
Vol.:(0123456789)

Data Mining and Knowledge Discovery
https://doi.org/10.1007/s10618-024-01018-x

1 3

Time series clustering with random convolutional kernels

Marco‑Blanco Jorge1   · Cuevas Rubén1,2

Received: 14 July 2023 / Accepted: 11 March 2024 
© The Author(s) 2024

Abstract
Time series data, spanning applications ranging from climatology to finance to 
healthcare, presents significant challenges in data mining due to its size and com-
plexity. One open issue lies in time series clustering, which is crucial for processing 
large volumes of unlabeled time series data and unlocking valuable insights. Tradi-
tional and modern analysis methods, however, often struggle with these complexi-
ties. To address these limitations, we introduce R-Clustering, a novel method that 
utilizes convolutional architectures with randomly selected parameters. Through 
extensive evaluations, R-Clustering demonstrates superior performance over exist-
ing methods in terms of clustering accuracy, computational efficiency and scalabil-
ity. Empirical results obtained using the UCR archive demonstrate the effectiveness 
of our approach across diverse time series datasets. The findings highlight the sig-
nificance of R-Clustering in various domains and applications, contributing to the 
advancement of time series data mining.

Keywords  Time series · Clustering · Machine learning · Feature extraction

1  Introduction

Time is a natural concept that allows us to arrange events in a sorted way from the 
past to the future in an evenly distributed manner (such as days, seasons of the year, 
or years). Data points are usually taken at successive equally spaced points in time. 
Based on this way of describing events, the concept of time series as a sequence 
of discrete data points evenly distributed arises naturally. From this perspective, 

Responsible editor: Eamonn Keogh.

 *	 Marco‑Blanco Jorge 
	 jorge.marco@uc3m.es

	 Cuevas Rubén 
	 rcuevas@it.uc3m.es

1	 Universidad Carlos III de Madrid, Getafe 28903, Madrid, Spain
2	 UC3M-Santander Big Data Institute, Getafe 28903, Madrid, Spain

http://orcid.org/0009-0001-3838-5810
http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-024-01018-x&domain=pdf


	 M.B Jorge and C. Rubén

1 3

time series can describe a wide range of natural and social phenomena that evolve 
in time. A few examples are climate and weather trends, seismic measures, stock 
prices, sales data, biomedical measurements, body movements, or Internet traffic 
(Aghabozorgi et al. 2015). The study of time series involves identifying its statistical 
properties, including trends, seasonality, and autocorrelation, and using this infor-
mation to build models for prediction and classification.

According to Yang and Wu (2006), who reviewed the work of the most active 
researchers in data mining and machine learning for their opinions, the problem of 
sequential and time series data is one of the ten most challenging in data mining. Its 
most relevant applications are prediction and classification (supervised or unsuper-
vised). As for time series data availability, the significant advances in data storage, 
collection, and processing produced during the last decades have made available a 
large amount of data which is growing exponentially. Unfortunately, most of this 
data remains unlabelled, making it useless for some critical applications such as 
supervised learning.

With the ever-increasing growth rate of available data, we need scalable tech-
niques to process it. Clustering serves as a solution for extracting valuable insights 
from unlabelled data, allowing a vast quantity of this data to be processed efficiently. 
Clustering can be defined as the task of grouping a set of objects into different sub-
sets, or clusters, where the objects in each subset share certain common character-
istics. Since it does not require human supervision or hand-labeling, clustering is 
classed as an unsupervised learning technique. This makes clustering particularly 
suited to keeping pace with the influx of available data.

Although time series are usually considered a collection of data points sorted 
chronologically, they can also be regarded as a single object (Kumar and Nagab-
hushan 2006) and, therefore, subject to clustering. In scenarios involving significant 
volumes of time series data, clustering is especially helpful in discovering patterns. 
In the case of rare patterns, it facilitates anomaly and novelty detection, while for 
frequent patterns, it aids in prediction and recommendation tasks (Aghabozorgi 
et al. 2015). Examples of such applications include detecting web traffic anomalies 
in Informatics (Lakhina et  al. 2005) and gene classification in Biology (McDow-
ell et al. 2018). Time series clustering can also serve as a pre-processing technique 
for other algorithms such as rule discovery, indexing, or classification (Aghabozorgi 
et al. 2015).

Despite the crucial role of time series clustering across diverse fields, existing 
approaches often struggle with the complexity of high-dimensional, noisy real-
world time series data. Furthermore, while automated feature extraction methods 
have shown success, they require more parameters, data, and longer training periods, 
as discussed in Section 2. There is, therefore, a need for more efficient, accurate, and 
scalable methods for time series clustering.

In this paper, we make several contributions to the field of time series clustering. 
In Section  3, we introduce R-Clustering, a novel time series clustering algorithm 
that uses convolutional architectures with static, randomly selected kernel param-
eters. This approach addresses the challenge of scalability and resource-intensive 
training, prevalent in current methods. Subsequently, in Section  4 we provide a 
comprehensive evaluation of R-Clustering, benchmarking its performance against 



1 3

Time series clustering with random convolutional kernels﻿	

state-of-the-art methods through the use of the UCR archive (Dau et  al. 2019; 
Keogh and Folias 2002) and detailed statistical analyses. We contrast R-Cluster-
ing against eight other reference clustering algorithms across diverse time series 
datasets. Remarkably, R-Clustering outperforms the other algorithms in 33 data-
sets, with the second-best performing algorithm leading in only 13. It achieves the 
highest mean rank and is also the fastest algorithm across the datasets evaluated. 
We further demonstrate its scalability for larger datasets in terms of the number of 
time series and time series length. As an auxiliary contribution, we also present the 
results of a method aimed to enhance clustering algorithms that rely on Euclidean 
distance. The results indicate improved clustering quality for the tested algorithms, 
yet R-Clustering still prevails despite such advancements. These findings highlight 
the superior performance and scalability of R-Clustering, showing its potential for 
use in large-scale applications.

2 � Related work

In this section, we will first review the most relevant methods for time series cluster-
ing. Then, our focus will shift to feature extraction methods applied to 2D and 1D 
data: this discussion will cover the general applications of these methods and make 
a distinction between those methods that use learnable kernels and those that use 
static kernels. To conclude, we will explore the potential application of static kernel 
methods to time series clustering.

2.1 � Different approaches to time series clustering

Different approaches to the clustering of time series, according to Aghabozorgi 
et  al. (2015), can be classified into three groups: model-based, shape-based, and 
feature-based. In the model-based methods, the time series are adjusted to a para-
metric model; since the parameters do not have a time series structure, a universal 
clustering algorithm is applied. Some popular parametric models are autoregressive-
moving-average (ARMA) models or the Hidden Markov Model. However, these 
techniques might not accurately model high-dimensional and noisy real-world time 
series (Längkvist et  al. 2014). Existing methods that may address the noise issue, 
such as wavelet analysis or filtering, often introduce lag in the processed data, reduc-
ing the prediction accuracy or the ability to learn significant features from the data 
(Yang and Wu 2006).

In the shape-based approach, the clustering algorithm is applied directly to the 
time series data with no previous transformation. Unlike the model-based approach, 
these methods employ a clustering method equipped with a similarity measure 
appropriate for time series. For instance, (Paparrizos and Gravano 2015) introduce 
the k-shape algorithm with a shape-based approach. In this work, the authors suggest 
that feature-based strategies may be less optimal due to their domain dependence, 
requiring the modification of the algorithms for different datasets. Others, like the 
Unsupervised Salient Subsequence Learning model (USSL), utilize pseudo-labels 



	 M.B Jorge and C. Rubén

1 3

and spectral analysis to discover shapelets (salient subsequences) without requir-
ing labeled data (Zhang et al. 2018). A different approach in shape-based clustering 
involves utilizing a universal clustering algorithm, such as the widely used K-means 
algorithm (MacQueen 1967), along with a suitable distance measure that considers 
the unique characteristics of time series data, such as dynamic time warping (DTW), 
introduced by Berndt and Clifford (1994). DTW is known for its effectiveness in 
time series clustering. Its computational demand, however, can vary significantly 
based on the chosen implementation and warping window, making it generally more 
intensive than the Euclidean distance. The latter, often employed in the K-means 
algorithm (Likas et al. 2003), has a complexity of O(n) (Jain et al. 1999), indicating 
a more straightforward computational requirement.

Feature-based methods first extract relevant time series features and later apply a 
conventional clustering algorithm (Aghabozorgi et al. 2015). As we will see in the 
next section, feature-based algorithms have been proven quite successful for image 
clustering and classification. According to (Bengio et al., 2013, p. 1798), the per-
formance of machine learning algorithms relies strongly on the correct choice of 
feature representation.

