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Abstract
Multivariate time series classification has become popular due to its prevalence in 
many real-world applications. However, most state-of-the-art focuses on improving 
classification performance, with the best-performing models typically opaque. Inter-
pretable multivariate time series classifiers have been recently introduced, but none 
can maintain sufficient levels of efficiency and effectiveness together with interpret-
ability. We introduce Z-Time, a novel algorithm for effective and efficient interpret-
able multivariate time series classification. Z-Time employs temporal abstraction 
and temporal relations of event intervals to create interpretable features across mul-
tiple time series dimensions. In our experimental evaluation on the UEA multivari-
ate time series datasets, Z-Time achieves comparable effectiveness to state-of-the-
art non-interpretable multivariate classifiers while being faster than all interpretable 
multivariate classifiers. We also demonstrate that Z-Time is more robust to missing 
values and inter-dimensional orders, compared to its interpretable competitors.
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1  Introduction

The problem of time series classification has been drawing tremendous attention 
as time series can be found in several application areas, such as healthcare (Kau-
shik et al. 2020), predictive maintenance (Kiangala and Wang 2020), and human 
activity recognition (Xi et al. 2018). Time series datasets are typically generated 
by real-time sensors resulting in considerable amounts of collected instances of 
one (univariate time series) or oftentimes multiple (multivariate time series) 
dimensions per instance.

The complexity of multivariate time series classification can easily become 
prohibitive since interactions or relations between different dimensions may be 
detrimental to the classification outcome. As a result, multivariate time series 
classifiers are becoming more complex in terms of their underlying model struc-
tures or feature spaces (Ruiz et al. 2021). However, due to the inherent complex-
ity of the problem and the existing opaque solutions, interpretability becomes 
both a challenge and a requirement.

There have been a few recent approaches towards interpretable time series 
classification. The first line of research uses symbolic discretization (Lin et  al. 
2007) to create the feature space together with a linear classifier. For univariate 
time series, multiple representation sequential learner (MR-SEQL) (Le  Nguyen 
et al. 2019) combines a symbolic sequential learner with two discretization tech-
niques, i.e., symbolic aggregate approximation (SAX) (Lin et al. 2007) and sym-
bolic Fourier approximation (SFA) (Schäfer 2015) to create the feature space 
representation. Interpretability is then obtained from the class discriminatory 
subsequences. In a similar manner, pattern-based embedding for time series clas-
sification (PETSC) (Feremans et al. 2022) and its multiple representation version, 
MR-PETSC, employ standard frequent pattern mining with a relative duration 
constraint instead of a sequential learner to catch non-contiguous patterns as well 
as subsequences. While MR-PETSC supports multivariate time series classifica-
tion, interpretability is studied only for univariate problems, so it is unclear how 
the pattern-based features can be used to interpret multivariate time series.

Furthermore, MR-PETSC is hampered by three limitations. Firstly, it does not 
exploit any inter-dimensional relations, which in many cases limits their classifi-
cation performance. Secondly, it applies multiple sliding windows over the time 
series resulting in a quadratic (in time series length) number of discretization 
functions for each time point in the worst case. Finally, the obtained sequential 
features may be lengthy, containing repetitive event labels (e.g., aaaabcdcaada), 
hence impairing interpretability.

On the other hand, explainable-by-design ensemble (XEM) (Fauvel et al. 2022) 
provides explanations by considering multiple dimensions concurrently. Instead 
of symbolic discretization, it applies a sliding window across the time series 
dimensions concurrently and uses the values in the window together with their 
timestamps to create the feature space. For each instance, XEM provides a pre-
diction probability for each stride of the sliding window and then uses the highest 
probability to determine the class label and obtain a discriminatory region. The 
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final classifier is based on extreme gradient boosting (Chen and Guestrin 2016) 
in combination with bagging. Due to this combination, XEM is considerably 
slow and memory-consuming, while the resulting model is opaque. Moreover, the 
explanation provided by XEM is a single time region across all dimensions hav-
ing the highest prediction probability, which may be insufficient when multiple 
regions are responsible for classification.

In this paper, we claim that the quality of a multivariate time series classifier 
should be assessed in terms of efficiency, effectiveness, and interpretability. How-
ever, no single multivariate time series classifier manages to achieve competitive 
trade-offs between all three requirements. We, thus, propose Z-Time, an interpret-
able multivariate time series classifier that is also effective and efficient. Z-Time 
transforms the time series into event sequences, using various discretization tech-
niques, and finally abstract them to event intervals, which maintain the start and 
end times of the continuous events with the same label. For example, time series 
⟨1, 2, 3, 4, 5⟩ can be transformed into a sequence of events ⟨a, a, a, b, b⟩ and further 
into two event intervals (a,  1,  3) and (b,  4,  5). Finally, Z-Time exploits tempo-
ral relations of the generated event intervals and uses their frequencies as features 
for classification. Interpretability is induced by the event intervals and their inter-
dimensional temporal relations.

Our main contributions and novelty of Z-Time include:

•	 Interpretability Z-Time employs temporal abstraction and builds temporal rela-
tions of event intervals to create interpretable features across multiple time series 
dimensions. Intepretability is demonstrated on two UEA multivariate time series 
(Bagnall et al. 2018) and three synthetic datasets.

•	 Effectiveness Z-Time achieves competitive classification performance com-
pared to the state-of-the-art algorithms, using only an interpretable linear classi-
fier on the UEA multivariate time series datasets.

•	 Efficiency Z-Time is faster than the two interpretable competitors, specially 
achieving speedups of over an order of magnitude against XEM on the UEA 
multivariate time series datasets.

•	 Robustness Z-Time’s structure naturally handles missing data without applying 
interpolation, which is also evident by our experiments where Z-Time is more 
robust to missing data than its two competitors.

•	 Repeatability Our code is available online as well as our synthetic dataset genera-
tor together with all the used datasets and experimental results.1

The rest of this paper is organized as follows: Sect.  2 presents the related work 
on multivariate time series classification; Sect. 3 covers the preliminaries; Sect. 4 
describes our method Z-Time; Sect. 5 presents our experimental setup and results; 
and Sect. 6 presents our conclusions and directions for future work.

1  https://​github.​com/​zedsh​ape/​ztime.

https://github.com/zedshape/ztime
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2 � Related work

Many attempts exist in the literature with the objective of optimizing classification per-
formance for multivariate time series classification. The simplest baselines are distance-
based methods, such as dynamic time warping (DTW) and its variants (Shokoohi-Yekta 
et al. 2017). Heterogeneous ensemble methods, such as hierarchical vote collective of 
transformation-based ensembles (HIVE-COTE) (Lines et  al. 2016) and its improved 
version (Middlehurst et al. 2021) combine non-identical classifiers and achieve the best 
performance on the datasets in the UEA/UCR repository. However, they suffer from 
slow runtime and are not interpretable due to their complex ensemble structures.

Homogeneous ensembles use common feature types, such as discriminatory subse-
quences (Karlsson et al. 2016), or summary statistics over time intervals (Cabello et al. 
2020; Middlehurst et al. 2020). Bag-of-SFA-symbols (BOSS) (Schäfer 2015) creates 
symbolic sequences using SFA, so the resulting sequences lose the original tempo-
ral order; thus, they are not interpretable. There have been many BOSS variants for 
univariate time series (Schäfer and Leser 2017a; Large et al. 2019; Middlehurst et al. 
2019) and one for multivariate time series (Schäfer and Leser 2017b), extended from 
Schäfer and Leser (2017a). They also focus on classification performance by creating 
an ensemble of BOSS classifiers with a severe impact on interpretability.

While ensemble methods dominate the area, another line of research uses convo-
lutional neural network architectures, such as residual networks (Wang et  al. 2017) 
and InceptionTime (Ismail Fawaz et al. 2020) for univariate time series. For multivari-
ate time series, Karim et al. (2019) uses both LSTM and CNN layers together. These 
methods also succeed in achieving competitive classification performance, but suffer 
from poor runtime and a complete lack of interpretability. Random convolutional ker-
nel transform (ROCKET) (Dempster et al. 2020) and its variant (Dempster et al. 2021) 
generate features from the random convolutional kernels with a single linear classifier, 
outperforming other ensemble methods in terms of runtime by an order of magnitude, 
while not being significantly less accurate. However, their convolution-based feature 
space is inherently not interpretable.

