability of labeled data. However, 
collecting a comprehensive training set of ADLs (especially in multiple-residents 
settings) is prohibitive. In this work, we propose MICAR: a novel multi-inhabitant 
ADLs recognition approach that combines semi-supervised learning and knowledge-
based reasoning. Data association is performed by semantic reasoning, combining 
high-level context information (e.g., residents’ postures and semantic locations) with 
triggered sensor events. The personalized stream of sensor events is processed by an 
incremental classifier, that is initialized with a limited amount of labeled ADLs. A 
novel cache-based active learning strategy is adopted to continuously improve the 
classifier. Our results on a dataset where up to 4 subjects perform ADLs at the same 
time show that MICAR reliably recognizes individual and joint activities while trig-
gering a significantly low number of active learning queries.
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1 Introduction

Assisted living technologies based on ambient intelligence are becoming a fun-
damental tool to continuously monitor and assist fragile elderly subjects in their 
homes, also considering the recent Covid-19 pandemic [40]. Among the many 
advantages of such systems (e.g., alarms, medication reminders, home automa-
tion), they can also support clinicians’ diagnoses. For instance, such technologies 
have been proposed to detect early symptoms of cognitive impairments [42]. In 
order to detect complex human behaviors, the sensor-based recognition of Activi-
ties of Daily Living (ADLs) is a fundamental step [6].

ADLs recognition in smart-home environments has been extensively studied 
in the last decades [11]. Due to privacy reasons, those approaches are gener-
ally based on environmental or wearable sensors to monitor residents’ high-level 
activities like cooking, taking medicines, or watering plants. Indeed, solutions 
based on microphones or cameras are usually considered as intrusive for a home 
environment, especially considering elderly subjects.

The majority of existing ADLs recognition methods tackled single-inhabitant 
settings, where only one resident lives in the home. Those scenarios are realistic, 
considering that a significant number of elderly subjects live alone in their apart-
ments. However, it often happens that multiple residents live in the same home (e.g., 
a couple of elderlies, an elderly and the caregiver, a family, etcetera). In order to 
accurately detect ADLs for the fragile target subjects, it is crucial to correctly dis-
criminate the activities performed by each resident. Differently to single-inhabitant 
settings, multiple residents may perform ADLs jointly (e.g., Alice and Bob are 
cooking together) and concurrently (e.g., Alice watches TV while Bob is cooking).

Recently, several research efforts on multi-inhabitant ADLs recognition have 
been proposed in the literature [31]. The major open research problem in this 
area is that environmental sensor events (e.g., the opening of a kitchen drawer 
revealed by a magnetic sensor) do not directly identify the resident who triggered 
it. Indeed, without supplementary hardware, environmental sensors merely reveal 
state changes. This problem is referred to as data association: mapping each envi-
ronmental sensor event to the inhabitant which triggered it [7].

Another well-known problem is labeled data scarcity. Collecting an anno-
tated dataset of ADLs in a multi-inhabitant setting is time-consuming, costly, 
and intrusive. A comprehensive labeled multi-inhabitant dataset should cover all 
the possible combinations of ADLs performed by the residents, also consider-
ing every possible execution modality. While existing multi-inhabitant solutions 
assume complete availability of labeled data [31], we believe that this is a rel-
evant problem that should be addressed in the literature.

Semi-supervised learning is a possible solution to mitigate the data scarcity 
problem. According to this approach, the recognition model is initialized with a 
limited amount of labeled data, while unlabeled data are exploited to improve the 
classifier. Semi-supervised solutions for activity recognition are recently emerg-
ing [10] but, to the best of our knowledge, there is no existing work that proposes 
semi-supervised learning for multi-inhabitant ADLs recognition.
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In a previous work [3], we proposed a multi-inhabitant ADLs recognition frame-
work that tackled the data association problem using context-aware reasoning. How-
ever, that approach was based on supervised learning, thus assuming full availability 
of labeled data. Moreover, that work did not propose a method to identify group 
activities.

In this paper, we extend our previous work by presenting MICAR: a novel Multi-
Inhabitant semi-supervised and Context-aware Activity Recognition framework. Our 
approach combines wearable and environmental sensors data to derive high-level 
context information (e.g., residents’ posture, residents’ location) to reliably perform 
data association using a semantic-based approach. MICAR tackles the labeled data 
scarcity problem thanks to a novel cache-based active learning approach to continu-
ously improve the classifier (initialized with limited labeled data) while triggering 
a limited number of questions. MICAR is capable of detecting both individual and 
group ADLs.

We extensively evaluated MICAR on a new dataset where up to four residents 
perform ADLs collaboratively or individually. Our results indicate that MICAR 
reaches a high recognition rate (F1-score ≈ 0.89) that is slightly behind a fully super-
vised approach while triggering a low number of active learning queries (query rate 
≈ 3% ). Moreover, our results confirm that our context-aware data association leads 
to a recognition rate that is only 2% behind the one obtained by an ideal approach 
based on ground truth. Our results also indicate that MICAR is accurate in detecting 
the number of users that jointly perform an ADL.

The contributions of this paper are the following:

– We introduce MICAR: a novel hybrid semi-supervised and context-aware multi-
inhabitant activity recognition method that combines knowledge-based and data-
driven approaches.

– MICAR  tackles the data association by relying on a novel semantic approach
– MICAR takes advantage of a novel cache-based active learning approach to miti-

gate the labeled data scarcity problem.
– We performed an extensive evaluation on a multi-inhabitant dataset where up 

to 4 residents live in the same home. Our results show that MICAR   reaches 
recognition rates comparable to the ones of a fully supervised approach and that 
the accuracy of data association is close to the one of an ideal approach based on 
ground truth.

The rest of the paper is organized as follows. Section 2 discusses the relevant litera-
ture on multi-inhabitant activity recognition and semi-supervised learning. Section 3 
formally describes the multi-inhabitant activity recognition problem. Section  4 
describes the overall architecture of MICAR. Section 5 describes each component of 
MICAR in detail. Section 6 describes the dataset, the evaluation methodology, and 
the main results. Finally, Sect. 8 concludes the paper.
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2  Related work

2.1  Multi‑inhabitant activity recognition

The majority of the literature on sensor-based ADLs recognition mainly focused 
on smart-home environments inhabited by a single person [11, 15], while fewer 
research efforts investigated multi-inhabitant scenarios [7, 31]. Several works 
proposed solutions based on computer vision [27]. However, cameras are per-
ceived as too privacy-intrusive considering home environments. For this reason, 
MICAR (in line with the recent literature) focuses on wearable and environmental 
sensors.

A challenging problem in sensor-based multi-inhabitant ADLs recognition is 
that an environmental sensor event does not identify the resident that triggered 
it. For instance, a pressure mat sensor on a chair cannot reveal the residents sit-
ting on it. The process of mapping environmental events to the correct resident 
is called data association, and it is essential to reliably infer the activities per-
formed by each inhabitant [7].

In the literature, multi-inhabitant ADLs recognition has been tackled with dif-
ferent approaches. We divide those approaches in three categories: single-model, 
data-driven data association, and wearable-based data association.

The single-model approaches rely on a single ADLs classifier that directly 
attributes activities to users based on the stream of raw environmental sensor 
data. Hence, data association is implicitly learned during the training phase. 
These approaches encode the residents’ identifiers in the activity labels [1, 2, 8, 
21, 35, 36, 47]. The main drawback of single-model methods is their poor scala-
bility. Indeed, training data should contain examples for all the possible combina-
tions of activities that the residents can potentially perform together or individu-
ally. The learning complexity significantly increases with the number of residents 
and the number of activities. At the same time, it is even more challenging to 
transfer a multi-inhabitant ADLs model to different environments/residents than 
a single-inhabitant one. MICAR  takes advantage of data association to use a sin-
gle-inhabitant classifier for each user. Single-inhabitant models are easier to train, 
and their transferability is well-studied in the literature [16]. We also mention 
that there are single-model approaches that do not identify the specific resident 
that performed each activity, only focusing on discriminating concurrent activi-
ties [39].

The data-driven data association approaches consider data association as a 
separate learning problem before ADLs classification. In [17], labeled data about 
behaviors and habits of the residents are used to train a supervised classifier that 
attributes a resident to each sensor event. Another work is based on a multi-tar-
get Gaussian mixture probability hypothesis density (GM-PHD) filter that learns 
the Spatio-temporal relationships among the environmental sensors’ events to 
identify the residents that triggered them [48]. Besides supervised solutions, 
data-driven data association was tackled with unsupervised learning [41]. That 
method relies on mining single-inhabitant unlabeled datasets to perform a weaker 
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form of data association, called resident separation. A resident separation model 
identifies in real-time the pairs of environmental sensors’ events triggered by the 
same resident. The main problem of data-driven data association approaches is 
that they are heavily based on the specific environment and on the habits of the 
residents used to create the data association model. Hence, their generalization 
capability is questionable. As we mentioned in the introduction, data scarcity is 
an open problem in activity recognition. Hence, requiring data also to train a data 
association model is even more challenging considering real-world deployments. 
MICAR  relies on a semantic approach for data association based on context data. 
Hence, no data is required to learn how to associate environmental events with 
residents.