2.2 � Feature extraction

The incorporation of expert knowledge has been shown to improve machine learning 
performance, as demonstrated by previous research such as Bengio et al. (2013) and 
Sebastiani (2002). Traditionally, this has been achieved through the manual design 
of feature extractors based on the specific task. Examples of such strategy include 
Lowe’s algorithm (Lowe 1999) for image feature extraction using hand-designed 
static filters to induce specific invariances in the transformed data. Also, it is well 
known that the discrete Gaussian kernel can be used to perform a wide range of fil-
tering operations, such as low-pass filtering, high-pass filtering, and band-pass filter-
ing (Kailath 1980). In the context of digital signal processing, FIR (Finite Impulse 
Response) filters operate by applying a weight set, or “coefficients", to a selection 
of input data to calculate an output point, essentially a discrete convolution opera-
tion (Proakis and Manolakis 1996). It is important to remark, however, that this pro-
cess requires manual calibration of the filter to selectively allow certain frequencies 
through while suppressing others. These techniques, while effective, present scal-
ability limitations due to their dependency on human supervision for the design pro-
cess. As data volumes continue to grow exponentially, there is an increasing need 
for automated feature extraction techniques that can efficiently handle large datasets 
without the extensive requirement for expert knowledge.

In some domains, such as the 2D shape of pixels in images or time series having 
a 1D structure, it is possible to learn better features using only a basic understanding 
of the input as an alternative to incorporating expert knowledge. In images and time 
series data, patterns are likely to reproduce at different positions, and neighbours 
are likely to have strong dependencies. The existence of such local correlations is 
the basis for applying a local feature extractor all over the input and transforming it 
into a feature map of a similar structure. A convolution operation usually performs 



1 3

Time series clustering with random convolutional kernels﻿	

this task with a convolutional kernel (Bengio et al., 2013, p. 1820). The use of local 
feature extractors has several benefits in machine learning. First, it allows for the 
efficient extraction of relevant features from large datasets without requiring expert 
knowledge. Second, it can improve the accuracy of machine learning models by cap-
turing local correlations in the input data. Finally, it can reduce the dimensionality 
of the input data, making it easier to process and analyze. The academic community 
has achieved substantial advances during the last decade applying this technique to 
the problems of image classification (Krizhevsky et al. 2012), time series forecasting 
(Greff et al. 2016) or time series classification (Ismail Fawaz et al. 2019) among oth-
ers. In the field of time series clustering, (Ma et al. 2019) have developed a convolu-
tional model with deep autoencoders.

From another perspective, spectral clustering (Shi and Malik 2000; Von Luxburg 
2007) offers significant advances in unsupervised feature selection. Li et al. (2012) 
perform spectral clustering and feature selection at the same time while imposing a 
negative constraint in the objective function boosting performance. Shi et al. (2014) 
addresses the challenge of selecting features that are not only relevant but also robust 
to variations and noise within the data. Additionally, (Li and Tang 2015) introduces 
measures to explicitly manage feature redundancy. Within the field of time series 
clustering, (Zhang et al. 2018) leverage spectral analysis and pseudo-labels to dis-
cover discriminative shapelets, improving clustering accuracy.

2.2.1 � Feature extraction with learnable kernels

In most convolution algorithms, kernel weights are typically learnt during the train-
ing process, as described in Bengio et al. (2013). Over the last few years, the aca-
demic community has been actively exploring the applications of such convolu-
tional architectures for tasks such as image classification and segmentation. This is 
illustrated by works like Ciresan et al. (2011); Pereira et al. (2016), and Krizhevsky 
et al. (2012). These models use convolutional layers in neural networks to transform 
image data, refining and compressing the original input into a compact, high-level 
feature representation. The architecture then applies a linear classification algorithm 
on this condensed feature representation as the final step.

Some authors have applied convolutional architectures to the problem of image 
clustering, as described in Caronet al. (2018) and Xie et al. (2016). In both models, 
a network transforms input data into an enhanced feature representation, followed 
by a clustering algorithm. This dual optimization approach adjusts both the net-
work weights and the clustering parameters simultaneously. The first model predicts 
input labels based on the clustering results, and then the error in these predictions is 
backpropagated through the network to adjust the network parameters. The second 
model utilizes an autoencoder with a middle bottleneck. The network parameters are 
first optimized using the reconstruction loss. Then, the decoder section of the archi-
tecture is discarded and the output features from the bottleneck form the new data 
representation. This condensed data representation is then processed by a clustering 
algorithm.

Convolutional neural networks (CNNs) have also become increasingly popular 
in the field of time series analysis due to their ability to capture local patterns and 



	 M.B Jorge and C. Rubén

1 3

dependencies within the data. For example, (Wang et  al. 2017) proposed a model 
that uses a combination of 1D and 2D CNNs to extract both temporal and spatial 
features from multivariate time series data. Another model, proposed by Zhao et al. 
(2017), uses a dilated convolutional neural network to capture long-term dependen-
cies in time series data. More recently, Ismail Fawaz et al. (2019) used deep con-
volutional neural networks for time series classification achieving state-of-the-art 
results. Despite the success of CNN-based models in time series analysis, there are 
still challenges that need to be addressed. One challenge is the selection of appro-
priate hyperparameters, such as the number of filters and the filter size, which can 
greatly affect the performance of the model.

A key challenge in feature extraction lies in identifying features that not only 
provide strong individual discriminatory power but also minimize redundancy. The 
Catch22 feature set Lubba et al. (2019) addresses this challenge through a three-step 
process. It begins with a statistical prefiltration to identify features that individually 
possess discriminatory power across. Next, the remaining features are evaluated for 
their classification performance across a diverse range of datasets. Finally, redun-
dancy is minimized. With a different focus, (Ma et  al. 2019) recently proposed a 
novel clustering algorithm for time series data that builds upon previous image clus-
tering techniques. The model leverages an autoencoder to obtain a reconstruction 
loss, which measures the difference between the original time series and its recon-
structed version. Simultaneously, the model employs a clustering layer to predict the 
labels of the time series, which is used to compute a prediction loss. By combining 
both losses, the model jointly optimizes the parameters of the network and the clus-
tering parameters. This approach allows for more accurate clustering of time series 
data, as it considers both the reconstruction error and the predicted labels.

Deep learning faces considerable challenges due to the complexity of its mod-
els, which typically involve multiple layers and a significant number of parameters 
(Goodfellow et  al. 2016; Bengio et  al. 2013). This complexity results in practical 
issues, including the requirement for substantial computational resources and vast 
amounts of training data. There is also the potential for overfitting and the necessity 
for fine-tuning to optimize the model’s performance.

When deep learning is applied to time series analysis, further complications 
arise. Time series data exhibit unique characteristics like temporal dependencies and 
seasonal patterns, requiring specialized treatment as indicated by Wang et al. (2017) 
and Ismail Fawaz et al. (2019). In addition to the challenges associated with deep 
learning models, time series data also pose unique challenges due to their often high-
dimensional and highly variable nature (Längkvist et al. 2014). This can make it dif-
ficult to select appropriate hyperparameters and optimize the model’s performance.

2.2.2 � Feature extraction with static random kernels

Convolutional models with static parameters offer a distinct approach to feature extrac-
tion. Instead of learning the weights of the convolutional filters during the training pro-
cess, these models use fixed or static parameters, resulting in faster computation times 
and simpler architectures (Bengio et al. 2013). The works of Huang (2014) and Jar-
rett et al. (2009) support this approach, demonstrating that convolutional models with 



1 3

Time series clustering with random convolutional kernels﻿	

weights that are randomly selected, or random kernels, can successfully extract relevant 
features from image data. Additionally, Saxe et al. (2011) argue that choosing the right 
network design can sometimes be more important than whether the weights of the net-
work are learned or random. They showed that convolutional models with random ker-
nels are frequency selective and translation invariant, which are highly desirable prop-
erties when dealing with time series data.

Dempster et al. (2020) provide evidence that convolutional architectures with ran-
dom kernels are effective for time series analysis. The authors of the paper demon-
strate that their proposed method, called ROCKET (Random Convolutional KErnel 
Transform), achieves state-of-the-art accuracy on several time series classification tasks 
while requiring significantly less computation than existing methods. The authors fur-
ther improved the efficiency of their method by introducing MiniRocket (Dempster 
et al. 2021), an algorithm that runs up to 75 times faster than ROCKET on larger data-
sets, while maintaining comparable accuracy

Motivated by the success of random kernels applied to the problem of feature 
extraction of time series and image data, we propose a simple and fast architecture for 
time series clustering using random static kernels. To the best of our knowledge, this is 
the first attempt to use convolutional architectures with random weights for time series 
clustering. This approach eliminates the need for an input-reconstructing decoder or a 
classifier for parameter adjustments, commonly found in previous time series clustering 
works. Instead, the method applies the convolution operation with random filters over 
the time series input data to obtain an enhanced feature representation, which is then 
fed into a K-means clustering algorithm. By eliminating the need for a reconstruction 
loss or classification loss, our method is more efficient and easier to implement than 
existing methods for time series clustering. We have conducted several experiments to 
test the effectiveness and scalability of the algorithm, and our results show that it out-
performs current state-of-the-art methods. As such, our research provides a substantial 
contribution to the field of time series clustering, offering a promising new avenue for 
further advancements.

