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Abstract
One of the central issues of several machine learning applications on real data is 
the choice of the input features. Ideally, the designer should select a small number 
of the relevant, nonredundant features to preserve the complete information con-
tained in the original dataset, with little collinearity among features. This procedure 
helps mitigate problems like overfitting and the curse of dimensionality, which arise 
when dealing with high-dimensional problems. On the other hand, it is not desir-
able to simply discard some features, since they may still contain information that 
can be exploited to improve results. Instead, dimensionality reduction techniques are 
designed to limit the number of features in a dataset by projecting them into a lower 
dimensional space, possibly considering all the original features. However, the 
projected features resulting from the application of dimensionality reduction tech-
niques are usually difficult to interpret. In this paper, we seek to design a principled 
dimensionality reduction approach that maintains the interpretability of the resulting 
features. Specifically, we propose a bias-variance analysis for linear models and we 
leverage these theoretical results to design an algorithm, Linear Correlated Features 
Aggregation (LinCFA), which aggregates groups of continuous features with their 
average if their correlation is “sufficiently large”. In this way, all features are con-
sidered, the dimensionality is reduced and the interpretability is preserved. Finally, 
we provide numerical validations of the proposed algorithm both on synthetic data-
sets to confirm the theoretical results and on real datasets to show some promising 
applications.
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1 Introduction

Dimensionality reduction plays a crucial role in applying Machine Learning (ML) 
techniques in real-world datasets (Sorzano et al. 2014). Indeed, in a large variety 
of scenarios, data are high-dimensional with a large number of correlated fea-
tures. For instance, financial datasets are characterized by time series represent-
ing the trend of stocks in the financial market, and climatological datasets include 
several highly-correlated features that, for example, represent temperature value 
at different points on the Earth. On the other hand, only a small subset of features 
is usually significant for learning a specific task, and it should be identified to 
train a well-performing ML algorithm. In particular, considering many redundant 
features boosts the model complexity, which increases its variance and the risk of 
overfitting (Hastie et al. 2009). Furthermore, when the number of features is high, 
and comparable with the number of samples, the available data become sparse, 
leading to poor performance (curse of dimensionality  (Bishop and Nasrabadi 
2006)). For this reason, dimensionality reduction and feature selection techniques 
are usually applied. Feature selection  (Chandrashekar and Sahin 2014) focuses 
on choosing a subset of features important for learning the target following a spe-
cific criterion (e.g., the most correlated with the target, the ones that produce the 
highest validation score), discarding the others. On the other hand, dimensional-
ity reduction methods  (Sorzano et  al. 2014) maintain all the features projecting 
them in a (much) lower dimensional space, producing new features that are linear 
or non-linear combinations of the original ones. Compared to feature selection, 
this latter approach has the advantage of reducing the dimensionality without dis-
carding any feature and exploiting all of their contributions to the projections. 
Moreover, recalling that the variance of a sum of random variables is smaller 
than or equal to the original one, the features computed with linear dimensional-
ity reduction have smaller variance. However, the reduced features might be less 
interpretable since they are linear combinations of the original ones with different 
coefficients.

In this paper, we propose a novel dimensionality reduction method that exploits 
the information of each feature, without discarding any of them, while preserving 
the interpretability of the resulting feature set. To this end, we aggregate features 
through their average, and we propose a criterion that aggregates two features when 
it is beneficial in terms of the bias-variance tradeoff. Specifically, we focus on linear 
regression, assuming a linear relationship between the features and the target. In this 
context, the main idea of this work is to identify a group of aggregable features and 
substitute them with their average. Intuitively, in linear settings, two features should 
be aggregated if their correlation is large enough. We identify a theoretical threshold 
on the minimum correlation for which it is profitable to unify the two features. This 
threshold is the minimum correlation value between two features for which, compar-
ing the two linear regression models before and after the aggregation, the variance 
decrease is larger than the increase of bias.

Choosing the average to aggregate the features is to preserve interpret-
ability (the resulting reduced feature is just the average of k original features). 
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Another advantage is that the variance of the average is smaller than the vari-
ance of the original features if they are not perfectly correlated. Indeed, assum-
ing that we unify k standardized features, the variance of their average becomes 
var(X̄) =

1

k
+

k−1

k
𝜌 , with � being the average correlation of distinct features (Jacod 

and Protter 2004). The main restriction of choosing the average to aggregate is 
that we will only consider continuous features since the mean is not well-defined 
for categorical features. Moreover, it would be improper to evaluate the mean 
between heterogeneous features: interpretability is preserved only if the aggrega-
tion is meaningful.

Another issue may arise when considering features with a different unit of 
measurement or scale, for this reason we will consider standardized variables.

Remark 1 (About the linearity assumption and non-linear cases.) The theoreti-
cal analysis that lays the foundations of the proposed algorithm is limited to linear 
assumptions and considers linear regression as ML method. However, the proposed 
algorithm preserves a relevant significance. Indeed, the theoretical analysis allows 
to prove that the proposed algorithm is theoretically sound, assuming linearity. 
Then, the algorithm is designed relying on the linear theoretical result, but it can 
be applied to any regression problem with continuous features, where the proposed 
threshold becomes a heuristic quantity. While the theoretical guarantees no longer 
hold, this claim is supported by the empirical validation of the method on real-world 
datasets, which have no guarantee of linearity, but show a promising applicability of 
the proposed method outside linear contexts. Additionally, as usually done also in 
linear regression, it is possible to consider non-linear transformations of the original 
features as inputs of the LinCFA algorithm to relax the linearity assumption in some 
specific contexts.

Remark 2 (About interpretability.) Complex (linear and non-linear) transformations 
of the original features are usually performed by dimensionality reduction methods. 
As an example, PCA performs a linear combination of potentially all the original 
features, each with different weights. This kind of aggregation is already defined in 
Kovalerchuk et  al. (2021) as not completely interpretable, since they define these 
kind of transformation as quasi-explainable. In this context, the LinCFA Algorithm 
is interpretable, since it only relies on performing the mean of several features, 
which is a transformation that a domain expert can understand without any addi-
tional explanation by ML experts. Lahav et al. (2018) define interpretability as: “the 
extent to which a ML model can be made understandable to relevant human users, 
with the goal of increasing users’ trust in, and willingness to utilize, the model in 
practice” and Kovalerchuk et  al. (2021) defines interpretability in this terms: “the 
model is explainable if it is presented only in the domain terms (e.g., medicine) 
without terms that have no meaning in the domain”. The mean of variables known 
by the domain expert can therefore be considered interpretable in these terms. Addi-
tionally, the interpretability of the proposed method is particularly clear when the 
features have the same unit of measure. In this context, the reduced features are 
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simply the average of a set of measurements of the same quantity at different loca-
tions, with different sensors or at different time frames.

Additionally, depending on the applicative problem considered, the reduction 
performed with the mean can be particularly meaningful for domain experts. An 
example with meteorological measurements highlights the main applicative motiva-
tion behind the proposed approach. Indeed, a standard preprocessing approach often 
adopted in ML-based works for Earth science applications consists in computing 
the mean of a set of neighbouring measurements of the same physical quantity (e.g., 
temperature measurements in different locations). This method leads to the extrac-
tion of features that are average values of quantities over a region. As an example, 
Fig. 1a shows temperature gridded data related to ten different sub-basins of the Po 
River. In particular, each colored point in the figure represents one location, where 
temperature measurements are available. Therefore, each point can be seen as the 
location of a feature, that represents the temperature in that specific coordinates. 
To reduce the dimensionality, one may average the measurements of all the points 
within a sub-basin, following the geographical location of the data (in Fig. 1a each 
color identifies the set of locations belonging to a specific sub-basin). However, this 
has no guarantees on the ML performance and does not take into account the rela-
tionships between the data. The LinCFA algorithm, on the other hand, focuses on 
the relationships between pairs of points (i.e., features) and their relationship with 
the target to decide whether to aggregate them. From Fig. 1b it is possible to see the 
aggregations performed by the LinCFA algorithm: the dots having the same color 
correspond to the locations of the temperature features that the algorithm aggregates 
with their mean. Therefore, from the figure it is possible to conclude that, in this 
case, the data-driven approach aggregates the points differently from the geographi-
cal boundaries of the sub-basins. This preserves the interpretability since it aggre-
gates measurements in different locations in the same way that domain expert does, 
with the advantage of being a data-driven approach, theoretically motivated.

Outline: The paper is structured as follows. In Sect.  2, we formally define the 
problem, and we provide a brief overview of the main dimensionality reduction 

Fig. 1  Figure 1a shows the location of temperature measurements for each of the ten sub-basins of the Po 
River. Each color identifies the set of locations belonging to the same sub-basin. Figure 1b shows each of 
the clusters identified by the LinCFA algorithm. Each color represents a different set of locations where 
the algorithm performs an aggregation with the mean (Color figure online)
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methods. Section 3 introduces the methodology that will be followed throughout the 
paper. In Sect.  4, the main theoretical result is presented for the bivariate setting, 
which is then generalized to D dimensions in Sect. 5. Finally, in Sect. 6, the pro-
posed algorithm, Linear Correlated Features Aggregation (LinCFA), is applied to 
synthetic and real-world datasets to experimentally confirm the result and lead to the 
conclusions of Sect. 7. The paper is accompanied by supplementary material. Spe-
cifically, Appendix A contains the proofs and technical results of the bivariate case 
that are not reported in the main paper, Appendix B shows an additional finite-sam-
ples bivariate analysis, Appendix C elaborates on the bivariate results to be com-
posed only of theoretical or empirical quantities, Appendix D contains the proofs 
and technical results of the three-dimensional setting, and Appendix E presents in 
more details the experiments performed.

2  Preliminaries

In this section, we introduce the notation and assumptions employed in the paper 
(Sect. 2.1) and we survey the main related works (Sect. 2.2).

2.1  Notation and assumptions

Let (X,  Y) be random variables with joint probability distribution PX,Y , where 
X ∈ ℝ

D is the D-dimensional vector of features and Y ∈ ℝ is the scalar target of a 
supervised learning regression problem. Given N data sampled from the distribu-
tion PX,Y , we denote the corresponding feature matrix as X ∈ ℝ

N×D and the target 
vector as Y ∈ ℝ

N . Each element of the random vector X is denoted with xi and it is 
called a feature of the ML problem. We denote as y the scalar target random vari-
able and with �2

y
 and �̂�2

y
 its variance and sample variance. For each pair of random 

variables a, b we denote with �2
a
 , cov(a, b) and �a,b respectively the variance of the 

random variable a and its covariance and correlation with the random variable b. 
Their estimators are �̂�2

a
 , ̂cov(a, b) and �̂�a,b . Finally, the expected value and the vari-

ance operators applied on a function f(a) of a random variable a w.r.t. its distribution 
are denoted with �a[f (a)] and vara(f (a)).

A dimensionality reduction method can be seen as a function � ∶ ℝ
N×D

→ ℝ
N×d , 

mapping the original feature matrix X with dimensionality D into a reduced dataset 
U = �(X) ∈ ℝ

N×d with d < D . The goal of this projection is to reduce the (possibly 
huge) dimensionality of the original dataset while keeping as much information as 
possible in the reduced dataset. This is usually done by preserving a distance (e.g., 
Euclidean, geodesic) or the probability of a point to have the same neighbours after 
the projection (Zaki and Meira 2014).

In this paper, we assume a linear dependence between the features X and the 
target Y, i.e., Y = wTX + � , where � is a zero-mean noise, independent of X, and 
w ∈ ℝ

D is the weight vector. Without loss of generality, the expected value of each 
feature is assumed to be zero, i.e., �[xi] = �[Y] = 0 ∀i ∈ {1,… ,D} . Finally, we 
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consider linear regression as ML method: the i-th estimated coefficient is denoted 
with ŵi , the estimated noise with 𝜖 and the predicted (scalar) target with ŷ.

2.2  Existing methods

This section briefly surveys dimensionality reduction algorithms available in the 
literature, presenting unsupervised and supervised approaches. More extensive 
reviews can be found in (Sorzano et al. 2014; Cunningham and Ghahramani 2015; 
Espadoto et al. 2021; Chao et al. 2019). The algorithm presented in this paper can be 
considered as a linear supervised dimensionality reduction approach, therefore the 
focus will be on this topic. However, feature selection also provides a set of reduced 
features, as discussed in Chapter  1 (the interested reader may refer to literature 
reviews such as  (Li et  al. 2017)). Therefore, RReliefF algorithm  (Robnik-Sikonja 
et al. 1997; Kononenko et al. 1997) will also be considered in the empirical evalua-
tion as a supervised feature selection approach.

2.2.1  Unsupervised dimensionality reduction

Classical dimensionality reduction methods can be considered as unsupervised 
learning techniques which, in general, do not take into account the target, but they 
focus on projecting the dataset X , minimizing a given loss.

The most popular unsupervised linear dimensionality reduction technique is Prin-
cipal Components Analysis (PCA) (Pearson 1901; Hotelling 1933), a linear method 
that embeds the data into a linear subspace of dimension d describing as much as 
possible the variance in the original dataset. One of the main difficulties of apply-
ing PCA in real problems is that it performs linear combinations of possibly all the 
D features, usually with different coefficients, losing the interpretability of each 
principal component and suffering the curse of dimensionality. To overcome this 
issue, there exist some variants like svPCA (Ulfarsson and Solo 2011), which forces 
most of the weights of the projection to be zero. This contrasts with the approach 
proposed in this paper, which aims to preserve interpretability while exploiting the 
information yielded by each feature.

There exist several variants to overcome different issues of PCA (e.g., out-of-
sample generalization, linearity, sensitivity to outliers) and other methods that 
approach the problem from a different perspective (e.g., generative approach with 
Factor Analysis, independence-based approach with Independent Component Anal-
ysis, matrix factorization with SVD), an extensive overview can be found in (Sor-
zano et al. 2014). A broader overview of linear dimensionality reduction techniques 
can be found in  (Cunningham and Ghahramani 2015). Specifically, SVD  (Golub 
and Reinsch 1970) leads to the same result of PCA from an algebraic perspective 
through matrix decomposition. Factor analysis  (Thurstone 1931) assumes that the 
features are generated from a smaller set of latent variables, called factors, and tries 
to identify them by looking at the covariance matrix. Both PCA and Factor Analy-
sis can reduce through rotations the number of features that are combined for each 
reduced component to improve the interpretability, but their coefficients can still be 
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different and hard to interpret. Finally, Independent Component Analysis (Hyvärinen 
1999) is an information theory approach that looks for independent components (not 
only uncorrelated as PCA) that are not constrained to be orthogonal. This method is 
more focused on splitting different signals mixed between features than on reducing 
their dimensionality, which can be done as a subsequent step with feature selection, 
which would be simplified from the fact that the new features are independent.

Differently from the linear nature of PCA, many non-linear approaches exist 
(see (Van Der Maaten et al. 2009; Espadoto et al. 2021) for a broader discussion), 
following the idea that the data can be projected onto non-linear manifolds. Some 
of them optimize a convex objective function (usually solvable through a general-
ized eigenproblem) trying to preserve global similarity of data (e.g., Isomap (Tenen-
baum et al. 2000), Kernel PCA (Shawe-Taylor and Cristianini 2004), Kernel Entropy 
Component Analysis  (Jenssen 2009), MVU  (Weinberger et  al. 2004), Diffusion 
Maps  (Lafon and Lee 2006)) or local similarity of data (LLE  (Roweis and Saul 
2000), Laplacian Eigenmaps  (Belkin and Niyogi 2001), LTSA  (Zhang and Zha 
2004), LPP (He and Niyogi 2003)). Other methods optimize a non-convex objective 
function with the purpose of rescaling Euclidean distance (Sammon Mapping (Sam-
mon 1969)) introducing more complex structures like neural networks (Multilayer 
Autoencoders  (Hinton and Salakhutdinov 2006)) or aligning mixtures of models 
(LLC (Teh and Roweis 2002)).

In this paper we assume linearity, therefore in the experimental section we will 
compare the proposed method with classical PCA and its supervised version, since 
it is one of the most applied linear unsupervised dimensionality reduction tech-
niques in ML applications. Non-linear techniques for dimensionality reduction (Ker-
nel PCA, Isomap, LLE, LPP) will also be considered to further test the behavior of 
the LinCFA algorithm on real data, where linearity is not guaranteed, together with 
RReliefF algorithm as nonlinear supervised feature selection approach.

2.2.2  Supervised dimensionality reduction

Supervised dimensionality reduction is a less-known but powerful approach when 
the main goal is to perform classification or regression rather than learn a data 
projection into a lower dimensional space. The methods of this subfield are usu-
ally based on classical unsupervised dimensionality reduction, adding the regres-
sion or classification loss in the optimization phase. In this way, the reduced dataset 
U is the specific projection that allows maximizing the performance of the consid-
ered supervised problem. This is usually done in classification settings, minimiz-
ing the distance within the same class and maximizing the distance between differ-
ent classes in the same fashion as Linear Discriminant Analysis (Fisher 1936). The 
other possible approach is to directly integrate the loss function for classification or 
regression. Following the taxonomy presented in  (Chao et  al. 2019), these super-
vised approaches can be divided into PCA-based, NMF-based (mostly linear), and 
manifold-based (mostly non-linear).

A well-known PCA-based algorithm is Supervised PCA. The most straightfor-
ward approach of this kind has been proposed in (Bair et al. 2006), which is a heu-
ristic that applies classical PCA only to the subset of features mostly related to the 
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target. A more advanced approach can be found in (Barshan et al. 2011), where the 
original dataset is orthogonally projected onto a space where the features are uncor-
related, simultaneously maximizing the dependency between the reduced dataset 
and the target by exploiting Hilbert-Schmidt independence criterion. The goal of 
Supervised PCA is similar to that of the algorithm proposed in this paper. The main 
difference is that we are not looking for an orthogonal projection, but we aggregate 
features by computing their means (thus, two projected features can be correlated) 
to preserve interpretability. Many variants of Supervised PCA exist, e.g., to make it 
a non-linear projection or to make it able to handle missing values (Yu et al. 2006). 
Since it is defined in the same context (linear) and has the same final purpose (mini-
mize the mean squared regression error), supervised-PCA will be compared with 
the approach proposed by this paper in the experimental section. NMF-based algo-
rithms (Jing et al. 2012; Lu et al. 2016) have better interpretability than PCA-based, 
but they focus on the non-negativity property of features, which is not a general 
property of linear problems. Manifold-based methods  (Ribeiro et  al. 2008; Zhang 
et al. 2018; Zhang 2009; Raducanu and Dornaika 2012), on the other hand, perform 
non-linear projections with higher computational costs. Therefore, both families of 
techniques will not be considered in this linear context.

3  Proposed methodology

In this section, we introduce the proposed dimensionality reduction algorithm, 
named Linear Correlated Features Aggregation (LinCFA), from a general perspec-
tive. The approach is based on the following simple idea. Starting from the features 
xi of the D-dimensional vector X, we build the aggregated features uk of the d-dimen-
sional vector U. The dimensionality reduction function � is fully determined by a 
partition P = {P1,… ,Pd} of the set of features {x1,… , xD} . In particular, each fea-
ture xi is assigned to a set Pk ∈ P and each feature uk is computed as the average of 
the features in the k-th set of P:

In the following sections, we will focus on finding theoretical guarantees to deter-
mine how to build the partition P . Intuitively, two features will belong to the same 
element of the partition P if their correlation is larger than a threshold. This thresh-
old is formalized as the minimum correlation for which the Mean Squared Error 
(MSE) of the regression with a single aggregated feature (i.e., the average) is not 
worse than the MSE with the two separated features.1 In particular, it is possible to 
decompose the MSE as follows (bias-variance decomposition (Hastie et al. 2009)):

(1)uk =
1

|Pk|
∑
i∈Pk

xi.

1 For this reason, the approach can be considered supervised.
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where x, y are the features and the target of a test sample, T  is the training set, hT(⋅) 
is the ML model trained on dataset T  , h̄(⋅) is its expected value w.r.t. the training 
set T  and ȳ is the expected value of the test output target y w.r.t. the input features 
x. Decreasing model complexity leads to a decrease in variance and an increase in 
bias. Therefore, in the analysis, we will compare these two variations and identify a 
threshold as the minimum value of correlation for which, after the aggregation, the 
decrease of variance is greater or equal than the increase of bias, so that the MSE 
will be greater or equal than the original one.

4  Two‑dimensional analysis

This section introduces the theoretical analysis, performed in the bivariate setting, 
that identifies the minimum value of the correlation between the two features for 
which it is convenient to aggregate them with their mean. In particular, Sect.  4.1 
introduces the assumptions under which the analysis is performed. Subsection  4.2 
computes the amount of variance decreased when performing the aggregation. Then, 
Sect.  4.3 evaluates the amount of bias increased due to the aggregation. Finally, 
Sect. 4.4 combines the two results identifying the minimum amount of correlation for 
which it is profitable to aggregate the two features. In addition, Appendix A contains 
the proofs and technical results that are not reported in the main paper, Appendix B 
includes an additional finite-sample analysis, and Appendix C computes confidence 
intervals that allow stating the results with only theoretical or empirical quantities.

