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Abstract
Local model-agnostic additive explanation techniques decompose the predicted out-
put of a black-box model into additive feature importance scores. Questions have 
been raised about the accuracy of the produced local additive explanations. We 
investigate this by studying whether some of the most popular explanation tech-
niques can accurately explain the decisions of linear additive models. We show that 
even though the explanations generated by these techniques are linear additives, they 
can fail to provide accurate explanations when explaining linear additive models. In 
the experiments, we measure the accuracy of additive explanations, as produced by, 
e.g., LIME and SHAP, along with the non-additive explanations of Local Permuta-
tion Importance (LPI) when explaining Linear and Logistic Regression and Gauss-
ian naive Bayes models over 40 tabular datasets. We also investigate the degree to 
which different factors, such as the number of numerical or categorical or corre-
lated features, the predictive performance of the black-box model, explanation sam-
ple size, similarity metric, and the pre-processing technique used on the dataset can 
directly affect the accuracy of local explanations.

Keywords Explainable machine learning · Local model-agnostic explanations · 
LIME · SHAP

1 Introduction

As machine learning models have become more complex, the need for techniques 
that explain the decision-making process of the black-box models has grown (Mol-
nar et  al. 2022; Rudin 2018; Ribeiro et  al. 2016). To make the decision-making 
process more accessible to humans, explanation techniques can be used to estimate 
the importance of features of the data to the model’s predicted output. Explanation 
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techniques extract the information from the black-box model in a post-hoc manner, 
i.e., based on the model that is already trained on a dataset (Molnar et  al. 2022; 
Montavon et al. 2018). Explanations can have different representations, such as logic 
rules (Ribeiro et  al. 2018), example-based explanations (van der Waa et  al. 2021) 
and, arguably the most popular type of explanation in the literature, feature attribu-
tions (Ribeiro et al. 2016; Lundberg and Lee 2017). The focus of our study is feature 
attribution techniques that can explain the predicted output of any class of machine 
learning models for a single instance in a dataset. These techniques can be further 
divided into additive vs. non-additive explanations. The sum of importance scores 
in a local additive explanation equals the predicted output score for the explained 
instance (Lundberg and Lee 2017).

In Rudin (2018), the author argues that local explanations,1 such as LIME and 
SHAP, can be inaccurate and should not be used in high-stake decision-making 
domains. The main underlying reason for this argument is the infidelity (inaccuracy) 
of explanations. The study includes examples of the failure cases of explanations in 
object detection scenarios. Similarly, other studies have evaluated local explanations 
of neural networks trained on text and image data2. However, the majority of the 
datasets in high-stake decision-making scenarios, e.g., health and diagnostic (Hak-
koum et  al. 2022), law (Wang et  al. 2022) and so forth are tabular datasets. The 
question of the explanation accuracy of models used in these high-stake domains is 
of critical importance.

In this work, we propose to evaluate explanation techniques not when explaining 
black-box models but when explaining linear additive models, such as Linear and 
Logistic regression trained on tabular datasets. In particular, we investigate whether 
local model-agnostic additive explanations can explain linear additive models with 
high explanation accuracy. We demonstrate how to extract Model-Intrinsic Addi-
tive Scores (MIAS) from these models that can directly be compared to the feature 
importance scores generated with a local explanation technique (see Sect. 4.1 for the 
definition of explanation accuracy that we employ in this study and more details).

One might wonder whether the answer to this research question is essential since 
linear additive models are intrinsically interpretable and are not representative black 
boxes. We show that since we can extract local ground truth importance scores from 
linear additive models and measure the explanation accuracy directly, testing the 
ability to explain these models can serve as a sanity check for evaluating local addi-
tive explanation techniques. This evaluation should be the first step when designing 
new evaluation techniques. If an explanation technique cannot accurately explain a 
simple model, we cannot trust its explanations of black-box models either.

One of the most important aspects of evaluating local explanations is under-
standing the factors affecting the explanation’s accuracy. Some studies have stud-
ied factors that can cause the accuracy of local explanations to decrease (Mol-
nar et al. 2022; Gosiewska and Biecek 2019). The authors have pointed out three 

1 For brevity, we sometimes refer to local additive model-agnostic explanations as local explanations or 
just explanations in this study.
2 See Sect. 2 for details.
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main factors that can affect the accuracy of local model-agnostic explanations: 
(1) The presence of categorical features, (2) The presence of correlated features 
in the dataset, and (3) Explaining models with low predictive performance. Even 
though these limitations are frequently mentioned in the literature (Molnar et al. 
2022; Gosiewska and Biecek 2019; Guidotti 2021) , the investigations are not 
conclusive for tabular datasets, and the degree to which these factors can con-
tribute to the accuracy of explanations is not well studied beyond simple cases of 
synthetic datasets. When explaining linear additive models, our study investigates 
the aforementioned factors’ effect on synthetic and real tabular datasets. Moreo-
ver, we show that the accuracy of local explanations is affected by other factors, 
e.g., the explanation sample size, the choice of similarity metric, and the prepos-
sessing technique used on the dataset.

In our investigation, two widely used techniques for generating local additive 
model-agnostic explanations, Local Interpretable Model-agnostic Explanations 
(LIME) (Ribeiro et  al. 2016) and SHapley Additive exPlanations (SHAP) (Lund-
berg and Lee 2017), are evaluated along with the non-additive explanation tech-
nique Local Permutation Importance (LPI) (Casalicchio et al. 2018). The reason for 
including LPI in our study is to examine how a technique that does not rely on the 
“additivity” of the local explanations can still produce accurate explanations for lin-
ear additive models. We evaluate the explanation accuracy for regression and clas-
sification tasks, using linear regression models for the former and logistic regression 
and Gaussian Naive Bayes models for the latter.

In conclusion, our contributions are 

1. We present a novel principled method to extract the local ground truth model-
intrinsic importance scores from additive terms in linear additive models.

2. Based on these scores, we describe how to measure the explanation accuracy 
of local explanation techniques directly, thus providing a sanity check for these 
methods.

3. Using our proposed accuracy measure, we show that the previously mentioned 
factors can indeed influence explanation accuracy.

The key findings from the empirical investigations are: (1) LIME and SHAP pass 
the proposed sanity check for Linear Regression models, (2) The explanation tech-
niques frequently fail the proposed sanity check when explaining Logistic Regres-
sion and naive Bayes models, (3) The explanation accuracy of additive explanations 
of LIME and SHAP is overall larger than for the non-additive local explanations 
of LPI when explaining linear additive models, (4) In some datasets, LPI explana-
tions are more accurate than explanations of LIME and SHAP when explaining lin-
ear additive classification models, even though LPI explanations are not additive 
(5) All of the aforementioned factors may significantly affect explanation accuracy, 
however, their effect is largely dependent on the type of model explained and the 
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explanation technique itself, and (6) The most accurate local explanations are not 
necessarily the the most robust3 and vice versa.

The rest of the paper is organized as follows. We provide an extensive back-
ground on evaluating local explanations in Sect. 2.2. In Sect. 3, we provide a moti-
vating example that shows the limitations of current evaluation measures for evalu-
ating local additive models and highlights the key differences between the proposed 
evaluation method with other previously proposed approaches. We formally intro-
duce the evaluation method in Sect.  4. In Sect.  5, we empirically study the accu-
racy of explanation techniques on 40 tabular datasets using the proposed evaluation 
framework. We discuss the most important findings and the limitations of our study 
in Sect. 6, and finally, we summarize the main conclusions and point out directions 
for future research in Sect. 7.

2  Background

Explanation techniques can be divided into global vs. local techniques and model-
agnostic vs. model-based techniques. Global explanation techniques (Breiman 
2001) provide importance scores for features with respect to a dataset (Freitas 2014). 
Local explanation techniques (Ribeiro et al. 2016; Lundberg and Lee 2017) provide 
importance scores for a prediction of a single instance (Ribeiro et al. 2016). Model-
agnostic explanation techniques (Ribeiro et al. 2016) can produce explanations for 
any type of black-box model (Ribeiro et al. 2016). On the other hand, model-based 
explanation techniques (Zeiler and Fergus 2014) are tailored for one type of machine 
learning model (Montavon et al. 2018). We focus on local model-agnostic explana-
tion techniques. These can be further divided into additive vs. non-additive explana-
tions. The sum of importance scores in a local additive explanation equals the pre-
dicted output for the explained instance (Lundberg and Lee 2017). In contrast, local 
non-additive explanations do not satisfy the additivity criterion (Lundberg and Lee 
2017). Some of the most popular explanation techniques, such as LIME and SHAP, 
fall into the former category.

In this section, we first formalize local explanations, as produced by LIME, 
SHAP, and LPI, and then discuss methods to evaluate such explanations.

2.1  Local explanations

We first present a formalization of local additive explanations in our study, i.e. LIME 
and SHAP, based on the notation used in Lundberg and Lee (2017). As discussed in 
Sect. 1, in local explanations, a black-box model’s predicted output is decomposed 
into an additive sum of feature importance scores. In simpler words, each feature 
importance score is the contribution of that feature to the predicted output of the 
explained model. The formal representation of local explanations, as produced by 

3 See Sect. 2.2.1 for the definition of explanations robustness.
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LIME and SHAP, is shown in Eq. 1. In this equation, the black box model f pre-
dicted probability for a designated class given instance x is decomposed into an 
additive sum and �j is the local feature contribution of feature j and xj4 is the value 
of feature j in x.

Local Permutation Importance (LPI) is a local non-additive model-agnostic explana-
tion technique. The core idea behind LPI (Casalicchio et al. 2018) is that the impor-
tance of a feature can be estimated by the average change of a black-box’s predicted 
output when the value of this feature is replaced by another value. To change the 
feature value, LPI randomly permutates feature values of a single dimension across 
all data points in a given dataset.

More formally, LPI is calculated as follows. Let � be a random permutation of the 
index sequence ⟨1,… ,N⟩ , and let �i denote the position of index i in � . The impor-
tance of feature j at xn is then defined as:

where x̂k is defined as follows:

where k ∈ [1,N] and l ∈ [1,M] . In simpler terms, x̂k is equal to xn except that the 
value of the jth feature is replaced by xj�k . It is noteworthy that in our study, f(x) is 
the log odds ratio prediction function of class c instead of the predicted values f (xn) 
for Logistic Regression and Naive Bayes models.