On a final note, as mentioned earlier, Z-Time employs event intervals to gener-
ate temporal features for multivariate time series classification. Event intervals have 
been proven promising for representing other complex sequences to facilitate different 
learning tasks, such as classification of electronic health records (Sheetrit et al. 2019; 
Rebane et al. 2021) and disproportionality analysis of vehicle failure histograms (Lee 
et  al. 2021), based on features in the form of frequent temporal patterns (Lee et  al. 
2020; Ho et al. 2022).

3 � Preliminaries

Let t = ⟨t1,… , tm⟩ be a time series variable of length |t| = m , i.e., spanning over 
m time points. One or more time series variables form a time series instance 
T = {t1,… , td} of |T| = d time series variables, which we refer to as the dimen-
sions of the time series instance. If d = 1 , T is a univariate time series instance, 
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while if d > 1 , T is a multivariate time series instance. A time series collection 
T = {T1,… ,Tn} is a set of |T| = n time series instances, with each Tk ∈ T  hav-
ing its own number of dimensions. The number of dimensions of T  is defined as 
max({|Tk| ∶ Tk ∈ T}) , while the length of T  is the maximum length of all vari-
ables in T  , i.e., max({|tk,j| ∶ tk,j ∈ Tk,Tk ∈ T}) . Furthermore, each time series 
instance Tk ∈ T  is assigned with a class label yk ∈ y , where y is a list of class 
labels for each instance such that |T| = |y| . We also define a set of unique class 
labels Y , such that yk ∈ y ⇒ yk ∈ Y.
Example 1  Consider two time series instances, a univariate instance T1 = {⟨1, 2, 3, 3, 4⟩} 
of length five, and a multivariate instance T2 = {⟨1, 2, 3⟩, ⟨1, 2, 3, 4⟩, ⟨1, 2, 3⟩, ⟨1, 2⟩} 
with four dimensions of variable length. These two instances form a time series collec-
tion T = {T1,T2} of length five with four dimensions.

Temporal abstraction is a process of representing time series in a more abstract 
form, often using a symbolic representation, in the time (i.e., summarization) 
and value (i.e., discretization) dimensions. To avoid ambiguity, in this paper, 
we define temporal abstraction as the whole process of creating event interval 
sequences from time series instances, following Sheetrit et al. (2019).

To perform temporal abstraction, given a set Σ = {�1,… , ��} of � event labels, 
a discretization function maps a time series variable t = ⟨t1,… , tm⟩ to an event 
sequence e = ⟨e1,… , em⟩ , with |t| = |e| , such that each ti ∈ t is mapped to an 
event label �a ∈ Σ , creating an event ei = �a . The mapping is conducted using a 
discretization function g(⋅) , such that g(t, �) = e . Given the desired number of 
event labels � , the discretization function defines Σ alongside a discretization 
boundary [t�a

min
, t

�a
max) for each event label �a ∈ Σ . Each ti ∈ t is then mapped to �a 

such that ti ∈ [t
�a
min

, t
�a
max).

In this paper, we employ three different discretization functions that use t to 
define the discretization boundaries by dividing the values of t into � bins:

•	 Equal width discretization (EWD): Assuming t follows a uniform distribution, 
discretization boundaries are defined so that all event labels have value ranges 
of equal length, i.e., t�amax − t

�a
min

= t
�b
max − t

�b
min

 (Yang and Webb 2002). This func-
tion is denoted as gEWD(⋅).

•	 Equal frequency discretization (EFD): Discretization boundaries are 
defined so that each event label occurs with the same frequency in e , i.e., 
|{ei ∈ e ∶ ei = �a}| = |{ei ∈ e ∶ ei = �b}| (Yang and Webb 2002). This func-
tion is denoted as gEFD(⋅).

•	 Symbolic aggregate approximation (SAX): SAX receives a window size w and 
an event label size � to perform both discretization and summarization. First, 
it applies piecewise aggregate approximation (PAA) (Keogh et  al. 2001) to 
summarize every w time points with their average value. Then discretization 
boundaries are defined assuming t follows a normal distribution (Lin et  al. 
2007), using the points that produce � equi-sized areas under the normal dis-
tribution curve. In this paper, to align SAX with other discritization functions, 
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we denote gSAX(⋅) as SAX with w = 1 (i.e., without PAA) and use PAA sepa-
rately with any discretization function.

We apply PAA to reduce complexity and eliminate noise that can be present in 
the time series. However, PAA may potentially result in eliminating class dis-
criminative trends or peaks. Thus, Z-Time uses both PAA and non-PAA repre-
sentations, with all three discretization functions, to provide different views of 
the time series variables, with and without summarization, on the event inter-
val space. This approach enables us to generate features based on the relations 
between these different representations.
Example 2  Given t = ⟨1, 3, 4, 4, 5, 9⟩ and � = 3 , we have gEWD(t, �) = ⟨A,A,B,
B,B,C⟩, gEFD(t, �) = ⟨D,D,E,E,F,F⟩ , and gSAX(t, �) = ⟨G,G,H,H,H, I⟩ . PAA of 
t with w = 2 is ⟨ 1+3

2
,
4+4

2
,
5+9

2
⟩ = ⟨2, 4, 7⟩ . To ensure compatibility between PAA and 

non-PAA representations in the time dimension, we maintain the original time gran-
ularity in the PAA representation by repeating each PAA value w times, resulting in 
⟨2, 2, 4, 4, 7, 7⟩.

Although PAA summarizes the time dimension, redundant events can still 
occur after discretization. To complete the temporal abstraction process, events 
with the same label that occur continuously over time are merged and form an 
event interval, and a set of event intervals defines an event interval sequence. 
Next, we provide more formal definitions for these two concepts.
Definition 1  (event interval) An event interval is a triplet s = (�s, �s

start
, �s

end
) , where 

�s ∈ Σ and �s
start

 , �s
end

 correspond to the start and end times at which an event with 
event label �s continuously occurs. It holds �s

start
≤ �s

end
 , where an instantaneous 

event interval can also be defined when �s
start

= �s
end

.
There can be many event intervals with the same event label, since events 

with one label can occur at any time point. For example, if e = ⟨A,B,A,A,C⟩ , we 
define two event intervals for event label a: (A, 1, 1) and (A, 3, 4).
Definition 2  (event interval sequence) An event interval sequence, 
s = ⟨s1,… , sM⟩  is a sequence of M event intervals. We keep the temporal order of 
event intervals in s by their start times. In the case of ties, the end times are sorted in 
ascending order. If ties still exist, we sort these event intervals in event labels’ lexi-
cographic order.

According to Allen (1983), there are seven temporal relation types between 
two event intervals (Fig.  1): I = {follows, meets, matches, overlaps, contains, 
left-contains, right-contains} . Given two event intervals si and sj , we define 
their temporal relation R(si, sj) as a triplet (r, �si , �sj ) , with �si , �sj being their event 
labels and r ∈ I  denoting their temporal relation type. A temporal relation is 
only defined from the earlier interval to the later interval to avoid redundant 
information, following the order in Definition 2.

While temporal relations are defined by event interval pairs based on their 
relative temporal positions, we may be interested in how often a particular rela-
tion type occurs between two event labels throughout a given dataset.
Definition 3  (occurrence set) Given a pair of event labels ( �a, �b ), a temporal 
relation type r ∈ I  , and an event interval sequence s , the occurrence set Ω(⋅) of 
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((r, �a, �b), s) is the set of all possible event interval pairs (si, sj) with event labels 
(�a, �b) , respectively, forming temporal relation R(si, sj) = (r, �a, �b) , i.e.:

Definition 4  (horizontal support) Given an event interval sequence s , an event 
label pair ( �a, �b ), and a temporal relation type r ∈ I  , horizontal support H(⋅) of 
((r, �a, �b), s) is defined as the number of si ∈ s that yield a temporal relation (r, �a, �b) 
with any event interval sj ∈ s respectively, or simply

Given a single event interval si , with �si = �a , there can be multiple occur-
rences of the same temporal relation (r, �si , �b) with more than one event inter-
vals sj ∈ s having �sj = �b . Horizontal support only considers them once to pre-
vent redundant counts of similar information.

Based on the above, our problem can be formulated as follows:

Problem 1  (time series classification) Given a time series collection T  , its corre-
sponding labels y , a set of unique class labels Y , we would like to train a classifica-
tion function f ∶ T → Y , with f (Tk) = ŷk ∈ Y , such that the expected loss on (T  , 
y) , denoted as Ek≤|T|l(yk, f (Tk)) , is minimized. We use a 0/1 loss function l(⋅) , i.e., 
(y ≠ y� ⇒ l(y, y�) = 1) ∧ (y = y� ⇒ l(y, y�) = 0).