The wearable-based data association approaches require each resident to wear 
supplementary sensors (e.g., wristbands, smartphones) to correctly associate envi-
ronmental events. MICAR falls in this category. In [49], the residents wear a spe-
cifically designed RFID wristband reader in charge of detecting the interaction 
with tagged objects. However, the use of sophisticated wearable devices in realis-
tic deployments is questionable, especially considering elderly subjects that should 
constantly wear them. On the contrary, MICAR relies on off-the-shelf smartwatches. 
We indeed believe that smartwatches represent non-intrusive devices that are com-
monly used in the last years, and they also have been deeply studied in the literature 
for elderly subjects in their homes [32]. Recent research works in geriatric nursing 
confirm that activity trackers like wristbands and smartwatches are perceived as 
acceptable by elderly subjects [37]. We also believe that, in the near future, advances 
in miniaturization and micro-localization (e.g., small tags based on Ultra Wide Band 
like the AirTag proposed by Apple) will be available to enable context-aware data 
association with more unobtrusive solutions. For instance, as hypothesized in the lit-
erature, micro-localization devices could be miniaturized and equipped in everyday 
clothes (e.g., slippers) [24].

Another work proposed a solution to track and identify people in a multi-resident 
setting using personal devices [29]. The authors propose a combination of PIR sen-
sors and Bluetooth Low Energy (BLE) beacons deployed in the home. The RSSI 
signal from BLE beacons is exploited to associate PIR events with the closest resi-
dent, relying on personal wearable devices like a smartwatch, smartphone, or wrist-
band. However, while that work is only limited to residents tracking and identifi-
cation, MICAR  uses micro-localization in combination with other context data to 
perform data association considering a wide variety of environmental sensors to 
support multi-inhabitant ADLs recognition. Finally, a closely related work combines 
micro-localization and smartphone sensors to detect group activities [13]. In that 
approach, acceleration, location, and audio signals are combined to understand if 
multiple subjects are performing the same activity. However, that approach does not 
include environmental sensors and it is designed to capture a few group activities 
that are very distant from our target ADLs (e.g., taking a class, having a discussion).
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2.2  Semi‑supervised approaches for ADLs

The recognition of ADLs has been mainly addressed with solutions based on super-
vised machine learning [12]. The major drawback of those approaches is that they 
require a large amount of labeled data to train the activity models. Among the many 
proposals in the literature to tackle the data scarcity problem, semi-supervised learn-
ing approaches for ADLs recognition represent a promising research direction [46]. 
Semi-supervised models are initialized with a limited amount of labeled data, and 
the stream of unlabeled data is annotated using techniques like label propagation 
[45] or active learning [26].

In the literature, active learning is one of the most commonly adopted semi-
supervised approaches for ADLs recognition, due to its significant impact on the rec-
ognition rate [5, 14, 23, 25, 26]. In particular, when the activity classifier is uncer-
tain on the current prediction, a query is prompted to the user to obtain the ground 
truth about the activity that she is performing. The feedback is used to improve the 
recognition model. In [9] we also proposed a hypothetical active learning interface 
for multi-inhabitant settings. However, that work did not propose a practical semi-
supervised data association and multi-inhabitant activity recognition methodology.

Other semi-supervised approaches like label propagation and co-training have 
also been investigated for ADLs recognition [20, 22, 34, 50]. Co-training combines 
the output of multiple classifiers that have been trained on different views of the 
training data [33]. Label propagation takes advantage of the few available labels 
to associate labels to unlabeled data using a graph representation of available data 
points [45].

To the best of our knowledge, semi-supervised approaches for ADLs recognition 
have been proposed only for single-inhabitant settings. MICAR  is a semi-supervised 
ADLs method for multi-inhabitant scenarios, implementing a novel active learning 
approach that uses a cache to significantly reduce the number of triggered queries.

3  The data association problem

Given a limited amount of labeled data, the objective of the activity recognition sys-
tem (named just system in the following) is to periodically infer for each user the 
activity of daily living (ADL) that she has been performing. The system also detects 
situations where ADLs are performed in cooperation by multiple inhabitants. Intui-
tively, a set of users is jointly performing an ADL when those users are in the same 
place and, according to the system predictions, they are performing the same ADL1.

Let � = {u1, u2,… , un} be the set of users (the smart-home residents) and 
� = {A1,A2,… ,Ak} the set of target ADLs. Given an instant t, the system pre-
dicts for each user the activity prediction ⟨u,A, L, t⟩ , where u is the user that 
performed activity A in the semantic location L. Hence, the system returns a 

1 Note that here we assume that inhabitants that perform the same ADL in the same semantic place at 
the same time are actually jointly performing the ADL. This is indeed the case in our considered setting.
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set of tuples PAt = {⟨(ur,… , us),Ai, Lj⟩�⟨u,Ai, Lj, t⟩∀u ∈ (ur,… , us)} . Each tuple 
represents the set of users that jointly performed Ai the same ADL in the same 
semantic location Lj.

In order to achieve this goal, the system continuously analyzes a stream of 
time-stamped events coming from inertial and environmental sensors. Given an 
instant t and a user u, the system needs to solve a data association problem to 
derive a personalized stream s(u)t of sensor events associated with user u and 
collected in a time window [t, t − k] where k is the window size parameter. For 
example, suppose that Anna opens the fridge door at time t′ . The corresponding 
sensor event (and its timestamp) generated by the magnetic sensor connected to 
the fridge door and recorded by our system should be associated with Anna and 
hence considered part of s(Anna)t when 0 ≤ t − t� ≤ k.

The data association problem is straightforward for events coming from iner-
tial sensors on personal devices, but challenging for environmental sensors.

Fig. 1  Overall architecture of MICAR 
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4  MICAR’s architecture

The general architecture of MICAR is depicted in Fig. 1.
Several environmental sensors are deployed in the home (e.g., plug sensors, mag-

netic sensors, motion sensors) to capture the interaction of the residents with the sur-
rounding environment. Moreover, each resident wears a smartwatch that collects data 
from its inertial sensors (e.g., accelerometer) and a micro-localization system (e.g., 
BLE beacons, WiFi) deployed in the environment. Raw sensor data are continuously 
transmitted to the Smart Home Gateway, which is in charge of running the algorithms 
of MICAR.

First, the Context aGGreGation module pre-processes sensor data to infer higher-
level context information (e.g., the residents’ locations, low-level activities, etcetera). 
High-level context, as well as raw sensor data, are then transmitted to the Context-
aware Data aSSoCiation module. This module relies on semantic reasoning on context 
and sensor events to generate a personalized stream of inertial and environmental sen-
sor data for each user. The rationale is that it is possible to use common-sense knowl-
edge in the activity domain to exploit context data to derive the most likely correspond-
ence between each environmental sensor event and the resident that triggered it.

Each personalized stream is then processed by the SenSor-baSeD aCtivity reCoGni-
tion module. This module relies on an incremental semi-supervised classifier to detect 
the ADLs performed by a specific resident. The output of the classifier is a probabil-
ity distribution over the possible activities. The recognition model is initialized with a 
limited number of labeled data from a few users (e.g., 2 in our experiments) that in an 
initial phase contributed to a small labeled data acquisition campaign.

High-level context is then processed again by the PreDiCtion refinement module 
to refine the machine learning classification. Indeed, ADLs associated with a positive 
probability but that contrast with the current context (e.g., watching TV when the TV is 
not turned on) are removed from the probability distribution.

The PreDiCtion ConfiDenCe evaluation module evaluates the uncertainty of the 
refined prediction. If the uncertainty is greater than a threshold, an active learning pro-
cess is started: the system triggers a query to ask the user which is the activity she is 
performing through a dedicated interface. The feedback is used to update the incre-
mental activity recognition classifier. Our active learning method is based on a cache to 
reduce the number of triggered questions.

In parallel to PreDiCtion ConfiDenCe evaluation, the PreDiCtionS aGGreGation 
module combines the refined predictions from each user to output both individual and 
joint activities performed by the residents. In particular, a heuristic method determines 
whether multiple residents are performing the same activity.

