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Abstract
In this paper we present a correlation based safe screening technique for building the 
complete Lasso path. Unlike many other Lasso screening approaches we do not con‑
sider prespecified values of the regularization parameter, but, instead, prune vari‑
ables which cannot be the next best feature to be added to the model. Based on those 
results we present a modified homotopy algorithm for computing the regularization 
path. We demonstrate that, even though our algorithm provides the complete Lasso 
path, its performance is competitive with state of the art algorithms which, however, 
only provide solutions at a prespecified sample of regularization parameters. We also 
address problems of extremely high dimensionality, where the variables may not fit 
into main memory and are assumed to be stored on disk. A multidimensional index 
is used to quickly retrieve potentially relevant variables. We apply the approach to 
the important case when multiple models are built against a fixed set of variables, 
frequently encountered in statistical databases. We perform experiments using the 
complete Eurostat database as predictors and demonstrate that our approach allows 
for practical and efficient construction of Lasso models, which remain accurate and 
interpretable even when millions of highly correlated predictors are present.
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1 Introduction

Variable selection and screening are among the most important problems in 
machine learning. More and more data becomes available, not only in terms of 
the number of records but also in terms of the number of variables. Examples 
include genetic or text data where the dimensionality may be very high. Another 
example is the Open Data movement (McCrae et  al. 2022; Heath et  al. 2011), 
which lead to huge statistical databases from organizations such as the Eurostat, 
United Nations, International Monetary Fund, and others being available online 
for free, providing literally millions of variables which could help building accu‑
rate predictive models.

Such a huge number of available variables may, however, overwhelm rather than 
help researchers wanting to add useful predictors to their models. Thus, apart from 
building sophisticated predictive models we need efficient feature selection meth‑
ods, especially in very high dimensional setups which are nowadays common.

This paper focuses on a variation of the problem where the set of available vari‑
ables remains fixed and multiple models are built based on it. Moreover, we allow 
the number of predictors to be so large that they do not fit in main memory and have 
to be accessed directly from disk. This makes the approach more challenging since 
most current screening methods assume all variables to be kept in main memory.

As a motivating example consider a large statistical database, such as the one 
available from Eurostat (2022) which can be used to explain many different social 
phenomena. Changes to statistical databases are typically infrequent with most 
variables updated yearly and a few selected ones monthly, so the data stays con‑
stant for large periods of time. Another example is a collection of biological sam‑
ples on which gene expression data is available. Such data can be used to explain 
the results of many other tests performed on the same set of samples in the future.

We adapt a well known modeling technique, the Lasso (Tibshirani 1996) to the 
aforementioned scenario where several models are built against a fixed ultra‑high 
dimensional set of predictors. Our approach is based on pre‑indexing all the varia‑
bles in a multidimensional index, and using queries to the index to efficiently screen 
variables which cannot enter the model. It is worth noting that we are interested 
not only in finding a Lasso solution for a given value of the regularization param‑
eter � , but in constructing the full Lasso path with screening used at each step of 
the process to find new variable to enter the model. We propose a modification of 
the homotopy algorithm (Bach et al. 2012) for finding the Lasso path which uses a 
multidimensional index to speed up computations. We formally prove that our rules 
are safe, i.e. the results are identical to that obtained on the full data without pruning 
if an exact multidimensional index is used. Our experiments demonstrate, that the 
quality of the results remains high also for approximate indexing.

Since our Lasso screening criteria are different from the currently available ones, 
they are a general contribution to this research area. We have tested our approach 
also in the more typical scenario, where the data fits in main memory and found the 
proposed screening criteria to be competitive with current state of the art, despite 
the fact that we compute the full regularization path, not its approximation.
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Finding the full Lasso path is beneficial since it gives the values of coefficients 
for all values of the regularization parameter in a given range, providing a com‑
plete picture of model evolution. The analyst can clearly see which variables enter/
leave the model and when. Moreover, the coefficient vector for any value of � can 
be recovered from the path using simple linear interpolation. In Sect. 4.1 we dem‑
onstrate that the cost of obtaining the full path using our method is comparable to 
approximating it with samples and analyze the quality of such approximations.

The contributions of the paper are as follows. First, we propose new safe Lasso 
screening rules which, unlike current state‑of‑the‑art, allow for constructing the 
complete Lasso path instead of sampling it at specified points. Second, we address 
a scenario where several models are built against a fixed set of predictors, and use 
a multidimensional index to speed up Lasso path construction based on our screen‑
ing rules. Third, we demonstrate that it is possible to obtain interpretable models by 
using complete, indexed statistical databases as predictors.

The remaining part of the paper is organized as follows. Section 2 introduces the 
notation, formulates the Lasso problem and discusses related work. Later, Sect.  3 
introduces the multidimensional index based lasso path construction algorithm, 
which is the main contribution of this paper. Section 4 evaluates the method experi‑
mentally and, finally, Sect. 5 concludes the paper.