4.1  Setting

In the two-dimensional case ( D = 2 ), we consider the relationship between the 
two features x1 , x2 and the target y to be linear and affected by Gaussian noise: 
y = w1x1 + w2x2 + � , with � ∼ N(0, �2) . As usually done in linear regres-
sion (Johnson and Wichern 2007), we assume the training dataset X to be known. 
Moreover, recalling the zero-mean assumption ( � [x1] = � [x2] = 0 ), it follows 
�[y] = w1�[x1] + w2�[x2] = 0 and �2

y
= �2.

We compare the performance (in terms of bias and variance) of the two-dimen-
sional linear regression ŷ = ŵ1x1 + ŵ2x2 with the one-dimensional linear regression, 
which takes as input the average between the two features ŷ = ŵ

x1+x2

2
= ŵx̄ . As a 

result of this analysis, we will define conditions under which aggregating features x1 
and x2 in the feature x̄ is convenient.

(2)

�x,y,T[(hT(x) − y)2]
�����������������������

MSE

= �x,T[(hT(x) − h̄(x))2]
�������������������������

variance

+ �x[(h̄(x) − ȳ(x))2]
���������������������

bias

+�x,y[(ȳ(x) − y)2]
�����������������

noise

,
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4.2  Variance analysis

In this subsection, we compare the variance of the two models with both an asymp-
totic and a finite-samples analysis. Since the two-dimensional model estimates two 
coefficients, it is expected to have a larger variance. Instead, aggregating the two 
features reduces the variance of the model.

4.2.1  Variance of the estimators

A quantity, necessary to compute the variance of the models that will be compared 
throughout this subsection, is the covariance matrix of the vector ŵ of the estimated 
regression coefficients w.r.t. the training set. Given the training features X , a known 
result in a general linear problem with n samples and D features (Johnson and Wich-
ern 2007) (see Appendix A for the computations) is:

The following lemma shows the variance of the weights for the two specific models 
that we are comparing.

Lemma 1 Let the real model be linear with respect to the features x1 and x2 
( y = w1x1 + w2x2 + � ). In the one-dimensional case ŷ = ŵx̄ , we have:

In the two-dimensional case ŷ = ŵ1x1 + ŵ2x2 , we have:

Proof The proof of the two results follows from Equation (3), see Appendix A for 
the computations.   ◻

4.2.2  Variance of the model

Recalling the general definition of variance of the model from Equation (2), in the 
specific case of linear regression it becomes:

The following result shows the variance of the two specific models (univariate and 
bivariate) considered in this section.

(3)varT(ŵ|X) = (XTX)−1𝜎2.

(4)varT(ŵ|X) = 𝜎2

(n − 1)�̂�2
x̄

.

(5)

varT(ŵ|X) = 𝜎2

(n − 1)(�̂�2
x1
�̂�2
x2
− ̂cov(x1, x2)

2)

×

[
�̂�2
x2

− ̂cov(x1, x2)

− ̂cov(x1, x2) �̂�2
x1

]
.

(6)� x,T[(hT(x) − h̄(x))2] = � x,T[(ŵ
Tx − � T[ŵ

Tx])2].
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Theorem 1 Let the real model be linear with respect to the two features x1 and x2 
( y = w1x1 + w2x2 + � ). Then, in the one dimensional case y = ŵ

x1+x2

2
= ŵx̄ , we 

have:

In the two dimensional case y = ŵ1x1 + ŵ2x2 , we have:

Proof The proof combines the results of Lemma 1 with the definition of variance 
for a linear model given in Equation (6). The detailed proof can be found in Appen-
dix A.   ◻

4.2.3  Comparisons

In this subsection, the difference between the variance of the linear regression with 
two features x1 and x2 and the variance of the linear regression with one feature 
x̄ =

x1+x2

2
 is shown. We will prove that, as expected, this difference is positive and 

it represents the reduction of variance when substituting a two-dimensional random 
vector with the average of its components.

First, the asymptotic analysis is performed, obtaining a result that can be applied 
with good approximation when a large number of samples n is available. Then, 
the analysis is repeated in the finite-samples setting, with an additional assump-
tion on the variance and sample variance of the features x1 and x2 , that simplify the 
computations.2

Case I: asymptotic analysis. The estimators that we are considering are consist-
ent, i.e., they converge in probability to the real values of the parameters (e.g., 
plimn→∞�̂�

2
x1
= 𝜎2

x1
 ). Therefore the following result can be proved.

Theorem 2 If the number of samples n tends to infinity, let Δn→∞
var

 be the difference 
between the variance of the two-dimensional and the one-dimensional linear mod-
els, it is equal to:

(7)� x,T[(hT(x) − h̄(x))2|X] = 𝜎2
x1+x2

𝜎2

(n − 1)�̂�2
x1+x2

.

(8)

� x,T[(hT(x) − h̄(x))2|X]

=
𝜎2(𝜎2

x1
�̂�2
x2
+ 𝜎2

x2
�̂�2
x1
− 2cov(x1, x2) ̂cov(x1, x2))

(n − 1)(�̂�2
x1
�̂�2
x2
− ̂cov(x1, x2)

2)
.

(9)Δn→∞
var

=
�2

n − 1
≥ 0,

2 The assumption that we will introduce for the finite-samples setting might be restrictive. However, it 
allows simplifying the computations. A more general finite-sample analysis has also been performed, 
only assuming unitary variances. This more general analysis leads to more convolute expressions and for 
this reason it is reported in Appendix B.
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that is a positive quantity and tends to zero when the number of samples tends to 
infinity.

Proof The result follows from the difference between Eqs. 8 and 7, exploiting the 
consistency of the estimators.   ◻

Case II: finite-samples analysis with equal variance and sample variance. 
For the finite-samples analysis, we add the following assumption to simplify the 
computations:

Theorem 3 If the conditions of Equation (10) hold, let Δvar be the difference between 
the variance of the two-dimensional and the one-dimensional linear models, it is 
always non-negative and it is equal to:

Proof The proof starts again from the variances of the two models found in Theo-
rem 1 and it performs algebraic computations exploiting the assumption stated in 
Equation (10). All the steps can be found in Appendix A.   ◻

Remark 3 When the number of samples n tends to infinity, the result of Equa-
tion (11) reduces to the asymptotic case, as in Equation (9).

Remark 4 The quantities found in Theorem 2 and 3 are always non-negative, mean-
ing that the variance of the two-dimensional case is always greater or equal than the 
corresponding one-dimensional version, as expected.

4.3  Bias analysis

In this subsection, we compare the (squared) bias of the two models under examination 
with both an asymptotic and a finite-samples analysis, as done in the previous subsec-
tion for the variance. Since the two-dimensional model corresponds to a larger hypoth-
esis space it is expected to have a lower bias w.r.t. the one-dimensional.

The procedure to derive the difference between biases is similar to the one followed 
for the variance. The first step is to compute the expected value w.r.t. the training set 
T  of the vector ŵ of the regression coefficients estimates, given the training features 
X . This is used to compute the bias of the models. In particular, in Equation (2), we 
defined the (squared) bias as follows:

(10)
{

𝜎x1 = 𝜎x2=∶𝜎x
�̂�x1 = �̂�x2=∶�̂�x.

(11)Δvar =
𝜎2

n − 1
⋅

𝜎2
x
(1 − 𝜌x1,x2 )

�̂�2
x
(1 − �̂�x1,x2 )

.

(12)� x[(h̄(x) − ȳ)2] = � x[(� T[h(x)] − � y|x[y])2].
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Starting from this definition, the bias of the one-dimensional case ŷ = ŵx̄ is com-
puted. Moreover, for the two dimensional case y = ŵ1x1 + ŵ2x2 the model is clearly 
unbiased. Detailed computations can be found in Appendix A.

After the derivation of the bias of the models, the same asymptotic and finite-
samples analysis performed on the variance is repeated in this section for the 
(squared) bias. Since the two-dimensional model is unbiased, we can conclude 
that the increase of the bias component of the loss, when the two features are sub-
stitute by their mean, is equal to the bias of the one-dimensional model.

Case I: asymptotic analysis. When the number of samples n of the training 
dataset T  approaches infinity, recalling that the estimators considered converge 
in probability to the expected values of the parameters, the following result holds.

Theorem 4 If the number of samples n tends to infinity, let Δn→∞
bias

 be the difference 
between the bias of the one-dimensional and the two-dimensional models, it is equal 
to:

where the second equality holds if �x1 = �x2 = 1.

Proof The proof starts from the bias of the two models computed in Appendix A 
and exploits the fact that in the limit n → ∞ , it is possible to substitute every sample 
estimator with the real quantity of the parameters because they are consistent esti-
mators. Details can be found in Appendix A.   ◻

Case II: finite-samples analysis with equal variance and sample variance 
In the finite-samples case, we provide the same analysis performed for variance, 
i.e., with the assumptions of Equation (10).

Theorem  5 If the conditions of Equation (10) hold, let Δbias be the difference 
between the (squared) bias of the one-dimensional and the two-dimensional linear 
models, then it has value:

Proof The proof starts from the bias of the two models and performs algebraic com-
putations exploiting the assumptions of Equation (10). All the steps can be found in 
Appendix A.   ◻

(13)Δn→∞
bias

=
�2
x1
�2
x2
(1 − �2

x1,x2
)(w1 − w2)

2

�2
x1+x2

(14)=
(1 − �x1,x2 )(w1 − w2)

2

2
,

(15)Δbias =
�2
x
(1 − �x1,x2 )(w1 − w2)

2

2
.
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Remark 5 When the number of samples n tends to infinity, the result in Equa-
tion (15) reduces to the asymptotic case as in Theorem 4.

Remark 6 Some observations are in order:

• As expected, the quantities found in Theorem 4, 5 are always non-negative, since 
the hypothesis space of the univariate model is a subset of the one of the bivari-
ate model.

• We observe that Δbias = 0 if �x1,x2 = 1 . Indeed, when the two variables are per-
fectly (positively) correlated their coefficients in the linear regression are equal, 
therefore there is no loss of information in their aggregation.

• Finally, when the two regression coefficients are equal w1 = w2 there is no 
increase of bias due to the aggregation, since it is enough to learn a single coef-
ficient w̄ to have the same performance of the bivariate model.

4.4  Correlation threshold

This subsection concludes the analysis with two features by comparing the reduction 
of variance with the increase of bias when aggregating the two features x1 and x2 
with their average x̄ = x1+x2

2
 . In conclusion, the result shows when it is convenient to 

aggregate the two features with their mean, in terms of mean squared error.
Considering the asymptotic case, the following theorem compares bias and vari-

ance of the models.

Theorem  6 When the number of samples n tends to infinity and the relationship 
between the features and the target is linear with Gaussian noise, the decrease of 
variance is greater than the increase of (squared) bias when the two features x1 and 
x2 are aggregated with their average if and only if:

that, for �x1 = �x2 = 1 becomes:

Proof Computing the difference between Eqs. (9) and (13) the result follows.   ◻

In the finite-samples setting, with the additional assumptions of Eq. (10), the fol-
lowing theorem shows the result of the comparison between bias and variance of the 
two models.

(16)�2
x1,x2

≥ 1 −
�2�2

x1+x2

(n − 1)�2
x1
�2
x2
(w1 − w2)

2
,

(17)�x1,x2 ≥ 1 −
2�2

(n − 1)(w1 − w2)
2
.
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Theorem 7 Let the variance and sample variance of the features x1 and x2 be equal 
(Eq. (10)) and the relationship between the features and then target be linear with 
Gaussian noise. The decrease of variance is greater than the increase of (squared) 
bias when the two features x1 and x2 are aggregated with their average if and only if:

that, for �̂�x = 1 becomes:

Proof Computing the difference between Equation (11) and (15) the result follows.  
 ◻

Remark 7 The results of Theorem 6 and 7 comply with the intuition that, in a lin-
ear setting with two features, they should be aggregated if their correlation is large 
enough.

Remark 8 Theorem 6 and 7 with unitary sample variances produce the same thresh-
old both in the finite and the asymptotic settings.

In conclusion, the thresholds found in Theorem 6 and 7 show that it is profit-
able in terms of MSE to aggregate two variables in a bivariate linear setting with 
Gaussian noise if:

• the variance of the noise �2 is large, which means that the process is noisy 
and the variance should be reduced;

• the number of samples n is small, indeed in this case there is little knowledge 
about the actual model, therefore it is better to learn one parameter rather 
than two;

• the difference between the two coefficients w1 − w2 is small, which implies 
that they are similar, and learning a single coefficient introduces a little loss 
of information.

5  Generalization: three‑dimensional and D‑dimensional analysis

In the previous section, we focused on aggregating two features in a bivariate 
setting. In this section, we extend that approach to three features. Starting from 
the related results, we will straightforwardly extend them to a general problem 
with D features, heuristically considering the D − 2 remaining features as a 
unique third contribution. Given the complexity of the computations, we focus 
on asymptotic analysis only. After the analysis, we conclude this section with 

(18)�̂�x1,x2 ≥ 1 −
2𝜎2

(n − 1)�̂�2
x
(w1 − w2)

2
,

(19)�̂�x1,x2 ≥ 1 −
2𝜎2

(n − 1)(w1 − w2)
2
.
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the main algorithm proposed in this paper: Linear Correlated Features Aggrega-
tion (LinCFA).

5.1  Three‑dimensional case

In the three-dimensional case ( D = 3 ), we consider the relationship between the three 
features and the target to be linear with Gaussian noise: y = w1x1 + w2x2 + w3x3 + � , 
� ∼ N(0, �2) . In accordance with the previous analysis, we assume the train-
ing dataset X = [x1 x2 x3] to be known and recalling the zero-mean assumption 
( � [x1] = � [x2] = � [x3] = 0 ) it follows �[y] = w1�[x1] + w2�[x2] + w3�[x3] = 0 , 
�2
y
= �2.
In this setting and for the general D dimensional setting of the next subsection, 

which will be a direct application of this, we compare the performance of the bivari-
ate linear regression ŷ = ŵixi + ŵjxj of each pair of features xi, xj with the univari-
ate linear regression that considers their average ŷ = ŵ

xi+xj

2
= ŵx̄ , to decide whether 

it is convenient to aggregate them or not in terms of MSE. Indeed, extending the 
dimension from D = 2 to a general dimension D, and comparing all the possible 
models where groups of variables are aggregated, is combinatorial in the number of 
features and it would be impractical. Also, comparing the full D dimensional regres-
sion model with the D − 1 dimensional model where two variables are aggregated 
is impractical. Indeed, when the number of features is huge, in addition to a polyno-
mial computational cost, both models suffer issues like the curse of dimensionality 
and risk of overfitting.

To simplify the exposition, for the theoretical analysis, we will consider 
xi = x1, xj = x2 . Moreover, in the following subsection we will directly report the 
asymptotic correlation threshold that guarantees the asymptotic decrease of variance 
to be greater than the increase of bias due to the aggregation of two features. The 
specific analysis of variance and bias, together with the related proofs, can be found 
in Appendix D.

5.1.1  Correlation threshold

The result of the following theorem extends the result of Theorem 6 for the three-
dimensional setting.

Theorem 8 In the asymptotic setting, let the relationship between the features and 
the target be linear with Gaussian noise. Assuming unitary variances of the fea-
tures �x1 = �x2 = �x3 = 1 , the decrease of variance is greater than the increase of 
(squared) bias due to the aggregation of the features x1 and x2 with their average if 
and only if:
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Proof The result follows after algebraic computations on the difference 
Δn→∞

var
− Δn→∞

Bias
≥ 0, where the expression of the asymptotic difference of variances 

and biases can be respectively found in Remark 18 and Theorem 18 of Appendix D.  
 ◻

Remark 9 Equation (20) holds also in the case of generic variance �2
x3

 of the feature 
x3 , with the only difference that b becomes:

Remark 10 The result obtained in this section with three features is more diffi-
cult to interpret than the bivariate one. However, if the two features x1 and x2 are 
uncorrelated with the third feature x3 or they have the same correlation with it 
( �x1,x3 = �x2,x3 ), then Equation (20) is equal to the one found in the bivariate asymp-
totic analysis (Equation (17)).

Remark 11 Since the analysis is asymptotic, the theoretical quantities in Equation 
(20) can be substituted with their consistent estimators when the number of samples 
n is large.

5.2  D‑dimensional case

This last subsection of the analysis shows a generalization from three to D dimen-
sions. In particular, we assume the relationship between the D features x1, ..., xD 
and the target to be linear with Gaussian noise y = w1x1 + ... + wDxD + � , with 
� ∼ N(0, �2) . As done throughout the paper, we assume the training dataset 
X = [x1 ... xD] to be known and from the zero-mean assumption �[y] = 0 and 
�2
y
= �2.
As discussed for the three-dimensional case, we compare the perfor-

mance (in terms of bias and variance) of the two-dimensional linear regression 

ŷ = ŵixi + ŵjxj with the one-dimensional linear regression ŷ = ŵ
xi+xj

2
= ŵx̄ and in 

the computations we consider xi = x1, xj = x2 without loss of generality.
Considering the linear combination of the remaining features as a unique 

variable x = w3x3 + ... + wDxD , we directly extend the three-dimensional analy-
sis of the previous subsection to this general case, considering the model to be 

(20)

1 − (a − b) −
√
a(a − 2b) ≤ �x1,x2 ≤ 1 − (a − b) +

√
a(a − 2b),

with

⎧
⎪⎨⎪⎩

a =
�2

(n−1)(w1−w2)
2

b =
(�x1,x3

−�x2,x3
)w3

(w1−w2)
.

(21)b =
�x3 (�x1,x3 − �x2,x3 )w3

(w1 − w2)
.
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y = w1x1 + w2x2 + wx + � , with w = 1 and x = w3x3 + ... + wDxD . This way, 
the D-dimensional linear problem is straightforwardly reformulated as a three-
dimensional one. However, this analysis can be seen as a heuristic result, in the 
sense that we do not fully characterize the relationship between the two features 
under analysis and all the remaining ones, but the focus is only the relation-
ship between the two features under analysis x1, x2 and the linear combination 
x = w3x3 + ... + wDxD of the remaining ones.

Recalling that in this case the third feature x has general variance �2
x
 , the fol-

lowing lemma holds.

Lemma 2 Let y = w1x1 + ... + wDxD + � = w1x1 + w2x2 + wx + � with �2
x1
= �2

x2
= 1 

and �2
x
= �2

w3x3+...+wDxD
 . Then, performing linear regression in the asymptotic setting, 

the decrease of variance is greater than the increase of bias when aggregating the 
two features x1 and x2 with their average if and only if the condition on the correla-
tion of Equation (20) holds (with the parameter b expressed like in Equation (21) as 
b =

�x(�x1,x
−�x2,x

)w

(w1−w2)
).

Proof The lemma follows by applying the three-dimensional analysis with general 
variance of the third feature �2

x
 (Theorem 8 and Remark 9).   ◻

5.3  D‑dimensional algorithm

For the general D-dimensional case, as explained in the previous subsection, the 
three-dimensional results has be extended considering as third feature the linear 
combination of the D − 2 features not currently considered for the aggregation. A 
drawback of applying the obtained result in practice is that it requires the knowl-
edge of all the coefficients w1, ...,wD , which is unrealistic, or to approximate them 
through an estimate, performing linear regression on the complete D-dimensional 
dataset. In this case, the computational cost is O(n ⋅ D2 + D3)—which becomes 
O(n ⋅ D2 + D2.37) if using the Coppersmith-Winograd algorithm  (Coppersmith and 
Winograd 1990)—and it is impractical with a huge number of features. Therefore, 
since the equation in the three dimensional asymptotic analysis becomes equal 
to the bivariate one if the two features have the same correlation with the third 
(Remark  10), it is reasonable, if they are highly correlated, to assume this to be 
valid and to apply the asymptotic bivariate result shown in Equation (17) to decide 
whether the two features should be aggregated or not. In this way, we iteratively 
try all combinations of two features, with complexity O(n + D2) in the worst case, 
in order to choose the groups of features that is convenient to aggregate with their 
mean.
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Algorithm 1  LinCFA: Linear Correlated Features Aggregation

In Algorithm  1 the pseudo-code of the proposed algorithm Linear Corre-
lated Features Aggregation (LinCFA) can be found. The proposed dimensional-
ity reduction algorithm creates a d dimensional partition of the indices of the fea-
tures {1,… ,D} by iteratively comparing couples of features and adding them to 
the same subset if their correlation ( correlation(xi, xj) ) is greater than the threshold 
( threshold(xi, xj, y) ), obtained from Eq. (17). Then, it aggregates the features in each 
set k of the partition ( P ) with their average, producing each output x̄k.

Remark 12 (About theoretical results and the empirical algorithm) The proposed 
algorithm aggregates sets of features and not only couples of them, as considered 
in the theoretical analysis. The motivation behind this choice is to perform a single 
average of a set of features. A possible variation, which aggregates pairs of features 
as derived by the theory, is to directly aggregate a pair of features with their mean, 
once they respect the theoretical aggregation condition (e.g., at the first iteration we 
aggregate x1, x2 producing x̄ = x1+x2

2
 ). Then, considering their mean from there on 

as a single feature, it would be aggregated with another feature if the condition is 
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respected (e.g., at the second iteration we aggregate x̄, x3 producing x̂ = x̄+x3

2
 ), until 

no more aggregations are possible. This procedure adheres more with the theoreti-
cal results, however it is less interpretable in the sense discussed in Remark 2, since 
each reduced feature is an iterative mean of means.