In the next section, we describe each component of MICAR in detail.
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5  MICAR under the hood

5.1  Sensing sources

The residents are monitored with a combination of wearable and environmental 
sensors. In particular, each inhabitant wears a smartwatch, equipped with iner-
tial sensors (e.g., accelerometers, gyroscopes, and magnetometers) to track her 
physical movements. Inertial sensors are particularly useful to capture ADLs that 
are characterized by specific gestures (e.g., washing dishes). Smartwatches also 
collect data (e.g., RSSI) from a positioning system deployed in the home (e.g., 
BLE beacons, Ultra-Wideband, WiFi access points). Positioning data is particu-
larly useful to continuously monitor the semantic position of the user. Since the 
smartwatch is a personal device, the collected data can be automatically associ-
ated with the resident’s identity.

Environmental sensors capture the interaction of the residents with home infra-
structure. For example, magnetic sensors detect the opening and closing events of 
doors and drawers, pressure mats on chairs reveal if someone is sitting, and smart 
plugs detect the usage of home appliances. As we already mentioned, environ-
mental sensors cannot identify the resident which triggers them since they only 
output their status.

5.2  Context aggregation

The Context aGGreGation module receives the raw data from the sensing sources 
described above. The objective of this module is to derive higher-level context 
information. As we described in Sect. 4, MICAR uses high-level context to com-
pute data association as well as to refine the classifier’s prediction.

The Context aGGreGation module derives the personalized context for each 
resident and the home context for the home environment. Given a time instant 
t, the personalized context of a resident u is denoted with C(u)t = (l(u)t, p(u)t) , 
where l(u)t is the location of u in the home at time t and p(u)t is the pos-
ture of u at time t. For instance, if Bob is sitting in the kitchen at time t then 
C(Bob)t = (kitchen, sitting) . On the other hand, the  home context Ct

H
 encodes the 

status and the position of each sensor in the home. In the following, we describe 
how C(u) and CH are computed from raw sensor data.

5.2.1  Resident’s semantic position

In the following, we describe how we derive the semantic position l(u)t of a 
resident u at time t. In our implementation, the smartwatch is in charge of col-
lecting RSSI data from a positioning infrastructure composed of a combination 
of BLE beacons and WiFi access points. Raw RSSI data are segmented with a 
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sliding window of size nl and overlap pl . Then, we apply a Savitzky-Golay filter 
to smooth raw RSSI data. In our experimental setup we use nl = 5s and pl = 50%.

For each temporal window, we extract a feature vector, where each feature 
encodes the mean RSSI signal of the window from a specific source (i.e., a specific 
BLE beacon or WiFi access point). In our experimental setup, the mean was suf-
ficient to characterize each signal, while the use of other statistical properties did 
not lead to any improvement in the positioning accuracy. Finally, a machine learning 
classifier is in charge of classifying the semantic position of the user from the fea-
ture vectors. In our experiments, we used a Random Forest classifier.

Note that the organization of the home in semantic positions should be performed 
in an offline phase, and its granularity depends on the accuracy of the underlying 
micro-localization system. A coarse granularity may consider room-level semantic 
positions (e.g., living room, kitchen, dining room), while a fine-grained granularity 
may map specific regions of each room into semantic positions (e.g., cooking area, 
dining table, and sink area).

In our experimental setup, we implemented a micro-localization infrastruc-
ture at room-level granularity based on a combination of 5 BLE beacons2 uni-
formly installed within our smart-home lab and 26 WiFi access points that could be 
detected in its surroundings. Our infrastructure reaches an average positioning error 
of 1–2 m. However, we did not consider these results to be satisfactory for an accu-
rate data association.

In the literature, several solutions have been proposed for more accurate indoor 
positioning [51]. MICAR is agnostic to the specific micro-localization system being 
used, and we preferred to use ground truth information about positioning data in 
our experiments, in order to focus on multi-inhabitant activity recognition only. 
We expect that new technologies (e.g., UWB) will be significantly more accu-
rate in indoor localization, and MICAR could adopt them to perform reliable data 
association.

5.2.2  User’s posture

The posture p(u)t (e.g., standing, sitting, lying) of a user u at time t is derived by 
feeding a machine learning classifier with the inertial sensors data from the smart-
watch. First, we pre-process raw data by applying a median filter to reduce the noise. 
Then, we apply sliding window segmentation, with a window size of np seconds 
windows and overlap pp . In our experimental setup we use np = 8s and pp = 80% . 
For each temporal window, we extract several features that are well-known to be 
accurate for activity recognition [30]. We obtain in total 120 inertial features, which 
are then dimensionally reduced to dp values through the ANOVA technique [44], 
and finally standardized. In our experiments, we determined dp = 84 . Each feature 
vector is provided to a machine learning classifier to distinguish between different 

2 We performed several experiments considering up to 10 BLE beacons, but we observed interference 
problems when considering more than 5 beacons.
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postures. In our experiments, we used a fully connected neural network to discrimi-
nate between sitting and not sitting.

5.2.3  Sensor status and position

As we previously mentioned, MICAR also computes Ct
H

 as the context of the home 
environment. An important contextual aspect is the semantic position of each sen-
sor, which we consider as prior knowledge defined during the deployment phase in 
the smart-home. During the deployment phase, we also map each environmental 
sensor to a semantic concept. For instance, when the magnetic sensor installed on 
the fridge door fires, it generates the high-level event (fridge_door, kitchen,OPEN) , 
which means that the fridge door in the kitchen has been opened.

Ct
H

 keeps track of the current status of environmental sensors by considering the 
previously mentioned high-level information.

Example 1 Consider a home H equipped with two plug sensors: one to 
detect the usage of the electrical stove in the kitchen and one to detect 
the usage of the television in the living room. Suppose that at time t Bob 
is watching TV and that no one is using the electrical stove. In this case 
Ct
H
= {(stove,kitchen,OFF), (television, living_room,ON)}.

5.3  Context‑aware data association

Given the high-level context from Context aGGreGation and the raw sensor data 
collected from inertial and environmental sensors, the goal of data association is 
to periodically compute for each user u a personalized sensor data stream s(u)t . 
A stream s(u)t consists of the inertial sensor readings gathered from the personal 
device of u, and the environmental sensor events triggered by u in a time window 
[t, t − k] , where k is the size of the segmentation window. Note that s(u)t is computed 
every time a new environmental sensor event (e, st, t) occurs. In our experiments, we 
empirically determined k = 14s.

As we previously mentioned, the challenge of data association is to assign envi-
ronmental sensor events to the resident that most likely triggered it. Indeed, an envi-
ronmental sensor event (e,  st,  t) (e.g. (fridge_door,OPEN, 12:32) ) cannot directly 
identify the user who triggered it.

MICAR performs data association by exploiting the high-level context data. In 
particular it approximates a stream s(u)t by including all the environmental events 
that are consistent with C(u)t and Ct

H
 . The notion of consistency is inherently related 

to the semantics of the context and the action revealed by the event. The Context-
aware Data aSSoCiation module of MICAR is implemented with ontological rea-
soning. In particular, an OWL2 ontology defines the relationships between environ-
mental sensor events and contexts. In the following, we describe some axioms that 
we encode in our ontology.

Among other constraints, our ontology imposes that a user can trigger a sen-
sor event only if she is in the same semantic position where the sensor is located 
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(e.g., Alice cannot turn on the TV in the living room while she is in the bed-
room). Other axioms combine user’s posture and sensor status and position to 
better associate environmental sensor events when multiple users are in the same 
semantic position at the same time. For instance, the activation of the pressure 
mat can be associated only with those users which recently switched to the sitting 
posture. Similarly, the sitting posture is not compatible with sensor events that 
can be triggered only while standing (e.g., turning on the stove).

In general, when a sensor event (e, st, t�) is triggered, our system checks its 
context-consistency for each user u using ontological reasoning. In particular, 
MICAR adds factual observations to the ontology to describe the sensor event, 
the context C(u)t� , and the context CH . Then, by using the automatic consistency 
check of the resulting ontology, the system decides whether (e, st, t�) should be 
included in s(u)t (with t′ in the time window defined by t)

The output of Context-aware Data aSSoCiation is hence a personal stream 
s(u)t ∀u ∈ � . The solution is approximate since there may not be sufficient infor-
mation to associate an event to a single user and, in this case, the event will be 
associated with the stream of each candidate user.

Fig. 2  A simplified representation of a small portion of our ontology. Each node encodes an entity, while 
each edge encodes a relationship
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Example 2 Suppose that Alice and Bob are both in the kitchen, and the magnetic 
on the fridge generates an event at time t, thus indicating that someone opened it. 
Suppose that Alice is standing, while Bob is sitting on a chair. Those context infor-
mation are detected by the Context aGGreGation module. Hence, MICAR adds to 
the ontology the observations about the residents in the home (i.e., Anna and Bob), 
their high-level context (i.e., Anna is standing in the kitchen, Bob is sitting in the 
kitchen), and the triggered environmental sensor event (the fridge magnetic sensor is 
ON). By performing a consistency test, our ontology derives that the opening fridge 
event is consistent with Alice’s context, while it is not consistent with Bob’s context 
(i.e., a user cannot open the fridge if he is sitting). Hence, in this case, the fridge 
event will be included in s(Alice)t and not in s(Bob)t.