2.2  Evaluating local explanations

The evaluation methods for local explanations are categorized into the human evalu-
ation and functionally grounded evaluation methods (Doshi-Velez and Kim 2017). In 
human evaluation methods, the accuracy of a local explanation is measured by how 
accurately human subjects can guess the prediction of black-box models when they 
have only access to the explanation (Poursabzi-Sangdeh et al. 2021). Since human 
studies are costly and time-consuming, functionally grounded evaluation methods 
use different proxies to measure the quality of local explanations. This study focuses 
on evaluating local explanations using the latter techniques.
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4 In some explanation techniques, such as LIME and SHAP, xj is replaced by x′
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Evaluating local explanations using the functionally-grounded method is chal-
lenging. We should remember that we need local explanations, or explanations 
in general, because we do not understand black boxes. For a direct evaluation of 
explanations, ground truth importance scores are information only directly acces-
sible when we can understand the model. On the other hand, black-box models 
are models we cannot understand. Because of this, all evaluation methods of local 
explanations either measure the explanations indirectly, e.g., robustness measures, 
or they induce further assumption of the data generation process or the model type 
explained. Because of this, we need to consider that these measures study different 
characteristics of an explanation.

This section provides a background on each of these evaluation procedures. The 
majority of studies that have evaluated local explanations have focused on three cat-
egories of evaluation procedures: evaluating explanations using robustness measures 
(Sect. 2.2.1) , using ground truth feature importance scores from synthetic datasets 
(Sect.  2.2.2) , and using interpretable models (Sect.  2.2.3). Our proposed method 
belongs to the latter category.

2.2.1  Robustness measures

Most studies on evaluating local explanations, especially for neural network mod-
els, use the robustness measures (Fong and Vedaldi 2017; Montavon et  al. 2018; 
Alvarez-Melis and Jaakkola 2018). Robustness measures do not rely on the ground 
truth importance scores to evaluate explanations (Alvarez-Melis and Jaakkola 2018; 
Montavon et  al. 2018; Adebayo et  al. 2018; Lakkaraju et  al. 2020; Agarwal et  al. 
2022). Instead, the main assumption of these measures is that nullifying important 
(unimportant) features from a local explanation needs to cause large (small) changes 
in the predicted scores of the black-box models of that instance. In these measures, 
the black-box model is used as an oracle to extract new prediction scores on the 
new variation of the explained instance after subsets of its features are nullified. 
Measures such as faithfulness (Alvarez Melis and Jaakkola 2018), fidelity (Ampa-
rore et al. 2021), Prediction Gap on Important Features (PGI), and Prediction Gap 
on Unimportant Features (PGU) (Agarwal et al. 2022) are all variations of robust-
ness measures. The main reasons behind the popularity of robustness measures 
are: (1) There is no need to access ground truth importance scores for evaluating 
local explanations (2) They can evaluate local explanations of arbitrary datasets and 
explained models..

Our study uses the prevalent Deletion and Preservation robustness measures ini-
tially proposed in Fong and Vedaldi (2017); Samek et  al. (2016). Our definitions 
follow the notation from Hsieh et al. (2020). Let Sr ⊂ U be the set of top-K features 
ranked in descending order by their absolute importance scores obtained from an 
explanation technique (K is a hyper-parameter). Let S̄r = U ⧵ Sr where U is the set 
of all features. Deletion measures the absolute change in a black box’s predicted out-
put after replacing feature values in Sr with a baseline value. Similarly, Preservation 
reflects the absolute change in the predicted output of a black-box model following 
the replacement of feature values in S̄r with a baseline. The baseline value can be 
a binary value or the average value of the corresponding feature in the training or 
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validation set (Fong and Vedaldi 2017). There are no agreed optimal values for these 
robustness measures. However, a robust explanation should have relatively large 
Deletion and low Preservation values (Montavon et al. 2018).

Robustness measures are intrinsically prone to have the following limitations: 
First, since robustness measures are not calculated based on the ground truth impor-
tance scores, we cannot argue that robust explanations are directly accurate (We 
show an example of this limitation in Sect. 3). Second, the prediction of an instance 
after removing its features can cause out-of-distribution predictions or at worst, 
can turn the instance into an adversarial example. Hence the predictions of the ora-
cle can no longer be trusted to evaluate local explanation. Rahnama and Boström 
(2019); Hooker et al. (2019); Hsieh et al. (2020). Third, there is a lack of agreement 
on a unified approach to nullify features (Sturmfels et al. 2020). Fourth, there are no 
agreements on the most optimal threshold of the magnitude of the change in the pre-
dicted probability of the model after (important) unimportant features are removed 
(Alvarez-Melis and Jaakkola 2018; Sturmfels et al. 2020).

In Hooker et al. (2019), the authors propose an extra step of retraining the model 
after nullifying important features to avoid the problem of out-of-distribution pre-
diction of the explained model. This is mainly to tackle the second limitation of 
the robustness measure. In their study, the model-based explanations of CNN, such 
as Integrated Gradients (IG) and Guided Backpropagation, showed low robustness 
on neural network models trained on the ImageNET dataset. However, the authors 
do not provide empirical or theoretical evidence that the retrained model will have 
the same properties as the original model we intend to explain. In addition, studies 
have shown that the correlation relationship among features does not hold in the 
new model after the retraining step (Nguyen and Martínez 2020). In Agarwal et al. 
(2022), the authors propose the OpenXAI framework that includes numerous robust-
ness measures. They showed that model-based gradient explanation techniques such 
as Gradient∗Input (Shrikumar et al. 2016) provided more robust explanations than 
LIME and SHAP explanations across numerous datasets.

2.2.2  Ground truth from synthetic datasets

Some studies have proposed to evaluate explanations directly based on extracting 
ground truth importance scores from synthetic datasets. These studies aim to tackle 
the first limitation of the robustness measure, as discussed in the previous section. 
The core assumption behind these evaluation methods is that obtaining ground truth 
from the black-box models on arbitrary data is challenging. Therefore, we can sim-
plify the data these models are trained on. Using specific data generation processes 
enables these methods to control the importance of each feature for the generated 
labels prior to the training phase of explained models. Local explanations that 
provide feature importance scores similar to these priors are considered the most 
accurate.

The SenecaRC algorithm (Guidotti 2021) generates data from a polynomial func-
tion that can include varying operators such as sin or cos in its polynomial terms. 
After that, a sample is generated based on the chosen polynomial function. Lastly, 
the algorithm returns the ground truth importance scores for the explained instance x 
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based on the following steps: (1) the closest instance x ∗ to x on the decision bound-
ary of an explained model, g, is found, and (2) the derivative of the ground truth 
polynomial is evaluated at this point and returned as true importance scores for x.

In Liu et al. (2021), the authors provide a set of synthetic datasets and evaluate 
the quality of local explanations using (robustness) measures such as faithfulness 
and fidelity. SHAP and SHAPR (Aas et  al. 2021) explanations were observed to 
have higher faithfulness compared to LIME and Model Agnostic SuPervised Local 
Explanations (MAPLE) explanations for the considered set of synthetic datasets. 
In their evaluation, the authors show that LIME, SHAP, and MAPLE (Plumb et al. 
2018) explanations fail to provide accurate explanations for (synthetic) tabular data-
sets with large numbers of uninformative features.

In Agarwal et  al. (2022), the authors proposed a synthetic SynthGauss dataset. 
They argue that their proposed dataset is more suitable for evaluating explanations 
than the dataset in Liu et al. (2021) since features are independent in their proposed 
dataset and local neighborhoods do not overlap in the dataset. In their study, model-
based gradient explanations such as SmoothGrad (Omeiza et al. 2019)was observed 
to outperform LIME and SHAP explanations across numerous datasets.

The main limitations of evaluation approaches based on synthetic ground truth 
are two-fold: (1) Since the priors of feature importance scores are set before the 
explained model is trained, there are no guarantees that the model has learned the 
relationship between features and the label in the synthetic dataset according to our 
prior importance scores (Faber et al. 2021) (2) Synthetic datasets are not complex in 
terms of empirical feature distribution and interactions between their features unlike 
many tabular datasets (Guidotti 2021). As a result, we cannot directly conclude that 
since a local explanation is inaccurate on these synthetic datasets, it is also inaccu-
rate on larger and more complex datasets.

2.2.3  Ground truth using interpretable models

As mentioned earlier, we cannot directly extract ground truth importance scores 
from complex black-box models. The extraction of the ground truth can be made 
easier if we explain a simpler class of machine learning models. The methods 
that extract ground truth importance scores from interpretable models follow this 
assumption. The strength of these evaluation methods is that we are no longer 
restricted to evaluating local explanations on simplified datasets. These methods 
obtain the ground truth importance scores extracted directly from the trained model. 
Unlike the ground truth from synthetic datasets, we can guarantee that these impor-
tance scores are directly extracted from the knowledge that exists in the trained 
model. However, this comes at the cost of only being able to evaluate simple mod-
els. This type of evaluation can thus only be used as a sanity check and not to evalu-
ate the accuracy of any model on any dataset.

In Agarwal et al. (2022), the authors proposed to extract ground truth importance 
scores from the weights of Logistic Regression. Based on their evaluation, model-
based explanations such as SmoothGrad have larger similarities to their proposed 
ground truth than LIME and SHAP explanations. The main limitation of their base-
line for extracting ground truth is that the authors have used the weights of Logistic 
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Regression, a global explanation, as their baseline for evaluating local explana-
tions. Global explanations are one vector of the feature importance scores for an 
entire dataset that is equal for all instances (Freitas 2014). On the other hand, local 
explanations exhibit properties of the locality of that instance in the data input space 
(Ribeiro et  al. 2016). Based on this, measuring the similarity of all unique local 
explanations for each instance to the global explanation can lead to incorrect conclu-
sions. 5.

In this study we propose a method that extracts the local ground truth importance 
scores for three linear additive models, linear and logistic regression and Naive 
Bayes. In contrast to the aforementioned method, we thus know how much each fea-
ture contributes to the model’s predicted output and can directly compare the impor-
tance scores generated by a local explanation technique.

3  Motivating example

In this section, we show an example that highlights reasons the current evaluation 
methods cannot provide the correct evaluation method for evaluating local explana-
tions of linear additive models. Let us reiterate that we expect a local ground truth 
importance score to include some of the instance’s locality in the model’s decision 
space. We show that the currently available approaches either allocate equal ground 
truth measures to all instances, disregarding the instance locality, or fail to allocate 
the correct importance to all features. Our example uses Seneca-RC’s synthetic 
dataset generation and compares the baselines from synthetic datasets proposed by 
Guidotti (2021), the ground truth proposed by Agarwal et al. (2022) and robustness 
measures (Hsieh et al. 2020; Fong and Vedaldi 2017).