Our goal in this paper is to construct a multivariate time series classifier that 
solves Problem  1 using temporal abstraction and temporal relations between 
event intervals.

Ω((r, �a, �b), s) = {(si, sj) ∶ si ∈ s, sj ∈ s,R(si, sj) = (r, �a, �b)}.

H((r, �a, �b), s) = |{si ∶ (si, sj) ∈ Ω((r, �a, �b), s)}|.

Fig. 1   Seven temporal relation types two event intervals can have, as defined in Allen’s temporal logic 
(Allen 1983)

Fig. 2   An example of the three steps of Z-Time, where those steps are marked as blue boxes
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4 � Z‑Time

We present Z-Time, an efficient and effective three-step algorithm for interpret-
able multivariate time series classification. Given a time series collection T  , the 
feature space is created by converting T  into a set of temporal relations across 
multiple dimensions, keeping their horizontal support. The first step converts 
each time series instance in T  to an event interval sequence by creating multiple 
event sequence representations for each variable and merging them into a single 
event interval sequence. The second step defines the embedding matrix of T  that 
represents each time series instance by a set of horizontal support values of tem-
poral relations. The third and last step trains a linear model which provides inter-
pretability by classifying multivariate time series instances based on the presence 
of temporal relations. These steps are outlined in Fig. 2 and Algorithm 1 and are 
described in more detail below.

4.1 � Creating event interval sequences

The first step of Z-Time receives a time series collection T  , a PAA window size 
w, and two event label sizes �1 and �2 and creates event interval sequences. This is 
achieved by iterating over T  and converting each time series instance Tk ∈ T  into 
an event interval sequence sk , and finally returning a collection of event inter-
val sequences S = {s1,… , sn} . More concretely, the following two substeps are 
applied to each Tk : (1) generating a set of different event sequence representa-
tions for each variable Ek = {Ek,1,… ,Ek,|Tk|} , (2) merging all event sequences in 
Ek to an event interval sequence sk , hence creating the collection of event interval 
sequences S.
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4.1.1 � Creating event sequences

This substep receives a time series instance Tk ∈ T  , a PAA window size w, and 
two event label sizes �1, �2 as input. It then iterates through each variable tk,j ∈ Tk 
and converts it into a set of event sequences Ek,j , where each event sequence rep-
resents a different view of tk,j . This substep finishes when all time series variables 
in Tk are converted, resulting in Ek . This is done by applying three discretization 
functions (i.e., gEWD , gEFD , and gSAX defined in Sect. 3) to four different represen-
tations of tk,j . More concretely, apart from the original representation tk,j , we also 
consider the first- and second-order finite differences ( tD1

k,j
 and tD2

k,j
 ) that capture 

trend information in time series (Górecki and Łuczak 2013), as well as the PAA 
representation of tk,j , denoted as tPAA

k,j
 , over the window size w.

The application of various discretization functions is very helpful for the clas-
sification process as it provides concurrent views of the time series instances used 
in the next step when temporal relations are defined. For the time series variable 
tk,j and its PAA form tPAA

k,j
 , all three discretization functions are applied. However, 

we do not apply SAX to the finite difference forms ( tD1
k,j

 and tD2
k,j

 ), as the values do 
not have enough diversity to match the normal distribution assumption of SAX. 
We define two event label sizes, one for the original time series variable and its 
PAA form ( �1 ) and one for the two finite difference forms ( �2 ), as the finite dif-
ference representations may have different value ranges. Hence, for each tk,j ∈ Tk , 
we define Ek,j , a set of ten event sequence representations where each tk,j and its 
corresponding PAA form tPAA

k,j
 generate three event sequences, while the two finite 

differences tD1
k,j

 and tD2
k,j

 produce two event sequences each, resulting in a total of 
six and four event sequence representations, as follows:

where G = {gEWD, gEFD, gSAX} and t∅
k,j

 refers to the original time series 
representation.

Example 3  In Fig. 3, a time series instance Tk of length six with three dimensions is 
transformed to event sequences with {w ∶ 2, �1 ∶ 3, �2 ∶ 3} . The result of the dis-
cretization process is depicted for each discretization function. While there are three 
time series variables, we only show the first one, i.e., tk,1 , but the same process is 
applied to all variables. For illustration purposes, for the event labels used in the 
figure we use the convention that increasing alphabetical order also corresponds to 
increasing value order. For example, letter H corresponds to a lower value than letter 
I. We observe that each event sequence represents a different view of variable tk,1 . 
For the first four time points, ePAA,EWD

k,1
 and ePAA,EFD

k,1
 convey the same increasing value 

pattern (J to K versus M to N), while ePAA,SAX
k,1

 indicates a steady value pattern as it 
contains four repetitions of P.

Finally, Tk ∈ T  is converted to a list of event sequence sets by applying the 
same process for all tk,j ∈ Tk , creating Ek = ∪

|Tk|
j=1

Ek,j , which is the output of this 

Ek,j = {
⋃

�∈{�,PAA}

⋃
g∈G

g(t
�

k,j
, �1)} ∪ {

⋃
�∈{D1,D2}

⋃
g∈G−{gSAX}

g(t
�

k,j
, �2)},
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substep. An example is shown in Fig.  3, where the three event sequence sets 
( Ek,1,Ek,2 , and Ek,3 ) are generated and form Ek.

4.1.2 � Merging event sequence representations

The objective of this substep is to define an event interval sequence sk using set Ek 
from the previous substep. An event interval sequence sk for a time series instance 
Tk is formed by merging all event sequence representations in Ek defined for Tk 
in the form of event intervals and sorting the collected event intervals following 
Definition 2. This means we no longer have multiple representations but a single 
event interval sequence sk for Tk.

For each event sequence representation ep
k,j

∈ Ek,j for a time series variable tk,j , 
where p is a pair of discretization functions and time series representations used 
for Ek (i.e., p ∈ (G × {�,PAA}) ∪ ((G − gSAX) × {D1,D2} ), we transform each 
event sequence into a set of event intervals. To do this, we define a function 
Merge(⋅) that takes an event sequence e as input and with the help of a recursive 
function mergei(⋅) over the time points of e , it creates the set of event intervals for 
e as follows:

where ⊕ denotes concatenation of two sequences, and i iterates over the time points 
of e . Then we create sk by collecting event intervals from all event sequences in Ek 
created by Merge and sorting them following Definition 2:

Merge(e) = merge1(e1, 1),

mergei(𝜖prev, 𝜏prev) =

⎧⎪⎨⎪⎩

mergei+1(ei, i) if i = 1

mergei+1(𝜖prev, 𝜏prev) if 𝜖prev = ei
⟨(𝜖prev, 𝜏prev, i − 1)⟩⊕ mergei+1(ei, i) if 𝜖prev ≠ ei

,

sk = sort(
⨁
Ek,j∈Ek

⨁
e
p

k,j
∈Ek,j

Merge(e
p

k,j
)).

Fig. 3   An example of the substep of creating event sequences. The letters that come later in the alphabet 
correspond to higher values (e.g., tB

max
= tC

min
)
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Each event sequence has its own set of event labels, as we would like to dis-
tinguish between events belonging to different dimensions. As a result, different 
event sequences do not share any common event labels.
Example 4  Fig.  4 shows the process of merging event sequence representations 
for a time series instance Tk into an event interval sequence sk . First, consecutive 
events are merged into event intervals. For instance, three A1 events are merged 
into a single interval (A1, 1, 3) . The events created by PAA can also be further 
summarized, as illustrated by event interval (P1, 1, 4) , which is created by merg-
ing four P1 events. These event intervals then form a single event interval sequence 
sk = ⟨(A3, 1, 1),… , (V3, 2, 4),… , (AC1, 6, 6)⟩ , where the suffix of each event label 
indicates the dimension to distinguish event intervals from different variables.

In summary, the first step of Z-Time iterates through each time series 
instance Tk ∈ T  and creates the corresponding event interval sequence sk through 
the two substeps described earlier. Each sk is then stored in S = {s1,… , sn} , 
which is the final output of this step (Algorithm 1, lines 9-10), and is later used 
to create the hash table structure in the next step (Algorithm 1, line 11).