Remark 13 (About the ordering of features) The output of the LinCFA algorithm 
may depend on the ordering of the features. Therefore, in the pseudo-code of Algo-
rithm 1, a random shuffle of the original features is required as input, such that sys-
tematic biases due to the ordering are avoided. A greedy approach that removes the 
dependency of the LinCFA algorithm on the ordering of the features would be to 
introduce an internal ordering among pairs of features. Considering for example cor-
relation, one may consider the pair of the two most correlated features and test if 
they exceed the threshold. If so, they could be added to a cluster and substituted with 
their mean. Iteratively proceeding in this way, until all features have been assigned 
to a set of the partition, produces an algorithm that becomes independent from the 
initial ordering of features and aggregates only features that exceed the threshold. 
However, this increases the memory and computational complexity, since all the 
correlations between each pair of features should be computed and stored.

As a further step, among the possible partitions that can be identified depending 
on the ordering, there is at least an optimal partition of features, which maximizes 
the mean squared error. Intuitively, with infinite samples, the MSE is maximized 
considering each feature independently. This is confirmed by the asymptotic vari-
ance analysis, where a term n shows that, with infinite samples, there is no decrease 
of variance with the aggregation. However, with finite samples, the identification of 
the optimal partition would be combinatorial, since all the possible partitions should 
be tested. The proposed algorithm adds one feature at time in a cluster, therefore 
it has no guarantees of optimality. This is in line with classical machine learning 
approaches such as forward feature selection, that iteratively selects a promising fea-
ture, although a combination of other two features may be more informative.

6  Numerical validation

In this section, the theoretical results obtained in Sects. 4 and 5 are exploited to per-
form dimensionality reduction on synthetic datasets of two, three and D dimensions. 
Furthermore, the proposed dimensionality reduction approach LinCFA is applied to 
real datasets and compared with state-of-the-art benchmark methods. To evaluate 
the performance of the regressions, the results will be evaluated in terms of Mean 
Squared Error (MSE), R-squared ( R2 ) and Relative RMSE (RRMSE). Code and data-
sets can be found at the following link: https:// github. com/ Paolo Bonet tiPol imi/ Paper 
LinCFA.

https://github.com/PaoloBonettiPolimi/PaperLinCFA
https://github.com/PaoloBonettiPolimi/PaperLinCFA
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6.1  Two‑dimensional application

In the bivariate setting, according to Eq. (17) and (19), it is convenient to aggregate 
the two features with a small number of samples n, with a small absolute value of 
the difference between the coefficients of the linear model w1,w2 or with a large 
variance of the noise �2 . The synthetic experiments (full description in Appen-
dix  E) confirm with data the theoretical result. In particular, they are performed 
with a fixed number of samples n = 500 , a fixed correlation between the features 
�x1,x2 ≈ 0.9 , comparing two combinations of weights (at small and large distances) 
and three different variances of the noise (small, normal, large).

Table 1 shows the results of the experiments (more detailed results can be found 
in Tables 6,7 of Appendix E). In line with the theory, when the weights in the linear 
model are consistently distant, only with a huge variance of the noise the thresh-
old is far from 1 and the two features are aggregated, while for a reasonably small 
amount of variance in the noise they are kept separated. On the other hand, when 
the weights in the linear model are similar, the threshold of Eq. (17) is small and the 
conclusion is to aggregate the two features also with a small amount of variance in 
the noise. The confidence intervals on the R2 and on the MSE confirm that, when the 
correlation is above the threshold, the performance of the linear model when the two 
features are aggregated with their average is statistically not worse than the bivari-
ate model where they are kept separate. It is finally important to notice that, know-
ing the coefficients of the regression, always leads to aggregate the two features or 
not in all the 500 repetitions of the experiment (row # aggregations (theo)). On the 
contrary, estimating the coefficients from data leads to the same action in most rep-
etitions but not always (row # aggregations (emp)), since the limited amount of data 
introduces noise into the estimates.

6.2  Three‑dimensional application

Equation (20) expresses the interval for which it is convenient to aggregate the 
two features x1and x2 in the three-dimensional setting. As in the bivariate case, it 
is related to the number of samples, the difference between weights, and the vari-
ance of the noise. In addition, it also depends on the difference of the correlations 
between each of the two features with the third one x3 and on the weight w3.

The experiment performed in this setting is based on synthetic data, computed 
with the following realistic setting: the weights w1 = 0.4, w2 = 0.6 are closer than 
w3 = 0.2 . Moreover, the two features are significantly correlated: �x1,x2 ≈ 0.88 (more 
details can be found in Appendix E).

In this setting, as shown in Table 2, it is convenient to aggregate the two features 
x1, x2 with their average both in terms of MSE and R2 , since the aggregation does not 
worsen the performances. In particular, the aggregation is already convenient with a 
small standard deviation of the noise ( � = 0.5).
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6.3  D‑dimensional application

This subsection introduces the D-dimensional synthetic experiment performed 500 
times with n = 500 samples and D = 100 features, reduced with the proposed algo-
rithm LinCFA (more details can be found in Appendix E).

The test results shown in Table 3 underline that knowing the real values of the 
coefficients of the linear model would lead to a reduced dataset of d = 4 features and 
a significant increase of performance ( R2 aggregate (theo), MSE aggregate (theo)), 
while using the empirical coefficients the dimension is reduced to d = 15 , still with 
a significant increase of performance both in terms of MSE and R2 ( R2 aggregate 
(emp), MSE aggregate (emp)). This is a satisfactory result and it is confirmed by the 
real dataset application described below.

To better understand the performance of the algorithm, in Fig. 1 we consider the 
number of selected features and the regression scores. From Fig. 2a it is clear that 
with a small number of samples, both considering theoretical and empirical quanti-
ties, the number of reduced features d becomes smaller to prevent overfitting. Moreo-
ver, considering the empirical quantities, which are the only ones available in prac-
tice, lead to a larger number of reduced features (but still significantly smaller than 
the original dimension D). Figure 2b, c show the performance of the linear regression 

Table 2  Synthetic experiment 
in the three dimensional setting 
comparing the full model 
with three variables with the 
bivariate model where x1, x2 are 
aggregated with their mean

The number of aggregations performed by LinCFA  in  500 repeti-
tions is reported in bold

Quantity 95% Confidence interval

# Aggregations (theo) 500

# Aggregations (emp) 335

R
2 full 0.825 ± 6e−6

R
2 aggregate 0.825 ± 5e−6

MSE full 0.285 ± 9e−6

MSE aggregate 0.286 ± 8e−6

Table 3  Synthetic experiment 
in the D dimensional setting. 
The experiment has been 
repeated twice: considering the 
theoretical threshold with the 
exact coefficients (theo) and 
with coefficients estimated from 
data (emp)

The number of reduced features aggregated by LinCFA algorithm is 
reported in bold

Quantity 95% Confidence interval

R
2 full 0.828 ± 1.46e−4

R
2 aggregate (theo) 0.890 ± 4.8e−5

R
2 aggregate (emp) 0.881 ± 1.07e−4

MSE full 157.346 ± 0.120

MSE aggregate (theo) 100.536 ± 0.040

MSE aggregate (emp) 108.725 ± 0.088

Number of reduced variables (theo) 4

Number of reduced variables (emp) 15



 P. Bonetti et al.

1 3

considering the reduced features compared with the full dataset. When the number 
of samples is significantly larger than the number of features, the performance of the 
reduced datasets is only slightly better but, when the number of samples is of the 
same order of magnitude as the number of features, the reduced datasets (both con-
sidering empirical and theoretical quantities) significantly outperform the regression 
over the full dataset. Moreover, the regression performed with reduced datasets is 
much robust, since it has a score that is stable for different numbers of samples.

Real-world experiments. The main practical result introduced in this paper (the 
algorithm LinCFA) has been also tested on real datasets. In particular, the results of 
the application of the dimensionality reduction method introduced in this paper are 
discussed in comparison with the chosen baselines.

Specifically, the LinCFA algorithm has been applied in comparison with classical 
(unsupervised) PCA, Supervised PCA, LLE, LPP, Isomap and Kernel PCA. Addi-
tionally, RReliefF has also been considered to take into account a feature selection 

0 500 1,000 1,500 2,000 2,500 3,000
0

5

10

15

20

25

30

Number of samples

N
um

be
r
of

re
du

ce
d
fe
at
ur
es

d

Theoretical values
Empirical values

(a)

0 500 1,000 1,500 2,000 2,500 3,000
0

0.2

0.4

0.6

0.8

1

Number of samples

R
eg
re
ss
io
n
R

2
sc
or
e

Full regression
Reduced regression (theo)
Reduced regression (emp)

(b)

0 500 1,000 1,500 2,000 2,500 3,000
50

100

150

200

250

300

350

400

Number of samples

R
eg
re
ss
io
n
M
SE

Full regression
Reduced regression (theo)
Reduced regression (emp)

(c)

Fig. 2  Figure 2a shows the number of reduced features for a different number of samples. Figure 2b,2c 
show the regression performance in terms of R2 and MSE for different number of samples. Blue lines 
refer to the linear regression with all the original features, while red and green lines respectively refer to 
linear regression on the features reduced by applying the proposed algorithm considering theoretical and 
empirical quantities (Color figure online)
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method as baseline. The number of components selected for PCA is set to explain 95% 
of variance, while for Supervised PCA, LLE, LPP, Isomap, Kernel PCA and RReli-
efF the best result (evaluating from d = 1 to d = 50 principal components) has been 
considered. All the other hyperparameters of the methods have been set to default val-
ues. Linear, polynomial and sigmoidal kernels have been considered for Kernel and 
Supervised PCA. The mean squared error (MSE), the relative root mean squared error 
(RRMSE) and the coefficient of determination ( R2 ) of the linear regression, applied 
on the set of components reduced by the each algorithm under analysis, have been 
considered as performance measures on the test set. Confidence intervals have been 
produced bootstrapping the training and validation set with five different seeds. Addi-
tionally, the performances of the full dataset applying linear, Ridge (Hoerl and Ken-
nard 1970), and Lasso (Tibshirani 1996) regression have been considered. To further 
test the LinCFA algorithm in comparison with non-linear regression approaches, 
together with linear regression, support vector machine for regression (Drucker et al. 
1996)3, XGBoost (Chen and Guestrin 2016)4 and a neural network (Lawrence 1993)5 
have been performed and the related results are available in Appendix E.4. Moreo-
ver, in Appendix E.4, also the result of each baseline considering the same number of 
reduced features selected by the LinCFA algorithm is reported.

Eight datasets with different characteristics have been considered.
The first dataset focuses on the prediction of life expectancy from D = 18 con-

tinuous factors and 1649 samples. The dataset is available on Kaggle6. In this case, a 
reduction of the number of features may be unnecessary, as confirmed by the experi-
mental results, where the full dataset have similar performances w.r.t. the majority 
of the benchmark methods and the LinCFA algorithm. This experiment provides an 
example that shows that the algorithm does not reduce too much the dimensionality, 
when it is not necessary.

The second dataset is a financial dataset made of D = 75 continuous features, 
1299 samples, and a scalar output. The model predicts the cash ratio depending on 
other metrics, from which it is possible to derive many fundamental indicators. The 
dataset is available on Kaggle7. Given the consistent number of features w.r.t. the 
number of samples, linear regression with the full dataset provides negative results, 
while the application of linear regression on the reduced dataset has a significantly 
high score, and the LinCFA algorithm has one of the best performances among the 
methods considered.

Then, the algorithm is tested on two climatological dataset composed by D = 136 
(with 1038 samples) and D = 1991 (with 981 samples) continuous climatological fea-
tures and a scalar target, which represents the state of vegetation of a basin of the Po 
river. This datasets have been composed by the authors merging different sources for 
the vegetation index, temperature, and precipitation over different basins (see (Didan 
2015; Cornes et al. 2018; Zellner and Castelli 2022)), and they are available in the 

3 Considering Scikit-Learn (Pedregosa et al. 2011) implementation.
4 Implementation available at https:// xgboo st. readt hedocs. io/ en/ stable/ index. html.
5 Considering Scikit-Learn (Pedregosa et al. 2011) implementation.
6 https:// www. kaggle. com/ datas ets/ kumar ajars hi/ life- expec tancy- who
7 https:// www. kaggle. com/ datas ets/ dgawl ik/ nyse

https://xgboost.readthedocs.io/en/stable/index.html
https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who
https://www.kaggle.com/datasets/dgawlik/nyse
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repository of this work. With the first climate dataset, considering linear regression, 
the reduction of features performed by the baselines and the LinCFA algorithm lead 
again to a significant improvement w.r.t. the full dataset, which has a satisfactory per-
formance only considering XGBoost. The second climatic dataset significantly ben-
efits from the reduction of the dimension in all cases. In particular, the LinCFA algo-
rithm leads to the highest score in combination with linear regression.

Additionally, we further tested the LinCFA algorithm on four datasets from the 
UCI repository. In particular, we considered a simple classical dataset with 13 fea-
tures (and 506 samples), the Boston Housing dataset (Harrison and Rubinfeld 1978), 
which confirms that, as discussed for the life expectancy dataset, the proposed algo-
rithm does not lose information when the full regression is already able to man-
age the entire set of features. Then, a more complex dataset related to superconduc-
tivity (Hamidieh 2018), with 81 features, provides an example with many samples 
(21263), showing the possibility to apply the LinCFA algorithm also in this case.

Additionally, we considered the Cifar-10 dataset (Krizhevsky et al. 2009), trans-
formed into a regression problem by considering each pixel of each of the three 
color layers as a feature and removing a pixel, considered as target. This provides a 
significant case with 6000 features and 3071 samples, where the LinCFA algorithm 
provides the best absolute score w.r.t. the full dataset and the considered linear and 
non-linear methods.

Finally, a Gene Expression (Fiorini 2016) dataset composed of 801 samples and 
19133 features has been considered, where the gene expression of one gene is the 
target variable and the gene expression of the other genes available are considered 
as features. Similarly to the climate and the Cifar-10 dataset, with many highly cor-
related features and the need to reduce them to gain both interpretability and per-
formance, this dataset allows to test the LinCFA algorithm on a dataset with a large 
number of features and a relatively small number of samples. The results show once 
again that the LinCFA algorihtms obtains high scores w.r.t. the other dimensionality 
reduction methods and the regression on the full dataset.

Tables  4 and  5 show the MSE, RRMSE and R2 coefficients obtained with linear 
regression applied on the full dataset, on the dataset reduced by LinCFA, and on the 
dataset reduced by the best performing baseline. Additionally, the results related to 
Ridge and Lasso regression are reported. The extensive results for each dataset with 
all the baselines and regression methods considered can be found in Appendix E, Tabl
es 9, 10, 11, 12, 13, 14, 15, 16. Additionally, in the appendix, Tables 17 and 18 report 
the results associated to the repetition of the experiments, imposing the same number 
of reduced features as the one identified by LinCFA to each dimensionality reduction 
method. Finally, an empirical example of computational time is reported in Table 19.

From the results, as already mentioned during the description of the datasets, it 
is possible to notice that, when the number of features is low, the results are simi-
lar between the full regression and the regression on the reduced dataset applying the 
baselines or LinCFA. On the other hand, when the algorithms are applied to the large 
dimensional data, the algorithm that we propose always obtains similar or better per-
formances than the other methods. Therefore, the LinCFA Algorithm is able to reduce 
the dimensionality of the input features improving (or not-worsening) the performance 
of the linear model, preserving the interpretability of the reduced features.
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7  Conclusion and future work

This paper presents a dimensionality reduction algorithm in linear settings with the 
theoretical guarantee to produce a reduced dataset that does not perform worse than 
the full dataset in terms of MSE, with a decrease of variance that is larger than the 
increase of bias due to the aggregation of features. The main strength of the pro-
posed approach is that it aggregates features through their mean, which reduces the 
dimension meanwhile preserving the interpretability of each feature, which is not 
common in traditional dimensionality reduction approaches like PCA. Moreover, the 
complexity of the proposed algorithm is lower than performing a linear regression 
on the full original dataset. The main weaknesses of the proposed method are that 
all the computations have been done assuming the features to be continuous and 
the relationship between the target and the features to be linear, which is a strong 
assumption in real-world applications. However, the empirical results show an 
increase in performance and a significant reduction of dimensionality when applying 
the proposed algorithm to real-world datasets. Therefore, as detailed in Remark 1, 
the algorithm is designed relying on the linear theoretical result, but it can be applied 
to any regression problem with continuous features, where the proposed threshold 

Table 4  Experiments on four real datasets. The total number of samples n has been divided into train 
(66% of data) and test (33% of data) sets

The best score for each dataset and metric is reported in bold

Quantity Life Exp Financial Climatological I Climatological II

# samples n 1649 1299 1038 981
Full dim (# features D) 18 75 136 1991
Reduced dim. best baseline 16.6 ± 0.4 45.6 ± 1.8 47.6 ± 1.8 38.8 ± 5.1

Reduced dim. 
LinCFA (ours)

13.8 ± 1.7 14.6 ± 0.9 35.2 ± 3.9 37.0 ± 3.6

R
2 full 0.8309 ± 0.0031 −4.6094 ± 4.2851 0.2934 ± 0.0859 0.7529 ± 0.0230

R
2 Ridge 0.8302 ± 0.0030 0.8939 ± 0.0067 0.5559 ± 0.0347 0.7885 ± 0.0177

R
2 Lasso 0.7810 ± 0.0045 0.8671 ± 0.0051 0.5043 ± 0.0233 0.9032 ± 0.0046

R
2 best baseline 0.8313 ± 0.0034 0.8972 ± 0.0029 0.6317 ± 0.0201 0.8551 ± 0.0151

R
2 LinCFA (ours) 0.8317 ± 0.0027 0.8838 ± 0.0018 0.5727 ± 0.0435 0.9203 ± 0.0073

MSE full 0.1836 ± 0.0033 8.5071 ± 6.4986 0.2891 ± 0.0351 0.2341 ± 0.0209

MSE Ridge 0.1843 ± 0.0032 0.1690 ± 0.0102 0.1812 ± 0.0142 0.1926 ± 0.0162

MSE Lasso 0.2377 ± 0.0049 0.2016 ± 0.0077 0.2022 ± 0.0095 0.0882 ± 0.0042

MSE best baseline 0.1832 ± 0.0037 0.1558 ± 0.0045 0.1503 ± 0.0082 0.1318 ± 0.0138

MSE LinCFA (ours) 0.1828 ± 0.0029 0.1762 ± 0.0028 0.1743 ± 0.0178 0.0725 ± 0.0067

RRMSE full 0.4712 ± 0.0084 0.7050 ± 0.2453 0.7697 ± 0.0090 0.5865 ± 0.0308

RRMSE Ridge 0.4749 ± 0.0085 0.3383 ± 0.0093 0.4695 ± 0.0267 0.4556 ± 0.0311

RRMSE Lasso 0.4948 ± 0.0042 0.3926 ± 0.0057 0.5032 ± 0.0507 0.3095 ± 0.1291

RRMSE best baseline 0.5035 ± 0.0236 0.3328 ± 0.0105 0.4229 ± 0.0113 0.4946 ± 0.0635

RRMSE LinCFA (ours) 0.4697 ± 0.0074 0.3609 ± 0.0083 0.4514 ± 0.0352 0.2999 ± 0.0107
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becomes a heuristic quantity. In this case, the empirical validation of the method on 
real-world datasets, which have no guarantee of linearity, shows a promising appli-
cability of the proposed method outside linear contexts.

In future work it may be interesting to relax the linearity assumption in the theo-
retical analysis, considering the target as a general function of the input features and 
applying a general machine learning method to the data. Another possible way to 
enrich the results obtained in this paper is to consider structured data, where prior 
knowledge of their relationship can be useful to identify the most suitable features 
for the aggregation (e.g., on climatological data, features that are registered by two 
adjacent sensors are more likely to be aggregated).

Appendix A: Two‑dimensional analysis: additional proofs and results

This section shows proofs and additional technical results that are not reported in 
Sect. 4 to keep the exposition clear.