We show a small sample of our ontology in Fig. 2. In order to simplify the visuali-
zation, the ontology is represented as a graph where each node is an entity, while each 
edge encodes a relationship.

5.4  Sensor‑based activity recognition

The objective of the SenSor-baSeD aCtivity reCoGnition module is to infer the activities 
performed by each user in the home. For each resident u, it periodically processes the 
personalized stream s(u)t received from Context-aware Data aSSoCiation to derive 
the activity performed for u at time t.

5.4.1  Segmentation and feature extraction

MICAR considers each personalized s(u)t as a temporal window of size k. In order to 
improve the recognition model, we also compute overlapping segmentation between 
consecutive windows considering an overlap factor of par . In our experiments, we 
determined par = 80%.

From each segmentation window, MICAR extracts different features from inertial 
and environmental sensors data. Considering inertial data, we apply a median filter for 
noise reduction. Hence, we extract 120 well-known statistical features from accelerom-
eter, gyroscope, and magnetometer data [30]. Examples of such features are: root mean 
square, kurtosis, symmetry, zero-crossing rate, number of peaks, and energy, and the 
Pearson correlation. Considering environmental sensors data, we extract 36 features 
that are based on the status of the smart-home sensors and the number of their activa-
tion and deactivation events. In particular, MICAR implements the feature extraction 
technique based on temporal decay that was proposed in [28]. In our experiments, we 
applied ANOVA to reduce the dimensionality, reducing the feature space from 156 fea-
tures to 84.
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5.4.2  Activity recognition

Each feature vector fv generated from the personalized stream of a resident u is pro-
vided to an incremental single-inhabitant ADLs classifier h to derive the probability 
distribution over the possible ADLs performed by u:

where pAi
∈ [0, 1] ∀i , 

∑n

i=1
pAi

= 1 , and pAi
 is the probability P(Ai|fv) that the resi-

dent u is performing activity Ai ∈ � , based on fv. Note that the activity recogni-
tion classifier is initialized using a limited amount of labeled data from a restricted 
number of users. MICAR does not impose a specific choice for the single-inhabitant 
classifier.

In our experiments, we implemented a Deep Neural Network which combines 
convolutional (CNN) and recurrent (LSTM) layers, inspired by the work proposed 
in [38]. Our network is composed of a 1D CNN layer with 256 filters, followed by a 
256 units LSTM layer. The CNN layer is in charge of extracting features in the latent 
space that better represent input data, while the LSTM layer captures the temporal 
relationships between segmentation windows. Then, the network continues with a 
fully connected layer of 128 neurons. Finally, a softmax layer generates the prob-
ability distribution over the possible activities. Note that, for the sake of regulariza-
tion, all the layers are separated by a dropout layer (with a dropout rate of 0.5). The 
network architecture was determined empirically. Its simplicity is due to the reduced 
dimensionality of the input feature space. Indeed, we experimented with more com-
plex networks that did not lead to significant improvements in the recognition rate.

5.5  Prediction refinement

Activity recognition classifiers are sometimes not accurate, confusing ADLs that 
share similar sensor patterns. Considering machine learning-based approaches, the 
training set is often limited and it may not generalize on unseen activity patterns. 
As a drawback, the classifier can potentially derive a wrong activity. However, com-
mon-sense knowledge about the relationships between activities and context can be 
used to mitigate those classification mistakes.

MICAR uses the high-level context C(u)t and Ct
H

 , computed by the Context 
aGGreGation module, to refine each activity prediction h(fv). In particular, MICAR 
adopts an approach inspired by the one proposed in [10]. The PreDiCtion refine-
ment module applies knowledge-based reasoning on context data to exclude from 
the probability distribution predicted by the classifier those activities which are not 
context-consistent. In our experimental setup, this mechanism is based on the same 
ontology used by the Context-aware Data aSSoCiation module.

Indeed, as it is possible to observe in Fig. 2, our ontology also contains axioms 
about the relationships between context data and activities.

MICAR evaluates whether an activity A is context-consistent by adding to the 
ontology the factual observations about the current context C(u)t and Ct

H
 and the fact 

h(fv) = ⟨pA1
, pA2

,… , pAn
⟩
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that u is currently performing activity A. The non context-consistent activities are 
removed from the probability distribution h(fv), thus generating a refined probability 
distribution h�(fv) over the possible context-consistent activities.

Example 3 Suppose that MICAR inferred that Alice is watching television with 
60% of probability, eating with the 30% of probability and setting up table with the 
remaining 10% . According to our ontology, the watching television activity can be 
carried out only when: (a) the user is sitting (user posture), (b) the television is in 
the same user semantic position (user and sensor position) and (c) the television is 
turned on (sensor status). Suppose that Alice is sitting at the dining table while eat-
ing, while the television in the living room is turned on. Hence, watching television 
is not context-consistent for Alice considering how this activity is described in our 
knowledge base. The resulting re-normalized probability distribution of Alice in this 
case is 75% eating and 25% setting up table.

5.6  Predictions aggregation

The goal of the PreDiCtionS aGGreGation module is to detect activities that are 
jointly performed by multiple residents. For the sake of this work, we assume that a 
group activity occurs when two or more residents perform the same activity A in the 
same smart-home location l during the same time interval.

Note that this module covers the case where different residents start to perform 
the group activity at different times. For instance, consider a scenario where Alice 
watches the television and then eats, while Bob sets up the table and then eats. Bob 
starts eating 5 min before Alice. The PerDiCtionS aGGreGation module would detect 
the group activity eating only when both Alice and Bob are eating. Moreover, the 
assumption on the semantic locations allows MICAR to capture the scenario where 
the same type of ADL is performed by different residents in different rooms (e.g., 
Alice is watching TV in the living room, while Bob is watching TV in the bedroom).

In order to derive group ADLs, MICAR analyses the activities predicted for each 
resident by the single-inhabitant classifier and the residents’ location during their 
execution. In particular, for each resident, the output of the classifier is processed in 
real-time to keep track of stable activities predictions. Given a resident u, a stable 
prediction S(u, A, L, [ti, tj]) is generated from a sequence of consecutive feature vec-
tors of u classified with the same activity A performed in the location l during the 
time interval [ti,  tj]. In order to be considered stable, during [ti,  tj] the confidence 
on A should be higher than a threshold c for at least t times. In our experiments, we 
empirically determined c = 0.75 and t = 3.

Two residents ui and uj jointly perform an activity A if there exists two stable pre-
dictions S(u1,A, L, [ti, tj]) and S(u2,A, L, [tl, tk]) such that [ti, tj] and [tl, tk] temporally 
overlap. The overlap between the time intervals determine the duration of the joint 
activity. Clearly, this process works in a similar way for more than two residents.

Note that the specific aggregation approach that should be adopted depends on 
the nature of the dataset and the specific target application. For instance, in a real-
world scenario, more users could perform a collaborative activity while playing the 
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same online multiplayer videogame in different locations of the smart-home, using 
different computers. For the sake of this work, we only target group activities that 
occur in the same location.

5.7  Prediction confidence evaluation

While MICAR uses context-aware prediction refinement to mitigate classification 
errors, the system may still be uncertain on the refined prediction. The PreDiCtion 
ConfiDenCe evaluation module takes advantage of a semi-supervised strategy based 
on active learning to trigger a query to the resident when the confidence on the 
refined prediction is below a certain threshold. Since this evaluation is performed on 
the output of a single-inhabitant classifier, our active learning strategy is not targeted 
to joint activities.

For each h�(fv) generated by the PreDiCtion refinement module, we compute 
uncertainty based on the entropy of the probability distribution:

where p′
Ai

 is the refined probability distribution related to activity Ai . Note that the 
entropy measure is commonly used to compute the uncertainty in active learning 
[43]. When the entropy is higher than a threshold � , we assume that the system is 
uncertain about the activity currently performed by u. Hence, an active learning pro-
cess is started, and MICAR asks to u a feedback about the activity that she was actu-
ally performing. For the sake of usability, only a few alternatives among the most 
likely activities are proposed. In our experiments we determined � = 0.6

The feedback is then considered to update the incremental activity recognition 
classifier as a new labeled data sample. MICAR updates the classifier when a batch 
of w feedback is obtained by the residents. In our experiments, we empirically deter-
mined w = 32 to balance the trade-off between convergence rapidity and recognition 
stability. For the sake of this work, the feedback from each resident contributes to 
updating the same single-inhabitant classifier that is used for every resident.