4.2 � Creating temporal relations

The second step of Z-Time receives a collection of event interval sequences S and 
creates the embedding matrix M , which represents each time series instance by 
the set of horizontal support values of the temporal relations that describe it. We 
naturally consider inter-dimensional relations, since an event interval sequence con-
tains the merger of all event intervals formed in each dimension of the time series 
instance.

We employ a special hash table structure, referred to as RS-Hashtable, which 
serves two main purposes: (1) storing the horizontal support values for each tem-
poral relation and (2) keeping track of the locations of the event interval pairs form-
ing each temporal relation (i.e., occurrences). RS-Hashtable has two components: 
R-Hashtable and S-Hashtable. R-Hashtable is defined only once, and it uses all pos-
sible temporal relations as keys, while the values are the S-Hashtable instances cor-
responding to each temporal relation. S-Hashtable is defined for each temporal rela-
tion and stores the event interval sequences containing a particular temporal relation 
from R-Hashtable as keys along with its occurrence set and horizontal support in 
each sequence as values.

Fig. 4   An example of the substep of merging event sequence representations
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More formally, let H = f ∶ K → V  denote a hash table H using function f (⋅) that 
maps a set of keys K to a set of values V. S-Hashtable, denoted as 
HS

(r,�a,�b)
= f ∶ KS

(r,�a,�b)
→ VS

(r,�a,�b)
 , is defined for each temporal relation (r, �a, �b) and 

is accessed by R-Hashtable, denoted as HR = f ∶ KR
→ VR , which holds temporal 

relations as its keys, i.e., HR((r, �a, �b)) = HS
(r,�a,�b)

 . The keys and values of RS-
Hashtable are formally defined as follows:

In the interest of computation time but also for simplicity and interpretability, we 
restrict the temporal relations space in two ways. First, we consider a smaller set 
of possible temporal relations by merging {overlaps, left-contains, right-contains, 
meets, contains} to a single temporal relation, i.e., overlaps. We apply this merging 
since our empirical observation suggests that, depending on the PAA window, event 
intervals tend to share either their start time or end time, and create left- or right-
matching boundaries that are not necessarily meaningful beyond indicating time 
overlaps. The above simplification, which has also been applied in earlier research 
(Thiel et al. 2010; Moskovitch and Shahar 2015), additionally provides flexibility to 
our temporal relations when irregular outlier values occur at the time boundaries of 
the event intervals, in which case they are considered under the same relation type. 
However, we regard matches as a separate relation, as we consider it important to 
capture concurrent similarities across dimensions. Thus, we only leave three rela-
tions {follows, matches, overlaps}.

Second, we introduce a step size � to control the maximum number of event inter-
vals our target is paired with. This acts as a limit on the time horizon that the target 
can reach. We use this limit because event intervals that are too far from the target 
may not have a strong relation with it, and this can negatively affect the embedding 
matrix. Note that this is not solely related to time series length. Event intervals are 
created based on consecutive event labels, which means that if there is no informa-
tion change for a long time, a small step size can cover a long time period.

S-Hashtable saves both horizontal support H((r, �a, �b), sk) and the occurrence 
set Ω((r, �a, �b), sk) , as a set of values for each S-Hashtable. Thus, the values of 
HR((r, �a, �b))(k) include the pointers to all event interval pairs with event labels 
�a, �b forming r in sk . For our classification task at hand, we only use horizontal sup-
port, but occurrences can still be useful for interpretability purposes since the struc-
ture keeps all the locations of pairs forming a specific temporal relation. After con-
structing a complete hash table structure, we create the embedding matrix M of size 
|S| × |KR| and use the keys as the indices of M and save the horizontal support, i.e., 
Mk,(r,�a,�b)

= H((r, �a, �b), sk) . M is then used as a feature set with Mk,∗ denoting the 
set of features for Tk ∈ T .

KR = {(r, �a, �b) ∶ �a ∈ Σ, �b ∈ Σ}

VR = {HS
(r,�a,�b)

∶ �a ∈ Σ, �b ∈ Σ}

KS
(r,�a,�b)

= {k ∶ sk ∈ S, (∃(si, sj) ∈ sk × sk ∶ R(si, sj) = (r, �a, �b))}

VS
(r,�a,�b)

= {(Ω((r, �a, �b), sk),H((r, �a, �b), sk)) ∶ sk ∈ S}.
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Example 5  In Fig. 5, consider event interval sa = (X2, 1, 2) as our current target 
with � = 3 . Z-Time checks three steps ahead based on the sorted order of event 
interval sequence sk (e.g., three event intervals in green). Then, sa is paired with 
each event interval, and their temporal relation is calculated. When temporal 
relation (follows,X2,R1) is found between sa and sb , RS-Hashtable is accessed 
by the temporal relation (for HR ) and the event interval sequence index (for HS ) 
(marked with blue outlines), and the pair of event intervals ((X2, 1, 2), (R1, 5, 6)) 
is added to the occurrence set. However, the horizontal support remains 1 as 
(X2, 1, 2) already has another event interval (R1, 3, 4) forming the same follows 
relation. Once all sk ∈ S are traversed, RS-Hashtable is used to construct the 
embedding matrix M and the horizontal support of ((follows,X2,R1), sk) is added 
to Mk,(follows,X2,R1).

4.3 � Segmentation of time series

We introduce an optional preliminary step, where a time series collection T  
is divided into � equal segments {T1,… , T�} , and then the first two steps of 
Z-Time are applied to each segment individually. This results in � embedding 
matrices {M1

,… ,M�} , which are concatenated to create a single feature set 
M = {M1 …M�} that serves as input to the linear classifier.

This optional step is particularly relevant when the time series consist of multi-
ple unrelated parts or follow different distributions, thus temporal relations between 
different segments are misleading. In these cases, applying temporal abstraction to 
the entire time series may not produce appropriate event labels. For instance, in the 
CricketX dataset in the UEA repository (Bagnall et al. 2018), the movements of the 
right hand are stored in the first half of the time series and the movements of the 
left hand are stored in the second half. In this case, temporal abstraction should be 
applied separately for each hand’s movement.

Parameter � can be set using domain knowledge or can be explored with param-
eter search. Unlike the sliding window approaches which apply a quadratic (in time 
series length) number of discretization functions, our segmentation approach main-
tains a compact representation, having the same number of event sequence repre-
sentations after segmentation, since the abstraction is applied individually to each 
segment.

Fig. 5   An example of Z-Time’s RS-Hashtable structure
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4.4 � Applying linear classifiers

The third step of Z-Time takes the embedding matrix M and applies a linear clas-
sifier to it, returning coefficients for the temporal relations. The coefficients are 
trained based on the horizontal support values of the temporal relations found in the 
training set, so any temporal relations that only appear in the test set are not consid-
ered. We follow the recommendation from Dempster et al. (2020), which suggests 
that a logistic regression classifier should be used when the number of time series 
instances is larger than the number of features, and the ridge classifier for the oppo-
site case. Our experiments in Sect. 5 are conducted with the ridge classifier using 
the same regularization parameter optimization process as Dempster et al. (2020), 
since in the time series datasets in the UEA repository the number of features (in our 
case, the number of temporal relations) is generally larger than the number of train-
ing instances. The ridge classifier then creates class discriminatory temporal rela-
tions, which can be used for interpretability purposes (see Appendix D).

4.5 � Time complexity

Given a time series collection T  of size n, length m, with d dimensions, we first, 
in the first step, create event sequences, which involve discretization that requires 
O(dnmlog(m)) . We then create event intervals checking every time point in the 
time series collection, yielding a linear complexity of O(dmn) . In the worst case, 
we assume that the number of created event intervals is the same as the number of 
time points in all dimensions, i.e., dm, for each event interval sequence. Then, in 
the second step, we assess the temporal relations, which requires quadratic time in 
the number of event intervals O(d2m2) for all n event interval sequences, leading 
to O(d2m2n) , which is our final complexity. This means that the dimension and the 
length of T  are deciding factors of Z-Time’s scalability. However, in reality, the 
average number of event intervals in an event interval sequence is expected to be 
much smaller than dm, since Z-Time merges all consecutive points into one event 
interval.

5 � Experiments

In this section, we benchmark Z-Time in terms of efficiency, effectiveness, and 
interpretability for solving Problem 1.