Table 5  Experiments on four additional real datasets. The total number of samples n is divided into train 
(66% of data) and test (33% of data) sets

The best score for each dataset and metric is reported in bold

Quantity Boston Housing Superconductivity Cifar-10 Gene expression

# samples n 506 21263 6000 801
Full dim (# features D) 13 81 3071 19133
Reduced dim. best baseline 11.4 ± 1.1 49.8 ± 0.4 76 35.2 ± 9.0

Reduced dim. 
LinCFA (ours)

7.2 ± 0.9 49.8 ± 2.9 75.6 ± 6.5 19.6 ± 1.7

R
2 full 0.7027 ± 0.0070 0.7290 ± 0.0013 0.1374 ± 0.6204 0.5166 ± 0.0041

R
2 Ridge 0.7027 ± 0.0069 0.7284 ± 0.0012 0.8575 ± 0.0996 0.5167 ± 0.0041

R
2 Lasso 0.6557 ± 0.0082 0.5844 ± 0.0032 0.9439 ± 0.0095 0.5839 ± 0.0095

R
2 best baseline 0.7059 ± 0.0121 0.7470 ± 0.0031 0.8236 ± 0.0192 0.5289 ± 0.0151

R
2 LinCFA (ours) 0.6541 ± 0.0206 0.6912 ± 0.0046 0.9626 ± 0.0260 0.5990 ± 0.0121

MSE full 0.2552 ± 0.0060 0.2674 ± 0.0013 0.5229 ± 0.3761 0.4992 ± 0.0041

MSE Ridge 0.2552 ± 0.0059 0.2680 ± 0.0012 0.0864 ± 0.0604 0.4991 ± 0.0042

MSE Lasso 0.2956 ± 0.0071 0.4102 ± 0.0031 0.0340 ± 0.0058 0.4340 ± 0.0088

MSE best baseline 0.2524 ± 0.0104 0.2497 ± 0.0031 0.1069 ± 0.0116 0.4806 ± 0.0156

MSE LinCFA (ours) 0.2970 ± 0.0176 0.3048 ± 0.0045 0.0227 ± 0.0157 0.4141 ± 0.0125

RRMSE full 0.5684 ± 0.0186 0.6025 ± 0.0030 0.4775 ± 0.2907 0.8282 ± 0.0089

RRMSE Ridge 0.5700 ± 0.0184 0.6044 ± 0.0031 0.2725 ± 0.1515 0.8279 ± 0.0086

RRMSE Lasso 0.6488 ± 0.0264 1.0354 ± 0.0683 0.1821 ± 0.0274 0.7880 ± 0.0174

RRMSE best baseline 0.5665 ± 0.0331 0.5835 ± 0.0066 0.4273 ± 0.0075 0.8473 ± 0.0379

RRMSE LinCFA (ours) 0.6530 ± 0.0143 0.6590 ± 0.0102 0.1564 ± 0.0790 0.7492 ± 0.0224



1 3

Interpretable linear dimensionality reduction...

A.1 Variance

This subsection contains some additional proofs related to the bivariate analysis of 
variance presented in the main paper.

Proof of Equation (3) Given the training set of features X and target y , in a lin-
ear regression model, the estimated weights are computed as ŵ = (XTX)−1XTy . 
Therefore:

Since (XTX)−1XTX = I and varT(y|X) = �2 by hypothesis, the result follows.   ◻

Proof of Lemma 1 To prove this results it is enough to start from Eq. (3) and substi-
tute the values of X.

For the one-dimensional setting:

Recalling that the expected value of the random variables x1 and x2 is zero by 
hypothesis, then 

∑n

i=1
(x̄i)2 = (n − 1)�̂�2

x̄
.

For the two dimensional setting:

The result follows recalling again that the expected value of the random variables 
x1, x2 is zero, therefore 
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Proof of Theorem 1 Let us consider a training dataset T  and a univariate test sample 
(x, y). Then the variance is:
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varT(ŵ�X) = (XTX)−1𝜎2

=

��
x1
1
... xn

1

x1
2
... xn

2

� ⎡⎢⎢⎣

x1
1
x1
2

... ...

xn
1
xn
2

⎤⎥⎥⎦

�−1

𝜎2

=

��
(x1

1
)2 + ... + (xn

1
)2 x1

1
x1
2
+ ... + xn

1
xn
2

x1
1
x1
2
+ ... + xn

1
xn
2

(x1
2
)2 + ... + (xn

2
)2

��−1

𝜎2

=
𝜎2

(
∑n

i=1
(xi

1
)2
∑n

i=1
(xi

2
)2) − (

∑n

i=1
(xi

1
xi
2
))2

×

�
(x1

2
)2 + ... + (xn

2
)2 − (x1

1
x1
2
+ ... + xn

1
xn
2
)

−(x1
1
x1
2
+ ... + xn

1
xn
2
) (x1

1
)2 + ... + (xn

1
)2

�
.



 P. Bonetti et al.

1 3

Therefore, for the one-dimensional regression:

Conditioning on the features training set X:

Regarding the two dimensional regression:

Conditioning on the features training set:

  ◻

Proof of Theorem 3 From Theorem 1, the difference of variances between the two-
dimensional and the one-dimensional cases is:

that with the assumptions of Eq. (10) can be written as:

� x,T[(hT(x) − h̄(x))2] = � x � T[(hT(x) − h̄(x))2].

� x � T[(hT(x) − h̄(x))2] = � x � T[(ŵx − � T[ŵx])
2]

= � x � T[(x(ŵ − � T[ŵ])
2] = � x[x

2]� T[(ŵ − � T[ŵ])
2]

= varx(x)varT(ŵ) = 𝜎2
x
varT(ŵ).

� x � T[(hT(x) − h̄(x))2|X] = 𝜎2
x
varT(ŵ|X) =

𝜎2
x
𝜎2

(n − 1)�̂�2
x

.
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Recalling that �2
x1+x2

= �2
x1
+ �2

x2
+ 2cov(x1, x2) , and that the same applies for the 

sample variance, the expression above is equal to:

Applying the common denominator the result follows:

  ◻

A.2 Bias

This subsection contains some technical results and proofs used to compute the dif-
ference of biases between the two considered model in the bivariate linear setting of 
the main paper.

A.2.1 Expected value of the estimators

The expected value with respect to the training set T  of the vector ŵ of the regres-
sion coefficients estimates is necessary for the computations of the bias of the 
models. Given the training features X , its known expression in a general problem 
y = f (X) + � is given by (Johnson and Wichern 2007):
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(A1)� T[ŵ|X] = (XTX)−1XT f (X).
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Proof Given the training set of features X and target y , in a linear regression model, 
the estimated weights are computed as ŵ = (XTX)−1XTy . Therefore:

where the last equality holds since the expected value of the noise term � is null by 
hypothesis.   ◻

The following lemma shows the expected value of the weights for the two 
models that we are considering.

Lemma 3 Let the real model be linear with respect to the features x1 and x2 
( y = w1x1 + w2x2 + � ). Then, in the one-dimensional case ŷ = ŵx̄ , we have:

In the two-dimensional case ŷ = ŵ1x1 + ŵ2x2 the estimators are unbiased:

Proof To prove this result it is enough to apply Equation (A1) in the two settings.
In the one dimensional case, with x = x1+x2

2
 , it becomes:

Assuming the real model to be linear ( y = w1x1 + w2x2 + �):

� T[ŵ|X] = � T[(X
TX)−1XTy|X]

= � T[(X
TX)−1XT (f (X) + 𝜖)|X]

= (XTX)−1XT
� T[f (X)|X] + (XTX)−1XT

� T[𝜖|X]
= (XTX)−1XT f (X),

(A2)� T[ŵ|X] =
2(w1�̂�

2
x1
+ w2�̂�

2
x2
+ (w1 + w2) ̂cov(x1, x2))

�̂�2
x1
+ �̂�2

x2
+ 2 ̂cov(x1, x2)

.

(A3)� T[ŵ|X] =
[
w1

w2

]
.

� T[ŵ�X] =
∑n

i=1
xif (x)

(n − 1)�̂�2
x

=
2(
∑n

i=1
xi
1
f (xi

1
, xi

2
) +

∑n

i=1
xi
2
f (xi

1
, xi

2
))

(n − 1)�̂�2
x1+x2

.

� T[ŵ�X] =
2(
∑n

i=1
xi
1
f (xi

1
, xi

2
) +

∑n

i=1
xi
2
f (xi

1
, xi

2
))

(n − 1)�̂�2
x1+x2

=
2(
∑n

i=1
xi
1
(w1x

i
1
+ w2x

i
2
) +

∑n

i=1
xi
2
(w1x

i
1
+ w2x

i
2
))

(n − 1)�̂�2
x1+x2

=
2(w1

∑n

i=1
(xi

1
)2 + (w1 + w2)

∑n

i=1
xi
1
xi
2
+ w2

∑n

i=1
(xi

2
)2)

(n − 1)�̂�2
x1+x2

.
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Interpretable linear dimensionality reduction...

Remembering that the expected values of x1, x2 are equal to zero it is possible to sub-
stitute the summations with sample variances and covariances, obtaining the result.

In the two dimensional setting, from the general result and substituting 
f (X) = Xw:

  ◻

A.2.2 Bias of the model

In Eq. (2), we defined the (squared) bias as follows:

The following result shows the bias of the two specific models considered in this 
section.

Theorem  9 Let the real model be linear with respect to the two features x1, x2 
( y = w1x1 + w2x2 + � ). Then, in the one dimensional case y = ŵx̄ , we have:

On the other hand, in the two dimensional case y = ŵ1x1 + ŵ2x2 the model is 
unbiased:

Proof The proof combines the results of Lemma 3 with the definition of bias given 
in Eq. (A4).

Let us consider a training dataset T  and a test sample x, y. Given the definition of 
(squared) bias:

in the one dimensional case, considering x = x1+x2

2
:

� T[ŵ|X] = (XTX)−1XT f (X) = (XTX)−1XTXw = w.

(A4)� x[(h̄(x) − ȳ)2] = � x[(� T[h(x)] − � y|x[y])2].

(A5)

� x[(h̄(x) − ȳ)2]

=
𝜎2
x1+x2

(�̂�2
x1+x2

)2
(w1�̂�

2
x1
+ w2�̂�

2
x2
+ (w1 + w2) ̂cov(x1, x2))

2

+ w2
1
𝜎2
x1
+ w2

2
𝜎2
x2
+ 2w1w2cov(x1, x2)

−
2

�̂�2
x1+x2

(w1𝜎
2
x1
+ w2𝜎

2
x2
+ (w1 + w2)cov(x1, x2))

× (w1�̂�
2
x1
+ w2�̂�

2
x2
+ (w1 + w2) ̂cov(x1, x2)).

(A6)� x[(h̄(x) − ȳ)2] = 0.

� x[(h̄(x) − ȳ)2] = � x[(� T[h(x)] − � y|x[y])2],
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Conditioning on the features training set and exploiting the independence between 
train and test set:

That, substituting x = x1+x2

2
 , is equal to:

Substituting in the last equation the expression found in Lemma 3 for � T[ŵ|X] in the 
one-dimensional setting, the result follows.

In the two dimensional regression, the bias is:

Conditioning on the features training set, exploiting the independence between train 

and test set and recalling � T[ŵ|X] =
[
w1

w2

]
:

  ◻

A.2.3 Comparisons

The asymptotic and finite-samples results for the comparisons of biases can be 
found in the main paper, in this subsection the related proofs are shown.

Proof of Theorem 4 Considering the bias of the two models computed in Theorem 9 
and exploiting consistency of the estimators, the difference between the one and the 
two dimensional model is equal to:

� x[(� T[ŵx] − (w1x1 + w2x2))
2]

= � x[(x� T[ŵ] − (w1x1 + w2x2))
2]

= � x[x
2
� T[ŵ]

2] + � x[(w1x1 + w2x2)
2]

− 2� x[� T[ŵ]x(w1x1 + w2x2)].

� x[(h̄(x) − ȳ)2|X]
= 𝜎2

x
� T[ŵ|X]2 + � x[(w1x1 + w2x2)

2]

− 2� T[ŵ|X]� x[x(w1x1 + w2x2)].

1

4
(𝜎2

x1
+ 𝜎2

x2
+ 2cov(x1, x2))� T[ŵ|X]2

+ (w2
1
𝜎2
x1
+ w2

2
𝜎2
x2
+ 2w1w2cov(x1, x2))

− � T[ŵ|X](w1𝜎
2
x1
+ w2𝜎

2
x2
+ (w1 + w2)cov(x1, x2)).

� x[(h̄(x) − ȳ)2] = � x[(� T[ŵ1x1 + ŵ2x2] − (w1x1 + w2x2))
2].

� x[(x1 � T[ŵ1] + x2 � T[ŵ2] − (w1x1 + w2x2))
2]

= � x[(x1w1 + x2w2 − w1x1 − w2x2)
2] = 0.
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Interpretable linear dimensionality reduction...

The result follows by definition of covariance.   ◻

Proof of Theorem  5 From Theorem  9, the difference between the one-dimensional 
and the two-dimensional bias is equal to the one-dimensional bias, since the two-
dimensional model is unbiased. Therefore it is equal to:

Substituting the assumptions from Eq. (10) we get:

from which, after basic algebraic computations, the result follows.   ◻

�2
x1+x2

(�2
x1+x2

)2
(w1�

2
x1
+ w2�

2
x2
+ (w1 + w2)cov(x1, x2))

2

+ w2
1
�2
x1
+ w2

2
�2
x2
+ 2w1w2cov(x1, x2)

−
2

�2
x1+x2

(w1�
2
x1
+ w2�

2
x2
+ (w1 + w2)cov(x1, x2))

× (w1�
2
x1
+ w2�

2
x2
+ (w1 + w2)cov(x1, x2))

=
(�2

x1
�2
x2
− cov(x1, x2)

2)(w1 − w2)
2

�2
x1+x2

.

𝜎2
x1+x2

(w1�̂�
2
x1
+ w2�̂�

2
x2
+ (w1 + w2) ̂cov(x1, x2))

2

(�̂�2
x1+x2

)2

+ w2
1
𝜎2
x1
+ w2

2
𝜎2
x2
+ 2w1w2cov(x1, x2)

−
2(w1𝜎

2
x1
+ w2𝜎

2
x2
+ (w1 + w2)cov(x1, x2))

�̂�2
x1+x2

× (w1�̂�
2
x1
+ w2�̂�

2
x2
+ (w1 + w2) ̂cov(x1, x2)).

2(𝜎2
x
+ cov(x1, x2))((w1 + w2)( ̂cov(x1, x2) + �̂�2

x
))2

(�̂�2
x1+x2

)2

+
(�̂�2

x1+x2
)2(w2

1
𝜎2
x
+ w2

2
𝜎2
x
+ 2w1w2cov(x1, x2))

(�̂�2
x1+x2

)2
+

−
2(�̂�2

x1+x2
)(w1𝜎

2
x
+ w2𝜎

2
x
+ (w1 + w2)cov(x1, x2))

(�̂�2
x1+x2

)2

× (w1�̂�
2
x
+ w2�̂�

2
x
+ (w1 + w2) ̂cov(x1, x2)),
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Appendix B Two‑dimensional analysis: additional setting

In the main paper, the finite-sample analysis in the two-dimensional case is per-
formed with the assumption that the two features x1, x2 have respectively the same 
variance and sample variance. In this section are reported the results after the relax-
ation of this hypothesis.

In particular, the only assumption for this finite-sample analysis is unitary 
variance:

implying by definition of covariance that cov(x1, x2) = �x1,x2.
This is not an impacting restriction since it is always possible to scale a random 

variable to have unitary variance dividing it by its standard deviation.
The following theorem shows the difference of variance between the two-dimen-

sional and the one-dimensional linear regression models.

Theorem 10 In the finite-case with unitary variances, the difference of variances of 
the linear model with two features compared to the one with a single feature (which 
is their mean), is equal to:

Proof Starting from the difference of variances between the two-dimensional and 
the one-dimensional model (Theorem 1):

exploiting the unitary variance assumption becomes:

(B7)�x1 = �x2 = 1,

(B8)

𝜎2

(n − 1)
×

[ (�̂�2
x1
− �̂�2

x2
)2

�̂�2
x1
�̂�2
x2
(1 − �̂�2

x1,x2
)�̂�2

x1+x2

+
2(1 − 𝜌x1,x2 )(�̂�

2
x1
+ ̂cov(x1, x2))(�̂�

2
x2
+ ̂cov(x1, x2))

�̂�2
x1
�̂�2
x2
(1 − �̂�2

x1,x2
)�̂�2

x1+x2

]
.

𝜎2

(n − 1)(�̂�2
x1
�̂�2
x2
− ̂cov(x1, x2)

2)

× (𝜎2
x1
�̂�2
x2
+ 𝜎2

x2
�̂�2
x1
− 2cov(x1, x2) ̂cov(x1, x2))

− 𝜎2
x1+x2

𝜎2

(n − 1)�̂�2
x1+x2

,

𝜎2

(n − 1)(�̂�2
x1
�̂�2
x2
− ̂cov(x1, x2)

2)

× (�̂�2
x2
+ �̂�2

x1
− 2cov(x1, x2) ̂cov(x1, x2))

−
𝜎2(2 + 2cov(x1, x2))

(n − 1)(�̂�2
x1
+ �̂�2

x2
+ 2 ̂cov(x1, x2))

.
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Interpretable linear dimensionality reduction...

Applying the common denominator:

Finally, adding and subtracting on the numerator the term 2�̂�2
x1
�̂�2
x2

 and grouping the 
terms, it is equal to:

  ◻

Remark 14 When the number of samples n tends to infinity the result becomes the 
same found in the asymptotic analysis. Moreover, when the sample variances of the 
two features are equal, the result becomes the same of the finite case analysis with 
equal sample and real variances.

Lemma 4 The quantity found as difference of variances between the two-dimen-
sional and one-dimensional case in this general setting is always non-negative.

Proof Recalling the result of Equation (B8), the first factor �2

(n−1)
 and the denominator 

of the second one �̂�2
x1
�̂�2
x2
(1 − �̂�2

x1,x2
)�̂�2

x1+x2
 are always non-negative, so the difference 

of features is positive if and only if the second numerator is positive:

1

(n − 1)(�̂�2
x1
�̂�2
x2
− ̂cov(x1, x2)

2)(�̂�2
x1
+ �̂�2

x2
+ 2 ̂cov(x1, x2))

×

[
𝜎2(�̂�4

x1
+ �̂�4

x2
+ 2�̂�2

x1
̂cov(x1, x2)

+ 2�̂�2
x2

̂cov(x1, x2) − 2�̂�2
x1

̂cov(x1, x2)cov(x1, x2))

+ 𝜎2(−2�̂�2
x2

̂cov(x1, x2)cov(x1, x2)

− 2cov(x1, x2) ̂cov(x1, x2)
2)

+ 𝜎2(2 ̂cov(x1, x2)
2 − 2�̂�2

x1
�̂�2
x2
cov(x1, x2))

]
.

𝜎2

(n − 1)�̂�2
x1
�̂�2
x2
(1 − �̂�2

x1,x2
)�̂�2

x1+x2

×

[
(�̂�2

x1
− �̂�2

x2
)2 + 2(1 − 𝜌x1,x2 )

× (�̂�2
x1
+ ̂cov(x1, x2))(�̂�

2
x2
+ ̂cov(x1, x2))

]
.

(�̂�2
x1
− �̂�2

x2
)2 + 2(1 − 𝜌x1,x2 )

× (�̂�2
x1
+ ̂cov(x1, x2))(�̂�

2
x2
+ ̂cov(x1, x2)) ≥ 0.
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Focusing on the term 2(1 − 𝜌x1,x2 )(�̂�
2
x1
+ ̂cov(x1, x2))(�̂�

2
x2
+ ̂cov(x1, x2)), the function 

(�̂�2
x1
+ ̂cov(x1, x2))(�̂�

2
x2
+ ̂cov(x1, x2)) takes minimum value when 

̂cov(x1, x2) = −
�̂�2
x1
+�̂�2

x2

2
 , therefore the minimum value of this term is:

Substituting it back in the original inequality:

that is a quantity always non-negative and proves the lemma.   ◻

The following theorem shows the difference of (squared) bias between the one-
dimensional and the two-dimensional models.

Theorem  11 In the finite-case, assuming unitary variances �x1 = �x2 = 1 , the 
increase of bias due to the aggregation of the two features with their average is 
equal to:

Proof Recalling the expression of the difference of bias between the one-dimen-
sional and the two-dimensional linear regression models (Theorem 9):

2(1 − 𝜌x1,x2 )
(
−
1

4

)
(�̂�2

x1
− �̂�2

x2
)2.

(�̂�2
x1
− �̂�2

x2
)2 −

1

2
(1 − 𝜌x1,x2 )(�̂�

2
x1
− �̂�2

x2
)2

=
1

2
(1 + 𝜌x1,x2 )(�̂�

2
x1
− �̂�2

x2
)2,

(B9)

1

(�̂�2
x1+x2

)2

× (2(1 − 𝜌x1,x2 )(�̂�
2
x1
+ �̂�2

x2
+ ̂cov(x1, x2)) ̂cov(x1, x2)

+ �̂�4
x1
+ �̂�4

x2
− 2𝜌x1,x2 �̂�

2
x1
�̂�2
x2
)(w1 − w2)

2.

𝜎2
x1+x2

(�̂�2
x1+x2

)2
(w1�̂�

2
x1
+ w2�̂�

2
x2
+ (w1 + w2) ̂cov(x1, x2))

2

+ w2
1
𝜎2
x1
+ w2

2
𝜎2
x2
+ 2w1w2cov(x1, x2)

−
2

�̂�2
x1+x2

× (w1𝜎
2
x1
+ w2𝜎

2
x2
+ (w1 + w2)cov(x1, x2))

× (w1�̂�
2
x1
+ w2�̂�

2
x2
+ (w1 + w2) ̂cov(x1, x2)),
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Interpretable linear dimensionality reduction...

exploiting the unitary variance assumption can be written as:

After basic algebraic computations the result follows.   ◻

Remark 15 When the number of samples n tends to infinity the result becomes the 
same found in the asymptotic analysis. Moreover, when the sample variances of the 
two features are equal, the result becomes the same of the finite case analysis with 
equal sample and real variances.

Theorem  12 Necessary and sufficient condition for positivity of the difference 
between the reduction of variance and the increase of bias when aggregating two 
features with their average in the unitary-variance finite-sample setting is:

Proof The result is obtained subtracting the results of the two previous theorems, 
after algebraic computations.   ◻

Appendix C Two‑dimensional analysis: theoretical and practical 
quantities

This section elaborates the inequalities found in the main paper in Theorem  6,  7 
considering only theoretical quantities or, on the other hand, quantities that can all 
be computed from data. In this way, in the bivariate case, we have both a theoretical 
conclusion of the analysis and an empirical one that can be used in practice.