Let Y = 2x0 − x1 be the data generation process where features x0 contribute posi-
tively and x1 negatively to the label. We sample one thousand instances from Sen-
eca-RC’s data generation process where no extra redundant features are added, and 
we set the noise level to 0.3. We train a Logistic Regression model on this generated 
dataset6. The model achieves a test accuracy of 0.98 on this dataset. The decision 
boundary (see Fig. 1 ) shows that the model has correctly identified that both fea-
tures in combination are important for separating instances from different classes. 
The arrows on the top of each instance represent the ground truth importance scores 
based on each evaluation method.

The Seneca-RC ground truth importance scores are all equal to the vector, [1,−1] , 
irrespective of the position of the instance in the prediction space or the decision 
boundary of the model. This is because the derivative of the data generation process 
with respect to each feature is a constant value. Therefore, the ground truth from 

5 The global explanation of Logistic Regression as a benchmark for evaluation is not mentioned directly 
in the study of Agarwal et  al. (2022) . However, it can be seen in the https:// github. com/ AI4LI FE- 
GROUP/ OpenX AI/ blob/ a3352 01e4f 9f4dd ad97f 8b1a0 f6ff9 fe750 903bf/ openx ai/ ML_ Models/ LR/ model. 
pyin the code repository released with this study
6 Since (Agarwal et al. 2022) has only provided the ground truth importance scores for Logistic Regres-
sion, we provide an example with a Logistic Regression model.

https://github.com/AI4LIFE-GROUP/OpenXAI/blob/a335201e4f9f4ddad97f8b1a0f6ff9fe750903bf/openxai/ML_Models/LR/model.py
https://github.com/AI4LIFE-GROUP/OpenXAI/blob/a335201e4f9f4ddad97f8b1a0f6ff9fe750903bf/openxai/ML_Models/LR/model.py
https://github.com/AI4LIFE-GROUP/OpenXAI/blob/a335201e4f9f4ddad97f8b1a0f6ff9fe750903bf/openxai/ML_Models/LR/model.py
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Seneca-RC does not reflect the true locality of instances in the decision space of the 
trained Logistic Regression model (Sect. 2.2.2).

The ground truth of OpenXAI (Agarwal et al. 2022) is also constant across all 
instances. This is because the Logistic Regression model weights are directly used 
as the baseline for obtaining ground truth importance scores for all instances in this 
approach. Since the model weights are the summary of the importance of features 
for all instances, all instances are then evaluated using one equal ground truth scores 
regardless of their position in the decision space (see Sect. 2.2.3 for details).

For the robustness measures, we no longer show the ground truth but the robust-
ness values of each feature for every instance. The value of the arrow on top of 
instances shows the absolute change in the predicted scores of class one (blue cir-
cles) after that feature is nullified separately. We nullify each feature using the aver-
age values of that feature in the dataset as it is generally practiced in tabular datasets 
(Liu et  al. 2021; Montavon et  al. 2018; Molnar et  al. 2022) . We can see that for 
most instances, robustness measures do not set any importance to the second feature 
on the y-axis even though it plays an important role in the linear boundary of logis-
tic regression and the data generation process. Moreover, an instance will receive 
zero robustness by default along an axis, i.e. for a feature, if its feature values are 
similar to the empirical average of each feature. This is because nullifying those fea-
tures will not affect the predicted output.

On the other hand, our proposed Model-Intrinsic Additive Scores (MIAS) allo-
cate different values for instances that are located on the decision plane of the Logis-
tic Regression model. As we show later in Sect.  4.3, the MIAS score of Logistic 

Fig. 1  Comparison of ground truth importance scores of Seneca-RC and OpenXAI along with robust-
ness values of each feature compared to our Model-intrinsic Additive Score (MIAS). The dataset is gen-
erated by the Seneca-RC algorithm and a Logistic Regression model. The ground truth importance score 
for each instance is visualized as vectors on the top of each instance
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Regression models sets importance to both features in explaining the log odds ratio 
of the model. We can also see that the instances will then have arrows toward the 
subspace with maximum log odds of their predicted class visualized by the shades 
in the background. We can see that the MIAS vectors of instances close to the deci-
sion boundary are more different since the uncertainty in the model’s predicted out-
put is larger in those parts of the plane. In the next Section, we present how we can 
calculate the MIAS scores of linear additive models such as Linear and Logistic 
Regression and Gaussian Naive Bayes.

4  Evaluation methodology

In this section, we introduce our proposed evaluation framework in detail. As shown 
in Sect. 3, all current evaluation measures have shortcomings in the way in which 
ground truth importance scores are allocated for linear additive models.

Our study proposes a new method for evaluating local model-agnostic expla-
nations of linear additive models. Our evaluation methods fall into the category 
of evaluation methods using interpretable models (Sect.  2.2.3). Unlike the work 
of Agarwal et  al. (2022), we follow a more principled method for the evaluation 
of local explanations. We extract the ground truth by extracting individual addi-
tive terms from the prediction function of any class of linear additive models, e.g., 
Logistic and Linear Regression and Naive Bayes.

Our approach can extract ground truth importance scores from models where the 
prediction function is linear additive, e.g. in Linear regression models. Moreover, 
we also extract the ground truth for models in cases where the prediction function 
is not linear additive directly but can be transformed into a linear additive function 
such as in Logistic Regression and Naive Bayes models. As shown in Sect. 3, our 
ground truth importance scores allocate the ground truth on a single instance level.

In Sect. 4.1, we discuss the main logic behind our evaluation method to extract 
our so-called Model-intrinsic Additive Score (MIAS) for linear additive models 
such as Linear and Logistic Regression and Gaussian Naive Bayes. Lastly, we argue 
for the choice of similarity metric in Sect. 4.5.

4.1  Model‑intrinsic additive scores

As we mentioned, we follow a more principled approach to extract our ground truth 
importance scores.We formulate the problem as follows. In Eq.  1, we can see that 
we have one linear additive decomposition of f(x). If the prediction function f can 
also be represented as an additive sum similar to Eq. 1 like the following:

we can measure the explanation accuracy by measuring the similarity of individual 
additive terms �jxj , importance scores of feature j in Eq. 1, to �jxj . This is possible as 

(4)f (x) =

M∑
j=1

�jxj,
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both equations are linear additive decompositions of f(x). An additive structure like 
Eq. 4 is directly visible in linear additive models such as linear regression and can 
also be extracted in Logistic Regression and Naive Bayes models. Even though these 
additive structures have long existed in the machine learning literature, they have to 
the best of our knowledge, not been used as a means to evaluate local explanations.

Definition 1 Local Explanation accuracy: Let Φ be a local explanation for instance 
x. The local explanation accuracy is defined as 

∑
j=1,...,M d(�jxj, �jxj) where �j is the 

weight for feature j in form of 4 and d is a similarity metric. Based on this, we call 
�jxj a Model-Intrinsic Additive Score (MIAS) for feature j.

We want to highlight that our proposed MIAS score includes the input 
instance’s feature value in calculating the ground truth. In other words, 
unlike global explanations, each MIAS score is specific to the single instance 
explained. The inclusion of feature values in calculating our ground truth is sim-
ilar to the proposal of Liu et al. (2019) in which the input feature values are used 
for obtaining the local gradient-based explanations for neural network models.

Algorithm  1 summarizes the logic of our evaluation framework. On a high 
level, to evaluate an explanation technique g of the linear additive model f, we 
extract the Model-intrinsic Additive Scores (MIAS) Λ . After that, we obtain a 
local model-agnostic explanation Φ for a single instance xn from the explanation 
technique g. We then compute the similarity between Λ and Φ using similarity 
metric � , i.e. rho(||Λ,Φ||).

In general, we are interested in comparing explanation accuracy across dif-
ferent datasets. Therefore, we run Algorithm 1 over the test sets of each dataset. 
The higher the average values of rxn,f ,g are over a test set, the more accurate the 
explanations of g when explaining model f are for that dataset.

The logic behind the extraction of MIAS importance scores for Linear 
Regression, Logistic Regression, and Gaussian Naive Bayes models are dis-
cussed in Sects. 4.2, 4.3 and 4.4 respectively (function t in Algorithm 1).
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4.2  Linear regression

As we said earlier, the linear regression model has a linear additive structure in the fol-
lowing form:

where wj is the weight for feature j and w0 represents the intercept and xj is the j-th 
component of x. In our study, we consider wjxj as the MIAS score for the contribu-
tion of feature j to the predicted output of f(x), i.e. Λ = wjxj.

4.3  Logistic regression

Given weights w ∈ ℝ
M+1 and an instance xn ∈ ℝ

M , a logistic regression model is 
defined as:

where x0
n
= 1 . Even though there is no direct linear additive form of this prediction 

function, we can derive an additive decomposition of a model prediction using the 
log odds ratio for xn concerning class c ∈ {0, 1}:

where ¬c is the complement of class c and �m
n
= wmxm

n
 is the Model-Intrinsic Addi-

tive Score (MIAS) for feature m. Note that in this case, we explain the log odds and 
therefore, f (x) ← log

P(yn=c | xn,w)
P(yn=¬c | xn,w) in Eq. 4.

(5)f (x) = w0 +

M∑
j=1

wjxj

(6)P(yn = c � xn,w) = 1

1 + e−
∑M

m=0
wmxm

n

(7)log
P(yn = c | xn,w)
P(yn = ¬c | xn,w) =

M∑
m=0

wmxm
n

Fig. 2  (Left): The global explanations of the Logistic Regression model trained on the Pima Indians 
dataset, which is equal for all test instances if used as a local ground truth importance score. (Right) 
MIAS scores of a test instance of the same dataset. MIAS scores differ for each test instance depending 
on their feature values
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In Fig. 2, we compare the weights of a Logistic Regression model (its global expla-
nations) to the MIAS scores obtained for a single test instance of the Pima Indians data-
set. Notice that the global explanation will be the same for all test instances, whereas 
MIAS scores are different for each instance.

4.4  Naive Bayes

Given input xn = (x1
n
, ..., xM

n
) and a mean and variance vector, �c ∈ ℝ

M and �c ∈ ℝ
M , 

we can apply the Bayes theorem:

where the likelihood P(xn | yn = c) , under the naive assumption of conditional inde-
pendence, can be computed as:

(8)P(yn = c | xn) =
P(xn | yn = c)P(yn = c)

P(xn)
,

(9)
M∏

m=1

P(xm
n
| yn = c) =

M∏
m=1

N(xm
n
|�m

c
, �m

c
).