5.1 � Experimental setup

Our experiments are performed on a Linux machine with an AMD 2950X proces-
sor and 128 GB of memory. We compare Z-Time to the state-of-the-art interpret-
able multivariate time series classifiers, i.e., MR-PETSC (Feremans et al. 2022) and 
XEM (Fauvel et al. 2022). For completeness, we also benchmark it against the state-
of-the-art non-interpretable classifiers reported in Middlehurst et al. (2021).
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Datasets We evaluate Z-Time and its main competitors on the multivariate time 
series datasets in the UEA repository (Bagnall et  al. 2018). Since our focus is on 
classification performance, runtime, and interpretability rather than pre-processing, 
out of the 30 datasets we use the 26 that contain time series of equal-length. While 
we aim to employ all 26 datasets, we only present the results on the datasets for 
which all algorithms in comparison complete, since some algorithms fail to com-
plete on some datasets due to high memory requirements (over 128 GB) or exces-
sive runtime (over seven days). We also use our three synthetic datasets to investi-
gate the multivariate interpretability cases in more detail. We report the full results 
in our repository.

While Z-Time aims to be an interpretable multivariate time series classifier 
exploiting inter-dimensional temporal relations, we also test its efficiency and effec-
tiveness on the 112 UCR univariate datasets (Bagnall et al. 2018).

Implementation For the competitors, we use the authors’ implementa-
tions and follow the experimental settings in the original articles. As the algo-
rithms involve parameter search, we report the average accuracy over ten tri-
als for effectiveness of all interpretable classifiers. For efficiency, we report the 
average runtime over 20 runs with randomly selected parameters. Z-Time is 
implemented in Python and includes randomized search over 100 iterations for 
w ∈ {3, 5, 7, 10}, �1 ∈ {3, 5, 7, 10}, �2 ∈ {3, 5, 7, 10}, � ∈ {10, 20, 30, 50, 100}, and 
� ∈ {1, 2, 4, 8} . An ablation study of Z-Time is provided in Appendix C.

5.2 � Effectiveness: classification performance

We compare Z-Time to the state-of-the-art multivariate time series classifiers in 
terms of accuracy on the 20 UEA multivariate datasets, as our competitors fail to 
run on six datasets, i.e., six for MR-PETSC and five for XEM, due to high memory 
requirements. Figure  6 shows the critical difference diagram of Z-Time against 
ten multivariate time series classifiers, using a two-sided Wilcoxon signed-rank test 
with � = 0.05 . Both Z-Time and XEM are not significantly less accurate than all 
state-of-the-art non-interpretable algorithms, while Z-Time is still ranked higher 
than XEM. However, MR-PETSC fails to achieve the same level of performance, 
being significantly less accurate than Z-Time but still comparable to XEM. Both 
XEM and Z-Time show lower scores on Crickets and ArticularyWordRecognition 
in ranking compared to the state-of-the-art non-interpretable classifiers. However, 
these two datasets are the only ones where the difference in accuracy of all reported 
algorithms is less than 2%, since the classification task is easy for these two datasets.

Figure 7 shows the pairwise comparisons between Z-Time and its two interpret-
able competitors. We include all datasets for which both paired algorithms complete, 
i.e., 21 for XEM and 20 for MR-PETSC. In Fig.  7a, Z-Time outperforms XEM 
on 12/21 cases, achieving ≥ 10% accuracy on four datasets. In Fig.  7b, Z-Time 
beats MR-PETSC on 18/20 datasets with ≥ 10% accuracy on six datasets. Z-Time 
achieves the highest performance difference against XEM on Libras and against 
MR-PETSC on HandMovement. On the other hand, Z-Time is less than 10% accu-
rate than XEM only on HandMovement. Compared to MR-PETSC, Z-Time only 
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loses on two datasets, but not significantly, being only 1.3% less accurate on Atri-
alFibrilation, and 0.5% less accurate on Crickets.

We also test Z-Time on the 112 UCR univariate datasets to prove Z-Time is 
competitive in effectiveness compared to the state-of-the-art interpretable univariate 
classifiers, i.e., MR-SEQL and MR-PETSC (See Appendix A).

5.3 � Efficiency: runtime performance

We evaluate the runtime efficiency of the three interpretable multivariate time 
series classifiers. Runtime is averaged over 20 runs with randomly selected 
parameters, and measured on a single core for a fair comparison. XEM fails to 
complete on six additional datasets, i.e., 12 in total, and MR-PETSC is unsuc-
cessful on six datasets due to memory requirements (See Table 1). We compare 
the runtime on the datasets for which both paired algorithms complete.

While Z-Time and MR-PETSC employ a linear classifier for interpretabil-
ity, XEM uses multiple boosting-bagging structures, making itself considerably 
slower than all the other algorithms. Considering total runtime, Z-Time is, on 
average, 2,274.1 times faster than XEM, ranging from 51.5 times (on Racket-
Sports) to 12,624.6 times (on UWaveGestures). There is no single case where 
XEM is faster than Z-Time. Furthermore, the result is in favor of XEM since we 
exclude the 12 datasets where it fails, and these datasets can increase the average 
runtime of XEM. MR-PETSC is faster than Z-Time on 9/20 datasets, up to 5.6 
times (on LSST). However, Z-Time is still 2.1 times faster than MR-PETSC on 
the average of 20 datasets and up to 20.4 times (on EthanolConcentration). With 
this experiment, we confirm that Z-Time is more efficient than its competitors, 
and specifically by an order of magnitude more efficient than XEM. Comparing 
Z-Time to the non-interpretable classifiers, Z-Time is faster than tree-based 

Fig. 6   Average rank of Z-Time against ten multivariate time series classifiers in terms of accuracy on 
the 20 UEA multivariate datasets

Fig. 7   Pairwise accuracy scatter plots of a Z-Time against XEM and b Z-Time against MR-PETSC. 
The dotted lines indicate ±10% intervals on accuracy
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classifiers, 7.6 times faster than DrCIF and 4.2 times faster than CIF, while 13.5 
times slower than ROCKET and 3.8 times slower than ARSNAL, which is an 
ensemble of ROCKET classifiers.

Since Z-Time constructs the embedding matrix for both the training and test 
sets, the proportions of the training and test phases are directly proportional to the 
size of each dataset. However, other algorithms may have shorter testing times. 
Specifically, XEM spends 98.8% of its runtime on training, while MR-PETSC 
spends 66.7% on average. Even when considering only test time, Z-Time is still 
38.4 times faster than XEM and 1.2 times faster than MR-PETSC. For non-inter-
pretable classifiers, Z-Time is 4.9 times slower than DrCIF and 3.9 times slower 
than CIF, as both of these algorithms also require significant training time.

For completeness, we test the classifiers on the 112 UCR univariate datasets. 
Since Z-Time’s quadratic time complexity in dimensions has no effect for the 
univariate cases, Z-Time can be even faster, i.e., 2.8 and 5 times than MR-SEQL 
and MR-PETSC on average, respectively. Z-Time is also 1.8 times faster than 
ROCKET on average, since Z-Time is quadratic in time series length, which is, 
in general, less time consuming than passing 10,000 random convolutional ker-
nels. This confirms Z-Time’s competitive runtime in the univariate cases even 
compared to non-interpretable classifiers.

5.4 � Interpretability: four use‑cases

Our experiments confirm that Z-Time is the first multivariate time series clas-
sifier that maintains high levels of effectiveness and efficiency. More concretely, 
Z-Time is (1) significantly more accurate than MR-PETSC and (2) an order of 
magnitude faster than XEM, thus leaving no direct competitor in terms of both 
effectiveness and efficiency. Nevertheless, we compare the interpretability of 
Z-Time against MR-PETSC and XEM on two UEA multivariate datasets (Libras 
and SelfRegulationSCP1) and three synthetic datasets for completeness. The main 
objective is to validate how well each algorithm can detect and exploit interpret-
able inter-dimensional relations, which is essential for multivariate time series 
classification. While MR-PETSC can be directly excluded since it returns a set of 
features from each dimension separately, we include it for completeness. The top 
five classification features for Z-Time and MR-PETSC can be found in Appen-
dix B.

We validate two common cases in multivariate time series classification: (1) 
a single location is not enough to classify and explain and (2) inter-dimensional 
orders at different time points can be detrimental for the classification outcome 

Table 1   Pairwise runtime 
comparisons between Z-Time 
and competitors. A larger Lose 
value is in favor of Z-Time. 
A negative value implies a 
competitor is faster and vice 
versa

Algorithm Dataset Runtime proportion

Complete Win Lose Min. Max. Avg.