2(1 + 𝜌x1,x2 )

(�̂�2
x1+x2

)2
(w1�̂�

2
x1
+ w2�̂�

2
x2
+ (w1 + w2) ̂cov(x1, x2))

2

+
(w2

1
+ w2

2
+ 2w1w2𝜌x1,x2 )(�̂�

2
x1
+ �̂�2

x2
+ 2 ̂cov(x1, x2))

2

(�̂�2
x1+x2

)2

−
2

(�̂�2
x1+x2

)2
(w1 + w2)(1 + 𝜌x1,x2 )

× (w1�̂�
2
x1
+ w2�̂�

2
x2
+ (w1 + w2) ̂cov(x1, x2))

× (�̂�2
x1
+ �̂�2

x2
+ 2 ̂cov(x1, x2)).

(B10)

𝜎2[(�̂�2
x1
− �̂�2

x2
)2

+ 2(1 − 𝜌x1,x2 )(�̂�
2
x1
+ ̂cov(x1, x2))(�̂�

2
x2
+ ̂cov(x1, x2))]

× (�̂�2
x1
+ �̂�2

x2
+ 2 ̂cov(x1, x2))

− [2(1 − 𝜌x1,x2 )(�̂�
2
x1
+ �̂�2

x2
+ ̂cov(x1, x2)) ̂cov(x1, x2)

+ �̂�4
x1
+ �̂�4

x2
− 2𝜌�̂�2

x1
�̂�2
x2
]

× (w1 − w2)
2(n − 1)(�̂�2

x1
�̂�2
x2
− ̂cov(x1, x2)

2) ≥ 0.
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For the asymptotic analysis it is straightforward to obtain a theoretical and an 
empirical expression, indeed at the limit the estimators converge in probability to the 
theoretical quantities.

Theorem  13 In the asymptotic setting of Theorem  6, considering only theoretical 
quantities, the following inequalities hold:

On the other hand, considering only quantities that can be derived from data:

where s2 = 𝜖T𝜖

n−3
 is the unbiased estimator of the variance �2 of the residual � of the 

linear regression (an estimate 𝜖 of the residual can be computed subtracting the pre-
dicted value to the real value of the target).

Proof Equation (C11) is the same result of Theorem 6.
To derive Eq. (C12) it is sufficient to substitute the theoretical quantities with 

their consistent estimators.   ◻

For the finite-samples analysis it is necessary to introduce confidence intervals 
to substitute theoretical with empirical quantities and viceversa.

Theorem  14 In the finite-case setting of Theorem  7, considering only empirical 
quantities, the following inequality holds with probability at least 1 − �:

where �2
n−3

(⋅) represents a Chi-squared distribution with n − 3 degrees of freedom 
and F3,n−3(⋅) a Fisher distribution with 3, n − 3 degrees of freedom.

Proof The unilateral confidence interval for the variance �2 of the residual � of the 
linear regression model y = w1x1 + w2x2 + � , assuming � ∼ N(0, �2) is, with prob-
ability 1 − � (Johnson and Wichern 2007):

(C11)

⎧
⎪⎨⎪⎩

�2
x1,x2

≥ 1 −
�2�2

x1+x2

(n−1)�2
x1
�2
x2
(w1−w2)

2

�x1,x2 ≥ 1 −
2�2

(n−1)(w1−w2)
2
(if �x1 = �x2 = 1).

(C12)

⎧
⎪⎨⎪⎩

�̂�2
x1,x2

≥ 1 −
s2�̂�2

x1+x2

(n−1)�̂�2
x1
�̂�2
x2
(ŵ1−ŵ2)

2

�̂�x1,x2 ≥ 1 −
2s2

(n−1)(ŵ1−ŵ2)
2
(if �̂�x1 = �̂�x2 = 1),

(C13)

�̂�x1,x2 ≥ 1 −
2(n − 3)s2

(n − 1)𝜒2
n−3

�
𝛿

2

�
�̂�2
x

×
1

(�ŵ1 − ŵ2� +
�

3F3,n−3

�
𝛿

2

�
(
√

̂var(ŵ1) +
√

̂var(ŵ2)))
2

,
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Interpretable linear dimensionality reduction...

The simultaneous confidence interval for the weights w1,w2 of the linear regression 
model y = w1x1 + w2x2 + � is, with probability 1 − �:

Considering the confidence intervals and the inequality of Theorem 7, with prob-
ability 1 − �:

This means that the inequality holds and concludes the proof.   ◻

Remark 16 At the limit the quantity �2

n−3
 tends to 1, so the result of Theorem 14 is 

coherent with the asymptotic result.

In order to obtain the result with only theoretical quantities in the finite-sample 
case, it is necessary to introduce two bounds on the difference between covariance 
and sample covariance.

Proposition 15 The following inequalities hold.

• With probability 1 − � : 

• with probability 1 − � : 

(n − r − 1)s2

�2
n−r−1

(�)
≤ �2.

�
w1 ∈ [ŵ1 ±

√
̂var(ŵ1)

√
(r + 1)Fr+1,n−r−1(𝛾)]

w2 ∈ [ŵ2 ±
√

̂var(ŵ2)
√
(r + 1)Fr+1,n−r−1(𝛾)].

�̂�x1,x2 ≥ 1 −
2(n − 3)s2

(n − 1)𝜒2
n−3

�
𝛿

2

�
�̂�2
x

×
1

(�ŵ1 − ŵ2� +
�

3F3,n−3

�
𝛿

2

�
(
√

̂var(ŵ1) +
√

̂var(ŵ2)))
2

≥ 1 −
2𝜎2

(n − 1)�̂�2
x
(w1 − w2)

2
.

(C14)
̂cov(x1, x2) − cov(x1, x2) ≤ 3

√√√√ log
(

4

𝛿

)

n − 1
.

(C15)
cov(x1, x2) − ̂cov(x1, x2) ≤ 4

√√√√ log
(

4

𝛿

)

n − 1
;
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Proof The proof exploits Hoeffding’s inequality by applying it to the random vari-
able Z = x1x2 . The proof will derive the results of the proposition for two general 
random variables X, Y and n data xi, yi sampled from their distribution. We denote 
with X̄, Ȳ  the means of the considered samples.

From Hoeffding’s inequality  (Hoeffding 1963) applied to the variable Z = XY  , 
with probability 1 − � , we get:

which implies:

Then with probability 1 − 2�:

where the second inequality applies Hoeffding’s inequality three times. Equation 
(C14) is therefore proved.

On the other hand, with probability 1 − 2�:

|� [XY] −
1

n

n∑
i=1

xiyi| ≤

√√√√ log
(

2

�

)

2n
,

|� [XY] −
1

n − 1

n∑
i=1

xiyi| ≤

√√√√ log
(

2

�

)

n − 1
.

̂cov(X, Y) − cov(X, Y)

=
1

n − 1

n∑
i=1

xiyi −
n

n − 1
X̄Ȳ − � [XY] + � [X]� [Y]

≤
1

n − 1

n∑
i=1

xiyi − X̄Ȳ − � [XY] + � [X]� [Y] ± X̄ � [Y]

≤

√√√√ log
(

2

𝛿

)

n − 1
+ Ȳ

√√√√ log
(

2

𝛿

)

2n
+ � [Y]

√√√√ log
(

2

𝛿

)

2n
≤ 3

√√√√ log
(

2

𝛿

)

n − 1
,
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Interpretable linear dimensionality reduction...

Table 7  95% confidence intervals for bivariate synthetic experiments with small difference of weights 
( w1 = 0.47,w2 = 0.52)

Quantity Confidence interval for different standard deviations of the noise

� = 0.5 (�2 = 0.25) � = 1 (�2 = 1) � = 10 (�2 = 100)

Theoretical �̄� 0.599198 −0.603206 −25.675559

Empirical �̄� (median) 0.866424 0.813952 0.802706
�̂�
x1,x2

0.919192 ± 1.78e−4 0.918774 ± 1.81e−4 0.919326 ± 1.72e−4

�̂�2 0.250829 ± 5.65e−4 1.003768 ± 2.276e−4 99.955617 ± 0.225969

ŵ1 0.467944 ± 2.064e−3 0.466161 ± 3.907e−3 0.370056 ± 0.039486

ŵ2 0.522283 ± 2.079e−3 0.526410 ± 3.959e−3 0.634829 ± 0.039561

ŵ 0.990227 ± 8.15e−4 0.992571 ± 1.646e−3 1.004884 ± 1.634e−3

R
2 full 0.793788 ± 6.4e−5 0.505334 ± 9.1e−5 0.012507 ± 2.31e−4

R
2 aggr 0.794190 ± 6.0e−5 0.506237 ± 7.5e−5 0.014699 ± 2.0e−5

MSE full 0.262609 ± 8.2e−5 0.948725 ± 1.75e−4 94.572608 ± 2.209e−3

MSE aggr 0.262098 ± 7.7e−5 0.946993 ± 1.45e−4 94.362608 ± 1.914e−3

Var full 0.001524 ± 2.16e−4 0.005719 ± 8.22e−4 0.571782 ± 0.080326

Var aggr 0.000998 ± 1.44e−4 0.003997 ± 5.76e−4 0.371541 ± 0.054317

Bias full 0.261085 ± 0.034614 0.943006 ± 0.127423 94.000826 ± 11.836568

Bias aggr 0.261105 ± 0.034928 0.943996 ± 0.127362 93.991098 ± 11.826050

Aggregations (theo) 500 500 500

Aggregations (emp) 314 339 346

Table 6  95% confidence intervals for bivariate synthetic experiments with large difference of weights 
( w1 = 0.2,w2 = 0.8)

Quantity Confidence interval for different standard deviations of the noise

� = 0.5 (�2 = 0.25) � = 1 (�2 = 1) � = 10 (�2 = 100)

Theoretical �̄� 0.997217 0.988867 −0.113338

Empirical �̄� (median) 0.997218 0.988807 0.819620
�̂�
x1,x2

0.919045 ± 1.78e−4 0.918558 ± 1.66e−4 0.918901 ± 1.7e−4

�̂�2 0.250211 ± 5.31e−4 0.999966 ± 2.29e−4 100.354737 ± 0.230573

ŵ1 0.198552 ± 2.094e−3 0.200106 ± 4.124e−3 0.198441 ± 0.041063

ŵ2 0.800265 ± 2.084e−3 0.800015 ± 4.151e−3 0.783078 ± 0.040011

ŵ 0.998817 ± 8.33e−4 1.000121 ± 1.678e−3 0.981519 ± 0.015914

R
2 full 0.781094 ± 5.2e−5 0.487304 ± 1.23e−4 0.010205 ± 2.64e−4

R
2 aggr 0.764944 ± 3e−5 0.485527 ± 7.8e−5 0.010630 ± 1.69e−4

MSE full 0.275187 ± 6.5e−5 1.000209 ± 2.40e−4 103.020861 ± 0.027468

MSE aggr 0.295489 ± 3.7e−5 1.003677 ± 1.52e−4 102.976615 ± 0.017587

Var full 0.001507 ± 2.23e−4 0.006333 ± 9.02e−4 0.590507 ± 0.082236

Var aggr 0.001005 ± 1.50e−4 0.004108 ± 5.66e−4 0.383723 ± 0.056062

Bias full 0.273680 ± 3.389e−3 0.993876 ± 1.281e−3 102.430354 ± 13.192218

Bias aggr 0.294484 ± 3.773e−3 0.999569 ± 1.270e−3 102.592893 ± 13.165301

Aggregations (theo) 0 0 500

Aggregations (emp) 0 24 332
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where the first inequality is again due to the application of Hoeffding’s inequality 
three times. From this result, Eq. C15 follows.   ◻

It is now possible to derive the expression of Eq. (18) with only theoretical 
quantities.

Theorem  16 In the finite-case setting of Theorem  7, considering only theoretical 
quantities, the following inequality holds with probability at least 1 − �:

Proof To prove the theorem it is enough to apply the upper bound for the sample 
variance from (Maurer and Pontil 2009) and the lower bound for the sample covari-
ance from the inequalities of Proposition 15.

Regarding the sample variance, with probability 1 − � it holds (Maurer and Pontil 
2009):

For the sample covariance, Proposition 15 shows that with probability 1 − �:

cov(X, Y) − ̂cov(X, Y)

= −
1

n − 1

n∑
i=1

xiyi +
n

n − 1
X̄Ȳ + � [XY] − � [X]� [Y]

= −
1

n − 1

n∑
i=1

xiyi + X̄Ȳ +
1

n − 1
X̄Ȳ

+ � [XY] − � [X]� [Y] ± X̄ � [Y]

≤

√√√√ log
(

2

𝛿

)

n − 1
+ X̄

√√√√ log
(

2

𝛿

)

2n
+ � [Y]

√√√√ log
(

2

𝛿

)

2n
+

1

n − 1
X̄Ȳ

≤ 4

√√√√ log
(

2

𝛿

)

n − 1
,

(C16)

�x1,x2 ≥ 1 −
2�2

(n − 1)�2
x
(w1 − w2)

2

+
1

�2
x

(2log
(

2

�

)

n − 1
+ 2�x

√√√√2log
(

2

�

)

n − 1
+ 4

√√√√ log
(

8

�

)

n − 1

)
.

�̂�2
x
≤

(
𝜎x +

√√√√2log
(

1

𝛼

)

n − 1

)2

.

̂cov(x1, x2) ≥ cov(x1, x2) − 4

√√√√ log
(

4

𝛾

)

n − 1
.
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Interpretable linear dimensionality reduction...

Starting from the inequality of Theorem 7:

it is equal to:

Therefore, with probability 1 − �:

After basic algebraic computations, the result follows.   ◻

�̂�x1,x2 ≥ 1 −
2𝜎2

(n − 1)�̂�2
x
(w1 − w2)

2
,

�̂�2
x
− ̂cov(x1, x2) ≤

2𝜎2

(n − 1)(w1 − w2)
2
.

�̂�2
x
− ̂cov(x1, x2)

≤

(
𝜎x +

√√√√2log
(

2

𝛿

)

n − 1

)2

−

(
cov(x1, x2) − 4

√√√√ log
(

8

𝛿

)

n − 1

)

≤
2𝜎2

(n − 1)(w1 − w2)
2
.

Table 8  Detailed synthetic 
experiment in the three 
dimensional setting

Quantity 95% Confidence interval

Theoretical �̄� (lower,upper) 0.826063, 0.932936

Empirical �̄� (median) 0.831487, 0.933358

�̂�
x1,x2

0.880300 ± 1.07e−4

�̂�2 0.249982 ± 2.29e−4

ŵ1 0.399401 ± 9.12e−4

ŵ2 0.600999 ± 6.72e−4

ŵ 1.179325 ± 3.41e−4

R
2 full 0.825028 ± 6e−6

R
2 aggr 0.825319 ± 5e−6

MSE full 0.285611 ± 9e−6

MSE aggr 0.285137 ± 8e−6

Var full 0.001526 ± 0.001557

Var aggr 0.000976 ± 0.003587

Bias full 0.284086 ± 0.046098

Bias aggr 0.284161 ± 0.045194

Aggregations (theo) 500

Aggregations (emp) 335
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Remark 17 The empirical result of Theorem 14 depends on the distribution of the 
residual, assuming it to be Gaussian. On the other hand, the theoretical expression of 
Theorem 16 does not need any assumption on the distribution.

Appendix D three‑dimensional algorithm

This section contains detailed results and proofs related to Sect. 5 of the main paper.

D.1 Variance

The following theorem shows the asymptotic difference of variance between the two 
considered linear regression models.

Theorem 17 Let X = [x1 x2 x3] , X̂ = [x1 x2] and X̄ = [x̄] , with x̄ = x1+x2

2
 . Then, for 

the one-dimensional linear regression ŷ = ŵ
x1+x2

2
 , we have:

and for the two-dimensional linear regression ŷ = ŵ1x1 + ŵ2x2 , we have:

Proof The results follow from the general expression of variance of the estimators 
from Equation (3) and substituting respectively X̄ and X̂ for the two considered 
models.   ◻

Remark 18 Since the linear regression models are the same of the bivariate case, 
starting from the result of Theorem  17, the variance of the estimators in the two 
cases remains the same of Lemma  1 and the asymptotic difference of variances 
remains the one of Theorem 2 ( Δn→∞

var
=

�2

(n−1)
).

D.2 Bias

This subsection introduces the asymptotic difference of bias of the two considered 
linear regression models in the three dimensional setting.

(D17)varT(ŵ|X) = (X̄
T
X̄)−1𝜎2,

(D18)varT(ŵ|X) = (X̂
T
X̂)−1𝜎2.
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Interpretable linear dimensionality reduction...

As in the bivariate setting, the first step is to calculate the bias for each of the 
two considered models. In the asymptotic case, assuming unitary variances of the 
features �x1 = �x2 = �x3 = 1 , for the one-dimensional regression ŷ = ŵ

x1+x2

2
 and for 

the two-dimensional regression ŷ = ŵ1x1 + ŵ2x2 , the (squared) bias � x[(h̄(x) − ȳ)2] 
can be expressed with two functions, that will be denoted respectively with F(⋅) 
and G(⋅) . These functions depend on the three features, their coefficients and their 
correlations.

For the extension to the D-dimensional case, it will be necessary to keep the fea-
ture x3 having general variance �2

x3
 . With little changes in the algebraic computations 

of the proof, the bias of the two models can be easily extended (see Appendix D for 
the details).

From the results obtained, it is possible to compute the increase of bias due to the 
aggregation of the two variables x1, x2 with their average x̄ = x1+x2

2
.

Theorem 18 In the asymptotic setting, let the relationship between the features and 
the target be linear with Gaussian noise. Assuming unitary variances of the features 
�x1 = �x2 = �x3 = 1 , the increase of bias due to the aggregation of the features x1 and 
x2 with their average is given by:

Proof The result follows from the difference of the biases of the two models, after 
algebraic computations.   ◻

Remark 19 Letting the feature x3 having general variance �2
x3

 , with little changes in 
the algebraic computations of the proof, the difference of biases is given by:

(D19)

Δn→∞
Bias

=
1

2
(1 − �x1,x2 )(w1 − w2)

2

+ (w1w3 − w2w3)(�x1,x3 − �x2,x3 )

+ w2
3

(�x1,x3 − �x2,x3 )
2

2(1 − �x1,x2 )
.
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Table 9  Extended result of experiments on Life Expectancy dataset. The total number of samples n has 
been divided into train (66% of data) and test (33% of data) sets

Life expectancy

# samples n = 1649 # features D = 18

Linear regression Reduced dim R
2 MSE RRMSE

Full 18 0.8309 ± 0.0031 0.1836 ± 0.0033 0.4712 ± 0.0084

PCA 12.8 ± 0.3 0.8284 ± 0.0014 0.1863 ± 0.0004 0.4837 ± 0.0087

Supervised PCA 11.6 ± 4.4 0.8121 ± 0.0141 0.2041 ± 0.0153 0.5128 ± 0.0278

Kernel PCA 13.0 ± 0.6 0.8215 ± 0.0045 0.1938 ± 0.0049 0.4805 ± 0.0081

LLE 17.0 ± 0.5 0.6429 ± 0.0265 0.3876 ± 0.0287 0.8427 ± 0.0587

LPP 16.4 ± 0.7 0.8145 ± 0.0074 0.2013 ± 0.0081 0.4986 ± 0.0116

Isomap 15.4 ± 1.6 0.7856 ± 0.0059 0.2328 ± 0.0064 0.5621 ± 0.0208

 RReliefF 16.6 ± 0.4 0.8313 ± 0.0034 0.1832 ± 0.0037 0.5035 ± 0.0236

LinCFA 13.8 ± 1.7 0.8317 ± 0.0027 0.1828 ± 0.0029 0.4697 ± 0.0074

SVM for regression Reduced dim R
2 MSE RSE

Full 18 0.8980 ± 0.0046 0.1108 ± 0.0050 0.3551 ± 0.0097

PCA 12.8 ± 0.3 0.8911 ± 0.0048 0.1182 ± 0.0052 0.3657 ± 0.0088

Supervised PCA 11.6 ± 4.4 0.8772 ± 0.0093 0.1332 ± 0.0102 0.3859 ± 0.0152

Kernel PCA 13.0 ± 0.6 0.9046 ± 0.0067 0.1036 ± 0.0072 0.3415 ± 0.0131

LLE 17.0 ± 0.5 0.8039 ± 0.0186 0.2129 ± 0.0201 0.5304 ± 0.0339

LPP 16.4 ± 0.7 0.8622 ± 0.0048 0.1495 ± 0.0053 0.4285 ± 0.0071

Isomap 15.4 ± 1.6 0.8568 ± 0.0079 0.1555 ± 0.0086 0.4348 ± 0.0169

 RReliefF 16.6 ± 0.4 0.8935 ± 0.0081 0.1156 ± 0.0087 0.3631 ± 0.0149

LinCFA 13.8 ± 1.7 0.9097 ± 0.0059 0.0981 ± 0.0064 0.3273 ± 0.0117

XGBoost Reduced dim R
2 MSE RSE

Full 18 0.9238 ± 0.0039 0.0828 ± 0.0042 0.2905 ± 0.0067

PCA 12.8 ± 0.3 0.8754 ± 0.0039 0.1353 ± 0.0042 0.3807 ± 0.0076

Supervised PCA 11.6 ± 4.4 0.8732 ± 0.0132 0.1387 ± 0.0143 0.3810 ± 0.0181

Kernel PCA 13.0 ± 0.6 0.8746 ± 0.0438 0.1361 ± 0.0078 0.3821 ± 0.0326

LLE 17.0 ± 0.5 0.7915 ± 0.0201 0.2264 ± 0.0217 0.5281 ± 0.0351

LPP 16.4 ± 0.7 0.8813 ± 0.0063 0.1288 ± 0.0069 0.3724 ± 0.0100

Isomap 15.4 ± 1.6 0.8542 ± 0.0088 0.1583 ± 0.0095 0.4240 ± 0.0128

 RReliefF 16.6 ± 0.4 0.9267 ± 0.0031 0.0796 ± 0.0034 0.2852 ± 0.0059

LinCFA 13.8 ± 1.7 0.9304 ± 0.0049 0.0756 ± 0.0053 0.2753 ± 0.0108

Neural Network Reduced dim R
2 MSE RSE

Full 18 0.9156 ± 0.0013 0.0917 ± 0.0014 0.3028 ± 0.0039

PCA 12.8 ± 0.3 0.9023 ± 0.0049 0.1061 ± 0.0053 0.3286 ± 0.0079

Supervised PCA 11.6 ± 4.4 0.8832 ± 0.0153 0.1268 ± 0.0167 0.3639 ± 0.0291

Kernel PCA 13.0 ± 0.6 0.9182 ± 0.0032 0.0887 ± 0.0035 0.3026 ± 0.0079

LLE 17.0 ± 0.5 0.6931 ± 0.0248 0.3332 ± 0.0269 0.7568 ± 0.0608

LPP 16.4 ± 0.7 0.8150 ± 0.0142 0.2017 ± 0.0154 0.5421 ± 0.0351

Isomap 15.4 ± 1.6 0.8544 ± 0.0096 0.1581 ± 0.0104 0.4035 ± 0.0191

RReliefF 16.6 ± 0.4 0.9123 ± 0.0094 0.0953 ± 0.0102 0.3117 ± 0.0171

LinCFA 13.8 ± 1.7 0.9192 ± 0.0032 0.0877 ± 0.0035 0.2973 ± 0.0059
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Interpretable linear dimensionality reduction...