Fig. 3  The feature importance scores of MIAS as well as LIME, SHAP, and LPI explanations for a single 
instance from the Pima Indians data set when explaining a logistic regression prediction
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Similar to the case of logistic regression, the prediction function does not naturally 
decompose into additive parts. However, the log odds ratio for an instance xn for 
class c has an intrinsic natural additive decomposition:

where const = log
P(yn=c)

P(yn=¬c)
 . Based on this, the MIAS importance scores of feature m 

is �m
n
= log

N(xm
n
|�m

c
,�m

c
)

N(xm
n
|�m

¬c
,�m

¬c
)
 . Note that in this case, instead of f(x), we explain the log odds 

ratio prediction in Eq. 4.
In Fig. 3, an example of our MIAS scores for a single instance is visualized in 

comparison to explanations of LIME, SHAP, and LPI for the Pima Indians dataset 
for the Logistic Regression model. See the appendix for a similar visualization for 
the Naive Bayes model on this dataset.

4.5  Similarity measure

We measure accuracy in terms of how similar an explanation is to the MIAS impor-
tance scores. Several studies have used measures such as Cosine or Euclidean dis-
tance (Montavon et  al. 2018; Yang and Kim 2019) to measure the similarity of 
explanations.

Similar to Ghorbani et al. (2019), we argue that the Spearman’s Rank correlation 
sometimes may be a more suitable measure for comparing explanations in tabular 
datasets, as it is not affected by the absolute values of importance scores but only 
the ranking of these values. Additionally, the interpretation of explanations might 
differ across different types of explanation techniques. The rank correlation measure 
makes it possible to compare feature importance scores between additive and non-
additive explanations techniques that cannot be directly compared. Lastly, in con-
trast to Euclidean and Cosine similarity, the metric comes with interpretable meas-
ures of direction and strength. One drawback of using a rank-based measure is that 
it might be sensitive if a dataset has many unimportant feature dimensions. In this 
case, the performance across all explanation techniques will be low as the ranking of 
unimportant features will vary randomly.

An incorrect choice of a similarity metric that does not fit the use case may lead 
to wrong conclusions. To illustrate this, we provide an example comparing two 
local explanations using Euclidean and Cosine similarity along with Spearman’s 
rank correlation. Suppose we need to measure the accuracy of two different expla-
nations �1 = [0.21, 0.1, 0.32] and �2 = [0.21, 0.3, 0.12] to the ground truth score 
� = [0.32, 0.2, 0.42].

(10)log
P(yn = c | xn)
P(yn = ¬c | xn) =

M∑
m=1

log
N(xm

n
|�m

c
, �m

c
)

N(xm
n
|�m

¬c
, �m

¬c
)
+ const.

Euclidean S(�,�1) = 0.179

SpearmanC(�,�1) = 1

Cosine S(�,�1) = 0.99

Euclidean S(�,�2) = 0.28

SpearmanC(�,�2) = −1

Cosine S(�,�2) = 0.81
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Based on Spearman’s rank correlation, the ranking of �1 correlates perfectly with � , 
while the ranking of �2 negatively correlates with � . Using this rank-based metric, 
we can thus conclude that explanation �1 is more accurate than �2 . The Euclidean,7 
and Cosine Similarity instead vote in favor of �2 as the more accurate explanation. 
We show the role of similarity metric in our experiments later in Sect. 5.2.6.

5  Empirical investigation

In this section, we will present the results of our empirical investigation. We 
describe the experimental setup in Sect. 5.1. After that, we provide in Sect. 5.2 the 
result of our empirical experiments on local explanation accuracy for all explanation 
techniques and models considered.8

5.1  Experimental setup

In this section, we describe our experimental setup for the dataset and models that 
we used for obtaining explanations in Section  5.1.1. After that, we provide some 
information about the hyperparameters for generating explanations in Sect. 5.1.2.

5.1.1  Data and model

We assess the proposed evaluation framework using the total of 40 different tabu-
lar datasets concerning both (binary and multi-class) classification and regression 
tasks. All the datasets are publicly available at the UCI, Kaggle, or Keel reposito-
ries.9 Unless otherwise stated, the numerical features are standardized and categori-
cal features are one-hot encoded. For datasets for which no separate test set has been 
provided at the source, a random hold-out set of 25% was used. The information for 
each dataset is shown in the appendix.

We trained logistic and linear Regression along with Gaussian naive Bayes mod-
els using the aforementioned datasets. To tune the hyper-parameters of the logistic 
regression models, grid-search was employed. Hyper-parameters were chosen after 
100 trials with the hyper-parameter space consisting of L1 and L2 regularization 
with the regularization parameter selected from a grid of values between 0 to 4. 
Tables 1 and 2 report the test accuracy of the models.

7 In our study, we define Euclidean similarity as 1∕(� + d) where d is the Euclidean distance and � is the 
machine epsilon of Python.
8 The code for experiments is available at: https:// github. com/ amir- rahna ma/ can_ local_ expla natio ns_ 
expla in_ lam.
9 See appendix for more information.

https://anonymous.4open.science/r/Evaluation-Local-Explanations-Whitebox-Models-BFC/
https://anonymous.4open.science/r/Evaluation-Local-Explanations-Whitebox-Models-BFC/
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5.1.2  Generating explanations

For LIME and SHAP, the official Python packages TabularLIME (Ribeiro et al. 
2016) and KernelShap (Lundberg and Lee 2017) have been used. We want 
to emphasize that the KernelShap explainer is model-agnostic, and it outputs 
approximated SHAP values. This contrasts with model-based explainers such as 
LinearSHAP where the SHAP values are analytically deducible from closed-form 
equations (see Lundberg and Lee 2017 for details). In our study, we are compar-
ing model-agnostic explanations where the explainers make no assumptions on 
the class of machine learning models they are explaining. The number of samples 
generated for LIME and SHAP is 5000. We show the logic behind choosing this 
sample size in Sect. 5.2.4. The sample size of LPI is equal to the size of the train-
ing set as suggested in Casalicchio et al. (2018). This means the sample size of 
LPI is significantly smaller than the size of LIME and SHAP on average.

As mentioned earlier in Sect.  4.1, given that the MIAS scores are extracted 
from the log odds ratios of instances for logistic regression and naive Bayes, 
we need to pass in the log odds ratio prediction function to all explanation tech-
niques. For this, all we need to do is to write the log odds prediction function and 

Table 1  Information about the 
datasets used in our study for 
classification tasks

The number of numerical, categorical, and total number of features 
and the test accuracy for Logistic Regression LOGR and Naive 
Bayes NB models are presented for all our classification datasets

Dataset Numerical Categorical Total LOGR NB

Adult 6 8 14 0.85 0.56
Attrition 16 17 33 1 1
Audit 23 3 26 0.99 0.96
Banking 5 10 15 0.91 0.83
Banknote 4 0 4 0.98 0.85
Breast cancer 30 0 30 0.97 0.92
Churn 8 2 10 0.81 0.8
Donor 42 6 48 1 1
Haberman 3 0 3 0.66 0.65
Hattrick 20 4 24 1 0.79
Heart disease 6 7 13 0.83 0.8
Hr 2 10 12 0.78 0.38
Insurance 4 6 10 0.99 0.07
Iris 4 0 4 1 1
Loan 5 8 13 1 1
Pima Indians 8 0 8 0.8 0.77
Seismic 14 4 18 0.95 0.42
Spambase 58 0 58 0.92 0.81
Thera 10 2 12 1 1
Titanic 6 2 8 0.79 0.79
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pass that to explanation techniques. This is possible as, in both LIME and SHAP 
packages, one can pass in any desired prediction function for obtaining explana-
tions. In the case of LPI, we have replicated the algorithm proposed in Casalic-
chio et  al. (2018) such that the importance scores are calculated based on the 
difference in the predicted log odds ratio scores instead of the prediction function 
following the permutation of each feature for the case of logistic regression and 
naive Bayes models (see Sect. 2.1). Lastly, for each instance, our explanations are 
obtained for the predicted class by the explained classification model. To focus on 
evaluating the important features, we compare the absolute values of importance 
scores from local explanations with our proposed MIAS scores as it is common in 
the tabular datasets (Ribeiro et al. 2016; Lundberg and Lee 2017).

5.2  Experiments

In this section, we provide the result of measuring the explanation accuracy for all of 
our studied explained models, namely linear and logistic regression and naive Bayes. 
Discussions about factors contributing to the average accuracy values are presented 
separately in Sects. 5.2.2 to 5.2.5. The study of these factors is based on the explana-
tion accuracy when using Spearman’s rank correlation. We discuss the effect of the 

Table 2  The total number of 
features and the test set mean 
squared error for the linear 
regression (LR) model for all 
our regression datasets

Dataset Features Mean 
squared 
error

Anacalt 7 0.633
Bank8Fh 8 0.01
Bank8Fm 8 0
Bank8Nh 8 0
Bank8Nm 8 0
Delta A 5 0.4
Delta E 6 0.035
Istanbul 7 0
Kin8Fm 8 0
Kin8Nh 8 0.05
Kin8Fh 8 0
Kin8Nm 8 0
Mortgage 15 0.163
Puma8Fh 8 10.53
Puma8Fm 8 1.67
Quakes 3 0.041
Treasury 15 0
Wine red 11 0.013
Wine white 11 0.053
Wizmir 9 1.23
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choice of similarity metrics on the explanation accuracy in Sect. 5.2.6. The effect of 
the empirical distribution of features on the explanation accuracy of classification 
models is discussed in Sect. 5.2.7. In Sect. 5.2.8, we measure the robustness of the 
explanations on our datasets and whether explanations with large average accuracy 
are the most robust.

5.2.1  All datasets

We first investigate explanation accuracy of local explanations for linear regression 
models. In Table 3, the average explanation accuracy of additive (LIME and SHAP) 
and non-additive (LPI) explanations of Linear Regression models are shown. The 
explanation accuracy is the similarity of each explanation to our proposed MIAS 
score based on Spearman’s rank correlation. Overall, SHAP has a larger average 
explanation across all regression datasets than LIME and LPI. LPI outperforms 
other techniques in Istanbul and Kin8Nm datasets and LIME in Wine White and 
Delta A.