XEM 14 0 14 51.5 12,624.6 2274.1
MR-PETSC 20 9 11 −5.6 20.4 2.1
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and for providing explanations. In Figs. 8, 9 and 10, we display the features with 
the simplest parameter setup {�1 ∶ 3, �2 ∶ 3, � ∶ 10,w ∶ 10, � ∶ 1} using three 

event label types {high, mid, low}, for each dimension and representation.

5.4.1 � Use case 1: Libras

Libras contains 15 classes of 24 instances, each of which refers to a hand move-
ment type for the Brazilian sign language. The hand movement is represented as 
a two-dimensional curve performed over a period of time. XEM and Z-Time 
achieve the highest performance difference in accuracy on this dataset since XEM 
cannot successfully distinguish the relations between the two sinusoidal patterns 
in Libras. Z-Time achieves an accuracy of 88.9% with the simplest parameter 
setup, outperforming all interpretable competitors.

Figure 8 depicts ten 2-dimensional instances of class 1 taken from Libras, with 
the first dimension indicated with red and the second one with blue. In addition, 
we present an example of a region provided by XEM for one instance under its 
best parameter setting (left), and two instances of the same class with Z-Time’s 
top three temporal relations (right). While representing the same class, hand 
movements in different time series instances are not timely aligned since ges-
tures are performed at different speeds. As shown on the right side of Fig. 8, the 
event intervals with the same event label in each example have different start and 
end time points. On the other hand, the explanatory region provided by XEM 
covers 60% of the time series length but is less informative than Z-Time, since 

Fig. 8   Ten 2-dimensional time series instances of class 1 from Libras with an example region detected 
by XEM with a window size of 60% marked as blue (left), and two instances of class 1 with Z-Time’s 
event intervals forming top three temporal relations (right)

Fig. 9   Ten time series instances of two classes in SelfRegulationSCP1 and the last 30 time points of posi-
tivity with Z-Time’s event intervals forming the top two temporal relations
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the latter provides more concrete and explicit temporal patterns that characterize 
class 1.

Moreover, in Fig.  8, we observe that Z-Time picks similar low values in 
dimension 1 with two different representations (C and F), and creates two differ-
ent temporal relations with B and A, respectively. Even for the same area, there 
can be different representations that are more effective in catching temporal rela-
tions. For example, Z-Time finds the equals relation between F and B, which 
cannot be formed between C and B even though F and C cover similar area since 
equals requires strict time point matching.

On the other hand, MR-PETSC is robust to the location factors since it also 
uses the horizontal support of its patterns as features. However, it still shows sim-
ilar accuracy as XEM, because the inter-dimensional relations cannot be detected. 
By observing Fig 8, we can deduce that MR-PETSC cannot figure out if B should 
happen after A or whether F and B should occur simultaneously. Detecting these 
two inter-dimensional relations is necessary for understanding the properties of 
class 1 in the dataset.

5.4.2 � Use case 2: SelfRegulationSCP1

This dataset contains electroencephalograms for identifying slow cortical potentials. 
Each subject is asked to move a mouse pointer on the screen up or down. Detailed 
instructions are given for the first 5.5 s, and the last 0.5 s only involve free move-
ment. The dataset has two classes: positivity and negativity. It only contains the last 
3.5 s in 896 time points of which each second comprises 256 points.

Both XEM and Z-Time perform equally well on this dataset achieving an 
accuracy of approximately 84%. Z-Time shows 77.1% accuracy with the sim-
plest parameter setup. However, XEM chooses the 100% window size as the opti-
mal parameter for this performance, failing to deliver any interpretability. Figure 9 
shows ten examples of two classes and the last 30 time points (about one second) 
of the positivity class with three event intervals forming Z-Time’s top two tem-
poral relations. Even though the discriminative features can easily be localized, it 
is hard for XEM to identify them, as the features can only be found by the fact that 
it is globally low, and this can only be detected with the 100% window size. On the 
other hand, the most discriminative feature found by Z-Time is equals between 

Fig. 10   An example of the four classes of SYN1 that cannot be distinguished by a single region. The area 
detected by XEM with a window size of 20% is marked as blue. Z-Time ’s event intervals forming the 
top two temporal relations for class 1 are also presented
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‘mid PAA, EWD in dimension 2’ and ‘low SAX in dimension 6’ (Note that the 
dimension information is also part of an event label), followed by follows between 
‘mid EWD in dimension 5’ and ‘low SAX in dimension 6’. The ‘low SAX’ event 
intervals are prevalent at the end of the positivity instances in every dimension (i.e., 
for the last 0.5 s of free movement) and also common in few dimensions of negativ-
ity. However, in the negativity instances, ‘low SAX in dimension 6’ rarely occurs at 
the same time with ‘mid PAA, EWD in dimension 2’, making the relation distinc-
tive. This is why Z-Time picks the one in dimension 6 while ‘low SAX’ occurs in 
every dimension at the end of the positivity time series instances.

MR-PETSC is not successful on this dataset, returning close to random accuracy 
(66.1%) for this binary problem, since multiple overlapping sliding windows cannot 
distinguish the global importance of a specific region.

5.4.3 � Synthetic case 1: Robustness to conflicting regions

 We test the case where using a window on the same time region across all dimen-
sions cannot fully explain the dataset, due to the presence of conflicting regions. 
SYN1 contains 100 training instances and 20 test instances for each class with two 
dimensions and four classes, as depicted in Fig.  10. In order to create conflicting 
regions, we introduce specific concave and convex curves in the first and last 25% 
of the time series, so that when one time region is selected, there are always two 
classes having the same pattern on that region (e.g., classes 1 and 2 for the first 25%) 
but they are distinguished by looking at another time region concurrently (e.g., the 
last 25% for both classes).

XEM’s average accuracy over 20 runs under random parameter settings is 35.3%, 
even returning a minimum of 25% with a window size of 20%. The only way for 
XEM to succeed in this classification task it is to use a window size of 100%, which 
is equivalent to running a non-interpretable classifier. On the other hand, Z-Time 
achieves perfect classification accuracy (i.e., 100%) on this dataset over 20 runs 
under the same setting and with the simplest parameter setup, by exploiting inter-
dimensional relations. MR-PETSC achieves an average accuracy of 90.2% as it is 
also not affected by conflicting regions. However, it still cannot perfectly classify 
the dataset as its sliding windows even detect the discriminative features in the noisy 
areas.

Figure 10 shows Z-Time’s top two features formed by four event intervals in two 
dimensions. These two temporal relations give sufficient reasoning for understand-
ing what affects the classification performance. Also, Z-Time creates a compact 
representation by merging consecutive events with the same label into one event 
interval, such as ‘high EWD in dimension 2’.

5.4.4 � Synthetic case 2: Robustness to inter‑dimensional orders

We benchmark the ability of the three interpretable multivariate time series classifi-
ers to catch inter-dimensional orders that are not related to a specific temporal loca-
tion. Since an event can occur at different time points in each dimension of different 
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time series instances, discriminative features cannot be obtained by a region of spe-
cific length across all dimensions (as we see on Libras) since we cannot confirm if 
all discriminative events occur in the chosen region.

Our two synthetic datasets (SYN2 and SYN3) comprise 100 training instances and 
20 test instances for each class. Figure 11 depicts SYN2 and SYN3 with inter-dimen-
sional orders represented by peaks: (1) two dimensions and two classes (SYN2) and 
(2) four dimensions and three classes (SYN3). In SYN2, class 1 is defined in blue-yel-
low order and class 2 is defined in the opposite order, i.e., yellow-blue. SYN3 has the 
same order-based class definition, i.e., blue-yellow-green-red for class 1, green-yel-
low-blue-red for class 2, and blue-red-green-yellow for class 3. The colored regions 
are examples of explanation areas provided by XEM with a window size of 20%.

We run the three algorithms 20 times on the two synthetic datasets under random 
parameter settings. Z-Time predicts both SYN2 and SYN3 with 100% accuracy, 
regardless of the chosen parameters and also with the simplest parameter setup, if 
segmentation is not enabled, since Z-Time can easily detect the order with the fol-
lows relations between the peaks.

XEM fails to achieve a higher than 80% accuracy on both datasets (62.5% on 
average on SYN2 and 59.5% on SYN3) over the 20 runs. This indicates that XEM 
cannot detect any pattern unrelated to specific time points but is rather based on 
temporal orders. MR-PETSC shows 65.1% average accuracy on SYN2 and 81.7% on 
SYN3, and finds the features independently without considering the order. Thus, in 
terms of interprerability it is not as clear as Z-Time since their sliding windows can 
even find similar features in the noisy area. so they do not help interpret the inter-
dimensional orders.