Table 9  (continued)

Life expectancy

# samples n = 1649 # features D = 18

Ridge Regression 18 0.8302 ± 0.0030 0.1843 ± 0.0032 0.4749 ± 0.0085

Lasso Regression 18 0.7810 ± 0.0045 0.2377 ± 0.0049 0.4948 ± 0.0042

Bias of the two models, expressions and derivations In the asymptotic setting, 
letting the relationship between the features and the target be linear with Gaussian 
noise and assuming unitary variances of the features �x1 = �x2 = �x3 = 1 , for the 
one-dimensional regression ŷ = ŵ

x1+x2

2
:

For the two-dimensional regression ŷ = ŵ1x1 + ŵ2x2:

(D20)

Δn→∞
Bias

=
1

2
(1 − �x1,x2 )(w1 − w2)

2

+ �x3(w1w3 − w2w3)(�x1,x3 − �x2,x3 )

+ w2
3
�2
x3

(�x1,x3 − �x2,x3 )
2

2(1 − �x1,x2 )
.

� x[(h̄(x) − ȳ)2]

= F(x1, x2, x3,w1,w2,w3, 𝜌x1,x2 , 𝜌x1,x3 , 𝜌x2,x3 )

= −
((w1 + w2)(1 + 𝜌x1,x2 ) + w3(𝜌x1,x3 + 𝜌x2,x3 ))

2

2(1 + 𝜌x1,x2 )

+ � x[(w1x1 + w2x2 + w3x3)
2].
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Table 10  Extended result of experiments on Finance dataset. The total number of samples n has been 
divided into train (66% of data) and test (33% of data) sets

Finance

# samples n = 1299 # features D = 75

Linear regression Reduced dim R
2 MSE RSE

Full 75 −4.6094 ± 4.2851 8.5071 ± 6.4986 0.7050 ± 0.2453

PCA 26.4 ± 0.7 0.8467 ± 0.0051 0.2324 ± 0.0077 0.4164 ± 0.0089

Supervised PCA 29.2 ± 14.2 0.8670 ± 0.0123 0.2017 ± 0.0187 0.3874 ± 0.0320

Kernel PCA 48.8 ± 0.9 0.8953 ± 0.0020 0.1587 ± 0.0031 0.3289 ± 0.0049

LLE 49.1 ± 1.4 0.8221 ± 0.0198 0.2698 ± 0.0301 0.4601 ± 0.0481

LPP 30.1 ± 10.2 0.7942 ± 0.0243 0.3122 ± 0.0369 0.4607 ± 0.0304

Isomap 43.2 ± 5.5 0.7097 ± 0.0393 0.4403 ± 0.0596 0.6445 ± 0.0558

RReliefF 45.6 ± 1.8 0.8972 ± 0.0029 0.1558 ± 0.0045 0.3328 ± 0.0105

LinCFA 14.6 ± 0.9 0.8838 ± 0.0018 0.1762 ± 0.0028 0.3609 ± 0.0083

SVM for regression Reduced dim R
2 MSE RSE

Full 75 0.7989 ± 0.0282 0.3049 ± 0.0428 0.5704 ± 0.0635

PCA 26.4 ± 0.7 0.8010 ± 0.0215 0.3018 ± 0.0326 0.5317 ± 0.0496

Supervised PCA 29.2 ± 14.2 0.7594 ± 0.0426 0.3649 ± 0.0645 0.6183 ± 0.0774

Kernel PCA 48.8 ± 0.9 0.7997 ± 0.0272 0.3037 ± 0.0413 0.5684 ± 0.0625

LLE 49.1 ± 1.4 0.6732 ± 0.0506 0.4956 ± 0.0767 0.8259 ± 0.1057

LPP 30.1 ± 10.2 0.7180 ± 0.0509 0.4276 ± 0.0772 0.7093 ± 0.0971

Isomap 43.2 ± 5.5 0.7527 ± 0.0339 0.3750 ± 0.0515 0.6756 ± 0.0858

RReliefF 45.6 ± 1.8 0.7667 ± 0.0314 0.3587 ± 0.0476 0.5965 ± 0.0627

LinCFA 14.6 ± 0.9 0.7070 ± 0.0537 0.4445 ± 0.0815 0.7193 ± 0.1197

XGBoost Reduced dim R
2 MSE RSE

Full 75 0.9010 ± 0.0097 0.1501 ± 0.0147 0.3255 ± 0.0308

PCA 26.4 ± 0.7 0.8384 ± 0.0496 0.2451 ± 0.0223 0.4501 ± 0.0443

Supervised PCA 29.2 ± 14.2 0.8123 ± 0.0423 0.2847 ± 0.0642 0.4172 ± 0.0337

Kernel PCA 48.8 ± 0.9 0.8169 ± 0.0513 0.2776 ± 0.0743 0.5133 ± 0.0765

LLE 49.1 ± 1.4 0.7836 ± 0.0405 0.3281 ± 0.0614 0.4863 ± 0.0401

LPP 30.1 ± 10.2 0.8142 ± 0.0478 0.2817 ± 0.0725 0.4460 ± 0.0521

Isomap 43.2 ± 5.5 0.8027 ± 0.0126 0.2992 ± 0.0191 0.5069 ± 0.0206

RReliefF 45.6 ± 1.8 0.8975 ± 0.0104 0.1603 ± 0.0158 0.3287 ± 0.0323

LinCFA 14.6 ± 0.9 0.8830 ± 0.0088 0.1774 ± 0.0134 0.3524 ± 0.0229

Neural Network Reduced dim R
2 MSE RSE

Full 75 0.9025 ± 0.0124 0.1478 ± 0.0188 0.2986 ± 0.0179

PCA 26.4 ± 0.7 0.8851 ± 0.0064 0.1742 ± 0.0097 0.3267 ± 0.0097

Supervised PCA 29.2 ± 14.2 0.9039 ± 0.0087 0.1411 ± 0.0132 0.2979 ± 0.0141

Kernel PCA 48.8 ± 0.9 0.9037 ± 0.0124 0.1459 ± 0.0187 0.3108 ± 0.0239

LLE 49.1 ± 1.4 0.8419 ± 0.0176 0.2398 ± 0.0268 0.4191 ± 0.0301

LPP 30.1 ± 10.2 0.0287 ± 0.7499 1.4731 ± 1.1374 0.7210 ± 0.1373

Isomap 43.2 ± 5.5 0.7136 ± 0.1107 0.4343 ± 0.1679 0.4836 ± 0.0521

RReliefF 45.6 ± 1.8 0.9026 ± 0.0105 0.1425 ± 0.0159 0.2928 ± 0.0146

LinCFA 14.6 ± 0.9 0.9064 ± 0.0068 0.1419 ± 0.0104 0.2974 ± 0.0076
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Interpretable linear dimensionality reduction...

Proof In the one dimensional setting, letting x̄ = x1+x2

2
:

Where the last equivalence is due to the fact that train and test data are independ-
ent. Then, conditioning on the training features set X and substituting the value of 
� T[ŵ|X] from Equation (A1), if follows:

� x[(h̄(x) − ȳ)2]

= G(x1, x2, x3,w1,w2,w3, 𝜌x1,x2 , 𝜌x1,x3 , 𝜌x2,x3 )

= (w1 + aw3)
2 + (w2 + bw3)

2

+ 2𝜌x1,x2 (w1 + aw3)(w2 + bw3)

− 2(w1 + aw3)(w1 + w2𝜌x1,x2 + w3𝜌x1,x3 )

− 2(w2 + bw3)(w1𝜌x1,x2 + w2 + w3𝜌x2,x3 )

+ � x[(w1x1 + w2x2 + w3x3)
2],

with

⎧⎪⎨⎪⎩

a =
𝜌x1,x3

−𝜌x1,x2
𝜌x2,x3

1−𝜌2
x1,x2

b =
𝜌x2,x3

−𝜌x1,x2
𝜌x1,x3

1−𝜌2
x1,x2

.

� x[(h̄(x) − ȳ)2]

= � x[(� T[ŵx̄] − (w1x1 + w2x2 + w3x3))
2]

= 𝜎2
x̄
� T[ŵ]

2 + � x[(w1x1 + w2x2 + w3x3)
2]

− 2� T[ŵ]
2
� x[x̄(w1x1 + w2x2 + w3x3)].

Table 10  (continued)

Finance

# samples n = 1299 # features D = 75

Ridge Regression 75 0.8939 ± 0.0067 0.1690 ± 0.0102 0.3383 ± 0.0093

Lasso Regression 75 0.8671 ± 0.0051 0.2016 ± 0.0077 0.3926 ± 0.0057
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Table 11  Extended result of experiments on the first climate dataset. The total number of samples n has 
been divided into train (66% of data) and test (33% of data) sets

Climatological I

# samples n = 1038 # features D = 136

Linear regression Reduced dim R
2 MSE RSE

Full 136 0.2934 ± 0.0859 0.2891 ± 0.0351 0.7697 ± 0.0090

PCA 12.6 ± 0.4 0.4537 ± 0.0518 0.2228 ± 0.0212 0.5561 ± 0.0327

Supervised PCA 28.8 ± 12.2 0.5821 ± 0.0183 0.1653 ± 0.0075 0.4893 ± 0.0167

Kernel PCA 47.6 ± 1.8 0.6317 ± 0.0201 0.1503 ± 0.0082 0.4229 ± 0.0113

LLE 49.6 ± 0.7 −0.3749 ± 0.1745 0.5609 ± 0.0604 1.3843 ± 0.1421

LPP 36.8 ± 8.1 0.0868 ± 0.0817 0.3725 ± 0.0334 0.6357 ± 0.0706

Isomap 29.6 ± 13.8 0.0986 ± 0.0912 0.2861 ± 0.1296 1.6421 ± 1.5716

RReliefF 37.0 ± 4.3 0.5789 ± 0.0384 0.1718 ± 0.0157 0.4552 ± 0.0334

LinCFA 35.2 ± 3.9 0.5727 ± 0.0435 0.1743 ± 0.0178 0.4514 ± 0.0352

SVM for regression Reduced dim R
2 MSE RSE

Full 136 0.3881 ± 0.0146 0.2496 ± 0.0060 0.6880 ± 0.0121

PCA 12.6 ± 0.4 0.3805 ± 0.0317 0.2527 ± 0.0129 0.6968 ± 0.0236

Supervised PCA 28.8 ± 12.2 0.5177 ± 0.0284 0.1967 ± 0.0116 0.5725 ± 0.0162

Kernel PCA 47.6 ± 1.8 0.3936 ± 0.0154 0.2473 ± 0.0063 0.6817 ± 0.0121

LLE 49.6 ± 0.7 −0.2471 ± 0.1349 0.5088 ± 0.0550 1.1860 ± 0.0857

LPP 36.8 ± 8.1 −1.2048 ± 0.3119 0.8995 ± 0.1272 5.0265 ± 1.2326

Isomap 29.6 ± 13.8 −0.2140 ± 0.4079 0.4953 ± 0.1664 1.5001 ± 0.9075

RReliefF 37.0 ± 4.3 0.3539 ± 0.0563 0.2636 ± 0.0229 0.7138 ± 0.0629

LinCFA 35.2 ± 3.9 0.5559 ± 0.0171 0.1812 ± 0.0070 0.5255 ± 0.0171

XGBoost Reduced dim R
2 MSE RSE

Full 136 0.5297 ± 0.0233 0.1919 ± 0.0095 0.5416 ± 0.0270

PCA 12.6 ± 0.4 0.3282 ± 0.0780 0.2740 ± 0.0318 0.6909 ± 0.0603

Supervised PCA 28.8 ± 12.2 0.3008 ± 0.0887 0.2783 ± 0.0362 0.7421 ± 0.0115

Kernel PCA 47.6 ± 1.8 0.2437 ± 0.1411 0.3085 ± 0.0694 0.7671 ± 0.1885

LLE 49.6 ± 0.7 −0.5282 ± 0.1808 0.6234 ± 0.0815 1.3419 ± 0.0858

LPP 36.8 ± 8.1 −1.6206 ± 0.4807 1.0691 ± 0.1961 1.8496 ± 0.1857

Isomap 29.6 ± 13.8 −0.5788 ± 0.8403 0.6441 ± 0.3428 1.1578 ± 0.2209

RReliefF 37.0 ± 4.3 0.4851 ± 0.0386 0.2101 ± 0.0158 0.5744 ± 0.0271

LinCFA 35.2 ± 3.9 0.5242 ± 0.0153 0.1941 ± 0.0063 0.5165 ± 0.0225

Neural Network Reduced dim R
2 MSE RSE

Full 136 0.3998 ± 0.0746 0.2489 ± 0.0427 0.5958 ± 0.0925

PCA 12.6 ± 0.4 0.4013 ± 0.0344 0.2442 ± 0.0141 0.5863 ± 0.0286

Supervised PCA 28.8 ± 12.2 0.5542 ± 0.0612 0.1814 ± 0.0249 0.4809 ± 0.0249

Kernel PCA 47.6 ± 1.8 0.3731 ± 0.1075 0.2557 ± 0.0438 0.5906 ± 0.0531

LLE 49.6 ± 0.7 −0.3154 ± 0.1234 0.5366 ± 0.0503 1.3091 ± 0.0909

LPP 36.8 ± 8.1 0.0184 ± 0.1095 0.4004 ± 0446 0.7530 ± 0.1206

Isomap 29.6 ± 13.8 −0.4238 ± 0.3765 0.5808 ± 0.1536 1.4640 ± 1.0830

RReliefF 37.0 ± 4.3 0.5144 ± 0.0416 0.1981 ± 0.0169 0.5062 ± 0.0327

LinCFA 35.2 ± 3.9 0.5165 ± 0.0513 0.1973 ± 0.0209 0.5208 ± 0.0453
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Interpretable linear dimensionality reduction...

Considering the asymptotic case, substituting the sample estimators with the real 
statistical measures and the variances with 1 the result follows.

In the two dimensional setting:

exploiting again the independence between train and test data.
Then, conditioning on the training set X , substituting the value of � T[ŵ|X]2 from 

Equation (A1) and calling:

it follows:

� x[(h̄(x) − ȳ)2|X]

=
𝜎2
x1+x2

(�̂�2
x1+x2

)2

× (w1�̂�
2
x1
+ w2�̂�

2
x2
+ (w1 + w2) ̂cov(x1, x2)

+ w3( ̂cov(x1, x3) + ̂cov(x2, x3)))
2

+ � x[(w1x1 + w2x2 + w3x3)
2]

−
2

�̂�2
x1+x2

(w1�̂�
2
x1
+ w2�̂�

2
x2
+ (w1 + w2) ̂cov(x1, x2)

+ w3( ̂cov(x1, x3) + ̂cov(x2, x3)))

× (w1𝜎
2
x1
+ w2𝜎

2
x2
+ (w1 + w2)cov(x1, x2)

+ w3(cov(x1, x3) + cov(x2, x3))).

� x[(h̄(x) − ȳ)2]

= � x[(� T[ŵ1x1 + ŵ2x2] − (w1x1 + w2x2 + w3x3))
2]

= 𝜎2
x1
� T[ŵ1]

2 + 𝜎2
x2
� T[ŵ2]

2 + 2cov(x1, x2)� T[ŵ1]� T[ŵ2]

+ � x[(w1x1 + w2x2 + w3x3)
2]

− 2(� T[ŵ1]� x[x1(w1x1 + w2x2 + w3x3)]

+ � T[ŵ2]� x[x1(w1x1 + w2x2 + w3x3)]),

⎧⎪⎨⎪⎩

a =
�̂�2
x2

̂cov(x1,x3)− ̂cov(x1,x2) ̂cov(x2,x3)

�̂�2
x1
�̂�2
x2
− ̂cov(x1,x2)

2

b =
�̂�2
x1

̂cov(x2,x3)− ̂cov(x1,x2) ̂cov(x1,x3)

�̂�2
x1
�̂�2
x2
− ̂cov(x1,x2)

2

,

Table 11  (continued)

Climatological I

# samples n = 1038 # features D = 136

Ridge Regression 136 0.5559 ± 0.0347 0.1812 ± 0.0142 0.4695 ± 0.0267

Lasso Regression 136 0.5043 ± 0.0233 0.2022 ± 0.0095 0.5032 ± 0.0507
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Table 12  Extended result of experiments on the second climate dataset. The total number of samples n 
has been divided into train (66% of data) and test (33% of data) sets

Climatological II

# samples n = 981 # features D = 1991

Linear regression Reduced dim R
2 MSE RSE

Full 1991 0.7529 ± 0.0230 0.2341 ± 0.0209 0.5865 ± 0.0308

PCA 19.0 ± 1.1 0.7639 ± 0.0177 0.2149 ± 0.0162 0.5699 ± 0.0233

Supervised PCA 38.8 ± 5.1 0.8551 ± 0.0151 0.1318 ± 0.0138 0.4946 ± 0.0635

Kernel PCA 35.6 ± 7.9 0.7991 ± 0.0061 0.1830 ± 0.0056 0.5119 ± 0.0072

LLE 15.4 ± 13.8 0.1150 ± 0.0138 0.8058 ± 0.0126 2.3321 ± 0.2983

LPP 42.4 ± 1.5 −3.8622 ± 0.4975 3.5167 ± 0.4531 0.9992 ± 0.0091

Isomap 3.0 ± 0.9 0.1395 ± 0.0134 0.7835 ± 0.0123 2.1913 ± 0.0972

RReliefF 21.4 ± 8.5 0.7648 ± 0.0696 0.2141 ± 0.05441 0.5491 ± 0.0975

LinCFA 37.0 ± 3.6 0.9203 ± 0.0073 0.0725 ± 0.0067 0.2999 ± 0.0107

SVM for regression Reduced dim R
2 MSE RSE

Full 1991 0.5572 ± 0.0173 0.4032 ± 0.0157 1.0968 ± 0.0376

PCA 19.0 ± 1.1 0.5595 ± 0.0147 0.4010 ± 0.0135 0.9916 ± 0.0149

Supervised PCA 38.8 ± 5.1 0.3852 ± 0.0687 0.5598 ± 0.0625 1.4188 ± 0.1016

Kernel PCA 35.6 ± 7.9 0.5476 ± 0.0142 0.4118 ± 0.0129 1.0791 ± 0.0361

LLE 15.4 ± 13.8 0.0966 ± 0.0425 0.8224 ± 0.0423 1.8402 ± 0.1477

LPP 42.4 ± 1.5 −0.7677 ± 0.1242 1.6095 ± 0.1131 1.5616 ± 0.0815

Isomap 3.0 ± 0.9 0.1064 ± 0.0251 0.8137 ± 0.0228 1.8189 ± 0.1478

RReliefF 21.4 ± 8.5 0.6921 ± 0.08851 0.2803 ± 0.0716 0.6573 ± 0.04842

LinCFA 37.0 ± 3.6 0.8300 ± 0.0429 0.1548 ± 0.0391 0.4886 ± 0.0704

XGBoost Reduced dim R
2 MSE RSE

Full 1991 0.8680 ± 0.0084 0.1202 ± 0.0077 0.4110 ± 0.0211

PCA 19.0 ± 1.1 0.5157 ± 0.0201 0.4409 ± 0.0183 0.9251 ± 0.0627

Supervised PCA 38.8 ± 5.1 0.3326 ± 0.0713 0.6076 ± 0.0649 1.2514 ± 0.0994

Kernel PCA 35.6 ± 7.9 0.4579 ± 0.0191 0.4935 ± 0.0174 1.089 ± 0.0945

LLE 15.4 ± 13.8 −0.1681 ± 0.1139 1.0635 ± 0.1037 1.5113 ± 0.1809

LPP 42.4 ± 1.5 −0.3715 ± 0.0861 1.2488 ± 0.0784 1.8731 ± 0.1109

Isomap 3.0 ± 0.9 −0.2240 ± 0.1322 1.1145 ± 0.1204 1.4910 ± 0.0679

RReliefF 21.4 ± 8.5 0.7139 ± 0.0774 0.2605 ± 0.0615 0.5847 ± 0.0727

LinCFA 37.0 ± 3.6 0.8830 ± 0.0160 0.1065 ± 0.0145 0.3651 ± 0.0262

Neural Network Reduced dim R
2 MSE RSE

Full 1991 0.6909 ± 0.0392 0.2814 ± 0.0357 0.5777 ± 0.0383

PCA 19.0 ± 1.1 0.4234 ± 0.0852 0.5249 ± 0.0776 0.7729 ± 0.0417

Supervised PCA 38.8 ± 5.1 0.6940 ± 0.0464 0.2785 ± 0.0423 0.5836 ± 0.0581

Kernel PCA 35.6 ± 7.9 0.6401 ± 0.0642 0.3277 ± 0.0612 0.7106 ± 0.0351

LLE 15.4 ± 13.8 0.1251 ± 0.0374 0.8291 ± 0.0412 1.9947 ± 0.0931

LPP 42.4 ± 1.5 −1.4285 ± 0.1967 1.1300 ± 0.1791 1.0001 ± 0.0294

Isomap 3.0 ± 0.9 0.0038 ± 0.0641 0.9071 ± 0.0583 1.7032 ± 0.1426

RReliefF 21.4 ± 8.5 0.7237 ± 0.1767 0.2515 ± 0.1608 0.5655 ± 0.2367

LinCFA 37.0 ± 3.6 0.8971 ± 0.0127 0.0937 ± 0.0115 0.3390 ± 0.0234
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Interpretable linear dimensionality reduction...