Table 3  Average explanation 
accuracy based on Spearman’s 
rank correlation for LIME, 
SHAP (additive), and LPI (non-
additive) explanations when 
explaining linear regression 
model

Bold values indicate the explanation technique with the highest aver-
age explanation accuracy

Dataset LIME SHAP LPI

Anacalt 0.999 1 0.424
Bank8Fh 0.892 0.952 0.858
Bank8Fm 0.891 0.952 0.843
Bank8Nh 0.824 0.866 0.6
Bank8Nm 0.835 0.859 0.63
Delta A 0.928 0.908 0.5
Delta E 0.955 0.971 0.627
Istanbul 0.876 0.899 0.956
Kin8Fh 0.929 0.926 0.997
Kin8Fm 0.943 0.943 0.994
Kin8Nh 0.901 0.92 0.997
Kin8Nm 0.883 0.915 0.995
Mortgage 0.955 0.972 0.614
Puma8Fh 0.783 0.93 0.955
Puma8Fm 0.747 0.955 0.951
Quakes 0.825  0.845 −0.105
Treasury 0.886 0.946 0.656
Wine red 0.864 0.881 0.143
Wine white 0.872 0.867 0.261
Wizmir 0.898 0.897 0.643
Average 0.885 0.92 0.677
Standard deviation 0.059 0.041 0.306
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Since our proposed similarity measure is an average correlation, we expect the 
average accuracy values to be significant, e.g., above 0.7 and not lower than 0.5 
(Ross 2017) . The average explanation accuracy of LIME and SHAP explanations 
passes this threshold across all datasets. Due to the consistent behavior of these 
explanations on regression datasets, we can consider these explanations accu-
rate for explaining linear regression models. Surprisingly in some datasets such 
as Istanbul, Kin8Fh, and King8FM, LPI provides the largest average explanation 
accuracy compared to LIME and SHAP. However, this trend is inconsistent for 
other datasets, for example, in Wine White and Red or Quakes. We raised a ques-
tion in Sect.  1 about whether the linear additivity of local explanation can be 
an advantage in providing accurate local explanations. Our results suggest that 
the additivity of explanations is indeed advantageous when explaining the linear 
regression model. In Sect. 5.2.5, we show that one main reason behind LPI’s low 
average explanation accuracy is the large variance in its accuracy values.

Table 4  Average explanation accuracy for LIME, SHAP and LPI explanations when explaining Logistic 
Regression and naïve Bayes Models based on Spearman’s rank correlation

Bold values indicate the explanation technique with the largest average accuracy

Model �→ Logistic regression Naïve Bayes

Dataset LIME SHAP LPI LIME SHAP LPI

Adult −0.086 −0.061 0.227 −0.427 0.013 −0.548
Attrition −0.005 0.001 0.049 −0.001 0.261 0.254
Audit 0.075 −0.004 0.029 −0.099 0.061 −0.269
Banking −0.071 −0.093 0.007 0.025 0.122 0.328
Banknote 0.918 0.9 0.778 0.844 0.678 0.904
Breast Cancer 0.882 0.871 0.803 0.753 0.722 0.455
Churn 0.121 0.146 −0.124 0.174 0.251 0.012
Donor 0.128 −0.071 0.163 0.021 −0.221 −0.221
Haberman 0.695 0.461 0.708 0.786 −0.026 0.877
Hattrick −0.039 0.014 −0.046 −0.111 −0.013 −0.438
Heart Disease 0.059 0.242 0.152 −0.117  0.343 −0.396
Hr 0.095 0.149 0.386 −0.24 −0.081 −0.28
Insurance −0.257 −0.172 −0.201 −0.525 −0.23 −0.494
Iris 0.832 0.776 0.848 0.872 0.877 0.78
Loan 0.487 −0.22 0.463 0.287 0.176 0.178
Pima Indians 0.841 0.863 0.593 0.738 0.541 0.606
Seismic −0.197 −0.236 −0.402 0.127 0.14 −0.187
Spambase 0.856 0.223 0.552 −0.389 0.179 0.463
Thera −0.163 0.245 −0.199 0.256 0.481 0.481
Titanic −0.017 0.214 −0.043 −0.236 0.293 −0.196
Average 0.258 0.212 0.237 0.137 0.228 0.115
Standard Deviation 0.409 0.363 0.369 0.435 0.298 0.465
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The result of average explanation accuracy for Logistic Regression and Naive 
Bayes models are shown in Table  4. LIME provides the largest average accuracy 
when explaining Logistic Regression, whereas SHAP explanations have the largest 
average accuracy when explaining the Gaussian Naive Bayes model. The difference 
between the average explanation accuracy over all classification datasets is lower 
when explaining the Naive Bayes models than the Logistic Regression. To our sur-
prise, LPI outperforms the additive explanations of LIME and SHAP across numer-
ous datasets, e.g., Donor and Haberman when explaining Logistic Regression and 
Banknote and Spambase when explaining naive Bayes models. Unlike our results 
for the explanations of Linear Regression models, we can see that the average accu-
racy of local explanations can be significantly low across numerous datasets such 
as Adult, Attrition, Audit, Churn, Donor, Hattrick, Hear Disease, HR, Insurance, 
Seimsimc, Thera, and Titanic. For example, the largest average explanation accu-
racy for the Audit dataset is obtained by LIME, with 0.075 for Logistic Regression, 
and SHAP, with 0.061 for Naive Bayes. This means that even the best-performing 
explanations could not find the correct ranking of the most important features, even 
for 10% of instances in the test dataset. Our results suggest that our study’s explana-
tions of linear additive classification models do not exhibit acceptable accuracy to 
pass our sanity check.10

In some datasets, explanation accuracy reaches an acceptable threshold, e.g., for 
all explanations of both models in the Banknote and Iris and Pima Indians dataset, 
where all average explanation accuracy values are above 0.7. This is partly because 
this dataset has few numerical and no categorical features. In contrast, the low val-
ues of the explanation accuracy of the Donors dataset can be partially explained by 
the existence of large number of categorical features. We will discuss the effect of 
data on explanation accuracy later in Sect. 5.2.2.

When explaining the Logistic Regression models, the low average explanation 
accuracy values in HR and Titanic datasets for all explanation techniques can be 
explained by the low model predictive performance on the test set, i.e., poor model 
generalization. We discuss the effect of model generalization further in Sect. 5.2.3

However, there are cases where we cannot blame the model’s generalization as 
the main factor behind the low values of explanations accuracy. For example, Logis-
tic Regression and Naive Bayes models achieve an acceptable generalization accu-
racy on the Thera and Heart Disease datasets, respectively. Yet, the average explana-
tion accuracy in these datasets is relatively low across all explanation techniques. In 
Sect. 5.2.5, we show that low average explanation accuracy in these classification 
datasets is caused by the large standard deviation of explanation accuracy within 
each dataset. In the presence of a large standard deviation in the explanation accu-
racy, although explanations can be very accurate for a subset of instances, they are 
also inaccurate for others.

10 See the appendix for a study of the statistical significance of the average explanation accuracy for all 
explanation techniques for all linear additive models.
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5.2.2  The data effect

In some studies (Molnar et al. 2022; Guidotti 2021), the authors have provided spe-
cific synthetic datasets in which the accuracy of local model-agnostic explanations 
is worsened with an increase of the number of numerical and categorical features. In 
this section, we investigate whether there is a linear relationship between the number 
of numerical, categorical, and pairwise correlated features and the average explana-
tion accuracy at the dataset level. We first investigate this in synthetic cases and then 
in our tabular datasets. Overall, we show that the linear relationship between the 
data-related factors highly depends on the type of linear additive models and the 
explanation techniques used for obtaining explanations.

5.2.2.1 Numerical Features Let us begin with studying the effect of numerical fea-
tures on explanation accuracy in synthetic datasets. We use ScikitLearn (Kramer and 
Kramer 2016) ’s classification and synthetic regression dataset generator for the syn-
thetic datasets. We considered 20% of all features as uninformative. In the experi-
ment, we increase the number of numerical features in our synthetic datasets from 

Fig. 4  The average explanation accuracy as the number of numerical features increases in synthetic data-
sets. Pearson Correlation values, together with the p-values, are included in the legend

Fig. 5  Linear relationship between average explanation accuracy and the number of numerical features 
over all tabular datasets. Pearson Correlation values, together with the p-values, are included in the leg-
end
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1 to 45 without the presence of any categorical features. To control for the effect on 
model generalization, we have only considered models with relatively similar accu-
racy values (See Table 12 in Appendix). Figure 4 shows that increasing the number of 
numerical features minimally affects the average explanation accuracy of LIME and 
SHAP explanations of Linear Regression models, yet it decrease the average accu-
racy of LPI explanations for this model. The SHAP (LIME) explanations of Logistic 
Regression have larger (smaller) average accuracy as the number of numerical fea-
tures increases. No significant change in the average accuracy of LPI explanations 
are visible in this model. For Naive Bayes explanations, the average accuracy of all 
explanations decreases with an increase in the number of numerical features.

We investigate whether the same trends hold in our tabular dataset. In Fig.  5 , 
we can see the effect of these factors for the explanations of all linear additive mod-
els. In this figure, each point represents the average explanation accuracy of a single 
tabular dataset. The figure shows that numerical features have minimally positive 
effects on the average explanation accuracy of Linear Regression models. With an 
increased number of numerical features, the average explanation accuracy of LIME 

Fig. 6  The change in average explanation accuracy and the number of categorical features. In these data-
sets, K number of features are transformed into categorical features, and the rest of 40 − K features are 
fixed as before. Pearson Correlation values, together with the p-values, are included in the legend

Fig. 7  linear relationship between average explanation accuracy and the number of categorical features 
across all classification datasets. Pearson Correlation values, together with the p-values, are included in 
the legend
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for Logistic Regression increases, and the average accuracy of LIME and SHAP 
decreases for Naive Bayes explanations. Some trends are similar between the syn-
thetic and tabular datasets. LPI and SHAP explanations of Linear Regression mod-
els show minimal change in accuracy with an increase of numerical features. LPI 
shows the same trend for the explanations of Logistic Regression. Lastly, the aver-
age accuracy of LIME and SHAP explanations of Naive Bayes models decreases 
with an increase in the number of numerical features.

5.2.2.2 Categorical features To analyze the effect of categorical features, we start 
with a synthetic setting. We fix the total number of features in our synthetic dataset 
generator to 40 numerical features. In each step, we increasingly turn K of these 
features into categorical features and then transform these features using one-hot 
encoded categorical ones. Meanwhile, we keep the 40 − K features unchanged. The 
number of categorical features is calculated before they are one-hot encoded. In 
Fig.  6, the average explanation accuracy of all explanations of Linear Regression 
model decrease as the number of categorical features increase. The average accuracy 
accuracy of LIME and SHAP explanations of Logistic Regression shows a slight 
decrease as the number of categorical features increases. Lastly, the average accuracy 
of SHAP explanations of naive Bayes models decreases with an increase in the num-
ber of numerical features.