5.5 � Effect of missing data

We compare Z-Time against its two competitors on four UEA multivariate data-
sets (RacketSport, StandWalkJump, LSST, and PenDigits) from different domains 
in terms of robustness to missing data. As Z-Time is based on event intervals, it 
does not need to perform interpolation for handling missing data, but rather skip 
them and generate event intervals using only the time points where with data values. 
Since missing data is regarded as a time gap, Z-Time may have additional follows.

We remove a fraction of randomly chosen time points from each time series, 
increasing the proportion of missingness from 5 to 25% in increments of 5%. Fig-
ure 12 shows the average accuracy loss of the three algorithms for each dataset per 

Fig. 11   Examples of two synthetic datasets (SYN2 and SYN3) forming inter-dimensional orders. The blue 
regions indicate the areas XEM finds with a window size of 20%
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missingness increment, i.e., how much accuracy drops for each missingness level 
compared to the accuracy of the original dataset. As missingness increases, accu-
racy is expected to decrease.

On all four datasets, Z-Time shows less than 3% of accuracy loss, while XEM 
reaches up to 9.8% loss and MR-PETSC even has up to 25.5% loss. XEM shows 
≥ 5% loss on PenDigits and LSST with 25% missing data. As seen in Fig. 12, the 
gap in the accuracy loss between Z-Time and XEM increases as missingness also 
increases, on all datasets. MR-PETSC behaves inconsistently and is unstable since 
on RacketSports and PenDigits it is even worse than XEM having larger gaps as 
the missingness increases showing ≥ 10% losses, but on LSST and SandWalkJump 
it shows similar accuracy losses as Z-Time. The largest gap of Z-Time to both 
algorithms is found on PenDigits where Z-Time only has 2.2% loss, while XEM 
has 9.8% and MR-PETSC has 25.5%, i.e., 7.6% and 23.3% gaps respectively. This 
experiment confirms that Z-Time is generally more robust and stable to missing 
data than both XEM and MR-PETSC.

5.6 � Effect of dimensionality

As discussed in Sect. 4.5, the computational complexity of Z-Time is quadratic 
in time series length and dimensions. While Z-Time, in practice, reduces the 
time series length by creating event intervals, it maintains the original number of 
dimensions, which can pose a problem to the size of the embedding matrix. The 
size of the embedding matrix is also quadratic in the number of dimensions, as 
event labels are defined for each dimension, and pair-wise combinations of these 
labels are created to capture temporal relations. Thus, reducing the dimension-
ality may improve the efficiency of Z-Time and reduce the feature space size. 
While it is already confirmed that Z-Time is more efficient than all of its inter-
pretable competitors, we explore the trade-off between efficiency and effectivenes 
of Z-Time and its competitors on the UEA multivariate datasets.

We do not aim to compare dimensionality reduction techniques, so we choose 
the elbow class pairwise (ECP) method as it shows the best performance in Ruiz 
and Bagnall (2022). We apply ECP to 14 multivariate time series datasets, for 
which all three algorithms complete on a single core, out of which ECP succeeds 

Fig. 12   Average accuracy loss plots for Z-Time, XEM, and MR-PETSC over 20 runs on four UAE 
datasets with randomly inserted missingness from 5% to 25% in increments of 5%
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in reducing dimensions of seven datasets. Figure  13 shows the accuracy loss 
(Fig. 13a) and the relative runtime (Fig. 13b) for each dataset averaged over 20 
runs with random parameter settings. XEM and Z-Time maintain the accuracy 
scores well, with no more than a 5% loss on all seven datasets, while MR-PETSC 
reaches an accuracy loss of 17.2% on RacketSports.

While Z-Time is already on average 2,274.1 times faster than XEM with-
out dimensionality reduction, when the dimensions are reduced it finishes in 
43.6% of the original runtime, maintaining 2% accuracy loss on average. How-
ever, XEM’s time complexity depends on its concatenated representation and 
this does not seem to be greatly improved by dimensionality reduction. XEM 
still takes 94.2% of the original runtime, failing to reduce the runtime more 
than 10% on average. It only finishes in 80.9% of the original runtime on Rock-
etSports, but on three datasets (NATOPS, FingerMovements, and BasicMo-
tions), it shows negligible runtime difference ( < 1% ) from the original runt-
imes. Z-Time is 3,932 times faster than XEM on average, ranging from 64.7 
times (on RacketSports) to 20,702 times (on StandWalksJump). MR-PETSC 
also shows improvements by completing the tasks in 52.5% of original time and 
also maintaining accuracy except for RacketSports. Z-Time is still 1.7 times 
faster than MR-PETSC on average, ranging from −2.9 times (on NATOPS) to 
7.1 times (on StandWalksJump).

6 � Conclusion

We proposed Z-Time, a fast and interpretable multivariate time series classifier 
which employs temporal abstraction and temporal relations of event intervals to 
create its interpretable feature space. We benchmaked Z-Time on the UEA mul-
tivariate time series datasets where it achieved a higher average rank than state-of-
the-art interpretable multivariate time series classifiers, being also not significantly 
less accurate than any state-of-the-art non-interpretable classifier. We also showed 
that Z-Time is the fastest both on univariate and multivariate datasets, even hav-
ing comparable runtime to ROCKET for the univariate case. We also investigated 

(a) (b)

Fig. 13   a Average accuracy loss and b average relative runtime over 20 runs for Z-Time, XEM, and 
MR-PETSC on seven UEA datasets after dimensionality reduction
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interpretability related cases both on real-world and synthetic datasets showing that 
Z-Time can identify inter-dimensional features from conflicting regions or inter-
dimensional orders regardless of their specific locations, while XEM and MR-
PETSC could not.

Future work involves integrating different discretization functions, increasing 
the interpretability of Z-Time by considering temporal relations formed by more 
than two event intervals. A more robust way of segmentation than equally dividing 
the area can be also explored to define better local abstraction. Z-Time may also 
be applied to other interpretability related tasks, such as counterfactual analysis, as 
event intervals can provide more understandable counterfactuals than when using 
the raw time series space.

Appendix A: Performance on the UCR univariate datasets

While Z-Time focuses on multivariate time series classification, we additionally 
test Z-Time on 112 UCR univariate datasets to show that Z-Time maintains its 
competitive classification power even on a single dimension compared to two state-
of-the-art interpretable univariate classifiers (i.e., MR-PETSC and MR-SEQL). We 
exclude XEM as it is infeasible to run it on all 112 datasets within a reasonable time 
frame with its parameter search (see Sect. 5.3).

Figure 14 shows the average rank of Z-Time against the state-of-the-art univari-
ate time series classifiers on 112 UCR univariate datasets using a critical difference 
diagram. While none of the interpretable classifiers outperforms the non-interpretable 
ones, this is expected as the former only exploit a linear classifier with human-inter-
pretable features (Fig. 14a). MR-SEQL is the only interpretable classifier being not sig-
nificantly less accurate than STC (Hills et al. 2014), but it is also not significantly more 
accurate than Z-Time. MR-SEQL and Z-Time are both significantly better than 
MR-PETSC.

Unlike MR-SEQL and MR-PETSC, which pass multiple windows with different 
event labels and window sizes, Z-Time only uses fixed event labels and PAA win-
dow sizes to perform abstraction with parameter search to keep a compact and robust 
representation. This means that Z-Time can be more sensitive to the parameter 

(a) (b)

Fig. 14   Critical difference diagram for rankings of a Z-Time against 11 univariate time seires classifiers 
and b Z-Time and three interpretable univariate time series classifiers, by accuracy on the 112 UCR 
univariate datasets
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settings. Similar to the two easy UEA multivariate problems (Crickets and Articu-
laryWordRecognition), the UCR repository also involves several easy problems (i.e., 
Z-Time achieves more than 90% accuracy on 41 out of 112 datasets), making param-
eter search unstable. For example, under different parameter settings, Z-Time achieves 
the same validation accuracy, while averaging multiple trials lead to some deduction on 
test accuracy (e.g., on Trace Z-Time is ranked on 13th with an accuracy of 99.8%, as it 
fails to achieve perfect accuracy in only one trial). This is why we also include the best 
cases of ten parameter search trials (denoted by the suffix ‘-BEST’) for Z-Time and 
MR-PETSC as references, while still evaluating the classifiers based on their average 
values. Z-Time can potentially be significantly comparable to most state-of-the-art 
algorithms except HIVE-COTE 2.0 and TS-CHIEF.