3 � Methodology

This section explains the proposed clustering algorithm and the evaluation methods, 
including a statistical analysis. We use the UCR archive (Dau et al. 2019) as our data 
source in this study, a vital tool for time series researchers, with over one thousand 
papers employing it. Our study is based on the 2018 version, which consists of 128 uni-
variate time series datasets of different types: devices, ECGs, motion tracking, sensors, 
simulated data, and spectrographs. From these, we exclude 11 datasets with time series 
of variable lengths.

3.1 � Clustering algorithm

We introduce R-Clustering, a new algorithm for time series clustering, which is 
composed of three stages of data processing elements connected in series. The first 



	 M.B Jorge and C. Rubén

1 3

element is a feature extractor, comprised of a single layer of static convolutional 
kernels with random values. This extractor transforms the input time series into an 
enhanced data representation. The second processing element employs Principal 
Component Analysis (PCA) (Pearson 1901; Jolliffe 2002) for dimensionality reduc-
tion, selecting a combination of features that account for most of the variance in the 
input data. The last element is a K-means algorithm that utilizes Euclidean distance, 
thereby providing the algorithm with its clustering capabilities. Next, we describe 
each of these elements in detail.

3.1.1 � Feature extraction

For the feature extractor, we propose a modified version of the one used in Mini-
rocket (Dempster et al., 2021, p. 251), which is based on a previous algorithm called 
ROCKET. In particular, we employ randomly selected values for the bias and adjust 
the configuration of the hyperparameters to better suit the distinct challenge of clus-
tering. We have conducted an optimization process of the hyperparameters (kernel 
length and number of kernels in this case). To avoid overfitting the UCR archive, we 
have chosen a development set of 41 datasets, the same group of datasets used in the 
original algorithm (ROCKET).

Our feature extractor is composed of 500 kernels, each of length 9, optimized 
for clustering quality as the result of a hyperparameter search detailed in Section 1. 
The kernel weights are restricted to either 2 or -1. As Dempster et al. (2021) dem-
onstrated, constraining the weight values does not significantly compromise perfor-
mance, but it substantially enhances efficiency.

Dilations represent another significant parameter in the model. Dilation in 1D 
kernels refers to the expansion of the receptive field of a convolutional kernel in 
one dimension. This expansion is achieved by inserting gaps between the kernel ele-
ments, which increases the distance between the elements and allows the kernel to 
capture information from a larger area. This technique expands the receptive field of 
the kernel, allowing them to identify patterns at various scales and frequencies. Our 
model follows the configuration proposed by Dempster et al. (2021), which employs 
varying dilations adapted to the specific time series being processed, to ensure rec-
ognition of most potential periodicities and scales in the data. The number of dila-
tions is a fixed function of the input length and padding.

Another relevant configuration parameter is the selection of the bias values, 
which is performed as follows: firstly, each kernel is convolved with a time series 
selected at random from the dataset. Then, the algorithm draws the bias values ran-
domly from the quantiles of the result of the convolution. This process ensures that 
the scale of the bias values aligns with that of the output.

After the convolution of the input series with these kernels under the mentioned 
configuration, the proportion of positive values (PPV) of the resulting series is cal-
culated. The transformed data consists of 500 features (the same as the number of 
kernels) with values between 0 and 1.

A thorough examination of the original feature extractor stage reveals there are 
artificial autocorrelations, not from the time series data, produced by the imple-
mentation of the algorithm. This behaviour could affect the performance of the 



1 3

Time series clustering with random convolutional kernels﻿	

clustering stage of R-Clustering, or a future algorithm using this feature extractor 
because it would likely detect these unnatural patterns. Also, these patterns could 
mask legitimate features of time series, obtaining misleading results. We have iden-
tified the origin of this issue in the selection of the bias values. For a time series X 
convolved with a kernel W PPV is computed as the proportion of positive values 
of (W ∗ X − bias) where ∗ denotes convolution. To determine the bias values, our 
original algorithm selects a training instance X and calculates its convolution with 
the specified dilation d and kernel: W

d
 . The quantiles of the resulting convolution 

output are used as the bias values. In the implementation of the original algorithm, 
we identified how the sorting of bias values produced artificial autocorrelations. To 
rectify this, we have randomly permuted them, effectively removing the artificial 
autocorrelations. (see Section 4.1 for a detailed description of the output of the fea-
ture extractor after and before the modification).

3.1.2 � Dimensionality reduction with principal component analysis

The “curse of dimensionality" can potentially impact the performance of the 
K-means clustering in the third stage of our algorithm, particularly given our high-
dimensional context with 500 features, as detailed in the previous subsection. In 
high-dimensional space, the distance between data points becomes less meaning-
ful, and the clustering algorithm may struggle to identify meaningful clusters (Beyer 
et al. 1999). This is because the distance between any two points tends to become 
more uniform, leading to the loss of meaningful distance metrics. As the number of 
dimensions increases, the volume of the space increases exponentially, and the data 
becomes more sparse, making it difficult to identify meaningful clusters (Aggarwal 
et  al. 2001). For these reasons, it is convenient to reduce the number of features 
to improve the performance of K-means clustering in the context of a high-dimen-
sional space. In our particular case, due to the random nature of the kernel weights 
used in the convolutions with the input data, we expect that many components of 
the transformed data may not be significant. Hence, implementing a dimensionality 
reduction method can be beneficial in multiple ways.

We propose using Principal Component Analysis (PCA), a dimensionality reduc-
tion technique that can identify the crucial dimensions or combinations of dimen-
sions that account for the majority of data variability. Given that our problem is 
unsupervised, PCA is especially suitable: it focuses on the inherent statistical pat-
terns within the data, independently of any evaluation algorithm. As to why not 
using PCA directly to the time series data and skipping the convolution transforma-
tion, PCA does not take into account the sequential ordering of data, therefore it 
may not fully capture the underlying structure of the time series.

One challenge associated with implementing PCA is determining the optimal 
number of principal components to retain, which will define the final number of 
features. Common techniques for this include the elbow method and the Automatic 
Choice of Dimensionality for PCA (Minka 2000). The elbow method involves visu-
alizing the explained variance as a function of the number of components, with the 
elbow in the plot suggesting the optimal number. However, because this technique 
relies on visual interpretation, it may not be suitable for our automated algorithm. 



	 M.B Jorge and C. Rubén

1 3

The second method, based on Bayesian PCA, employs a probabilistic model to esti-
mate the optimal number of dimensions. This method, while powerful, might not 
always be applicable, particularly in the context of high-dimensional data like time 
series, where it may be challenging to satisfy the assumption of having more sam-
ples than features.

We therefore opt to determine the number of components by analyzing the 
explained variance of the data introduced by each additional dimension until the 
increase in variance becomes insignificant. We consider increments of 1% to be 
insignificant. As demonstrated by experiments from Beyer et al. (1999), the num-
ber of selected dimensions typically lies between 10 and 20. Beyond this range, the 
effect of the curse of dimensionality can lead to the instability of algorithms based 
on Euclidean distance.

In summary, we incorporate an additional stage into our algorithm that employs 
Principal Component Analysis (PCA) to reduce the dimensionality of the features 
prior to the implementation of the K-means algorithm.

3.1.3 � K‑means with Euclidean distance

The findings in Section 4.1, demonstrating the absence of artificial autocorrelations 
in the output of the first stage, along with the dimensionality reduction via Principal 
Component Analysis (PCA) of the second stage, suggest that our algorithm’s trans-
formation considerably reduces the time series properties of the features following 
the first two stages. This reduction simplifies the problem, making it more amenable 
to traditional raw data algorithms which are typically less complex and less demand-
ing in terms of computational resources compared to algorithms designed specifi-
cally for time series data, such as those using Dynamic Time Warping (DTW) or 
shape-based distances. Consequently, in the third stage of R-Clustering, we adopt 
a well-established clustering technique: the K-means algorithm with Euclidean dis-
tance. This combination is widely recognized and has been extensively tested within 
the scientific community for clustering problems (Jain et al. 1999; Likas et al. 2003. 
K-means partitions data into a number K (set in advance) of clusters by iteratively 
assigning each data point to the nearest mean center (centroid) of a cluster. After 
each new assignment, the centroids are recalculated. When the training process fin-
ishes, the resulting centroids can be used to classify new observations. To evalu-
ate the nearest centroid, a distance metric must be defined. Using the Euclidean 
distance will result in a more efficient algorithm since it has a time complexity of 
O(n) . In contrast, using DTW as a distance metric would result in a time complexity 
O(n2) . Figure 1 provides a schema of R-Clustering algorithm and its stages.