In Fig. 7, we perform similar analyses to study the effect of categorical features in 
our tabular classification dataset. With an increased number of categorical features, 
all explanations of Logistic Regression and the Naive Bayes model show a steady 
decrease in their average accuracy. We can see some similar trends between the syn-
thetic and tabular datasets. LIME and SHAP explanations of Logistic Regression, 
and SHAP explanations of naive Bayes models show a decrease in average accuracy 
when the number of categorical features increases.

5.2.2.3 Correlated features Lastly, we examine the effect of the number of pairwise 
correlated features on the explanation accuracy of all linear models in our tabular 
datasets (Fig. 8). We only consider two features correlated if their Pearson pairwise 
correlation value is larger than 0.75. The number of correlated features increases 

Fig. 8  The change in average explanation accuracy with the number of pairwise correlated features in 
tabular datasets. Pearson Correlation values, together with the p-values, are included in the legend
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the average explanation accuracy of LIME and SHAP for Logistic Regression and 
Naive Bayes models. Our experiments contradict the findings in the works of Molnar 
et al. (2022) and Gosiewska and Biecek (2019) in this case. In their studies, authors 
showed synthetic examples showing that correlated features in the dataset can con-
tribute to low explanation accuracy in local explanations. One possible explanation 
for this incompatibility between our results and the aforementioned studies is that 
feature correlation can play a significant role when the feature vectors are corre-
lated with the predicted output of explained models. As our explained models do not 
include interaction terms, these correlation values are negligible in our experiments.

5.2.3  Model generalization

Some studies (Molnar et al. 2022; Guidotti 2021) proposed that explanation accu-
racy increases positively with an increase in the predictive performance of models 
(the model generalization). The authors show synthetic datasets in which their pro-
posed hypothesis hold. In this section, we study the linear relationship between the 

Fig. 9  Linear relationship between average explanation accuracy and the generalization of (a) Linear 
Regression (b) Logistic Regression (c) Naive Bayes models in synthetic datasets. Pearson correlation 
values, together with the p-values, are included in the legend. Note that the visualization of linear regres-
sion shows the mean squared error instead of the test accuracy

Fig. 10  Linear relationship between average explanation accuracy and model generalization of (a) Linear 
Regression (b) Logistic regression (c) Naive Bayes models for tabular datasets. Pearson Correlation val-
ues, together with the p-values, are included in the legend
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average explanation accuracy of datasets with the model test set accuracy for linear 
additive regression and classification models.

Similar to the previous section, we first examine the effect of model generali-
zation in synthetic dataset settings. The synthetic dataset includes 40 features and 
four categorical variables, one-hot encoded into four bins. To investigate, we fit 20 
different model variations of each explained linear additive model with different 
hyperparameters. In Fig. 9 , we can see that the average accuracy of all explanations 
of Linear Regression models decreases with an increase in model generalization.11 
All explanation of Logistic Regression and naive Bayes models have larger average 
accuracy for models that have larger test accuracy.

After that, we examine whether the same relationship holds in our tabular data-
sets. In Fig. 10, we see that the average accuracy of LIME and SHAP explanations 
has minimal changes with an increase in the generalization of Linear Regression 
models, while it decreases for LPI explanations of the same model. Moreover, the 
increase in model generalization negatively (positively) affects the accuracy of all 
local explanations of Logistic Regression (Naive Bayes) models.

The results from our synthetic and tabular datasets agree that the average accu-
racy of explanations of naive Bayes models increases with larger model test accu-
racy. In this case, our results are aligned with the findings in Molnar et al. (2022); 
Guidotti (2021) . However, we see opposite trends for all the explanations of Logis-
tic Regression and LPI explanations of Linear Regression models. We can conclude 
that overall, the linear relationship between model generalization and explanation 
accuracy depends on the type of explained model and the explanation technique 
itself, similar to the effect of data as shown in Sect. 5.2.2.

5.2.4  Explanation sample size

In explanations such as LIME and SHAP, the sample size is considered a hyperpa-
rameter that controls the number of samples that are generated in the locality of each 
explained instance12. One plausible assumption is that the larger the sample size, the 
higher the explanation accuracy. This is because sampling can provide more infor-
mation about the local neighborhood of each instance to the explanation technique 
and, therefore, can increase the accuracy of the local explanation.

In this section, we study the relationship between the average explanation accu-
racy and the explanation sample size of LIME and SHAP techniques. For this exper-
iment, we have included a subset of datasets based on how large is the size of their 
features. In Fig. 11, we can see the result of our experiments. Our results show our 
earlier hypothesis is correct only in LIME explanations of Delta A, Treasury, and 
Kin8NM datasets. Surprisingly, the average explanation accuracy of SHAP explana-
tions of Linear regression models is constant across the selected regression datasets 

11 Note that the chart for linear regression includes the test error on the x-axis and not the accuracy, 
unlike the classification models.
12 As mentioned earlier in Sects. 5.1.2 and 2.1, the sample size in LPI explanations is fixed and equal to 
the total number of test instances.
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for all sample sizes. When explaining Logistic Regression and Naive Bayes mod-
els, we can see that the average accuracy increases up to the sample size of 5000. 
However, the average accuracy of LIME and SHAP explanations follows a drastic 
decrease when the sample size is increased from 5000 to 7000 in Donors and Loan 

Fig. 11  The relationship between the explanation sample size of LIME and SHAP and the average expla-
nation accuracy of LIME and SHAP across all datasets
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Fig. 12  Box-plots of explanation accuracy when the underlying model is Linear Regression (Top), 
Logistic Regression (Middle), and naive Bayes (Bottom). The dark rectangles are indicators of average 
values in each box plot
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datasets. Note that the average local explanation accuracy can be affected signifi-
cantly in the Donors and Loan datasets. This trend does not appear for LIME and 
SHAP explanations of the Breast Cancer dataset. One possible explanation can be 
that the Breast Cancer dataset only includes a few numerical features. We would like 
to reiterate that the choice of the sample size of 5000 in our study, as mentioned in 
Sect. 5.1.2 was to maximize the average explanation accuracy of these explanation 
techniques across all datasets and tasks.

According to our results, the relationship between explanation sample size and 
accuracy is more complicated than our former hypothesis. It is possible that our 
result can be explained by the findings in Laugel et al. (2018). The authors showed 
that increasing the explanation sample size can enlarge the neighborhood in the 
vicinity of an instance. Because of this, the surrogate model’s decision boundary 
converges toward the global model’s decision boundary. As a result, the local expla-
nations converge towards global explanations, and therefore the local explanation 
accuracy decreases.

5.2.5  Variance in explanation accuracy

So far, we have focused on reporting the average explanation accuracy for each data-
set. In our previous experiments, some explanations showed significantly low aver-
age explanation accuracy values. In certain cases, this can be explained by the large 
variance in their values of explanation accuracy. A large variance in explanation 
accuracy means the explanation technique can provide accurate explanations for a 
subset of instances and simultaneously provide inaccurate explanations for others. 
As mentioned in Sect. 4, since our evaluation technique can be performed at a sin-
gle instance explanation level, we can measure the variance in average explanation 
accuracy within datasets.

Table 5  The average of 
explanation accuracy across all 
data sets for different similarity 
metrics when explaining Linear 
Regression model

Bold values indicate the explanation technique with the largest aver-
age accuracy

LIME SHAP LPI

Spearman 0.904 0.92 0.507
Cosine 0.05 0.075 −0.342
Euclidean 0.464 0.481 0.47

Table 6  The average 
explanation accuracy across all 
data sets based on the different 
similarity measures

Bold values indicate the explanation technique with the largest aver-
age accuracy

Logistic regression Naive Bayes

LIME SHAP LPI LIME SHAP LPI

Spearman 0.258 0.212 0.237 0.137 0.228 0.115
Cosine 0.008 0.036 0.253 0.012 0.031 0.198
Euclidean 0.495 0.503 0.484 0.228 0.264 0.256
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In Fig. 12, we show the top-10 datasets where the standard deviation in the expla-
nation accuracy of all explanations is largest on average for each explained model. 
For example, LPI explanations show large standard deviations for Linear Regression 
models in datasets such as Treasury, Delta E, and Istanbul. Similar trends can be 
seen for the Logistic Regression explanations of Thera, Churn, and HR datasets. The 
standard deviation in explanation accuracy can be so significant for LIME explana-
tions of the Adult dataset that the explanations range from the maximum to mini-
mum accuracy in this dataset. Overall, the standard deviation in Naive Bayes expla-
nations can be larger compared to the Logistic Regression explanations. Comparing 
the result in Fig. 12 with 1 can also show that large standard deviation in explana-
tions of Naive Bayes is common among datasets in which the model has achieved a 
low generalization accuracy.

5.2.6  Choice of similarity measure

As discussed in Sect.  4.5, the wrong choice of similarity can draw misleading 
results. In this section, we evaluate to what extent the choice of similarity meas-
ure can affect the choice of the most accurate explanations across all discussed 

Table 7  The test accuracy of 
Logistic Regression (LREG) 
and Naive Bayes (NB) models 
based on different preprocessing 
techniques used for each dataset

Note that the difference between the accuracy is negligible across all 
datasets

Dataset Standard Minmax Robust

LREG NB LREG NB LREG NB

Adult 0.85 0.56 0.85 0.55 0.85 0.58
Attrition 1 1 1 1 1 1
Audit 0.99 0.96 0.97 0.96 0.99 0.96
Banking 0.91 0.83 0.91 0.82 0.91 0.83
Banknote 0.98 0.85 0.98 0.85 0.98 0.85
Breast Cancer 0.97 0.92 0.97 0.92 0.97 0.92
Churn 0.81 0.8 0.81 0.8 0.81 0.8
Donor 1 1 1 1 1 1
Haberman 0.66 0.65 0.69 0.65 0.66 0.65
Hattrick 1 0.79 0.99 0.79 1 0.79
Heart Disease 0.83 0.8 0.83 0.8 0.83 0.8
Hr 0.78 0.38 0.78 0.37 0.78 0.38
Insurance 0.99 0.07 0.99 0.07 0.99 0.08
Iris 1 1 1 1 1 1
Loan 1 1 1 0.99 1 0.99
Pima Indians 0.8 0.77 0.78 0.77 0.8 0.77
Seismic 0.95 0.42 0.95 0.41 0.94 0.44
Spambase 0.92 0.81 0.89 0.81 0.89 0.81
Thera 1 1 1 0.99 1 0.99
Titanic 0.79 0.79 0.79 0.79 0.79 0.79
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models. Table 5 shows the average explanation accuracy of all explanations of Lin-
ear Regression across all datasets. Although SHAP outperforms other explanations 
for all similarity measures, we see that all explanations provide very similar average 
accuracy when using Euclidean similarity. For example, LPI can be preferred over 
LIME in case Euclidean similarity is the choice of similarity metric.