2  Notation and related literature

We now proceed to introduce the notation used throughout the paper and briefly 
describe the Lasso estimator.

All vectors are assumed to be column vectors, the superscript T denotes transposi‑
tion, and ‖x‖2 the l2 norm of a vector x. A bar above a vector will denote the mean of 
its components, i.e.  x̄ = 1

n

∑
xi . Further, let cor(x, y) denote the correlation between 

vectors x and y, i.e. cor(x, y) = (x − x̄)T (y − ȳ)∕(‖x − x̄‖2‖y − ȳ‖2).
Unless stated otherwise, we assume that all vectors are normalized, i.e. x̄ = 0 and 

‖x‖2 = 1 . Such a normalization can always be achieved by subtracting the mean and 
dividing by the norm. The correlation between two normalized vectors is simply 
equal to their dot product cor(x, y) = xTy.

Note, that for two normalized vectors x and y there is a monotonic relationship 
between their distance and correlation

This simple result means that we can use a multidimensional index to find vectors 
most correlated with a given query vector q, a fact which will be used frequently in 
the rest of the paper.

Let y ∈ ℝn be a vector of quantities we are trying to predict and 
X = [x1|… |xp] ∈ ℝn×p be a matrix consisting of all possible predictors stored as its 

(1)‖x − y‖2
2
=

n�

i=1

(xi − yi)
2 = 2 − 2

n�

i=1

xiyi = 2 − 2cor(x, y).
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columns. Finding Lasso coefficients is based on solving the following optimization 
problem (Tibshirani 1996):

where ‖w‖1 is the l1 norm of w and 𝜆 > 0 is the regularization parameter. The vari‑
ables whose coefficients are not equal 0 for a given value of � form the current active 
set.

Typically one does not solve the problem for a specific value of � but aims to find 
the so called Lasso path, i.e. solutions w⋆(𝜆) for all possible values of � . For that it suf‑
fices to find solutions for those values of the regularization parameter at which a vari‑
able is added or removed from the active set (Bach et al. 2012).

2.1  Related literature

We now review the related literature, beginning with a detailed discussion of related 
screening rules for the Lasso problem. Later we describe general variable screening 
methods and mention some existing approaches addressing a similar problem setting.

Most relevant to our research are screening methods designed specifically for the 
Lasso method. Their development started with the Safe Feature Elimination method 
(SAFE) (El Ghaoui et  al. 2010), which, for a given value of the regularization 
parameter � , screens out variables which cannot end up in the active solution. This 
basic Lasso screening technique is not very effective, but was followed by many 
modifications which improved and extended it in several ways.

The first direction was to increase pruning effectiveness. Examples are the Strong 
Rules (Tibshirani et al. 2012) used a stricter screening threshold at the expense of 
allowing some false rejections, or the Dual Polytope Projection (DPP) (Wang et al. 
2013), a more efficient method avoiding false rejections. Further research mainly 
focused on more precise screening tests, usually based on the dual formulation of 
the problem (Xiang et al. 2011; Xiang and Ramadge 2012; Dai and Pelckmans 2012; 
Pan and Xu 2019; Lee et al. 2017; Fercoq et al. 2015). A fairly recent overview can 
be found in Xiang et  al. (2016), where tests are classified based on the shape of 
acceptance region into spherical, dome or elliptical bounds and others.

In this work we only consider spherical tests as they can be naturally imple‑
mented using a multidimensional index and focus mainly on safe screening rules, 
i.e. those satisfying

where xi is the vector of values of the variable to be screened, and q, Rscreening are 
respectively the acceptance sphere center and radius generated based on the screen‑
ing rule.

In this paper we rewrite the above condition in terms of correlations for reasons 
given in Sect. 2.2 to obtain the following, equivalent (for normalized vectors) form

(2)w⋆(𝜆) = argmin
w∈ℝp

1

2
‖y − Xw‖2

2
+ 𝜆‖w‖1,

(3)‖xi, q‖ ≥ Rscreening ⇒ w⋆

i
(𝜆k) = 0,
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where vscreening is a minimum correlation threshold. The smaller the value of Rscreening 
(or equivalently the larger vscreening ) the more effective the screening rule is.

A further improvement was the invention of sequential screening rules which can 
be used not on a single value of � but for a whole sequence of values �1, �2,… where 
results computed for �k−1 are used to get a much tighter bound �k . This way, it is pos‑
sible to approximate the full regularization path much more efficiently. Most of the 
methods for single value of � mentioned above have sequential versions available 
(Fercoq et al. 2015; Wang et al. 2013).

Yet another technique called dynamic screening, proposed in Bonnefoy et  al. 
(2014) and further developed in Fercoq et al. (2015); Ndiaye et al. (2017) integrates 
screening directly with the optimization algorithm used to obtain the Lasso solution. 
Variables are screened after each iteration of the algorithm with the current solution 
used for improved screening before the next optimization step. While those meth‑
ods are the current state‑of‑the‑art in Lasso optimization they are not applicable to 
the scenario considered in this paper. Since our data is based on disk, the compu‑
tation time is dominated by the time of fetching pre‑screened variable into RAM 
(see Sect. 3, where our main algorithm is described), the actual optimization on pre‑
screened variables takes only a small percentage of the total.