3.2 � Evaluation method

To the authors’ knowledge, the benchmark presented (Javed et  al. 2020) is the 
only comparison of time series clustering methods using the widely adopted UCR 
archive. Their benchmark evaluates eight popular methods across partitional, den-
sity-based, and hierarchical clustering, utilizing Euclidean, Dynamic Time Warping, 



1 3

Time series clustering with random convolutional kernels﻿	

and shape-based distance measures. To evaluate the performance of R-Clustering, 
we adopt the dataset and methodology defined in this benchmark. Their study 
employs 112 datasets without pre-processing, ensuring uniform-length time series 
and a known number of clusters (excluding those with less than two classes). The 
use of established clustering methods and dataset-level assessment with the ARI 
metric provides a robust framework to isolate the impact of each method. We adhere 
to these evaluation procedures, ensuring a fair and direct comparison to the bench-
mark study. The number of clusters for each dataset is known in advance since the 
UCR archive provides labels, and this number is used as an input for the cluster-
ing algorithms in the benchmark and R-Clustering algorithm. In case the number of 
clusters was not known, different methods exist to estimate them, such as the elbow 
method (Thorndike 1953), but evaluating these methods is not part of the bench-
mark’s paper or this paper.

In addition to these comparisons, we also employed the technique of optimiz-
ing the warping window width w in Dynamic Time Warping (DTW) for cluster-
ing time series data, as proposed by Dau et al. Dau et al. (2018). This method uses 
pseudo user annotations to automatically determine the optimal w value. The algo-
rithm starts by randomly sampling objects from the dataset and generating warped 
copies of these instances. These warped instances are reintroduced into the dataset 
with a ‘must-link’ constraint, mimicking the scenario where they should naturally 
fall into the same cluster as their original counterparts. This pseudo-annotated data-
set serves as the basis for identifying the optimal w value in DTW-based clustering 
algorithms. Empirical validation in the originating study showed the effectiveness of 

Fig. 1   The figure illustrates the various steps involved in R-Clustering algorithm: 1)Initially, the input 
time series is convolved with 500 random kernels. Following this, the Positive Predictive Value (PPV) 
operation is applied to each of the convolution results, generating 500 features with values spanning 
between 0 and 1. 2) The next phase involves applying Principal Component Analysis (PCA) for dimen-
sionality reduction. This procedure results in a more manageable set of features, reducing the original 
500 to between 10 and 20 (For illustrative purposes, we employ t-SNE on this PCA-reduced data to cre-
ate a 2D visualization). Finally, the processed and dimensionality-reduced data are clustered using the 
K-means algorithm



	 M.B Jorge and C. Rubén

1 3

this approach in enhancing clustering performance. Our experiments confirm these 
findings, thereby substantiating the value of this technique for automating the selec-
tion of w in time series clustering tasks. Building on this, we establish an alterna-
tive benchmark featuring an improved baseline. For this, we select top-performing 
algorithms and apply the w-optimization technique to those amenable to. Consist-
ent with the original study, we experimented with warping windows ranging from 1 
(Euclidean) to 20.

Several metrics are available for the evaluation of a clustering process, such as 
Rand Index (RI) (Rand 1971), Adjusted Mutual Information (Vinh et al. 2009) or 
Adjusted Rand Index (ARI) (Hubert and Arabie 1985). Among these, ARI is par-
ticularly advantageous because its output is independent of the number of clusters 
while not adjusted metrics consistently output higher values for a higher number of 
clusters (Javed et al. 2020). It is essentially an enhancement of the RI, adjusted to 
account for randomness. Additionally, Steinley (2004) explicitly recommends ARI 
as a superior metric for evaluating clustering performance. Based on these reasons 
and for comparability with the benchmark, we use the Adjusted Rand Index (ARI) 
to evaluate R-Clustering. This choice also ensures compatibility with the benchmark 
study, facilitating meaningful comparisons of our results. As the problem of finding 
the optimal partition of n data points into k clusters is an NP-hard problem with a 
non-convex loss function, we run the algorithm multiple times with different ran-
domly initialized centroids to avoid local minima and enhance performance. Specifi-
cally, in line with the procedure adopted in the benchmark study, the algorithm is 
executed ten times, each time with differently randomly initialized centroids. The 
initialization is randomly chosen for every algorithm evaluated and for each of the 
ten runs.

In comparing the performance of various algorithms, we adhere to the methods 
used in the benchmark study. Specifically, we calculate the following: the number 
of instances where an algorithm achieves the highest Adjusted Rand Index (ARI) 
score, denoted as the ‘number of wins’; and the mean rank of all algorithms. Results 
in Subsections  4.3 and 4.4 indicate that R-Clustering outperforms the other algo-
rithms, even those improved with the w-optimization technique, across all these 
measures, demonstrating its efficacy. We also conducted statistical tests to determine 
the significance of the results and considered any limitations or assumptions of the 
methods.

The problem of comparing multiple algorithms over multiple datasets in the con-
text of machine learning has been treated by several authors (Demšar 2006; Gar-
cia and Herrera 2008; Benavoli et al. 2016). Following their recommendations, we 
first compare the ranks of the algorithms as suggested by Demšar (2006) and use 
the Friedman test to decide whether there are significant differences among them. 
If the test rejects the null hypothesis (‘there are no differences"), we try to estab-
lish which algorithms are responsible for these differences. As Garcia and Herrera 
(2008) indicate, upon a rejection of the null hypothesis by the Friedman test, we 
should proceed with another test to find out which algorithms produce the differ-
ences, using pairwise comparisons. Following the recommendations of the authors 
of the UCR archive, (Dau et al. 2019; Keogh and Folias 2002, we choose the Wil-
coxon sign-test for the pairwise comparisons between R-Clustering algorithm and 



1 3

Time series clustering with random convolutional kernels﻿	

the rest. As outlined in Subsection 4.3, we initially conduct comparisons between 
all the algorithms in the original benchmark and R-Clustering, employing the lat-
ter as a control classifier to identify any significant differences. The results indicate 
that R-Clustering’s superior performance compared to the other algorithms is statis-
tically significant.

Additionally, to enhance the insights provided by the benchmark study and fol-
lowing the suggestions from Garcia and Herrera (2008), we carry out a new experi-
ment that involves pairwise comparisons among all possible combinations within 
the set comprising of the benchmark algorithms and R-Clustering.

3.3 � Implementation and reproducibility

We use the Python 3.6 software package on a Windows OS with 16GB RAM, and 
Intel(R) Core(TM) i7-2600 CPU 3.40GHz processor for implementing the algo-
rithms. In our study, we use a variety of reputable libraries that have been widely 
used and tested, therefore ensuring reliability. These include:

•	 aeon, a Python library for time series tasks such as forecasting, classification, 
and clustering. It is used for extracting data from the UCR archive.

•	 sktime (Löning et  al. 2019), a standard Python library used for evaluating the 
Agglomerative algorithm.

•	 The code from Paparrizos and Gravano (2015), which we utilize to evaluate the 
computation time of the K-shape algorithm.

•	 scikit-learn (Pedregosa et al. 2011), employed to execute the K-means stage of 
R-Clustering and evaluate the adjusted rand index.

•	 Functions provided in Ismail Fawaz et al. (2019), used for calculating statistical 
results.

We make our code publicly available1 and base our results on a public dataset. This 
provides transparency and guarantees full reproducibility and replicability of the 
paper following the best-recommended practices in the academic community.

4 � Results

This section begins with an investigation of the outputs generated during the fea-
ture extraction stage, as explicated in Section 3.1.1. We continue with a search for 
optimal hyperparameters by examining various algorithm configurations. Following 
this, we present the results of R-Clustering algorithm evaluated against the algo-
rithms in the benchmark study (Javed et al. 2020), including a scalability study and 
a full statistical comparison, first using R-Clustering as a control classifier and sub-
sequently comparing each algorithm against the others. We conclude the section by 

1  https://github.com/jorgemarcoes/R-Clustering



	 M.B Jorge and C. Rubén

1 3

comparing R-Clustering against an enhanced baseline of top-performing algorithms, 
enhanced with the “optimized w” method when applicable.