Figure 14b shows the critical difference diagram of three interpretable time series 
classifiers for a clear comparison. While Z-Time and MR-SEQL have compara-
ble performance, MR-PETSC is significantly less accurate than the others. Z-Time 
beats MR-SEQL on around half of the datasets (i.e., 55/112) and loses on the rest (i.e., 
57/112). With this experiment, we can confirm that Z-Time is also competitive on the 
univariate classification problem.

Appendix B: Top five classification features of Z‑Time and MR‑PETSC

Tables  2-8 summarize the list of the most discriminative features of Z-Time 
(Tables 4, 5, 6, 7 and 8) and MR-PETSC (Tables 2, 3) detected in terms of clas-
sification coefficients for each dataset we use in our experiments. Note that the 
subsequences are generated from each dimension and it is unclear how we can 
obtain inter-dimensional interpretability from those patterns, so we list them here 
as a reference. XEM’s most discriminative regions differ for each test instance so 
we are not able to include them here.

Table 2   The top five features 
found by MR-PETSC on Libras 
and SelfRegulationSCP1 

Rank Libras SelfRegulationSCP1

Feature Dim Feature Dim

1 dddddccbb 1 dbccc 3
2 cbbaa 2 aaaabcc 5
3 aaaabc 2 aacba 1
4 baaaaaa 1 baabb 2
5 ddcbaaa 1 cbabb 3
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Table 3   The top five features 
found by MR-PETSC on the 
three synthetic datasets

Rank SYN1 SYN2 SYN3

Feature Dim Feature Dim Feature Dim

1 cdddd 2 bdcbc 1 accccccccc 1
2 cccbb 1 ccacb 1 bbcac 1
3 cbcbccc 2 bbbbbb 2 dcabc 1
4 bcbcbb 2 cbbbbbbbb 1 ddbbb 1
5 ccbbbc 2 acbcc 2 bbccb 1

Table 4   The top five temporal relations found by Z-Time on Libras 

Rank Temporal relation

1  (equals, low SAX in dim. 1, high EWD in dim. 2)
2  (follows, low D2, EFD in dim. 2, low SAX in dim. 1)
3  (follows, high D1, EWD in dim. 2, high PAA, EWD in dim. 1)
4  (follows, mid D1, EWD in dim. 2, mid PAA, SAX in dim. 2)
5  (follows, low D2, EWD in dim. 2, high PAA, SAX in dim. 1)

Table 5   The top five temporal 
relations found by Z-Time on 
SelfRegulationSCP1 

Rank Temporal relation

1 (equals, mid PAA, SAX in dim. 2, low SAX in dim. 6)
2 (follows, mid EWD in dim. 5, low SAX in dim. 6)
3 (follows, high D1, EFD in dim. 1, mid EWD in dim. 5)
4 (follows, mid EWD in dim. 5, low SAX in dim. 5)
5 (follows, low SAX in dim. 5, low EFD in dim. 6)

Table 6   The top five temporal 
relations found by Z-Time on 
SYN1 

Rank Temporal relation

1 (overlaps, high SAX in dim. 1, high EWD in dim. 2)
2 (follows, high D1, EFD in dim. 1, low EWD in dim. 2)
3 (follows, high SAX in dim. 1, mid EFD in dim. 1)
4 (follows, low D2, EWD in dim. 2, high PAA, EFD in dim. 2)
5 (follows, low D1, EWD in dim. 2, high PAA, SAX in dim. 1)
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Appendix C: Ablation study

While we employ parameter search in our experiments, we also investigate how 
each parameter works on 20 UEA multivariate datasets. The best parameter set-
ting always depends on each dataset, but this experiment can help us understand 
how robust Z-Time in general is to variations of each parameter. We set the default 
parameter values to {�1 ∶ 5, �2 ∶ 5,w ∶ 5, � ∶ 20, � ∶ 1} and change one parameter 
to another value from its default value, while fixing the others.

Figures 15, 16, 17, 18 and 19 show the average ranks of Z-Time under different 
parameter settings on the 20 UEA multivariate datasets. Z-Time is generally robust 
enough not showing extreme differences. Most of the parameters do not show sta-
tistically significant differences in their average ranks. This is expected since every 
dataset has different properties and the best parameter should differ. Nevertheless 
we can observe meaningful differences from event label size for original time series 
representation �1 (Fig. 15) and segmentation parameter � (Fig. 19).

We observe that a higher �1 value yields better performance. The average rank 
of Z-Time with �1 = 10 is 1.1 higher than the average rank with �1 = 3 . However, 
more than this gap is needed to conclude any significant differences, which means 
all values in the option are comparable and the optimal value differs for each dataset. 
We cannot get any statistically significant differences or any linear trend for �2 and 
w. The biggest gap in average ranks with these two parameters is at most 0.7, and 
since parameters are mixed on the diagram, we cannot see any trend such as higher 
value achieves better performance.

Table 7   The top five temporal 
relations found by Z-Time on 
SYN2 

Rank Temporal relation

1 (follows, high EWD in dim. 2, low EWD in dim. 1)
2 (overlaps, low D1, EWD in dim. 1, mid D1, EFD in dim. 1)
3 (follows, high D1, EFD in dim. 1, low PAA, EWD in dim. 1)
4 (overlaps, low D2, EWD in dim. 1, mid D1, EFD in dim. 1)
5 (equals, mid PAA, EFD in dim. 1, mid D2,EWD in dim. 1)

Table 8   The top five temporal relations found by Z-Time on SYN3 

Rank Temporal relation

1 (equals, low SAX in dim. 1, high EWD in dim. 2)
2 (follows, low D2, EFD in dim. 2, low SAX in dim. 1)
3 (follows, high D1, EWD in dim. 2, high PAA, EWD in dim. 1)
4 (follows, mid D1, EWD in dim. 2, mid PAA, SAX in dim. 2)
5 (follows, low D2, EWD in dim. 2, high PAA, SAX in dim. 1)
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Segmentation plays a vital role in the UEA datasets, and many splits lead to better 
performance. Z-Time with � = 8 is even significantly more accurate than Z-Time 
with � = 1 . This means that when temporal relations are created independently in 
eight different segments, Z-Time gets better classification features. However, we 
still do not always restrict Z-Time to segment datasets as it all depends on each 
dataset since it can lead to overfitting the UEA datasets. For example, even on the 
UEA datasets, SelfRegulationSCP2 and StandWalkJump show higher accuracy scores 

Fig. 15   Critical difference diagram showing the effect of the event label size for the original time series 
representation ( �1)

Fig. 16   Critical difference diagram showing the effect of the event label size for the finite difference 
forms ( �2)

Fig. 17   Critical difference diagram showing the effect of the window size (w)

Fig. 18   Critical difference diagram showing the effect of the step size ( �)

Fig. 19   Critical difference diagram showing the effect of the number of splits ( �)
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with smaller � values, being ranked first with � = 1 and second with � = 2 . Also, 
the parameters are not entirely independent. We may understand segmentation works 
well when the dataset needs to be split, and since segmentation can yield clear perfor-
mance differences, this can also be found by parameter search without any problem.

Appendix D Investigation on feature weights with the ridge classifier

Figure 20 illustrates the weight distributions with the the ridge classifier on the two 
UEA datasets (Libras, SelfRegulationSCP1) and the largest synthetic dataset (SYN3) 
used in the interpretability experiments with the same simplest parameter setup. The 
figure displays the cumulative weight distributions on the left side and the sorted 
weight distributions on the right side.

It is essential to retain the most significant temporal relations to ensure the inter-
pretability of the features. For instance, when applied to the Libras dataset, if we 
consider the top features in terms of weights, we observe that 20% of the features 
weighted by the ridge classifier account for 50.4% of the weights. On SelfRegula-
tionSCP1, 20% of the features with the ridge classifier account for 47.5% of the total 
weights. Finally, on the SYN3 dataset, 49.7% of the total weights are explained by 
the top 20% of the features with the ridge classifier.

This experiment confirms that our temporal relation features can yield class dis-
tinctive weight distributions and that these distributions remain similar across differ-
ent datasets.

Fig. 20   Feature weight distributions from the ridge classifier on the two UEA datasets as well as the larg-
est synthetic dataset (SYN3) used in our interpretabilty experiments for class label 0. On the left side, we 
present the cumulative weight distributions, while on the right side, we show the sorted weight distribu-
tions
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