Active learning generally leads to good recognition rates for activity recogni-
tion [10]. However, a high number of queries negatively impacts the user experi-
ence. Since we periodically update the model with a batch of feedback, MICAR can 
potentially maintain the same uncertainty for consecutive feature vectors until the 
model is not updated. In order to mitigate this problem, MICAR implements a novel 
active learning strategy based on caching. In particular, for each user u, MICAR 
stores the latest uncertainty prompted to u as the set of the two most likely activities 
{Ai , Aj} in the probability distribution 3, and the feedback provided by u. Hence, if 
the same uncertainty occurs multiple times within a short time period for a spe-
cific user, MICAR does not trigger additional queries and it uses the last feedback 
provided by u to update the classifier. When a new uncertainty occurs, MICAR 

H(h�(fv)) =
∑

i

p�
Ai
log

1

p�
Ai

3 Note that we consider a set since the order of the two most likely activity is not relevant.
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overwrites the user’s cache. After a certain amount of time, defined by the constant 
CACHE_TTL, MICAR invalids the cache. The MICAR’s active learning approach is 
described in detail in Algorithm 1.

ALGORITHM 1: Cache-based active learning
cache ← ∅
lastFeedback ← nil
tcache ← nil
needToPromptUser ← True
foreach feature vector fv of a user u generated at time t do

h′(fv) ← refined prediction from Prediction Refinement
if H(h′(fv)) > π then

{Ai, Aj} ← the two most likely activity in the prediction
if {Ai, Aj} �= cache OR t− tcache >CACHE TTL then

cache ← ∅
needToPromptUser ← True

end
if needToPromptUser then

Query prompted to user u with uncertainty Ai, Aj

Afv ← the user feedback at time tF

lastFeedback ← Afv

cache ← Ai, Aj

tcache ← tF

needToPromptUser ← False
end
else

Afv ← lastFeedback
end
Consider the feedback Afv to update the model

end
end

6  Evaluation

6.1  The dataset

In order to adequately evaluate MICAR, we collected a novel dataset (called MAR-
BLE) in our smart-home lab. This dataset is publicly available [4]. To the best of 
our knowledge, there are no other publicly available multi-inhabitant ADLs data-
sets that combine wearable and environmental sensor data to provide the context 
information required by MICAR. As depicted in Fig. 3,we equipped the smart-home 
lab with several environmental sensors: magnetic sensors to detect the opening and 
closing events of drawers (e.g., fridge, medicine cabinet), pressure mat sensors to 
detect when residents are sitting on chairs/sofa, and plug sensors to detect the usage 
of home appliances (e.g., TV, electric cooker). To monitor phone call activities, the 
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residents carried an Android smartphone in their pockets running a dedicated appli-
cation to detect starting and ending events of incoming and outgoing phone calls. 
The residents were also wearing a smartwatch4 to collect data from inertial sensors 
(i.e., accelerometer, gyroscope, and magnetometer). We also deployed a position-
ing infrastructure composed of BLE beacons and WiFi APs. However, since indoor 
positioning is orthogonal to ADLs recognition, in our experiments we considered 
the ground truth about the position of each resident within the smart home. The 
smart-home lab was divided into 6 semantic locations: Dining Room, Hall, Kitchen, 
Living Room, Medicine Area, Office.

The dataset includes 13 ADLs: Answering Phone, Clearing Table, Cooking, 
Eating, Getting In, Getting Out, Making Phone Call, Preparing Cold Meal, Set-
ting Up Table, Taking Medicines, Using PC, Washing Dishes, and Watching TV. 
We recruited 12 volunteers not involved in this research. We instructed the vol-
unteers about the sequence of activities they had to perform, but they were free 
to execute them in their way to increase the dataset variability. Our research team 
performed the annotations in real-time, thanks to cameras. We collected data con-
sidering both single- and multi-inhabitant scenarios, where a scenario describes 
a specific sequence of ADLs that the residents should perform. We designed sev-
eral single-, 2- and 4-residents scenarios. For instance, Fig. 4 shows one of the 
2-residents scenarios that we designed.

Each scenario was repeated several times by different volunteers. Overall, we 
acquired 12 instances of 4 single-inhabitant scenarios, 10 instances of 3 scenarios 
involving 2 subjects, and 10 other instances of 4 scenarios with 4 residents involved. 
Table 1 shows, for each ADL type, the amount of recorded labeled data in minutes, 
and the average duration in seconds, while Table  2 shows the recorded time and 
the average duration of single-, 2-, and 4-inhabitants scenarios. Note that, since we 
had time restrictions for data collection (due to the availability of volunteers), the 

Fig. 3  The simulated smart-
home during the dataset collec-
tion process

4 We used Huawei Sport 2 and other brands with similar features.
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Fig. 4  A scenario involving two 
inhabitants

Table 1  Statistics on labeled 
activities

Recorded minutes Average 
duration 
(s)

ANSWERING PHONE 68.5 70.8
CLEARING TABLE 38.3 42.6
COOKING 80.4 86.1
EATING 149.5 29.2
GETTING IN 18.8 12.8
GETTING OUT 13.6 16.4
MAKING PHONE CALL 63.4 56.8
PREPARING COLD MEAL 52.8 62.1
SETTING UP TABLE 53.5 42.8
TAKING MEDICINES 36.2 28.9
TRANSITION 273.4 13.4
USING PC 94.0 91.0
WASHING DISHES 54.4 51.8
WATCHING TV 266.7 98.2

Table 2  Statistics on the dataset 
scenarios

Recorded minutes Average 
duration 
(min)

Single-inhabitant scenarios 307.5 25.6
2-Inhabitants scenarios 315.5 31.5
4-Inhabitants scenarios 84.0 8.4
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execution time of each ADL was limited to a duration that in some cases does not 
reflect the actual time a person would need, but long enough to collect a signifi-
cant amount of data. For instance, considering activities like Eating or Cooking, we 
asked our volunteers to perform them only for a few minutes.

6.1.1  Evaluation methodology

In the following, we describe how we evaluate the recognition rate of MICAR. Since 
our semi-supervised activity recognition classifier is incremental, we adopt a well-
known evaluation technique for stream learning algorithms [19]. We pre-train the clas-
sifier using labeled data from 2 subjects that only contributed to single-inhabitant sce-
narios. We use the remaining data to evaluate the evolution of the recognition rate and 
the number of questions triggered by active learning. We iterate over each data sample 
(i.e., feature vector), providing the classifier one instance of a scenario at a time. Within 
a scenario instance, the order of data samples provided to the classifier reflects the tem-
poral order of data collection.

Each data sample is first classified using the current model. The ground truth and the 
classification output are stored for evaluation. Then, we apply the active learning strat-
egy presented in Sect. 5.7 to determine if the query is needed. If this is the case, we use 
the data sample labeled with the ground truth to update the recognition model and we 
update the number of triggered questions.

In order to show the evolution of the classifier, we use a sliding window approach to 
periodically compute both the overall F1-score and the percentage of triggered ques-
tions. Each window contains 800 data samples, and we consider an overlap factor of 
75%.

In order to achieve statistically robust results, the whole experiment is repeated 100 
times, averaging the results. Moreover, at each repetition, we also randomly shuffle the 
order of the scenario instances that we provide to the classifier.

Fig. 5  Evolution of the recogni-
tion rate of MICAR 
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6.2  Results

6.2.1  Recognition rate

In the following, we show results about the recognition rate of the SenSor-baSeD 
aCtivity reCoGnition module of MICAR, including the prediction refinement step. 
Figure 5 depicts the evolution of the recognition rate using the evaluation methodol-
ogy presented above. Thanks to active learning, the recognition rate quickly con-
verges to high values. Without active learning, the classifier (only pre-trained using 
data from 2 users) is never updated, and the f1-score is stable on low values.

Figure 6 compares the recognition rate reached by MICAR with the one obtained 
by a supervised version of MICAR (i.e., with full availability of labeled data and 
without active learning). We will refer to this approach as Supervised MICAR.

We computed the F1-score of MICAR by considering the mean of the F1-scores 
obtained on the last four windows (see Fig.  5). On the other hand, we computed 
the F1-score of Supervised MICARusing a leave-one-scenario-out cross-validation 
approach. At each fold, we considered a specific instance of a scenario as the test 
set, while the data of all the remaining scenario instances as the training set. To 
make our validation robust, we also removed from the training set: (1) data related 
to the other instances of the same scenario in the test set, (2) data of the subjects in 
the test set. We observed that the recognition rate of MICAR is only ≈ 1% behind 
the one reached by Supervised MICAR, with the great advantage of requiring a lim-
ited amount of labeled data. In Sect.  6.2.2 we show results about the number of 
active learning queries triggered by MICAR.