4.1 � Analysis of the Feature Extraction Stage Output

Figure  2 shows a sample time series from the UCR archive, while Fig.  3 (left) 
illustrates its transformation through the original feature extractor, highlighting 
evident autocorrelations. To analyze these autocorrelation properties, we employ 
the Ljung-Box test, whose null hypothesis is that no autocorrelations exist at a 
specified lag. As expected from observing Fig.  3 (left), the test rejects the null 
hypothesis for every lag at 95% confidence level, therefore we assume the pres-
ence of autocorrelations. To find out whether these periodic properties originate 
in the time series data, we introduce noisy data in the feature extractor, repeat the 
Ljung-Box test, and still observe autocorrelations at every lag. This observation 
leads us to conclude that the original feature extractor introduces artificial auto-
correlations, which are not inherent to the input time series. After modifying the 
algorithm as explained in Section 3.1.1 and introducing the same noise, we rerun 
the Ljung-Box test. In contrast to the previous findings, the test does not reject 
the null hypothesis at any lag. Thus, we assume the absence of autocorrelations, 
indicating that the modified feature extractor works as intended, that is producing 

Fig. 2   Sample time series from 
the Fungi dataset included in the 
UCR archive. The dataset con-
tains high-resolution melt curves 
of the rDNA internal transcribed 
spacer (ITS) region of 51 strains 
of fungal species. The figure 
shows the negative first deriva-
tive (-dF/dt) of the normalized 
melt curve of the ITS region of 
one of such species

Fig. 3   Transformed sample time series from Fungi dataset (Fig.  2) with the original feature extractor 
from Minirocket (left) and the modified feature extractor (right)



1 3

Time series clustering with random convolutional kernels﻿	

noisy data from noisy inputs. For a sample transformation of a time series with 
the updated feature extractor (see Fig. 3, right).

4.2 � Search for optimal hyperparameters

We explore several configurations of the algorithm and the effect on clustering 
quality. We focus on the main hyperparameters, specifically the kernel length and 
the number of kernels. For comparison, we set the number of kernels to range 
from 100 to 20,000 and kernel lengths to range from 7 to 13 and test various 
combinations across these entire ranges. We evaluated 20 combinations of hyper-
parameters on the development set. Among these, the combination of 500 kernels 
of length 9 yielded the highest number of wins (6) and the best mean rank (8.12), 
as shown in table 1. Based on these results, we selected the configuration of 500 
kernels of length 9. Not only did this configuration obtain top positions in two of 
three categories, but its use of 500 kernels also made it faster than competitors 
utilizing 1000 or more kernels.

4.3 � Analysis of R‑clustering in the context of an existing benchmark

In this subsection, we evaluate the performance of R-Clustering on validation 
datasets against algorithms from the existing clustering benchmark (Javed et al. 
2020), employing the same procedures used in the benchmark. We conduct a sta-
tistical analysis in line with the recommendations from the creators of the UCR 
archive and conclude with the results of the scalability study.

4.3.1 � Performance of R‑clustering algorithm

We compare the performance of R-Clustering to the other algorithms of the 
benchmarks over the validation datasets under several perspectives using the ARI 
metric. We count the number of wins considering that ties do not sum and cal-
culate the mean rank. R-Clustering obtains the highest number of wins (33) fol-
lowed by Agglomerative (13) (see Table  2) and the best mean rank (3.47) fol-
lowed by K-means-DTW (4.47) (see Table 3)

In addition, we perform a statistical comparison of R-Clustering with the 
rest of the algorithms, in line with the recommendations provided by Dau et al. 
(2019) and Demšar (2006). These recommendations suggest comparing the rank 
of the classifiers on each dataset. Initially, we perform the Friedman test (Fried-
man 1937) at a 95% confidence level, which rejects the null hypothesis of no 
significant difference among all the algorithms. According to Benavoli et  al. 
(2016), upon rejecting the null hypothesis, it becomes necessary to identify 
the significant differences among the algorithms. To accomplish this, we con-
duct a pairwise comparison of R-Clustering versus the other classifiers using 
the Wilcoxon signed-rank test at a 95% confidence level. This test includes the 



	 M.B Jorge and C. Rubén

1 3

Holm correction for the confidence level, which adjusts for family-wise error 
(the chance of observing at least one false positive in multiple comparisons). 
Table  4 presents the p-values from the Wilcoxon signed-rank test comparing 
R-Clustering with each of the other algorithms, together with the adjusted alpha 

Table 1   Results for different 
hyperparameters configurations 
across the development set

The first term represents the number of kernels and the second is the 
kernels’ length. For instance, 500-9’ stands for a configuration with 
500 kernels of length 9

Algorithm Mean Rank Win-
ning 
Count

500-9 8.5 6
100-13 13.3 4
100-9 11.7 4
5000-9 9.6 3
100-7 14.7 2
10000-9 9.1 2
100-11 13.0 2
1000-11 8.5 2
10000-13 11.3 1
500-13 11.2 1
500-7 10.8 1
1000-9 9.3 1
1000-13 10.4 1
10000-7 9.4 1
1000-7 9.9 1
5000-13 11.2 0
5000-7 10.0 0
500-11 8.9 0
10000-11 9.8 0
5000-11 9.4 0

Table 2   Number of wins 
for each algorithm over the 
validation datasets in terms of 
best ARI

Algorithm Winning count

R-Clustering 33
Agglomerative (Euclidean) 13
K-Shape 10
Density Peaks (DTW) 5
K-means (DTW) 4
K-means (Euclidean) 3
C-means (Euclidean) 2
K-medoids (Euclidean) 1
Density Peaks (Euclidean) 1



1 3

Time series clustering with random convolutional kernels﻿	

values. The statistical rank analysis can be summarized as follows: R-Clustering 
emerges as the best-performing algorithm with an average rank of 3.47 as pre-
sented in Table  3. The pairwise comparisons using R-Clustering as a control 

Table 3   Mean rank for 
R-Clustering and the rest of the 
algorithms considered in the 
benchmark

Algorithm Mean rank

R-Clustering 3.47
Agglomerative (Euclidean) 4.47
K-means (Euclidean) 4.49
K-means (DTW) 4.60
K-Shape 4.84
C-means (Euclidean) 5.20
K-medoids (Euclidean) 5.51
Density Peaks (Euclidean) 5.89
Density Peaks (DTW) 6.53

Table 4   Results of the Wilcoxon 
signed-rank test between 
R-Clustering and the rest of the 
algorithms in consideration

The left column indicates the algorithm R-Clustering is compared 
to, the second column indicates the p-value of the Wilcoxon signed-
rank test, and the third column the alpha value with the Holm cor-
rection at a 95% confidence level

Algorithm p-value alpha w/ 
Holm cor-
rection

Density Peaks (DTW) 0.000001 0.006
Density Peaks (Euclidean) 0.000010 0.007
K-Shape 0.000012 0.008
K-medoids (Euclidean) 0.000048 0.010
C-means (Euclidean) 0.000633 0.012
K-means (Euclidean) 0.001235 0.017
K-means (DTW) 0.004060 0.025
Agglomerative (Euclidean) 0.045667 0.050

Table 5   Results for 
R-Clustering, R-Clustering 
without PCA, and the rest of 
the algorithms considered in the 
benchmark

Algorithm Mean Rank Winning Count

R-Clustering 4.00 21
R-Clustering W/O PCA 4.07 17
Agglomerative (Euclidean) 5.09 8
K-means (Euclidean) 5.13 3
K-means (DTW) 5.26 3
K-Shape 5.43 9
C-means (Euclidean) 5.88 2
K-medoids (Euclidean) 6.20 1
Density Peaks (Euclidean) 6.66 1
Density Peaks (DTW) 7.30 5



	 M.B Jorge and C. Rubén

1 3

classifier indicate that R-Clustering presents significant differences in terms of 
mean rank with all other algorithms.

To conclude this subsection, we incorporate the performance results of 
R-Clustering algorithm without the PCA stage (See Table 5). This step is taken 
to validate and understand the contribution made by the PCA stage to the over-
all performance of the algorithm. In addition to being faster, R-Clustering out-
performs R-Clustering without the PCA stage. However, it is worth noting that 
R-Clustering without PCA still achieves significant results and secures the sec-
ond position across all three measured magnitudes.