For the asymptotic case, substituting the sample estimators with the real statistical 
measures and the variances with 1 the result follows.   ◻

Extension of bias of the models to general variance of third variable Considering 
a general variance �2

x3
 for the third variable x3 , the bias of the models computed in 

the previous paragraph become (respectively for the one and two dimensional 
estimates):

� x[(h̄(x) − ȳ)2|X]
= 𝜎2

x1
(w1 + w3a)

2 + 𝜎2
x2
(w2 + w3b)

2

+ 2cov(x1, x2)(w1 + w3a)(w2 + w3b)

+ � x[(w1x1 + w2x2 + w3x3)
2]

− 2((w1 + w3a)(w1𝜎
2
x1
+ w2cov(x1, x2) + w3cov(x1, x3))

+ (w2 + w3b)(w1cov(x1, x2) + w2𝜎
2
x2
+ w3cov(x2, x3))).

� x[(h̄(x) − ȳ)2]

= −
((w1 + w2)(1 + 𝜌x1,x2 ) + w3𝜎x3 (𝜌x1,x3 + 𝜌x2,x3 ))

2

2(1 + 𝜌x1,x2 )

+ � x[(w1x1 + w2x2 + w3x3)
2],

� x[(h̄(x) − ȳ)2] = (w1 + aw3)
2 + (w2 + bw3)

2

+ 2𝜌x1,x2 (w1 + aw3)(w2 + bw3)

− 2(w1 + aw3)(w1 + w2𝜌x1,x2 + w3𝜌x1,x3𝜎x3 )

− 2(w2 + bw3)(w1𝜌x1,x2 + w2 + w3𝜌x2,x3𝜎x3 )

+ � x[(w1x1 + w2x2 + w3x3)
2],

with

⎧⎪⎨⎪⎩

a = 𝜎x3
𝜌x1,x3

−𝜌x1,x2
𝜌x2,x3

1−𝜌2
x1,x2

b = 𝜎x3
𝜌x2,x3

−𝜌x1,x2
𝜌x1,x3

1−𝜌2
x1,x2

.

Table 12  (continued)

Climatological II

# samples n = 981 # features D = 1991

Ridge regression 1991 0.7885 ± 0.0177 0.1926 ± 0.0162 0.4556 ± 0.0311

Lasso regression 1991 0.9032 ± 0.0046 0.0882 ± 0.0042 0.3095 ± 0.1291
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Table 13  Extended result of experiments on the Boston housing dataset. The total number of samples n 
has been divided into train (66% of data) and test (33% of data) sets

Boston Housing

# samples n = 506 # features D = 13

Linear regression Reduced dim R
2 MSE RSE

Full 13 0.7027 ± 0.0070 0.2552 ± 0.0060 0.5684 ± 0.0186

PCA 9.2 ± 0.4 0.6636 ± 0.0146 0.2887 ± 0.0126 0.6367 ± 0.0173

Supervised PCA 7.0 ± 3.2 0.6881 ± 0.0178 0.2678 ± 0.0153 0.6173 ± 0.0291

Kernel PCA 11.4 ± 0.8 0.6904 ± 0.0145 0.2657 ± 0.0138 0.6006 ± 0.0256

LLE 12.2 ± 0.4 0.5074 ± 0.1091 0.4229 ± 0.0921 0.9270 ± 0.0932

LPP 11.4 ± 1.1 0.7059 ± 0.0121 0.2524 ± 0.0104 0.5665 ± 0.0331

Isomap 9.2 ± 2.2 0.6483 ± 0.0349 0.3019 ± 0.0301 0.6814 ± 0.0299

RReliefF 11.6 ± 0.4 0.6905 ± 0.0137 0.2657 ± 0.0118 0.5815 ± 0.0196

LinCFA 7.2 ± 0.9 0.6541 ± 0.0206 0.2970 ± 0.0176 0.6530 ± 0.0143

SVM for regression Reduced dim R
2 MSE RSE

Full 13 0.7748 ± 0.0219 0.1933 ± 0.0188 0.5686 ± 0.0333

PCA 9.2 ± 0.4 0.7502 ± 0.0117 0.2101 ± 0.0102 0.5838 ± 0.0270

Supervised PCA 7.0 ± 3.2 0.7535 ± 0.0424 0.2116 ± 0.0492 0.5863 ± 0.0541

Kernel PCA 11.4 ± 0.8 0.7923 ± 0.0154 0.1711 ± 0.0132 0.5445 ± 0.0206

LLE 12.2 ± 0.4 0.5522 ± 0.0435 0.3845 ± 0.0373 0.9249 ± 0.0671

LPP 11.4 ± 1.1 0.7299 ± 0.0587 0.2318 ± 0.0611 0.6392 ± 0.0310

Isomap 9.2 ± 2.2 0.7076 ± 0.0232 0.2510 ± 0.0199 0.6708 ± 0.0416

RReliefF 11.6 ± 0.4 0.7669 ± 0.0392 0.2001 ± 0.0337 0.5825 ± 0.0685

LinCFA 7.2 ± 0.9 0.8004 ± 0.0145 0.1710 ± 0.0124 0.5115 ± 0.0214

XGBoost Reduced dim R
2 MSE RSE

Full 13 0.7817 ± 0.0145 0.1875 ± 0.0125 0.5024 ± 0.0356

PCA 9.2 ± 0.4 0.6732 ± 0.0216 0.2819 ± 0.0186 0.6393 ± 0.0428

Supervised PCA 7.0 ± 3.2 0.7279 ± 0.0221 0.2335 ± 0.0290 0.6202 ± 0.0386

Kernel PCA 11.4 ± 0.8 0.8056 ± 0.0143 0.1668 ± 0.0123 0.4784 ± 0.0192

LLE 12.2 ± 0.4 0.4953 ± 0.1273 0.4333 ± 0.0949 0.8546 ± 0.1354

LPP 11.4 ± 1.1 0.7117 ± 0.0288 0.2613 ± 0.0687 0.6487 ± 0.0982

Isomap 9.2 ± 2.2 0.6797 ± 0.0307 0.2750 ± 0.0264 0.6715 ± 0.0173

RReliefF 11.6 ± 0.4 0.7709 ± 0.0361 0.1967 ± 0.0310 0.5252 ± 0.0309

LinCFA 7.2 ± 0.9 0.7591 ± 0.0311 0.2068 ± 0.0267 0.5185 ± 0.0220

Neural Network Reduced dim R
2 MSE RSE

Full 13 0.8238 ± 0.0070 0.1513 ± 0.0060 0.4350 ± 0.0179

PCA 9.2 ± 0.4 0.8007 ± 0.0134 0.1653 ± 0.0115 0.4589 ± 0.0189

Supervised PCA 7.0 ± 3.2 0.7788 ± 0.0383 0.1898 ± 0.0257 0.4971 ± 0.0471

Kernel PCA 11.4 ± 0.8 0.8106 ± 0.0299 0.1625 ± 0.0271 0.4471 ± 0.0402

LLE 12.2 ± 0.4 0.5026 ± 0.0389 0.4270 ± 0.0334 0.9880 ± 0.0594

LPP 11.4 ± 1.1 0.6175 ± 0.0432 0.3285 ± 0.0371 0.9866 ± 0.1514

Isomap 9.2 ± 2.2 0.7235 ± 0.0192 0.2374 ± 0.0165 0.5949 ± 0.0281

RReliefF 11.6 ± 0.4 0.8187 ± 0.0376 0.1556 ± 0.0323 0.4310 ± 0.0338

LinCFA 7.2 ± 0.9 0.8336 ± 0.0107 0.1486 ± 0.0092 0.4270 ± 0.0203
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Interpretable linear dimensionality reduction...

Appendix E Experiments

This section provides more details and results on the experiments performed in the 
two-dimensional, three-dimensional and D-dimensional settings.

E.1 Bivariate synthetic data

As introduced in Sect. 6 of the main paper, the experiments performed in the bivari-
ate setting are synthetic. In particular, for each of the six experiments, the data are 
computed as follows. The samples of the first independent variable x1 are extracted 
from a uniform distribution in the interval [0, 1]. The second feature x2 is a linear 
combination between the feature x1 and a random sample extracted from a uniform 
distribution in the interval [0,  1] (specifically x2 = 0.8x1 + 0.2u, u ∼ U([0, 1]) ). 
Finally, the target variable y is a linear combination between the two features x1, x2 
with weights w1,w2 and the addition of a gaussian noise with variance �2.

Tables 6,7 provide more details about the bivariate results introduced in Table 1 
in the main paper.

In Table 6 the extended results associated with large difference between weights 
w1 = 0.2,w2 = 0.8 and three different values of standard deviation of the noise 
� ∈ {0.5, 1, 10} are reported, repeating s = 500 times each experiment, considering 
n = 500 data for training and n = 500 data for testing. The quantity �̄� represents the 
minimum value of correlation for which it is convenient to aggregate the two fea-
tures and it is computed exploiting the asymptotic result of Equation (17). From its 
theoretical values is clear that, for a reasonable amount of variance of the noise, 
since the weights of the linear model are significantly different, it is better to keep 
the features separated. This is confirmed by the confidence intervals of the R2 and 
the MSE, which are both better in the bivariate case (full) rather than the univariate 
case (aggr). On the other hand, when the variance of the noise is large, the process 
becomes much more noisy and it is convenient to aggregate the two features. Con-
sidering the empirical �̄� rather than the theoretical one, which is unknown with real 
datasets, the only situation where in the majority of the cases it is useful to aggre-
gate is with large variance. It is important also to notice that the confidence intervals 
are much larger in the noisy setting, meaning that there is much more uncertainty 
and therefore it is useful to aggregate the two features in order to reduce it.

In Table 7 the same results are reported, considering a linear relationship with 
small difference between weights w1 = 0.47,w2 = 0.52 . In this setting, since the 
weights are closer, also with small amount of variance it is convenient to aggregate 

Table 13  (continued)

Boston Housing

# samples n = 506 # features D = 13

Ridge Regression 13 0.7027 ± 0.0069 0.2552 ± 0.0059 0.5700 ± 0.0184

Lasso Regression 13 0.6557 ± 0.0082 0.2956 ± 0.0071 0.6488 ± 0.0264
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Table 14  Extended result of experiments on the superconductivity dataset. The total number of samples 
n has been divided into train (66% of data) and test (33% of data) sets

Superconductivity

# samples n = 21263 # features D = 81

Linear regression Reduced dim R
2 MSE RSE

Full 81 0.7290 ± 0.0013 0.2674 ± 0.0013 0.6025 ± 0.0030

PCA 17.0 ± 0.4 0.5930 ± 0.0073 0.4016 ± 0.0069 0.8137 ± 0.006

Supervised PCA 39.8 ± 11.8 0.6752 ± 0.0370 0.3205 ± 0.0366 0.6863 ± 0.0493

Kernel PCA 49.8 ± 0.4 0.7470 ± 0.0031 0.2497 ± 0.0031 0.5835 ± 0.0066

LLE 38 ± 12.6 0.1422 ± 0.0935 0.8465 ± 0.0926 2.4620 ± 1.2888

LPP 49.8 ± 0.3 0.7101 ± 0.0035 0.2862 ± 0.0024 0.6329 ± 0.0139

Isomap 49.2 ± 1.4 0.6315 ± 0.0302 0.3636 ± 0.0302 0.7633 ± 0.0377

RReliefF 49.8 ± 0.4 0.6927 ± 0.0156 0.3033 ± 0.0154 0.6574 ± 0.0253

LinCFA 49.8 ± 2.9 0.6912 ± 0.0046 0.3048 ± 0.0045 0.6590 ± 0.0102

SVM for regression Reduced dim R
2 MSE RSE

Full 81 0.8295 ± 0.0012 0.1683 ± 0.0012 0.4305 ± 0.0015

PCA 17.0 ± 0.4 0.8055 ± 0.0010 0.1919 ± 0.0010 0.4662 ± 0.0023

Supervised PCA 39.8 ± 11.8 0.8158 ± 0.0184 0.1817 ± 0.0183 0.4495 ± 0.0105

Kernel PCA 49.8 ± 0.4 0.8253 ± 0.181 0.1724 ± 0.0172 0.4355 ± 0.0168

LLE 38 ± 12.6 0.7990 ± 0.0341 0.1982 ± 0.0337 0.4838 ± 0.0438

LPP 49.8 ± 0.3 0.8554 ± 0.0191 0.1427 ± 0.0119 0.3954 ± 0.0124

Isomap 49.2 ± 1.4 0.7832 ± 0.0053 0.2140 ± 0.0052 0.4959 ± 0.0062

RReliefF 49.8 ± 0.4 0.8217 ± 0.0044 0.1759 ± 0.0043 0.4405 ± 0.0077

LinCFA 49.8 ± 2.9 0.8194 ± 0.0022 0.1782 ± 0.0022 0.4460 ± 0.0041

XGBoost Reduced dim R
2 MSE RSE

Full 81 0.9012 ± 0.0019 0.0975 ± 0.0019 0.3266 ± 0.0033

PCA 17.0 ± 0.4 0.8832 ± 0.0021 0.1153 ± 0.0021 0.3596 ± 0.0036

Supervised PCA 39.8 ± 11.8 0.8866 ± 0.0317 0.1119 ± 0.0217 0.3523 ± 0.0326

Kernel PCA 49.8 ± 0.4 0.8853 ± 0.0122 0.1132 ± 0.0212 0.3560 ± 0.0142

LLE 38 ± 12.6 0.8388 ± 0.0291 0.1590 ± 0.0128 0.4315 ± 0.0474

LPP 49.8 ± 0.3 0.8853 ± 0.0119 0.1132 ± 0.0179 0.3550 ± 0.0273

Isomap 49.2 ± 1.4 0.8704 ± 0.0116 0.1279 ± 0.0171 0.3778 ± 0.0123

RReliefF 49.8 ± 0.4 0.8898 ± 0.0024 0.1189 ± 0.0034 0.3389 ± 0.0042

LinCFA 49.8 ± 2.9 0.8982 ± 0.0018 0.1004 ± 0.0018 0.3319 ± 0.0028

Neural Network Reduced dim R
2 MSE RSE

Full 81 0.8556 ± 0.0023 0.1425 ± 0.0023 0.3994 ± 0.0099

PCA 17.0 ± 0.4 0.8261 ± 0.0036 0.1716 ± 0.0036 0.4398 ± 0.0077

Supervised PCA 39.8 ± 11.8 0.8492 ± 0.0270 0.1488 ± 0.0269 0.4125 ± 0.0262

Kernel PCA 49.8 ± 0.4 0.8559 ± 0.0123 0.1430 ± 0.0125 0.4089 ± 0.0197

LLE 38 ± 12.6 0.7870 ± 0.0130 0.2101 ± 0.0304 0.5258 ± 0.0557

LPP 49.8 ± 0.3 0.7932 ± 0.0313 0.2041 ± 0.0712 0.5142 ± 0.0591

Isomap 49.2 ± 1.4 0.7945 ± 0.0069 0.2028 ± 0.0068 0.4931 ± 0.0105

RReliefF 49.8 ± 0.4 0.8428 ± 0.0112 0.1552 ± 0.0110 0.4180 ± 0.0296

LinCFA 49.8 ± 2.9 0.8462 ± 0.0036 0.1518 ± 0.0035 0.4118 ± 0.0178



1 3

Interpretable linear dimensionality reduction...

the two features if they are sufficiently correlated. Also with the empirical evalua-
tion of the threshold, the two features would be aggregated for the majority of the 
repetitions of the experiment, leading to a non-worsening of the MSE and R2 coef-
ficient for the aggregated case, as shown by the confidence intervals.

E.1 Three‑dimensional synthetic data

This subsection explains more details about the synthetic experiments performed 
in the three-dimensional setting and introduced in Sect. 6 of the main paper. They 
show the usefulness of the extension to the three-dimensional linear regression 
model. In particular the samples of the first independent variable x1 are extracted 
from a uniform distribution in the interval [0, 1]. The second feature x2 is a linear 
combination between the feature x1 and a random sample extracted from a uniform 
distribution in the interval [0,  1] (specifically x2 = 0.65x1 + 0.35u, u ∼ U([0, 1]) ). 
The third feature x3 is a linear combination between the features x1, x2 and 
a random sample extracted from a uniform distribution in the interval [0,  1] 
( x3 = 0.5x1 + 0.5x2 + 0.5u, u ∼ U([0, 1]) ). Finally, the target variable y is a linear 
combination between the three features x1, x2, x3 with weights w1 = 0.4, w2 = 0.6 
that are closer than the third weight w3 = 0.2 and the addition of a gaussian noise 
with variance �2 = 0.25.

The experiment has been repeated s = 500 times with n = 500 samples both for 
the train and the test set. As reported in Table 8, which is an extension of Table 2 
reported in the main paper, the theoretical values of correlation thresholds computed 
from the asymptotic result of Eq. (20) and the empirical ones computed substituting 
the unbiased estimators of the quantities show that it is convenient to aggregate the 
two features x1, x2 . This is confirmed both by the MSE and the R2 coefficient, which 
are statistically not worse in the aggregated case than in the three dimensional one.