Figure 7 shows the confusion matrix generated by MICAR.
Activities like watching TV and using pc are recognized with a recall around 98% . 

Indeed, in our dataset, these activities are associated with specific semantic areas 
and environmental sensors that uniquely characterize them. For example, watching 
TV can only be performed in the living room triggering the smart-plug sensor con-
nected to the television.

On the other hand, those activities that are not uniquely characterized by avail-
able context data exhibit a lower recognition rate. For example, the activities that 
can be performed by standing in the kitchen (e.g., preparing a cold meal, setting up 

Fig. 6  MICAR vs a fully super-
vised approach
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the table, and cooking) are often confused between them since they trigger similar 
sensors. Nonetheless, cooking still reaches good recognition rates thanks to the plug 
sensor that detects the electrical stove usage. Also, we observed that the activities 
clearing table and washing dishes are well-recognized even if they are associated 
with context information similar to the above-mentioned kitchen-based activities. 
Considering clearing table, this is likely due to the capability of recurrent layers to 
capture the temporal relationships between activities, since clearing table is often 
performed after eating. Considering washing dishes, inertial sensor data capture the 
gestures that uniquely characterize the activity. MICAR also confuses getting in and 
getting out activities due to their similar patterns. The remaining activities are well-
recognized by MICAR.

6.2.2  Effectiveness of active learning

Besides the recognition rate, a fundamental aspect is the number of questions 
triggered by active learning due to its direct impact on user experience. Figure 9 
shows that the percentage of active learning questions quickly converges to low 

Fig. 7  Confusion matrix
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values (below 5% ) with a decreasing trend (i.e., the system asks fewer and fewer 
questions over time).

Figures 8 and 9 also compare our cache-based approach described in Sect. 5.7 
with respect to a traditional method that does not use a cache (i.e., a query is trig-
gered every time there is an uncertainty).

Fig. 8  Impact of the cache on 
the evolution of the recogni-
tion rate

Fig. 9  Impact of the cache on 
the evolution of the percentage 
of active learning queries

Fig. 10  The recognition rate 
obtained by our data association 
approach with respect to a naive 
solution and an ideal solution
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We observed that the recognition rate of our cache-based method is almost identi-
cal to the one reached by a traditional approach, while the percentage of questions is 
dramatically lower. We also observed that the cache was used by MICAR 66% of the 
times there was an uncertainty. This is due to the fact that MICAR updates the clas-
sifier with a batch-based approach. Hence, since the model update is delayed, the 
classifier often has the same uncertainty on consecutive feature vectors.

6.2.3  Context‑aware data association

Figures 10 and 11 show the effectiveness of our data association method compared 
with two alternatives. The first is called naive data association, and it simply assigns 
each environmental sensor event to every resident in the home, independently from 
context data. The second one is called perfect data association, and it assigns each 
environmental sensor event to the correct user by using the ground truth. Clearly, 
perfect data association is an ideal approach that cannot be implemented in practice, 
and we consider it as an upper bound. Note that, to better highlight the impact of data 
association, we show the results that we obtained without PreDiCtion refinement.

The data association strategy of MICAR significantly outperforms in terms of 
f1-score the naive data association approach ( +6% ). At the same time, our solution 

Fig. 11  The percentage of 
questions obtained by our data 
association approach with 
respect to a naive solution and 
an ideal solution

Fig. 12  The impact of our 
prediction refinement approach 
on the recognition rate
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is only 2% behind a perfect data association. These results suggest that our data 
association approach is accurate. Considering the number of active learning que-
ries, the data association strategy of MICAR triggers a reduced number of queries 
than the naive data association solution, reaching very close results to perfect data 
association.

6.2.4  Prediction refinement

Figures 12 and 13 show the impact of the PreDiCtion refinement module in refin-
ing the classification mistakes. We compare our method with two alternatives: with-
out prediction refinement and context as features. The first is MICAR without the 
PreDiCtion refinement module. Hence, the classification output is not refined using 
context. On the other hand, the context as features approach considers context infor-
mation as additional features in the machine learning process, instead of processing 
them with a knowledge-based approach after classification.

Our results show that context data significantly improves the recognition rate. 
Indeed, the without context approach reaches the lowest F1-score. Moreover, 
MICAR outperforms the context as features solution ( +4% ). This is due to the fact 
that ADLs can be performed in many different context situations. Considering con-
text as features makes the learning task more complex, thus requiring more labeled 
data. Moreover, our knowledge-based approach is more flexible since new context 
information can be added dynamically to the ontology, while the machine learning 
classifier should be re-trained from scratch if new features need to be considered.

Fig. 13  The impact of our pre-
diction refinement approach on 
the percentage of questions

Fig. 14  Confusion matrix on the 
number of users attributed to 
group activities
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Considering active learning queries, MICAR outperforms both approaches. 
Indeed, by discarding the context-inconsistent activities, MICAR often increases 
its confidence on the remaining activities, thus reducing the percentage of trig-
gered questions.

6.2.5  Predictions aggregation

Finally, we quantitatively evaluate the effectiveness of the PreDiCtionS aGGreGa-
tion module in detecting jointly performed activities. For the sake of this evalua-
tion, we only considered data from 2− and 4−residents scenarios.

We used the method proposed in Sect. 5.6 to compute group activities both on 
the classification output as well as on the ground truth. Figure 14 shows a confu-
sion matrix that reveals MICAR’s accuracy in detecting the correct number of 
users that are jointly performing an activity. Let ⟨A,U, [ti, tj]⟩ be a detected group 
activity where A is the joint activity, U is the set of residents jointly performing 
A, and [ti, tj] is the time interval of the group activity. Similarly, let ⟨A⋆,U⋆, [tl, tk]⟩ 
be a ground truth group activity where A⋆ is the joint activity, U⋆ is the set of 
residents performing A⋆ , and [tl, tk] is the time interval of the ground truth group 
activity. We compare a predicted group activity and a ground truth group activity 
when A = A∗ and [ti, tj] ∩ [tl, tk] ≠ � (i.e., the activity is the same and they tem-
porally overlap). Hence, in this evaluation we do not consider misclassifications, 
that are already captured by the results reported in Fig. 7.

We consider a true positive when U = U⋆ (i.e., the set of users is exactly the 
same). We consider a false positive when U ⊃ U⋆ (i.e., the predicted group activ-
ity involves a higher number of residents w.r.t. the ground truth). Finally, a false 
negative occurs when (U ∩ U⋆) ⊂ U⋆ (i.e., only a subset of the residents in the 
ground truth is actually in the prediction).

From the confusion matrix, we observed that individual activities are some-
times detected as 2-residents activities. This is probably due to mistakes in data 
association. For instance, if Alice is preparing a salad in the kitchen while Bob 
is cooking pasta in the same room, the electric cooker event could be mistakenly 
assigned to both the residents. Hence, MICAR could detect that Alice and Bob 
are cooking together over a certain interval of time.

Group activities are sometimes detected with a lower number of users with 
respect to the ground truth. This could happen when MICAR performs a miss-
classification for a subset of users in the group. For example, suppose that Alice 
washed the dishes from t0 to t3, while Bob was clearing the table in the same 
time interval. From t4 to t6 they watched television together. MICAR may cor-
rectly predict Bob’s activity while it may mistakenly detect that Alice washed the 
dishes from t0 to t4 and that she started to watch the television with Bob at t5. In 
this case, we count a true positive (Alice and Bob watched the television together 
from t5 to t6), but also a false negative (Bob individually watched the television 
from t4 to t5).
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The accurate recognition rate for 4-resident activities is due to the fact that, in 
our dataset, only ADLs that are easy to detect (like eating and watching tv) are 
performed in this setting.

7  Discussion

7.1  Acceptability and privacy issues

MICAR is an ADL recognition system that continuously records the behavior of 
the residents in their daily life. Considering the application of our framework for 
healthcare applications, it may be perceived as a component of a therapy, hence 
it is more likely accepted with respect to other solutions. Moreover, MICAR 
does not consider intrusive devices like microphones and cameras. However, the 
data collected by MICAR are sensitive, and privacy measures should be consid-
ered in order to manage them. In our vision, the MICARalgorithms should run 
on the smart-home gateway and detailed sensor data should not be accessible 
from outside. In order to release information to healthcare stakeholders (e.g., 
clinicians), there are several solutions. Among them, aggregated ADLs data can 
be outsourced in an encrypted form to a cloud server. By relying on searchable 
encryption, it is possible to outsource encrypted data and, at the same time, to 
allow clinicians to perform queries on encrypted data [52]. We are currently 
investigating the effectiveness of such a solution.