4.3.2 � Computation time and scalability

In this subsection, we compare the computation time and scalability of R-Clustering 
algorithm with the Agglomerative algorithm and K-Shape, which are the second- 
and third-best performers based on winning counts. These two algorithms represent 
diverse approaches to time clustering, with Agglomerative employing a hierarchi-
cal strategy, and K-Shape utilizing a shape-based approach. The total computational 
time across all 117 datasets is 7 minutes for R-Clustering (43 minutes for R-Cluster-
ing without PCA), 4 hours 32 minutes for K-Shape, and 8 minutes for the Agglom-
erative algorithm. Nevertheless, it is important to highlight that the time complexity 
of the Agglomerative algorithm is O(n2) (De Hoon et al. 2004). This characteristic 
might pose computational challenges for larger datasets and may limit proper scal-
ability, as the subsequent experiment will show.

In the scalability study, we use two recent datasets not included in the bench-
mark: DucksAndGeese and InsectSound. The DucksAndGeese dataset consists of 
100 time series across 5 classes, making it the longest dataset in the archive with 
a length of 236,784 points. The InsectSound dataset comprises 50,000 time series, 
each with a length of 600 points and spread across 5 classes. The results are depicted 

Fig. 4   Performance on the DucksAndGeese dataset. The dataset size is fixed at 100 time series, with 
time series lengths varying. The graph depicts how changes in time series length impact the efficiency of 
the three algorithms



1 3

Time series clustering with random convolutional kernels﻿	

in Figs. 4, 5, which demonstrate the scalability of R-Clustering in terms of both time 
series length and size. R-Clustering scales linearly with respect to two parameters: 
the length of the time series and the number (or size) of time series in the data-
set. For smaller dataset sizes, Agglomerative algorithm performs the fastest, even 
for long time series. However, R-Clustering outperforms the other algorithms when 
dealing with moderate to large datasets.

Despite the fact that the training stage of the Agglomerative algorithm is faster 
for certain data sizes, it exhibits drawbacks in some applications. R-Clustering, like 
other algorithms based on K-means, can classify new data points easily using the 
centroids calculated during the training process. This is accomplished by assigning 
the new instance to the class represented by the nearest centroid. In contrast, the 
Agglomerative algorithm does not generate any parameter that can be applied to 
new instances. Consequently, when using Agglomerative to classify new data, the 
entire training process must be repeated, incorporating both the training data and the 
new observation.

4.3.3 � Statistical analysis of the benchmark

To strengthen the results of the cited benchmark, in accordance with the recommen-
dations provided by Garcia and Herrera (2008), we repeat the pairwise comparisons 
among each of the algorithms in the benchmark, not only with the newly presented 
method as a control classifier. The results are displayed in Table 7 in the appendix, 
which indicates which pairs of algorithms exhibit a significant difference in perfor-
mance regarding mean rank at a 95% confidence level. It is important to note that 
the threshold for alpha value is not fixed at 0.05, but it is adjusted according to the 
Holm correction to manage the family-wise error (Demšar 2006). In this compari-
son, we notice that R-Clustering doesn’t exhibit significant differences with certain 

Fig. 5   Comparative performance of the algorithms on the InsectSound dataset. The time series length 
is fixed at 600 points, while the size of the dataset varies. The graph illustrates the impact of changes in 
dataset size on the efficiency of the three algorithms



	 M.B Jorge and C. Rubén

1 3

algorithms as it did in the earlier comparison where it was the control classifier. The 
reason for this difference is the increased number of pairwise tests being conducted, 
which, in turn, diminishes the overall statistical power of the experiment.

While the authors of the UCR archive recommend the use of a critical differences 
diagram for illustrating these types of comparisons (Dau et al., 2019, p. 1296,1299), 
in our case, such a diagram would not provide much insight due to the large number 
of resultant groups. As a more informative alternative, we present the results in the 
aforementioned Table 7, clearly displaying the significant differences between each 
pair of algorithms.

4.4 � Analysis of R‑clustering against an improved baseline

We present the results of an enhanced benchmark that focuses on high-performing 
algorithms and integrates Dynamic Time Warping (DTW) optimization where suit-
able. We adjust the warping window width (w) as described in Section 3.2, for algo-
rithms that can replace the Euclidean distance with DTW. In this context, Euclidean 
distance is a specialized case of DTW when w is equal to 1. The algorithms selected 
for this DTW optimization are Agglomerative, K-means, and Density Peaks, as they 
are naturally amenable to DTW. The enhanced benchmark also features R-Cluster-
ing and K-Shape. However, the DTW optimization is not relevant for R-Clustering 
because it lacks a time series structure in its K-means stage and for K-Shape due to 
its inherent design.

4.4.1 � Performance gains and losses using an optimized warping window

We start by comparing the clustering quality and the computation time of the three 
mentioned algorithms: Agglomerative, K-means, and Density peaks, considering 
two different window settings: “Window 1" or Euclidean and “optimized w" (see 
Fig. 6) Our analysis utilizes 117 time series datasets from the UCR archive, exclud-
ing 11 with variable lengths from the 128 univariate dataset version. An essential 
observation is the trade-off between clustering quality and computational time. 
While the “optimized w" version generally achieves higher ARI scores across all 
algorithms, the computational time is significantly higher compared to ‘Window 
1" or Euclidean version. For instance, the K-means algorithm takes more than 150 
hours with “Optimized w", compared to just 12 minutes with “Window 1". This 
raises important considerations for real-world applications where time efficiency 
may be a crucial factor.

The p-values obtained through statistical testing provide additional insights. For 
Agglomerative, the p-value of 0.010 indicates that the difference in ARI scores 
between the two window settings is statistically significant. This suggests that the 
higher computational time for “optimized w" is justified by a significant improve-
ment in clustering quality. However, for K-means and Density Peaks, the p-values 
were above the 0.05 significance level, indicating that there is not enough evidence 
to reject the null hypothesis that both versions of the algorithm perform equally. 
Hence, the extra computational time may not be justifiable in these cases.



1 3

Time series clustering with random convolutional kernels﻿	

Fi
g.

 6
  

C
om

pa
ra

tiv
e 

ev
al

ua
tio

n 
of

 th
re

e 
cl

us
te

rin
g 

al
go

rit
hm

s:
 A

gg
lo

m
er

at
iv

e,
 K

-m
ea

ns
, a

nd
 D

en
si

ty
 P

ea
ks

, u
si

ng
 tw

o 
di

ffe
re

nt
 c

on
fig

ur
at

io
ns

: “
op

tim
iz

ed
 w

” 
an

d 
Eu

cl
id

-
ea

n 
w

in
do

w
 o

f s
iz

e 
1.

 T
he

 le
ft 

fig
ur

e 
di

sp
la

ys
 th

e 
nu

m
be

r o
f w

in
s 

fo
r e

ac
h 

al
go

rit
hm

 u
nd

er
 th

e 
tw

o 
se

tti
ng

s, 
ba

se
d 

on
 A

dj
us

te
d 

R
an

d 
In

de
x 

(A
R

I)
 s

co
re

s. 
Th

e 
rig

ht
 fi

gu
re

 
re

pr
es

en
ts

 th
e 

co
m

pu
ta

tio
na

l t
im

e 
re

qu
ire

d 
by

 e
ac

h 
al

go
rit

hm
 fo

r b
ot

h 
w

in
do

w
 c

on
fig

ur
at

io
ns

, i
n 

a 
lo

ga
rit

hm
ic

 sc
al

e



	 M.B Jorge and C. Rubén

1 3

The Agglomerative algorithm showed a clear advantage for “optimized w" both 
in terms of ARI. It may be particularly well-suited for scenarios where high per-
formance is a priority, and computational time is not a severe constraint. On the 
other hand, while K-means and Density peaks algorithms did show more wins with 
“optimized w", the large computational time and lack of statistical evidence call for 
caution. The choice between “optimized w" and “Window 1" may depend on the 
specific requirements of the application.

In conclusion, although the “optimized w" setting typically results in higher ARI 
scores, the trade-off comes in the form of significantly increased computational 
time. Together with the lack of statistical support in some cases, this suggests a care-
ful evaluation to choose the right version of the algorithm.

4.4.2 � Results with the improved benchmark

For the improved benchmark, we select top-performing algorithms: R-Clustering, 
Agglomerative, K-means, K-Shape, and Density Peaks. The “optimized w” method 
is applied to those algorithms susceptible to it, namely: Agglomerative, K-means, 
and Density Peaks. We evaluate clustering quality using the Adjusted Rand Index 
(ARI) across validation time series datasets from the UCR archive and assess the 
computation time across both the validation and development datasets. The results 
are summarized in Table 6.