In Table 6, we can see that the choice of the most accurate explanation technique 
can largely be affected depending on the similarity metric used for classification 
models. This is why we have emphasized that awareness of the similarity metric 
used for evaluating local explanations is essential. Even though the choice of the 
correct similarity measure is highly dependent on the application scenario, in the 
context of tabular datasets, we argue that rank-based measures such as Spearman’s 
rank correlation are the most appropriate, as proposed in Fong and Vedaldi (2017) 
and discussed earlier in Sect. 4.5.

5.2.7  Pre‑processing effect

Since MIAS importance scores largely depend on the input feature values, we inves-
tigate the effect of the pre-processing techniques on our results of the explanation 
accuracy. We have realized that the effect of pre-processing on average explanation 
accuracy is significant for the Logistic Regression and Naive Bayes explanations 
even when their model generalization shows minimal change after each preprocess-
ing technique is used on the dataset. For this experiment, we should highlight that 
we perform the pre-processing before training the explained model and use the pre-
processed data when obtaining the local explanation. Table 7 shows the change in 
the test accuracy of classification models based on each pre-processing technique 
used. Note that pre-processing has little to no effect on the test accuracy of the two 
classification models.

We compare the average explanation accuracy of all local explanation techniques 
using these pre-processing techniques and with different similarity measures across 

Table 8  The average similarity across all datasets for each preprocessing technique

Bold values indicate the explanation technique with the largest average accuracy

Similarity Logistic regression Naive Bayes

LIME SHAP LPI LIME SHAP LPI

Preprocessing Standard Spearman 0.258 0.212 0.237 0.137 0.228 0.115
Cosine 0.008 0.036 0.253 0.012 0.031 0.198
Norm 0.495 0.503 0.484 0.228 0.264 0.256

Minmax Spearman 0.165 0.239 0.067 −0.035 0.188 0.09
Cosine 0.117 0.119 0.059 0.202 0.162 0.199
Norm 0.512 0.505 0.489 0.231 0.265 0.254

Robust Spearman 0.192 0.298 0.176 0.063 0.223 0.085
Cosine 0.057 0.072 0.196 0.011 0.031 0.197
Norm 0.507 0.507 0.5 0.232 0.264 0.258
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all datasets. The first three columns in Table 8 show the average accuracy across all 
datasets when explaining the Logistic regression model. SHAP provides the larg-
est average explanation accuracy values for explanations of both models except for 
when min-max processing is used for Logistic Regression.

As mentioned earlier, in the case of tabular datasets, the most optimal choice of 
similarity metric is using Spearman’s rank correlation when comparing additive and 
non-additive explanations. However, we can see that the combination of similarity 
metric and preprocessing techniques can significantly affect the choice of the most 
accurate explanations. For example, using Euclidean similarity can lead to choosing 
LIME for Logistic Regression explanations when min-max and robust preprocessing 
are used.

5.2.8  Explanation robustness

As we mentioned earlier in Sect.  1, we have evaluated the local explanations by 
measuring their similarity to our proposed MIAS scores directly. As we said earlier 
in Sect. 2.2.1 , most studies that evaluate local explanations have used the robust-
ness measures. In this section, we provide experiments that evaluate the robustness 
of local explanations of linear additive models. By doing so, we aim to investigate 
whether average robustness measures are in agreement with the average explanation 
accuracy (Tables 3 and 4 ).

As we said earlier, the most popular measures of the robustness of local explana-
tions are based on Deletion and Preservation (Hsieh et  al. 2020; Montavon et  al. 
2018) . In these measures, we progressively nullify the top-K percent important 
(unimportant) features in the explained instance based on their importance in its 
local explanations. After that, we use the explained model as an oracle and obtain 
the change in the predicted probability score of the explained model on the new 
instance. As mentioned in Sect.  2.2.1, relatively large (small) values for Deletion 
(Preservation) measures indicate that the explanation are robust. Figure  13 shows 

Fig. 13  Robustness of local explanations of logistic regression model for deletion (left) and Preservation 
(right) for the Breast Cancer Dataset
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a visualization of the Breast Cancer dataset’s Deletion and Preservation robust-
ness measures for the Logistic Regression model averaged for all instances. In this 
case, LPI has the most robust explanation for the Logistic Regression based on both 
measures.

For calculating an overall measure of the robustness without relying on visualiza-
tions, Hsieh et al. (2020) proposed to calculate the AUC of figures similar to Fig.  13 
. The formula they proposed is as follows: AUC =

∑n

i=1
(yi + yi−1)∕2 ∗ (xi − xi−1) . 

Based on this, robust explanations have the largest (smallest) AUC values concern-
ing Deletion (Preservation) measures.

In Table 9, we can see that SHAP provides the most robust explanations on aver-
age across all datasets for Linear Regression explanations based on this AUC meas-
ure. In Tables 10 and 11 , we can see that LPI has the largest average robust expla-
nations for Logistic Regression models and the Preservation measure for the Naive 
Bayes model. On the other hand, SHAP has the largest average robust explanations 
across all datasets for the Naive Bayes models.

Table 9  Average robustness across all datasets based on the AUC measure for linear regression model

Smaller values for preservation and larger values for deletion indicate larger explanation robustness
Bold values indicate the most robust explanation technique in each dataset

Model �→ Preservation Deletion

Dataset LIME SHAP LPI LIME SHAP LPI

Anacalt 8.87 8.13 8.47 46.64 43.87 45.75
Bank8Fh 3.88 3.48 3.49 12.52 12.52 12.57
Bank8Fm 4.71 4.32 4.29 16.89 17.21 17.23
Bank8Nh 2.86 2.43 2.36 4.55 5.16 4.92
Bank8Nm 3.25 2.6 2.61 5.67 5.7 5.73
Delta A 0.02 0.02 0.02 0.02 0.02 0.03
Delta E 0.11 0.11 0.11 0.22 0.23 0.22
Istanbul 0.64 0.69 0.69 2.09 2.24 2.24
Kin8Fh 6.06 5.38 5.38 8.65 8.63 8.63
Kin8Fm 5.74 5.22 5.22 7.06 8.09 8.09
Kin8Nh 10.34 10.29 10.29 14.96 15.27 15.27
Kin8Nm 12.44 9.34 9.34 18.86 21.2 21.2
Mortage 248.31 197.31 205.49 593.78 560.04 532.67
Puma8Fh 150.94 146.1 146.1 613.8 617.85 617.85
Puma8Fm 100.22 99.58 99.22 463.35 463.33 463.7
Quakes 0.94 0.92 1.01 1.11 1.17 1.06
Treasury 372.65 298.52 316.97 688.04 796.53 746.1
Winered 19.63 18.47 31.97 76.16 77.34 56.43
Winewhite 33.52 25.51 46.85 100.87 104.93 88.83
Wizmir 523.29 508.23 508.42 2213.17 2219.55 2219.26
Average 75.38 67.33 70.42 244.41 249.04 243.39
Standard Deviation 140.62 128.12 129.77 506.96 512.38 509.51
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Not only we see a different trend in the average explanation robustness across 
all datasets, we see many differences between explanation accuracy and explanation 
robustness across all of our models (See Tables  4 and 3 ). For example, we can see 
that the average robustness values of explanations is equal for HR, Insurance, Iris, 
and Loan when explaining naive Bayes models. However, we can see that the aver-
age explanation accuracy differs for the explanations of naive Bayes models. These 
differences are also visible in the explanation robustness of Linear Regression mod-
els. LIME explanations provided the largest average accuracy in the Delta A dataset. 
In contrast, SHAP and LPI are the most robust explanations concerning Preservation 
and Deletion. Based on our result, we can conclude that the most robust explana-
tions of linear additive models based on Deletion and Preservation do not necessar-
ily have the largest average accuracy and vice versa.

Table 10  Average deletion robustness across all datasets based on the AUC measure

Larger values indicate higher robustness for this measure
Bold values indicate the most robust explanation technique in each dataset

Model �→ Logistic regression Naïve Bayes

Dataset LIME SHAP LPI LIME SHAP LPI

Adult 29.74 38.6 41.8 49.72 54.22 36.09
Attrition 67.04 66.76 67.15 67.5 67.5 67.5
Audit 34.63 33.4 48.94 106.88 123.75 123.75
Banking 9.2 9.94 11.79 27.32 28.45 20.67
Banknote 72.04 72.51 77.63 25.74 26.49 28.04
Breast Cancer 23.76 13.73 73.34 4.63 7.46 4.38
Churn 20.59 21.72 20.28 27.11 27.88 20.69
Donor 67.27 67.29 67.28 67.5 67.5 67.5
Haberman 7.6 5.71 7.54 2.97 2.29 2.97
Hattrick 63.13 61.83 68.75 27.38 39.85 19.9
Heart Disease 28.53 45.18 34.19 54.61 68.31 59.57
Hr 39.41 31.51 27.84 67.5 67.5 67.5
Insurance 1.22 1.54 0.96 0 0 0
Iris 17.17 16.57 18.63 45 45 45
Loan 44.89 44.86 44.91 45 45 45
Pima Indians 43.35 42.55 42.47 47.68 53.45 47.21
Seismic 8.9 9.17 8.42 86.08 90.41 65.1
Spambase 50.55 30.82 55.92 48.38 145.13 146.25
Thera 44.88 44.84 44.9 45 45 45
Titanic 56.33 57.28 50.44 52.03 64.83 47.05
Average 36.51 35.79 40.66 44.9 53.5 47.96
Standard deviation 21.36 21.57 23.16 26.41 35.81 36.09
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6  Discussion

We have identified some limitations of our study. Firstly, our conclusions are limited 
to explaining three linear additive models: Linear and Logistic Regression and Naive 
Bayes. Therefore, we cannot generalize these results to the accuracy of local expla-
nations of more complex black box models and other additive models. Secondly, our 
proposed functionally-grounded evaluation of local explanations cannot replace the 
human-grounded evaluation procedures. As we said earlier, the functionally-grounded 
evaluation methods, such as the one presented here, can only be seen as means to make 
new candidate techniques more efficient; they allow for rejecting some candidate tech-
niques early on. Suppose explanation techniques pass our sanity checks, such as LIME 
and SHAP explanation of Linear Regression in our regression datasets. In that case, 
they will likely still need to be qualitatively evaluated in a user-centered context later.