Active learning may also be considered invasive and ethically inappropriate. 
Indeed, each query is an interruption to the daily life of a resident. Hence, active 
learning queries may not be acceptable if too frequent or if they are prompted 
at inappropriate times. While we show that the number of queries generated by 
MICAR is low and their frequency decreases quickly, in future work we will 
investigate a context-aware strategy in charge of prompting active learning que-
ries based on the resident’s context, interrupting her only when appropriate.

7.2  Personalization

Personalization is an important aspect for accurate ADLs recognition [18]. This 
is also true for data association. Indeed, we believe that the additional personal 
context of the residents may further improve data association. For instance, each 
resident may have specific habits and routines, also depending on the role in the 
home (e.g., caregiver, elderly woman, elderly man). For instance, if the caregiver 
and an elderly subject are at the same time in the kitchen while the stove is being 
turned on, the caregiver is more likely the one triggering this event. This high-
level information can be considered as the system’s prior knowledge or, alter-
natively, it can be automatically derived using pattern mining approaches that 
learn typical routines of each subject.
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We also believe that the personal agenda of each resident may help in provid-
ing hints about data association (e.g., if Alice has a dentist appointment in 20 
min, she is more likely the one that is opening the door to leave home). In future 
work, we will investigate how to improve personalization aspects in MICAR.

7.3  Need for real‑world experiments

A limitation of this work is that experiments are conducted using a public dataset 
acquired in a controlled setting. Experiments using real-world datasets are needed 
to better assess the effectiveness of our approach. We plan to perform this evalua-
tion in the future, in the context of research projects related to healthcare.

Moreover, for the sake of this work, we did not consider the remote control of 
smart devices. Considering the specific sensors that we adopted in our experi-
mental setup, only the smart plugs (controlling the TV and the stove) could actu-
ally be remotely controlled. Indeed, other devices like magnetic and mat sensors 
require physical interaction with the subject.

The remote control of smart devices introduces new challenges as we illustrate 
in the following example.

Example 4 Alice is in the kitchen, while Bob is in the living room. Since Bob intends 
to prepare some food in the next few minutes, he decides to remotely turn on the 
oven to warm it up while he is still in the living room. MICAR mistakenly associates 
the event Turning ON oven to Alice, since she is the one actually in the kitchen.

We believe that the data association strategy of MICAR can be extended to con-
sider the remote activation of smart devices. For instance, when a resident controls 
a device by using its personal smartphone, the association is straightforward (i.e., 
the smartphone directly identifies the resident). However, smart devices may be also 
controlled using voice-based home assistants. In this scenario, a possible solution is 
to identify the users through the voice captured by the microphone.

Note that, considering Example 4, when Bob is turning on the oven from the 
living room, it is not clear if this event should be actually associated with him. 
Indeed, it is not trivial to determine what ADL classes the system should recog-
nize when events related to remote control of smart devices are detected. We will 
investigate this direction in future work.

8  Conclusion and future work

In this paper, we presented MICAR: a novel Multi-Inhabitant semi-supervised and 
Context-aware Activity Recognition approach. Our method is based on a knowl-
edge-based approach to perform data association. Moreover, MICAR relies on active 
learning to significantly reduce the amount of labeled data that is needed to train the 
activity classifier. Our results indicate that MICAR reaches similar results to a fully 



599

1 3

Distributed and Parallel Databases (2023) 41:571–602 

supervised multi-inhabitant approach, with a low number of triggered active learn-
ing queries. Moreover, the recognition rate reached by our data association approach 
is close to the one of an ideal perfect data association method based on ground truth.

MICAR has several limitations that we will address in future work. First, our 
knowledge-based approach requires a significant human engineering effort to 
generate an ontology that comprehensively captures all the relationships between 
contexts, sensor events, and activities. In future work, we will investigate how to 
populate the knowledge base in a semi-automatic way, by fetching context infor-
mation from the web (e.g., textual information, images, etcetera). Another issue 
of ontological reasoning is its rigidity that cannot capture the intrinsic uncer-
tainty of sensor data. Hence, will also investigate probabilistic knowledge-based 
approaches.

Another limitation is the assumption that a joint activity occurs only if the resi-
dents that are performing it are in the same semantic location. For instance, Alice 
and Bob may be jointly setting up the table before lunch. This ADL may be per-
formed both in the kitchen (e.g., to retrieve silverware) and in the dining room 
(e.g., to prepare the table). In future work, we will investigate how to remove this 
assumption.

We also plan to evaluate in detail the acceptability of a system based on active 
learning. In [9], we proposed a hypothetical active learning interface for multi-
inhabitant settings that also considers residents’ interruptibility. In future work, we 
will investigate in real-world deployments if this interface coupled with MICAR can 
have a positive impact on the perceived user experience.

Finally, we also plan to include more sophisticated context data (e.g., low-level 
activities, micro-localization at a finer granularity, social interaction between resi-
dents, temporal relationships between sensor events, etcetera) to further improve the 
accuracy of data association and prediction-refinement modules of MICAR.

Acknowledgements This work has been partially funded by TIM S.p.A., Services Innovation Depart-
ment, Joint Open Lab Milano.

Funding Open access funding provided by Università degli Studi di Milano within the CRUI-CARE 
Agreement. Funding was provided by Telecom Italia.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


600 Distributed and Parallel Databases (2023) 41:571–602

1 3

References

 1. Alemdar, H., Ersoy, C.: Multi-resident activity tracking and recognition in smart environments. J. 
Ambient. Intell. Humaniz. Comput. 8(4), 513–529 (2017)

 2. Alhamoud, A., Muradi, V., Böhnstedt, D., Steinmetz, R.: Activity recognition in multi-user environ-
ments using techniques of multi-label classification. In: Proceedings of the 6th International Confer-
ence on the Internet of Things, pp. 15–23 (2016)

 3. Arrotta, L., Bettini, C., Civitarese, G., Presotto, R.: Context-aware data association for multi-inhab-
itant sensor-based activity recognition. In: 2020 21st IEEE International Conference on Mobile Data 
Management (MDM), pp. 125–130. IEEE (2020)

 4. Arrotta, L., Bettini, C., Civitarese, G.: The marble dataset: Multi-inhabitant activities of daily living 
combining wearable and environmental sensors data. In: MobiQuitous 2021-18th EAI International 
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (2021)

 5. Bagaveyev, S., Cook, D.J.: Designing and evaluating active learning methods for activity recogni-
tion. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous 
Computing: Adjunct Publication, pp. 469–478 (2014)

 6. Bakar, U., Ghayvat, H., Hasanm, S., Mukhopadhyay, S.C.: Activity and anomaly detection in smart 
home: A survey. Next Gener. Sens. Syst. 16, 191–220 (2016)

 7. Benmansour, A., Bouchachia, A., Feham, M.: Multioccupant activity recognition in pervasive smart 
home environments. ACM Comput. Surv. (CSUR) 48(3), 34 (2016)

 8. Benmansour, A., Bouchachia, A., Feham, M.: Modeling interaction in multi-resident activities. 
Neurocomputing 230, 133–142 (2017)

 9. Bettini, C., Civitarese, G.: Towards active learning interfaces for multi-inhabitant activity recogni-
tion. In: 2020 IEEE International Conference on Pervasive Computing and Communications Work-
shops (PerCom Workshops), pp. 1–6. IEEE (2020)

 10. Bettini, C., Civitarese, G., Presotto, R.: Caviar: Context-driven active and incremental activity rec-
ognition. Knowl.-Based Syst. 196, 105816 (2020)

 11. Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. 
Syst. Man Cybern. C (Applications and Reviews) 42(6), 790–808 (2012)

 12. Chen, L., Nugent, C.D., Wang, H.: A knowledge-driven approach to activity recognition in smart 
homes. IEEE Trans. Knowl. Data Eng. 24(6), 961–974 (2012)

 13. Chen, H., Cha, S.H., Kim, T.W.: A framework for group activity detection and recognition using 
smartphone sensors and beacons. Build. Environ. 158, 205–216 (2019)

 14. Civitarese, G., Bettini, C., Sztyler, T., Riboni, D., Stuckenschmidt, H.: newnectar: Collaborative 
active learning for knowledge-based probabilistic activity recognition. Pervasive Mob. Comput. 56, 
88–105 (2019)

 15. Civitarese, G., Sztyler, T., Riboni, D., Bettini, C., Stuckenschmidt, H.: Polaris: Probabilistic and 
ontological activity recognition in smart-homes. IEEE Trans. Knowl. Data Eng. 33(1), 209–23 
(2019)

 16. Cook, D., Feuz, K.D., Krishnan, N.C.: Transfer learning for activity recognition: A survey. Knowl. 
Inf. Syst. 36(3), 537–556 (2013)

 17. Crandall, A.S., Cook, D.: Attributing events to individuals in multi-inhabitant environments (2008)
 18. Ferrari, A., Micucci, D., Mobilio, M., Napoletano, P.: On the personalization of classification mod-

els for human activity recognition. IEEE Access 8, 32066–32079 (2020)
 19. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach. Learn. 