As summarized in the table, the clustering quality reveals R-Clustering to be 
the superior performer, with the highest number of wins (31) and the lowest mean 
rank (2.52) compared to all other algorithms. The optimized version of Agglomera-
tive also performed well with 19 wins and a mean rank of 2.73. It’s worth noting 
that it was the only “optimized w” algorithm to show statistical significance in the 
earlier comparisons. Following closely is K-Shape algorithm with 15 wins and a 
mean rank of 3.06. To assess the statistical significance of these results, a Fried-
man test was conducted under the null hypothesis of there being no differences in 
performance in terms of mean rank. The hypothesis could not be rejected at the 95% 
confidence level, indicating that more experiments could be needed to get stronger 
statistical conclusions. Regarding computation time, there is a marked difference 
between R-Clustering and the rest of the algorithms. R-Clustering emerges as the 
fastest, completing in 7 minutes, without compromising on clustering quality. The 

Table 6   Clustering quality and computation time for the algorithms included in the improved benchmark

Classifier Name Winning Count Mean Rank Computa-
tion Time 
(min)

R-Clustering 31 2.52 7
Agglomerative (optimized w) 19 2.73 413
K-Shape 15 3.06 272
Density Peaks (optimized w) 11 3.67 9211
K-means (optimized w) 3 3.02 9171



1 3

Time series clustering with random convolutional kernels﻿	

time data places K-Shape algorithm in a similar category as the “optimized w" ver-
sion of Agglomerative but makes it notably faster than both K-means and Density 
Peaks using “optimized w". In conclusion, R-Clustering stands out for its balance 
of speed and performance, indicating its potential as an effective algorithm in time 
series clustering tasks.

5 � Conclusions and future work

We have presented R-Clustering, a clustering algorithm that incorporates static random 
convolutional kernels in conjunction with Principal Component Analysis (PCA). This 
algorithm transforms time series into a new data representation by first utilizing ker-
nels to extract relevant features and then applying PCA for dimensionality reduction. 
The resultant embedding serves as an input for the K-means algorithm with Euclidean 
distance. We evaluated this new algorithm by adhering to the procedures of a recent 
clustering benchmark study that utilizes the UCR archive - the largest public archive 
of labeled time series datasets - and state-of-the-art clustering algorithms. Notably, 
R-Clustering obtains first place among all the evaluated algorithms across all datasets, 
using the same evaluation methods deployed in the reference study. The results also 
show that R-Clustering maintains its high performance even against stronger baselines, 
demonstrating its versatility and strength. Furthermore, we demonstrate the scalability 
of R-Clustering concerning both time series length and dataset size, with it becoming 
the fastest algorithm for large datasets. To provide more robustness to these results, and 
in alignment with recent recommendations from the machine learning academic com-
munity, we complemented the cited benchmark results with a pairwise statistical com-
parison of the included algorithms. This statistical analysis, coupled with the fact that 
the code used for generating the results in this paper is publicly available, should facili-
tate the testing of future time series clustering algorithms.

The effectiveness of random kernels in improving the clustering quality of time 
series has been demonstrated through our experimental results. This finding opens 
up several future research directions, such as adapting R-Clustering for multivariate 
series, extending its use to other types of data like image clustering, and investigat-
ing the relationship between the number of kernels and performance. We anticipate 
that such a study could suggest an optimal number of kernels depending on the time 
series length.

The excellent performance of the convolution operation with static random ker-
nels has been demonstrated through experimental results. We also encourage the 
academic community to engage in a more detailed analysis of the theoretical aspects 
of random kernel transformations. Progress in this direction could enhance our 
understanding of the process.

In conclusion, the R-Clustering algorithm has shown promising results in cluster-
ing time series data. Its scalability and superior performance make it a valuable tool 
for various applications. Future research and analysis in this field will contribute to 
the advancement of time series clustering algorithms and our understanding of ran-
dom kernel transformations.



	 M.B Jorge and C. Rubén

1 3

Appendix A Results of the pairwise‑comparisons

Table 7   Pairwise comparisons of the algorithms according to the Wilcoxon signed-rank test with a 95% 
confidence level and Holm correction applied to the alpha values

Algorithm 1 Algorithm 2 p value Sign. difference

Density Peaks (Euclidean) R-clustering 2.939e-08 True
K-means (Euclidean) K-medoids (Euclidean) 7.516e-08 True
Density Peaks (DTW) R-clustering 3.651e-07 True
Agglomerative (Euclidean) K-medoids (Euclidean) 1.183e-06 True
K-medoids (Euclidean) R-clustering 6.988e-06 True
Density Peaks (DTW) K-means (DTW) 9.209e-06 True
Agglomerative (Euclidean) Density Peaks (DTW) 1.863e-05 True
Density Peaks (Euclidean) K-means (Euclidean) 4.440e-05 True
Density Peaks (DTW) K-means (Euclidean) 7.363e-05 True
C-means (Euclidean) R-clustering 9.099e-05 True
Agglomerative (Euclidean) Density Peaks (Euclidean) 1.541e-04 True
K-means (Euclidean) R-clustering 1.910e-04 True
Density Peaks (Euclidean) K-means (DTW) 2.032e-04 True
Density Peaks (DTW) K-medoids (Euclidean) 5.362e-04 True
Agglomerative (Euclidean) K-means (Euclidean) 6.785e-04 True
K-means (DTW) K-medoids (Euclidean) 6.857e-04 True
K-means (DTW) R-clustering 1.207e-03 True
Agglomerative (Euclidean) C-means (Euclidean) 1.264e-03 True
Density Peaks (Euclidean) K-shape 1.682e-03 True
C-means (Euclidean) K-means (Euclidean) 2.149e-03 True
C-means (Euclidean) K-means (DTW) 2.311e-03 True
K-shape R-clustering 4.440e-03 False
Density Peaks (DTW) K-shape 4.906e-03 False
Agglomerative (Euclidean) R-clustering 1.117e-02 False
Density Peaks (Euclidean) K-medoids (Euclidean) 2.044e-02 False
C-means (Euclidean) Density Peaks (DTW) 5.935e-02 False
Density Peaks (DTW) Density Peaks (Euclidean) 1.089e-01 False
K-medoids (Euclidean) K-shape 1.367e-01 False
C-means (Euclidean) K-shape 1.850e-01 False
C-means (Euclidean) Density Peaks (Euclidean) 2.050e-01 False
K-means (DTW) K-means (Euclidean) 2.188e-01 False
K-means (DTW) K-shape 2.249e-01 False
Agglomerative (Euclidean) K-shape 3.193e-01 False
Agglomerative (Euclidean) K-means (DTW) 7.882e-01 False
C-means (Euclidean) K-medoids (Euclidean) 9.768e-01 False
K-means (Euclidean) K-shape 9.918e-01 False



1 3

Time series clustering with random convolutional kernels﻿	

Acknowledgements  We sincerely appreciate the creators and maintainers of the UCR archive (Dau et al. 
2019; Keogh and Folias 2002). Their work collecting, cleaning and curating the 128 datasets proved 
essential for benchmarking R-Clustering. Additionally, we are grateful to the reviewers and the editor for 
their feedback, which significantly improved the quality of this work.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The 
research conducted to obtain the results presented in this paper, as well as the elaboration of the paper 
itself, have received funding from the following grants: Ministerio de Asuntos Económicos y Transfor-
mación Digital and the European Union-NextGenerationEU through the project PRITIA-CLOUD; Min-
isterio de Ciencia e Innovación/AEI and the European Union-NextGenerationEU through the project 
Towards an Auditable Internet (AUDINT) under the grant number TED2021-132076B-I00. Funding for 
APC: Universidad Carlos III de Madrid (Agreement CRUE-Madroño 2024).