Since our study was focused on evaluating local explanations of linear additive 
models, the question that might occur to the reader is whether the inaccuracy of the 
explanations for linear additive models can tell us anything about the accuracy of local 

Table 11  Average robustness based on the preservation measure across all datasets

Smaller values indicate higher robustness with respect to this measure
Bold values indicate the most robust explanation technique in each dataset

Model �→ Logistic regression Naïve Bayes

Dataset LIME SHAP LPI LIME SHAP LPI

Adult 27.79 17.56 24 30.91 22.12 27.22
Attrition 0.25 0.73 0.31 0 0 0
Audit 19.69 38.13 19.23 123.75 123.75 123.75
Banking 4.39 6.09 4.72 6.82 3.84 10.29
Banknote 17.09 15.45 16.17 16.63 15.8 18.12
Breast cancer 11.2 26.94 5.04 0 0.05 1.69
Churn 11.6 12.96 13.16 14.5 13.43 21.61
Donor 0.05 0.06 0.03 0 0 0
Haberman 9.07 11.03 9.11 4.03 4.69 4.03
Hattrick 0.36 11.52 1.16 4.83 0.77 15.05
Heart disease 25.63 16.76 21.91 41.7 41.06 40.88
Hr 19.11 30.87 28.6 0.01 0.01 0.01
Insurance 1.18 0.66 1.63 0 0 0
Iris 31.72 31.95 31.04 11.26 11.26 11.26
Loan 0.17 0.23 0.17 0 0 0
Pima Indians 12.83 12.47 13.68 23.76 19.29 24.58
Seismic 3.63 2.44 4.76 6.59 4.79 26.93
Spambase 28.07 48.64 20.05 146.25 146.25 14.63
Thera 0.17 0.24 0.18 0 0 0
Titanic 19.51 23.87 25.73 31.68 21.15 40.51
Average 12.18 15.43 12.03 23.14 21.41 19.03
Standard deviation 10.55 13.74 10.38 39.37 39.46 27.33
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explanations of more complex models. Even though our conclusion about the perfor-
mance on simpler models does not necessarily transfer to good performance on com-
plex tasks, we argue that if the explanation technique is not accurate for simpler mod-
els, then it is very unlikely that it will have high accuracy on complex models.

7  Concluding remarks

Our study proposed a sanity check that examined whether local additive model-
agnostic explanations can provide accurate explanations for linear additive models. 
The evaluation was based on extracting Model-Intrinsic Additive Scores (MIAS) 
from linear additive models such as linear and logistic regression and naive Bayes 
models. We then used the similarity of our proposed scores with local explana-
tions using Spearman’s rank correlation to measure explanation accuracy.

It can be intuitive to assume that local additive explanations could provide 
high-accuracy explanations and pass our sanity check. However, we showed 
that this is not always the case. While LIME and SHAP explanations of Linear 
Regression models do pass our sanity check, they failed to provide accurate local 
explanations across numerous datasets for Logistic Regression and Naive Bayes 
models. We can conclude that these local explanations cannot be trusted in high 
stake decision-making cases in their current state for classification tasks.

One possible explanation for the fact that these explanations fail our sanity 
check for Logistic Regression and Naive Bayes models is that both LIME and 
SHAP explain the predicted probability scores of a designated class using linear 
regression surrogates. For this, we suggest investigating the use of classification 
surrogates in these explanations when explaining classification models. Another 
explanation can be that Logistic Regression and Naive Bayes models have deci-
sion boundaries that are more complex than Linear Regression models. For this, 
we suggest future studies to investigate the relationship between the model com-
plexity and the accuracy of local explanations. We hope that future studies can 
use our evaluation method and sanity check in this endeavour.

In our study, we also examined whether additive explanations such as LIME 
and SHAP are more accurate than non-additive LPI explanations when explaining 
linear additive models. Our empirical investigation showed that while this is true 
for Linear Regression models, LPI explanations have larger average accuracy in 
a subset of our studied datasets for Logistic Regression and Naive Bayes models. 
Therefore, we can conclude that in some cases, the additivity of explanations is 
not necessarily an advantage for explaining linear additive models.

We provided an extensive analysis of the factors that may affect explanation 
accuracy. Our results show that the accuracy of the explanation techniques can 
depend on the number of numerical and categorical features, pairwise feature 
correlation, model generalization, similarity metric, pre-processing techniques, 
and explanation sample size. We showed that the effect of these factors on expla-
nation accuracy is highly dependent on the type of model we explain and the 
explanation technique. Using this knowledge, we can set control mechanisms for 
the factors affecting each explanation when evaluating local explanations.
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In their current stage, LIME and SHAP have no criteria for when they should 
not provide explanations. Based on the significant standard deviation in the expla-
nation accuracy of linear additive models, we argue that these explanations need 
internal mechanisms to stop explaining when facing uncertainty for achieving 
high accuracy on a dataset level.

Our evaluation method requires that the prediction function of linear additive 
classification models could be transformed into a linear additive model. In principle, 
just like our proposed log odds trick (In Sects. 4.3 and 4.4 ), by transforming the 
prediction function of any machine learning into linear additive models, our evalua-
tion method can be used to calculate the accuracy of local explanations directly. One 
important direction for future research is to extend the proposed evaluation frame-
work to other model classes, e.g., tree models, and explanation types, e.g., rules, as 
produced by Anchors (Ribeiro et al. 2018). One major challenge here is to derive the 
model-intrinsic feature importance scores in cases where intrinsic additive structures 
are not as easily derivable as they are for logistic regression and naive Bayes.

Another important direction for future studies is to evaluate the accuracy of local 
explanations of linear additive models for other modalities of data, such as text and 
images. In those cases, the challenge is finding datasets where linear additive models 
provide acceptable accuracy for obtaining their local explanations. Since our evalua-
tion method of explanations is designed for local additive explanations, we do not rec-
ommend its use for evaluating local explanations that are not instrinsically additive.

Appendix

Logistic regression example

To make our idea more tangible, we show an example of extracting MIAS scores for 
Logistic Regression. We train a logistic regression model with L2 regularization on 
a 2-dimensional discrete logical AND function that returns one if both inputs are one 
and zero otherwise. The parameters of the logistic regression model are w1 = 0.422 
and w2 = 0.422 with the intercept value w0 = 0.69 . These parameters show that the 
model correctly learned that both features are equally important on a global level. 
For x0 with x1

0
= 1 and x2

0
= 0 the model predicts P(y0 = 1 | x0) = 0.75 . Based on 

this, we can derive the log odds ratio for xn as:

We can see that, whereas the first and second feature are equally important globally, 
the only feature that contributes to the log odds prediction is the first feature. The 
resulting MIAS scores are �1

0
= 0.422 and �2

0
= 0 , different from the global explana-

tion used by studies such as Agarwal et al. (2022). A similar example of the naive 
Bayes model can be found in the Appendix.

log
(
0.75

0.25

)
= 0.69 + 0.422 × 1 + 0.422 × 0
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Naïve Bayes example

In this section, we show an example of how LOR scores are extracted for a Naive 
Bayes model. Let us train a Gaussian Nav̈e Bayes model on the following data and 
label matrix:

The parameters of the Gaussian distribution for feature 1 and 2 for class 0 are 
N(−2.0, 0.66) and N(−1.33, 0.22) . Similarly, parameters of the Gaussian distri-
bution for features 1 and 2 for class 1 are: N(2.0, 0.66),N(1.33, 0.22) . For xn with 
x1
n
= −2 and x2

n
= −1 , the model predicts the class to be 1 with probability 1. Let 

c = 0 , therefore,

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 − 1

−2 − 1

−3 − 2

1 1

2 1

3 2

⎞
⎟⎟⎟⎟⎟⎟⎠

, Y =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

1

1

⎞⎟⎟⎟⎟⎟⎟⎠

Fig. 14  The explanations of LIME, SHAP and LPI explanations for a single instance from the Pima Indi-
ans data set along with MIAS scores when explaining a Naive Bayes prediction
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based on this,

where const = log(1) . While the first feature has an average of −2 for class 0 in the 
global Gaussian distribution parameters, the contribution of this feature to the LOR 
of Nav̈e Bayes model for xn is largely positive, i.e. 11.99. From these two exam-
ples, we can see that beside providing true local importance scores, our proposed 
method can help to quantify the differences between the global and local importance 
scores in Naive Bayes. Figure 14 shows another example where the extracted LOR 
scores are compared against different explanations for a test instance in Pima Indi-
ans dataset.

The data effect

We studied the effect of numerical and categorical features in Sect. 5.2.2. The test 
accuracy of the models trained for those trials are reported in Table 12.

N(x0
n
||�0

c
, �0

c
) = 0.488

N(x1
n
||�1

c
, �1

c
) = 3.002e−6

N(x0
n
||�0

¬c
, �0

¬c
) = 0.65

N(x1
n
||�1

¬c
, �1

¬c
) = 4.04e−6

log
(

1

3.7e−11

)
=log

0.488

3.002e−6

+ log
0.65

4.04e−6

23.99 =11.99 + 11.99

Table 13  The F-statistic and 
p-values from the comparison 
of explanations based on their 
explanation accuracy using 
different similarity measures

Models

F-Stastic p-Value

Linear regression 6.87, 0.032
Logistic regression 0.363 0.83
Naive Bayes 0.363 0.833

Fig. 15  Post-hoc Nemenyi test for the explanation accuracy of Linear Regression models. The line con-
nects the samples with no significant differences
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Statistical significance

In this section, we investigate whether the performance of explanation techniques 
is significantly different from one another based on statistical testing. To investigate 
this question, we compare the average accuracy of explanation techniques across 
both classification and regression datasets using the Friedman test as proposed in 
Demšar (2006). The null hypothesis of the Friedman test is that there are no signifi-
cant differences between the samples of the average explanation accuracy values. In 
Table 13, we can see the result of the F-Statistic and the corresponding p-values. 
Based on the results, we can only reject the null hypothesis in the case of the expla-
nations of Linear Regression models. For this case, and in order to investigate the 
pairwise differences, we continue with the post-hoc Nemenyi test. Figure 15 shows 
significant pairwise differences between the explanation accuracy of SHAP and LPI.

Datasets

Descriptions and access links to all datasets used in this study are available in 
Tables 14 and 15.

Table 14  Classification datasets Dataset Source

Adult UCI
Attrition Kaggle
Audit Kaggle
Banking Kaggle
Banknote UCI
Breast cancer UCI
Churn Kaggle
Donors Kaggle
Pima Indians Kaggle
Haberman UCI
Hattrick Kaggle
Heart disease UCI
HR Kaggle
Insurance Kaggle
Iris UCI
Loan Kaggle
Seismic UCI
Spambase UCI
Thera Kaggle
Titanic Kaggle
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