90(3), 317–346 (2013)
 20. Ghazvininejad, M., Rabiee, H.R., Pourdamghani, N., Khanipour, P.: Hmm based semi-supervised 

learning for activity recognition. In: Proceedings of the 2011 international workshop on Situation 
activity & goal awareness, pp. 95–100 (2011)

 21. Guo, J., Li, Y., Hou, M., Han, S., Ren, J.: Recognition of daily activities of two residents in a smart 
home based on time clustering. Sensors 20(5), 1457 (2020)

 22. Gupta, P., Caleb-Solly, P.: A framework for semi-supervised adaptive learning for activity recogni-
tion in healthcare applications. In: International Conference on Engineering Applications of Neural 
Networks, pp. 3–15. Springer (2018)

 23. Ho, Y.c., Lu, C.h., Chen, I.h., Huang, S.s., Wang, C.y., Fu, L.c.: Active-learning assisted self-recon-
figurable activity recognition in a dynamic environment. In: Proceedings of the 2009 IEEE interna-
tional conference on Robotics and Automation, pp. 1567–1572 (2009)



601

1 3

Distributed and Parallel Databases (2023) 41:571–602 

 24. Höflinger, F., Zhang, R., Reindl, L.M.: Indoor-localization system using a micro-inertial measure-
ment unit (IMU). In: 2012 European Frequency and Time Forum, pp. 443–447. IEEE (2012)

 25. Hoque, E., Stankovic, J.: Aalo: Activity recognition in smart homes using active learning in the 
presence of overlapped activities. In: 2012 6th International Conference on Pervasive Computing 
Technologies for Healthcare (PervasiveHealth) and Workshops, pp. 139–146. IEEE (2012)

 26. Hossain, H.S., Khan, M.A.A.H., Roy, N.: Active learning enabled activity recognition. Pervasive 
Mob. Comput. 38, 312–330 (2017)

 27. Ibrahim, M.S., Muralidharan, S., Deng, Z., Vahdat, A., Mori, G.: A hierarchical deep temporal 
model for group activity recognition. In: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 1971–1980 (2016)

 28. Krishnan, N.C., Cook, D.J.: Activity recognition on streaming sensor data. Pervasive Mob. Comput. 
10, 138–154 (2014)

 29. Lapointe, P., Chapron, K., Bouchard, K., et al.: A new device to track and identify people in a multi-
residents context. Procedia Comput. Sci. 170, 403–410 (2020)

 30. Lara, O.D., Labrador, M.A., et al.: A survey on human activity recognition using wearable sensors. 
IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2013)

 31. Li, Q., Gravina, R., Li, Y., Alsamhi, S.H., Sun, F., Fortino, G.: Multi-user activity recognition: Chal-
lenges and opportunities. Inf. Fusion 63, 121–135 (2020)

 32. Lutze, R., Waldhör, K.: A smartwatch software architecture for health hazard handling for elderly 
people. In: 2015 International conference on healthcare informatics, pp. 356–361. IEEE (2015)

 33. Lv, M., Chen, L., Chen, T., Chen, G.: Bi-view semi-supervised learning based semantic human 
activity recognition using accelerometers. IEEE Trans. Mob. Comput. 17(9), 1991–2001 (2018)

 34. Masciadri, A., Comai, S., Salice, F.: Smare: Semi-supervised method for activities of daily living 
recognition. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 
3403–3409. IEEE (2019)

 35. Mohamed, R., Perumal, T., Sulaiman, M.N., Mustapha, N., Manaf, S.A.: Tracking and recognizing 
the activity of multi resident in smart home environments. J. Telecommun. Electron. Comput. Eng. 
(JTEC) 9(2–11), 39–43 (2017)

 36. Nguyen, D., Nguyen, S., Minh, H.C.: Pattern discovering for ontology based activity recognition in 
multi-resident homes

 37. O’brien, T., Troutman-Jordan, M., Hathaway, D., Armstrong, S., Moore, M.: Acceptability of 
wristband activity trackers among community dwelling older adults. Geriatr. Nurs. 36(2), S21–S25 
(2015)

 38. Ordóñez, F., Roggen, D.: Deep convolutional and lSTM recurrent neural networks for multimodal 
wearable activity recognition. Sensors 16(1), 115 (2016)

 39. Oukrich, N., Cherraqi, A.E.B., Elghanami, D.: Multi-resident activity recognition method based in 
deep belief network. J. Artif. Intell. 11, 71–78 (2018)

 40. Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older adults. IEEE J. 
Biomed. Health Inform. 17(3), 579–590 (2012)

 41. Riboni, D., Murru, F.: Unsupervised recognition of multi-resident activities in smart-homes. IEEE 
Access 8, 201985–201994 (2020)

 42. Riboni, D., Bettini, C., Civitarese, G., Janjua, Z.H., Helaoui, R.: SmartFABER: Recognizing fine-
grained abnormal behaviors for early detection of mild cognitive impairment. Artif. Intell. Med. 67, 
57–74 (2016)

 43. Settles, B.: Active learning literature survey. University of Wisconsin-Madison Department of Com-
puter Sciences, Tech. rep. (2009)

 44. St, L., Wold, S., et al.: Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 6(4), 259–272 
(1989)

 45. Stikic, M., Larlus, D., Schiele, B.: Multi-graph based semi-supervised learning for activity recogni-
tion. In: 2009 International Symposium on Wearable Computers, pp. 85–92. IEEE (2009)

 46. Stikic, M., Van Laerhoven, K., Schiele, B.: Exploring semi-supervised and active learning for activ-
ity recognition. In: 2008 12th IEEE International Symposium on Wearable Computers, pp. 81–88. 
IEEE (2008)

 47. Tran, S.N., Nguyen, D., Ngo, T.S., Vu, X.S., Hoang, L., Zhang, Q., Karunanithi, M.: On multi-
resident activity recognition in ambient smart-homes. Artif. Intell. Rev. 53(6), 3929–3945 (2020)

 48. Wang, T., Cook, D.J.: smrt: Multi-resident tracking in smart homes with sensor vectorization. IEEE 
Trans. Pattern Anal. Mach. Intell. 43(8), 2809–21 (2020)



602 Distributed and Parallel Databases (2023) 41:571–602

1 3

 49. Wang, L., Gu, T., Tao, X., Chen, H., Lu, J.: Recognizing multi-user activities using wearable sen-
sors in a smart home. Pervasive Mob. Comput. 7(3), 287–298 (2011)

 50. Wu, C.L., Tseng, Y.S., Fu, L.C.: Spatio-temporal feature enhanced semi-supervised adaptation for 
activity recognition in iot-based context-aware smart homes. In: 2013 IEEE International Confer-
ence on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, 
Physical and Social Computing, pp. 460–467. IEEE (2013)

 51. Zafari, F., Gkelias, A., Leung, K.K.: A survey of indoor localization systems and technologies. 
IEEE Commun. Surv. Tutor. 21(3), 2568–2599 (2019)

 52. Zhang, R., Xue, R., Liu, L.: Searchable encryption for healthcare clouds: A survey. IEEE Trans. 
Serv. Comput. 11(6), 978–996 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	MICAR: multi-inhabitant context-aware activity recognition in home environments
	Abstract
	1 Introduction
	2 Related work
	2.1 Multi-inhabitant activity recognition
	2.2 Semi-supervised approaches for ADLs

	3 The data association problem
	4 MICAR’s architecture
	5 MICAR under the hood
	5.1 Sensing sources
	5.2 Context aggregation
	5.2.1 Resident’s semantic position
	5.2.2 User’s posture
	5.2.3 Sensor status and position

	5.3 Context-aware data association
	5.4 Sensor-based activity recognition
	5.4.1 Segmentation and feature extraction
	5.4.2 Activity recognition

	5.5 Prediction refinement
	5.6 Predictions aggregation
	5.7 Prediction confidence evaluation

	6 Evaluation
	6.1 The dataset
	6.1.1 Evaluation methodology

	6.2 Results
	6.2.1 Recognition rate
	6.2.2 Effectiveness of active learning
	6.2.3 Context-aware data association
	6.2.4 Prediction refinement
	6.2.5 Predictions aggregation


	7 Discussion
	7.1 Acceptability and privacy issues
	7.2 Personalization
	7.3 Need for real-world experiments

	8 Conclusion and future work
	Acknowledgements 
	References