Declarations 

Conflicts of interest  The authors declare that they maintain no conflicts of interest and have no associa-
tions with or participation in any organization or entity that possesses any financial stake or non-financial 
interest in the topics discussed within this manuscript.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Aggarwal CC, Hinneburg A, Keim DA (2001) On the surprising behavior of distance metrics in high 
dimensional space. In: Database theory-ICDT 2001: 8th international conference London, UK, Jan-
uary 4–6, 2001 Proceedings 8, Springer, pp 420–434

Aghabozorgi S, Shirkhorshidi AS, Wah TY (2015) Time-series clustering-a decade review. Inform Syst 
53:16–38

Benavoli A, Corani G, Mangili F (2016) Should we really use post-hoc tests based on mean-ranks? The J 
Mach Learn Res 17(1):152–161

Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and new perspectives. IEEE 
Trans Pattern Anal Mach Int 35(8):1798–1828

Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. KDD workshop. 
Seattle, WA, USA, pp 359–370

Beyer K, Goldstein J, Ramakrishnan R, et al (1999) When is “nearest neighbor” meaningful? In: Data-
base Theory—ICDT’99: 7th International conference Jerusalem, Israel, January 10–12, 1999 Pro-
ceedings 7, Springer, pp 217–235

Caron M, Bojanowski P, Joulin A, et al. (2018) Deep clustering for unsupervised learning of visual fea-
tures. In: Proceedings of the European conference on computer vision (ECCV), pp 132–149

Ciresan DC, Meier U, Masci J, et al. (2011) Flexible, high performance convolutional neural networks for 
image classification. In: Twenty-second international joint conference on artificial intelligence

Dau HA, Silva DF, Petitjean F et al (2018) Optimizing dynamic time warping’s window width for time 
series data mining applications. Data Mining Knowl Discovery 32:1074–1120

Dau HA, Bagnall A, Kamgar K et  al (2019) The ucr time series archive. IEEE/CAA J Auto Sinica 
6(6):1293–1305

De Hoon MJ, Imoto S, Nolan J et  al (2004) Open source clustering software. Bioinformatics 
20(9):1453–1454

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


	 M.B Jorge and C. Rubén

1 3

Dempster A, Petitjean F, Webb GI (2020) Rocket: exceptionally fast and accurate time series clas-
sification using random convolutional kernels. Data Mining Knowl Discovery 34(5):1454–1495

Dempster A, Schmidt DF, Webb GI (2021) Minirocket: A very fast (almost) deterministic transform for 
time series classification. In: Proceedings of the 27th ACM SIGKDD conference on knowledge dis-
covery & data mining, pp 248–257

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. The J Mach Learn Res 
7:1–30

Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of vari-
ance. J Amer Stat Assoc 32(200):675–701

Garcia S, Herrera F (2008) An extension on" statistical comparisons of classifiers over multiple data sets" 
for all pairwise comparisons. Journal of machine learning research 9(12)

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press
Greff K, Srivastava RK, Koutník J et al (2016) Lstm: A search space odyssey. IEEE Trans Neural Netw 

Learn Syst 28(10):2222–2232
Huang GB (2014) An insight into extreme learning machines: random neurons, random features and ker-

nels. Cognitive Computation 6(3):376–390
Hubert L, Arabie P (1985) Comparing partitions. Journal of Classification 2(1):193–218
Ismail Fawaz H, Forestier G, Weber J et al (2019) Deep learning for time series classification: a review. 

Data Mining Knowl Discovery 33(4):917–963
Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv (CSUR) 

31(3):264–323
Jarrett K, Kavukcuoglu K, Ranzato M, et al. (2009) What is the best multi-stage architecture for object 

recognition? In: 2009 IEEE 12th international conference on computer vision, IEEE, pp 2146–2153
Javed A, Lee BS, Rizzo DM (2020) A benchmark study on time series clustering. Mach Learn Appl 

1:100001
Jolliffe IT (2002) Principal component analysis for special types of data. Springer
Kailath T (1980) Linear systems, vol 156. Prentice-Hall Englewood Cliffs, NJ
Keogh E, Folias T (2002) The ucr time series data mining archive
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural net-

works. Advances in Neural Information Processing Systems 25
Kumar RP, Nagabhushan P (2006) Time series as a point-a novel approach for time series cluster visuali-

zation. In: DMIN, Citeseer, pp 24–29
Lakhina A, Crovella M, Diot C (2005) Mining anomalies using traffic feature distributions. ACM SIG-

COMM Comput Commun Rev 35(4):217–228
Längkvist M, Karlsson L, Loutfi A (2014) A review of unsupervised feature learning and deep learning 

for time-series modeling. Pattern Recogn Lett 42:11–24
Li Z, Tang J (2015) Unsupervised feature selection via nonnegative spectral analysis and redundancy 

control. IEEE Trans Image Process 24(12):5343–5355
Li Z, Yang Y, Liu J, et al. (2012) Unsupervised feature selection using nonnegative spectral analysis. In: 

Proceedings of the AAAI conference on artificial intelligence, pp 1026–1032
Likas A, Vlassis N, Verbeek JJ (2003) The global k-means clustering algorithm. Pattern Recogn 

36(2):451–461
Löning M, Bagnall A, Ganesh S, et al. (2019) sktime: A unified interface for machine learning with time 

series. arXiv preprint arXiv:1909.07872
Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh 

IEEE international conference on computer vision, Ieee, pp 1150–1157
Lubba CH, Sethi SS, Knaute P et  al (2019) Catch22: canonical time-series characteristics: Selected 

through highly comparative time-series analysis. Data Mining Knowl Discovery 33(6):1821–1852
Ma Q, Zheng J, Li S, et al. (2019) Learning representations for time series clustering. Advances in Neural 

Information Processing Systems 32
MacQueen J (1967) Classification and analysis of multivariate observations. In: 5th Berkeley Symp. 

math. statist. probability, pp 281–297
McDowell IC, Manandhar D, Vockley CM et al (2018) Clustering gene expression time series data using 

an infinite gaussian process mixture model. PLoS Computat Biology 14(1):e1005896
Minka T (2000) Automatic choice of dimensionality for pca. Advances in Neural Information Processing 

Systems 13
Paparrizos J, Gravano L (2015) k-shape: Efficient and accurate clustering of time series. In: Proceedings 

of the 2015 ACM SIGMOD international conference on management of data, pp 1855–1870



1 3

Time series clustering with random convolutional kernels﻿	

Pearson K (1901) Liii. on lines and planes of closest fit to systems of points in space. The London, Edin-
burgh, and Dublin Philosophical Magazine J Sci 2(11):559–572

Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: Machine learning in Python. J Mach 
Learn Res 12:2825–2830

Pereira S, Pinto A, Alves V et al (2016) Brain tumor segmentation using convolutional neural networks in 
mri images. IEEE Trans Med Imaging 35(5):1240–1251

Proakis JG, Manolakis DG (1996) Digital signal processing: principles, algorithms, and applications. 
Digital signal processing: principles

Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Amer Stat Assoc 
66(336):846–850

Saxe AM, Koh PW, Chen Z, et al (2011) On random weights and unsupervised feature learning. In: Proceedings 
of the 28th international conference on international conference on machine learning, pp 1089–1096

Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv (CSUR) 
34(1):1–47

Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 
22(8):888–905

Shi L, Du L, Shen YD (2014) Robust spectral learning for unsupervised feature selection. In: 2014 IEEE 
International conference on data mining, IEEE, pp 977–982

Steinley D (2004) Properties of the hubert-arable adjusted rand index. Psychological Methods 9(3):386
Thorndike RL (1953) Who belongs in the family. In: Psychometrika, Citeseer
Vinh NX, Epps J, Bailey J (2009) Information theoretic measures for clusterings comparison: is a correc-

tion for chance necessary? In: Proceedings of the 26th annual international conference on machine 
learning, pp 1073–1080

Von Luxburg U (2007) A tutorial on spectral clustering. Statistics and Computing 17(4):395–416
Wang Z, Yan W, Oates T (2017) Time series classification from scratch with deep neural networks: A 

strong baseline. In: 2017 International joint conference on neural networks (IJCNN), IEEE, pp 
1578–1585

Xie J, Girshick R, Farhadi A (2016) Unsupervised deep embedding for clustering analysis. In: Interna-
tional conference on machine learning, PMLR, pp 478–487

Yang Q, Wu X (2006) 10 challenging problems in data mining research. Intern J Inform Technol Deci-
sion Making 5(04):597–604

Zhang Q, Wu J, Zhang P et al (2018) Salient subsequence learning for time series clustering. IEEE Trans 
Pattern Anal Mach Intell 41(9):2193–2207

Zhao B, Lu H, Chen S et al (2017) Convolutional neural networks for time series classification. J Syst 
Eng Electron 28(1):162–169

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	Time series clustering with random convolutional kernels
	Abstract
	1 Introduction
	2 Related work
	2.1 Different approaches to time series clustering
	2.2 Feature extraction
	2.2.1 Feature extraction with learnable kernels
	2.2.2 Feature extraction with static random kernels


	3 Methodology
	3.1 Clustering algorithm
	3.1.1 Feature extraction
	3.1.2 Dimensionality reduction with principal component analysis
	3.1.3 K-means with Euclidean distance

	3.2 Evaluation method
	3.3 Implementation and reproducibility

	4 Results
	4.1 Analysis of the Feature Extraction Stage Output
	4.2 Search for optimal hyperparameters
	4.3 Analysis of R-clustering in the context of an existing benchmark
	4.3.1 Performance of R-clustering algorithm
	4.3.2 Computation time and scalability
	4.3.3 Statistical analysis of the benchmark

	4.4 Analysis of R-clustering against an improved baseline
	4.4.1 Performance gains and losses using an optimized warping window
	4.4.2 Results with the improved benchmark


	5 Conclusions and future work
	Appendix A Results of the pairwise-comparisons
	Acknowledgements 
	References