E.3 D‑dimensional synthetic data

This subsection provides more details on the application, introduced in Sect. 6 of the 
main paper, of the algorithm LinCFA on a D-dimensional synthetic dataset. In particu-
lar, D = 100 features are considered. The samples of the first independent variable x1 

Table 14  (continued)

Superconductivity

# samples n = 21263 # features D = 81

Ridge Regression 81 0.7284 ± 0.0012 0.2680 ± 0.0012 0.6044 ± 0.0031

Lasso Regression 81 0.5844 ± 0.0032 0.4102 ± 0.0031 1.0354 ± 0.0683
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Table 15  Extended result of experiments on the Cifar-10 dataset. The total number of samples n has 
been divided into train (66% of data) and test (33% of data) sets

Cifar-10

# samples n = 6000 # features D = 3071

Linear regression Reduced dim R
2 MSE RSE

Full 3071 0.1374 ± 0.6204 0.5229 ± 0.3761 0.4775 ± 0.2907

PCA 76 0.8236 ± 0.0192 0.1069 ± 0.0116 0.4273 ± 0.0075

Supervised PCA 76 0.7738 ± 0.0695 0.1371 ± 0.0421 0.4640 ± 0.0727

Kernel PCA 76 0.8237 ± 0.0193 0.1068 ± 0.0117 0.4272 ± 0.0076

LLE 76 0.3830 ± 0.0481 0.3740 ± 0.0291 1.2374 ± 0.1758

LPP 76 −0.7661 ± 0.0936 1.6769 ± 0.2811 1.4799 ± 0.3078

Isomap 76 0.5126 ± 0.0366 0.2954 ± 0.0222 0.8736 ± 0.0188

RReliefF 76 0.3902 ± 0.1408 0.3696 ± 0.0854 1.0677 ± 0.2641

LinCFA 75.6 ± 6.5 0.9626 ± 0.0260 0.0227 ± 0.0157 0.1564 ± 0.0790

SVM for regression Reduced dim R
2 MSE RSE

Full 3071 0.8643 ± 0.0091 0.0823 ± 0.0051 0.4340 ± 0.0195

PCA 76 0.7996 ± 0.0036 0.1214 ± 0.0022 0.5148 ± 0.0118

Supervised PCA 76 0.7886 ± 0.0488 0.1281 ± 0.0296 0.5219 ± 0.0764

Kernel PCA 76 0.7998 ± 0.0057 0.1213 ± 0.0035 0.5146 ± 0.0118

LLE 76 0.4450 ± 0.0307 0.3364 ± 0.0365 1.0229 ± 0.1251

LPP 76 0.0591 ± 0.0076 0.6098 ± 0.0046 1.4441 ± 0.0676

Isomap 76 0.5424 ± 0.0089 0.2773 ± 0.0054 0.8489 ± 0.0126

RReliefF 76 0.3742 ± 0.1513 0.3793 ± 0.0917 1.0712 ± 0.2110

LinCFA 75.6 ± 6.5 0.9831 ± 0.0024 0.0103 ± 0.0015 0.1317 ± 0.0098

XGBoost Reduced dim R
2 MSE RSE

Full 3071 0.9791 ± 0.0005 0.0156 ± 0.0003 0.1563 ± 0.0016

PCA 76 0.5946 ± 0.0125 0.2457 ± 0.0076 0.7256 ± 0.0218

Supervised PCA 76 0.6722 ± 0.0429 0.1986 ± 0.0261 0.7008 ± 0.0507

Kernel PCA 76 0.5809 ± 0.1607 0.2540 ± 0.0974 0.7355 ± 0.0467

LLE 76 0.2479 ± 0.1896 0.4559 ± 0.1149 1.0588 ± 0.0339

LPP 76 −1.0676 ± 0.0736 1.3078 ± 0.0971 1.0679 ± 0.0463

Isomap 76 0.4579 ± 0.0130 0.3286 ± 0.0079 0.9852 ± 0.0150

RReliefF 76 0.3306 ± 0.1681 0.4057 ± 0.1019 1.1142 ± 0.2357

LinCFA 75.6 ± 6.5 0.9794 ± 0.0060 0.0131 ± 0.0036 0.1466 ± 0.0208

Neural Network Reduced dim R
2 MSE RSE

Full 3071 0.5449 ± 0.3039 0.2759 ± 0.1842 0.5709 ± 0.1284

PCA 76 0.1642 ± 0.1186 0.5066 ± 0.0720 0.7414 ± 0.0265

Supervised PCA 76 0.7140 ± 0.1019 0.1733 ± 0.0618 0.4934 ± 0.0353

Kernel PCA 76 0.7842 ± 0.0619 0.1390 ± 0.0545 0.4901 ± 0.0407

LLE 76 0.4341 ± 0.0114 0.3430 ± 0.0069 1.1290 ± 0.0541

LPP 76 0.1556 ± 0.0036 0.5007 ± 0.0492 1.4341 ± 0.0359

Isomap 76 −2.5277 ± 0.7311 2.1386 ± 0.4432 0.9901 ± 0.0356

RReliefF 76 0.1831 ± 0.1675 0.4952 ± 0.1016 1.0741 ± 0.1914

LinCFA 75.6 ± 6.5 0.9576 ± 0.0333 0.0257 ± 0.0202 0.1772 ± 0.0632
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are extracted from a uniform distribution in the interval [0, 1]. Then, each feature xi , 
is a linear combination between one of the previous features xj, j < i and a ran-
dom sample extracted from a uniform distribution in the interval [0,  1] (specifically 
xi = 0.7xj + 0.3u, u ∼ U([0, 1]) ). Finally, the target variable y is a linear combination 
between the D features x1, .., x100 , with coefficients randomly sampled from a uniform 
distribution in the interval [0, 1], and a gaussian noise with standard deviation � = 10.

The algorithm is applied on the features both evaluating the threshold computed 
with the exact coefficients and with their unbiased estimates. The experiment has 
been repeated s = 500 times on a dataset of n = 500 samples both in train and test 
set, considering both the exact parameters (unkown in practice) and their estimators.

E.4 D‑Dimensional real datasets

Data This subsection describes with more details the datasets introduced in Sect. 6 
of the main paper to apply the proposed algorithm LinCFA on real data. Additional 
experiments are also discussed and their results are reported extensively.

The first dataset considered in the main paper focuses on the prediction of Life 
Expectancy from several factors that can be categorized into immunization related 
factors, mortality factors, economical factors and social factors. The dataset is avail-
able on Kaggle8 and it is also provided in the repository of this work. It is made of 
D = 18 continuous input variables and a scalar output.

The second dataset reported in the main paper is a financial dataset made of D = 75 
continuous features and a scalar output. The model predicts the cash ratio depending on 
other metrics from which it is possible to derive many fundamental financial indicators. 
The dataset is taken from Kaggle9 and it is provided in the repository of this work.

Finally, the algorithm is tested on two climatological dataset composed by 
D = 136 and D = 1991 continuous climatological features and a scalar target which 
represents the state of vegetation of a basin of Po river. This datasets have been com-
posed by the authors merging different sources for the vegetation index, temperature 
and precipitation over different basins (see (Didan 2015; Cornes et al. 2018; Zell-
ner and Castelli 2022)), and they are available in the repository of this work. The 
main purpose of this regession tasks is to predict the state of the vegetation of a 
region through meteorological features, which may add insights on the relationship 
between temperature and precipitation and the state of the vegetation in a highly 
regulated basin with complex hydrological interactions as the Po River basin.

Table 15  (continued)

Cifar-10

# samples n = 6000 # features D = 3071

Ridge Regression 3071 0.8575 ± 0.0996 0.0864 ± 0.0604 0.2725 ± 0.1515

Lasso Regression 3071 0.9439 ± 0.0095 0.0340 ± 0.0058 0.1821 ± 0.0274

8 https:// www. kaggle. com/ datas ets/ kumar ajars hi/ life- expec tancy- who
9 https:// www. kaggle. com/ datas ets/ dgawl ik/ nyse

https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who
https://www.kaggle.com/datasets/dgawlik/nyse


 P. Bonetti et al.

1 3

Table 16  Extended result of experiments on the Gene Expression dataset. The total number of samples n 
has been divided into train (66% of data) and test (33% of data) sets

Gene Expression

# samples n = 801 # features D = 19133

Linear regression Reduced dim R
2 MSE RSE

Full 19133 0.5166 ± 0.0041 0.4992 ± 0.0041 0.8282 ± 0.0089

PCA 220.2 ± 3.5 0.5278 ± 0.0113 0.4877 ± 0.0117 0.8559 ± 0.0089

Supervised PCA 35.2 ± 9.0 0.5289 ± 0.0151 0.4806 ± 0.0156 0.8473 ± 0.0379

Kernel PCA 34.4 ± 12.1 0.4944 ± 0.0104 0.5221 ± 0.0107 1.0009 ± 0.0463

LLE 48.0 ± 3.5 0.2844 ± 0.0114 0.7390 ± 0.0118 1.8372 ± 0.1271

LPP 19.4 ± 7.3 0.3442 ± 0.0161 0.6768 ± 0.0112 1.3779 ± 0.1087

Isomap 19.6 ± 2.9 0.3039 ± 0.0131 0.7189 ± 0.0135 1.5403 ± 0.1370

RReliefF 29.2 ± 9.9 0.2021 ± 0.0773 0.8242 ± 0.0798 1.8724 ± 0.5534

LinCFA 19.6 ± 1.7 0.5990 ± 0.0121 0.4141 ± 0.0125 0.7492 ± 0.0224

SVM for regression Reduced dim R
2 MSE RSE

Full 19133 0.4825 ± 0.0067 0.5345 ± 0.0069 1.2478 ± 0.0210

PCA 220.2 ± 3.5 0.5277 ± 0.0158 0.4877 ± 0.0164 0.9176 ± 0.0214

Supervised PCA 35.2 ± 9.0 0.4436 ± 0.0190 0.5746 ± 0.0196 1.1301 ± 0.0554

Kernel PCA 34.4 ± 12.1 0.4862 ± 0.0173 0.5306 ± 0.0178 1.0551 ± 0.0353

LLE 48.0 ± 3.5 0.2560 ± 0.0497 0.7684 ± 0.0514 1.6913 ± 0.1328

LPP 19.4 ± 7.3 0.3951 ± 0.0167 0.6492 ± 0.0139 1.2482 ± 0.0224

Isomap 19.6 ± 2.9 0.3048 ± 0.0143 0.7180 ± 0.0147 1.3935 ± 0.0755

RReliefF 29.2 ± 9.9 0.1926 ± 0.1065 0.8338 ± 0.1100 2.0174 ± 0.5152

LinCFA 19.6 ± 1.7 0.5783 ± 0.0241 0.4355 ± 0.0249 0.8450 ± 0.0274

XGBoost Reduced dim R
2 MSE RSE

Full 19133 0.4966 ± 0.0463 0.5199 ± 0.0478 0.9742 ± 0.0537

PCA 220.2 ± 3.5 0.3212 ± 0.0201 0.7010 ± 0.0206 1.3687 ± 0.0470

Supervised PCA 35.2 ± 9.0 0.3138 ± 0.0414 0.7086 ± 0.0428 1.1762 ± 0.0527

Kernel PCA 34.4 ± 12.1 0.3807 ± 0.0344 0.6395 ± 0.0355 1.2007 ± 0.0475

LLE 48.0 ± 3.5 0.1565 ± 0.0432 0.8712 ± 0.0447 1.2854 ± 0.0317

LPP 19.4 ± 7.3 0.2836 ± 0.0136 0.7175 ± 0.0462 1.6594 ± 0.0449

Isomap 19.6 ± 2.9 0.2342 ± 0.0279 0.7909 ± 0.0288 1.4187 ± 0.0695

RReliefF 29.2 ± 9.9 0.0297 ± 0.1373 1.0022 ± 0.1418 1.6248 ± 0.2209

LinCFA 19.6 ± 1.7 0.5301 ± 0.0222 0.4854 ± 0.0229 0.8275 ± 0.0301

Neural network Reduced dim R
2 MSE RSE

Full 19133 −5.6864 ± 3.2901 6.9063 ± 3.3982 1.0145 ± 0.0545

PCA 220.2 ± 3.5 −7.3654 ± 0.6679 8.6404 ± 0.6899 0.9864 ± 0.0309

Supervised PCA 35.2 ± 9.0 0.3068 ± 0.0275 0.7159 ± 0.0284 1.0232 ± 0.0814

Kernel PCA 34.4 ± 12.1 0.4869 ± 0.0171 0.5299 ± 0.0177 0.9955 ± 0.0283

LLE 48.0 ± 3.5 0.2949 ± 0.0237 0.7282 ± 0.0245 1.6877 ± 0.1169

LPP 19.4 ± 7.3 0.4594 ± 0.0148 0.5403 ± 0.0285 1.0003 ± 0.0249

Isomap 19.6 ± 2.9 −1.6316 ± 0.4833 1.7886 ± 0.4992 1.0194 ± 0.0154

RReliefF 29.2 ± 9.9 −0.1161 ± 0.1605 1.1528 ± 0.1658 1.2996 ± 0.1127

LinCFA 19.6 ± 1.7 0.5828 ± 0.0226 0.4308 ± 0.0233 0.7607 ± 0.0209
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In this section are also reported the results of the application of the proposed algo-
rithm and the identified baselines on three additional classical regression datasets, 
which have been selected to further verify the validity of the proposed approach. 
Although these dataset does not show a particularly meaningful linear dependency 
between the features and the target, they have been selected to empirically test the 
validity of the method outside linear contexts, where its validity has theoretical guar-
antees. In particular, we considered a simple classical dataset with 13 features and 
506 samples, the Boston Housing dataset (Harrison and Rubinfeld 1978). This data-
set is a classical statistical and ML benchmark collected by the U.S Census Service. 
Its aim is to inspect the relationship between the price of houses in Boston suburbs 
and some features related to crime, environment, politics, and social aspects.

As a second additional benchmark dataset, we selected the Superconductivity data-
set  (Hamidieh 2018) with 81 features and 21263 samples, from the UCI repository. 

Table 16  (continued)

Gene Expression

# samples n = 801 # features D = 19133

Ridge regression 19133 0.5167 ± 0.0041 0.4991 ± 0.0042 0.8279 ± 0.0086

Lasso regression 19133 0.5839 ± 0.0095 0.4340 ± 0.0088 0.7880 ± 0.0174

Table 17  Experiments on real datasets considering the same number of reduced features and linear 
regression. The total number of samples n has been divided into train (66% of data) and test (33% of 
data) sets

Quantity Life exp Financial Climatological I Climatological II
# samples n 1649 1299 1038 981

Full dim (# features D) 18 75 136 1991
Reduced dim PCA 14 12 38 37
Reduced dim supervised PCA 14 12 38 37
Reduced dim LinCFA 14 12 38 37
R
2 full 0.834 −1.441 0.298 −1.402

R
2 PCA 0.830 0.731 0.557 0.795

R
2 supervised PCA 0.809 0.844 0.528 0.866

R
2 LinCFA 0.835 0.885 0.604 0.922

MSE full 0.180 3.702 0.286 1.277
MSE PCA 0.195 0.407 0.181 0.187
MSE supervised PCA 0.207 0.236 0.192 0.121
MSE LinCFA 0.179 0.162 0.145 0.070
RSE full 0.468 0.829 0.748 0.999
RSE PCA 0.479 0.748 0.488 0.519
RSE supervised PCA 0.489 0.412 0.528 0.539
RSE LinCFA 0.465 0.359 0.454 0.299
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Indeed, this repository mantains more than 600 hundreds of datasets to make them 
available to the ML community, widely used from the eighties in statistics and ML. 
This specific dataset allows to test the LinCFA Algorithm on a larger set of features 
with many samples where linear models perform poorly w.r.t. non-linear approaches. 
The dataset is aimed to identify the relationship between the critical temperature of dif-
ferent superconductors (one for each sample) and the features available, which describe 
the main characteristics of the superconductors (e.g., atomic mass and radius).

Finally, as a third additional dataset, we considered the Cifar-10 dataset  (Kriz-
hevsky et  al. 2009), that is a famous classification dataset composed by 32 × 32 
images of 10 different classes with 60000 samples. In the experiments we consid-
ered 6000 samples at random, to have a number of samples comparable with the 

Table 18  Experiments on 
additional real datasets 
considering the same number 
of reduced features and linear 
regression. The total number 
of samples n has been divided 
into train (66% of data) and test 
(33% of data) sets

Quantity Boston housing Superconductivity
# samples n 506 21263

Full dim (# features D) 13 81
Reduced dim PCA 6 50
Reduced dim supervised PCA 6 50
Reduced dim LinCFA 6 50
R
2 full 0.7261 0.7303

R
2 PCA 0.6863 0.6992

R
2 supervised PCA 0.6192 0.7018

R
2 LinCFA 0.6638 0.6868

MSE full 0.2351 0.2661
MSE PCA 0.2692 0.2967
MSE supervised PCA 0.3268 0.2942
MSE LinCFA 0.2886 0.3090
RSE full 0.5632 0.6006
RSE PCA 0.6556 0.6496
RSE supervised PCA 0.7283 0.6444
RSE LinCFA 0.6858 0.6663

Table 19  Computational 
time (in seconds) for each 
dimensionality reduction 
method on the Climate II 
dataset, confidence intervals 
produced with five repetitions

Algorithm Time (Validation Time)

PCA 0.45 ± 0.10 ( 73.62 ± 2.71)
Supervised PCA 2.51 ± 0.24 ( 86.35 ± 7.67)
Kernel PCA 0.35 ± 0.07 ( 16.06 ± 0.71)
LLE 0.25 ± 0.01 ( 13.11 ± 0.29)
LPP 2.44 ± 0.21 ( 105.06 ± 2.07)
Isomap 0.27 ± 0.03 ( 41.10 ± 4.72)
RReliefF 15.86 ± 0.17 ( 100.69 ± 5.95)
LinCFA 45.83 ± 2.13
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10 https:// archi ve. ics. uci. edu/ datas et/ 401/ gene+ expre ssion+ cancer+ rna+ seq

number of features, which enforces a larger risk of overfitting and the need of dimen-
sionality reduction methods. Moreover, since the LinCFA algorithm is designed for 
regression tasks, we transformed the problem into a regression by considering each 
pixel of each of the three color layers as a feature and removing a pixel, considered 
as target. In this way, also a more recent ML benchmark dataset with a significantly 
larger number of features retrieved from images has been added in the comparisons.

In order to further explore the behavior of the LinCFA on a dataset with a large 
number of features (19133) and a relatively small number of samples (801) from 
bioinformatics, a gene expression dataset from the UCI ML repository has been con-
sidered (Fiorini 2016)10. In particular, one gene expression has been considered as 
target variable and the other gene expressions available in the dataset have been con-
sidered as features, filtering the constant columns. The dataset is part of the RNA-
Seq (HiSeq) PANCAN data set, where the author of the dataset has performed a 
random extraction of gene expressions of patients having different types of tumor.

Results In this section the extensive results related to the eight datasets under analysis 
are reported. In particular, we firstly apply the LinCFA Algorithm on the training data to 
perform the aggregation of features, repeating the experiment five times, bootstrapping 
the training set with different seeds. The same is done considering the dimensionality 
reduction methods considered as baselines: PCA, Supervised PCA, Kernel PCA, LLE, 
LPP, Isomap, RReliefF. For all the methods, from D = 1 to D = 50 reduced features are 
considered, and the best performing number of components is selected. The only excep-
tion is Cifar-10 dataset, where the proposed algorithm selects D = 73 reduced features, 
and the same number is forced to all the methods, since trying all the different values 
starting from D = 1 would be much computational expensive. Then, supervised learning 
regression methods have been applied to the reduced features. In particular, given the 
linearity guarantees of the proposed method, linear regression has firstly been applied 
and its results are reported in the main paper. Additionally, SVM, XGBoost and Neural 
Network methods have been also applied, to further inspect the behavior of the method. 
These approaches have been applied to each dataset, reduced with the proposed method 
or with the baselines, with default hyperparameters. Additionally, the performances of 
the full dataset has been reported, considering the same models and additionally taking 
into account Ridge and Lasso regression, which are regularized variants of the standard 
linear regression and have better performances on the full dataset. The metrics selected 
to evaluate the test performances of the methods are the R2 score, the MSE and the Rela-
tive Root Mean Squared Error (RRMSE). In this way, the performances are considered 
taking into account the quantity on which the theoretical analysis is based on (the MSE), 
a classical metric that evaluates the performance in regression settings ( R2 ) and a relative 
metric that filters the magnitudes of the predictions (RRMSE).

The confidence intervals of test scores obtained with linear regression on the 
datasets considered and with the best performing baseline are reported in Sect. 6 of 
the main paper. The complete results on all the datasets are reported in one table for 
each dataset in Tables 9, 10, 11, 12, 13, 14, 15, 16.

Additionally, Tables 17, 18 show the results of the application of PCA and Super-
vised PCA on a number of reduced features equal to the one identified by LinCFA, 

https://archive.ics.uci.edu/dataset/401/gene+expression+cancer+rna+seq
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in comparison with LinCFA itself and the not-reduced dataset, considering linear 
regression. This further analysis is reported to deepdive the performances when 
these two baselines have the same number of features identified by the proposed 
method. The majority of the results show that the LinCFA Algorithm leads to com-
petitive performances w.r.t. the baselines, both considering linear and non-linear 
models and dimensionality reduction approaches. In particular, for the Life Expec-
tancy, Finance, Climate I and Climate II datasets, non-linear methods do not clearly 
outperform linear regression and the LinCFA Algorithm leads to the best score or 
close to the best result. The Boston Housing dataset, Superconductivity and Cifar-10 
show a better performance with non-linear approaches, with LinCFA that performs 
similarly to the application of the best performing non-linear metods directly on the 
full dataset.

To conclude, in Table 19 we provide an example of time complexity of the pro-
posed algorithms in practice, in comparison with the other dimensionality reduction 
approaches considered. In particular, we considered as an example the Climate II 
dataset, and we ran all the experiments on a BullSequana XH2000 supercomputer 
using the 3rd generation of AMD EPYC CPUs, allocating 1 node and 32 GB of 
RAM for the experiment. Considering the time between the beginning and the end 
of the dimensionality reduction phase, we provide confidence intervals with five 
repetitions.

The LinCFA algorithm exploits the theoretical threshold to perform the aggrega-
tion, therefore there are no hyperparameters to tune. On the contrary, the dimen-
sionality reduction and feature selection approaches considered as baselines need 
to tune at least the number of desired reduced features. For this reason, we reported 
both the computational time related to one specific application of the baseline algo-
rithms, once the number of reduced components has been identified, together with 
the computational time needed to perform the validation (written in parentheses in 
the table), that we considered to select between 1 and 50 reduced components.

Although this empirical evaluation depends on the choice of considering up to 50 
possible reduced features for the baselines and on the different implementations, we 
can conclude that in general the proposed algorithm has a fixed computational time 
due to the absence of hyperparameters to tune, at a cost on a larger computational 
time w.r.t. single computations of the baselines, whose computational time increases 
depending on the number of parameters that the user is willing to tune and on the 
extension of the grid search considered.
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