The screening rules considered in our experiments (Sect.  4) are presented in 
Table 1 in the correlation based form (Eq. 4). They all have spherical acceptance 
regions and can thus easily be implemented using a multidimensional index. Also, 
since we are interested in constructing the full regularization path sequential ver‑
sions of the rules are used. It can be seen that all rules use the residual vector of the 
previous model on the path rL(�k−1) as the query center and expressions of growing 
complexity for the radius, with the GAP SAFE rule (Fercoq et al. 2015) being the 
most advanced and the tightest.

While many Lasso screening methods are based on tests similar to the one pro‑
posed in this paper (which is in fact a spherical test in the language of Xiang et al. 
(2016)), our bounds are different from all of them: the actual goal of screening is dif‑
ferent in our case. Current techniques only screen variables for a single fixed value 
of the regularization parameter � or for a predefined sequence �1,… , �K so the are 
only capable of constructing a discretized regularization path. The screening we 

(4)|cor(xi, q)| < vscreening ⇒ w⋆

i
(𝜆k) = 0,

Table 1  Lasso sequential screening rules used in the paper

r
L
(�

k−1) is the residual vector at the previous point in the path and G the corresponding duality gap (Fer‑
coq et al. 2015)

Screening rule Query q vscreening

Strong Tibshirani et al. (2012) r
L
(�

k−1)
2�

k
−�

k−1

‖r
L
(�

k−1)‖
DPP Wang et al. (2013) r

L
(�

k−1) �
k−1

‖r
L
(�

k−1)‖

�
1 −

1

�
k

+
1

�
k−1

�

GAP Fercoq et al. (2015) r
L
(�

k−1) �
k−1

‖r
L
(�

k−1)‖

�
1 −

2G(�
k−1)

�
k
�
k−1

− ‖r
L
(�

k−1)‖2
�

1

�
k

−
1

�
k−1

�2
�
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propose allows for screening away variables which cannot be the next ones to enter 
the model on the regularization path. In other words, the purpose of our screening 
procedure is not finding the active set for a given � , but instead, searching for the 
next variable to be added to the regularization path. As a result, the complete regu‑
larization path is returned.

We now discuss other related approaches.
The general problem of screening variables in the ultra‑high dimen‑

sional setup was considered in Fan and Lv (2008) where the Sure Independ‑
ence Screening (SIS) criterion was proposed. The authors showed that, under 
certain assumptions, discarding variables on the basis of correlation with the 
response retains all relevant variables with high probability. Many methods 
based on this observation followed, modifying the approach and extending its 
applicability (Fan et  al. 2009; Kong et  al. 2017). After initial screening, any 
model construction method can be used, including Lasso, which provides the 
second stage of variable selection. There are, however, several problems with 
this technique. First, the number of pre‑screened variables needs to be specified 
in advance and is difficult to choose in practice. Moreover, the approach may fail 
to select important features, especially in the presence of many highly correlated 
variables, which is typical in high dimensional settings. Additionally, theoreti‑
cal guarantees are valid only asymptotically for large numbers of records, not 
variables. Those weaknesses have been corroborated experimentally in Żogała‑
Siudem and Jaroszewicz (2020), where SIS was found to perform poorly on the 
Eurostat database.

The idea of using multidimensional indexes for variable selection appeared 
in the now discontinued Google Correlate service (Mohebbi et al. 2011), which 
was in fact a motivation for our work. The service, given a query time series 
would find the most correlated (in the sense of changes in popularity) Google 
query. The service had several limitations: it was restricted to finding correlated 
Google queries, not general data, and only found single most correlated vari‑
ables, while the approach proposed in this paper allows for building complete 
linear models.

Similar problems (building many models against a fixed set of predictors) have 
been analyzed in the context of dictionary based methods (Xiang et al. 2016). In 
this paper we only consider regression problems, which are frequent in social sci‑
ences and biological applications.

There are also a few systems which allow for automatically linking to pub‑
licly available open datasets. A primary example is the RapidMiner’s Linked 
Open Data Extension (Paulheim et  al. 2014; Ristoski 2015) and its predecessor 
the FeGeLOD system (Paulheim 2012; Ristoski and Paulheim 2013) which can 
be used to automatically add variables to the model. Unfortunately, those systems 
are based on syntactic matching of the indexing attributes (e.g.,  country/year) 
based on ontologies alone, and will thus result in huge amounts of statistically 
irrelevant variables being directly included in the modeling process. Consider, 
for example, the researcher who wants to find out which factors affect the infant 
mortality rate in each European country. The target variable is indexed by coun‑
try/year pairs, and, since there are literally millions of variables indexed by those 
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attributes available in open data collections, including all of them would likely 
overwhelm the model construction procedure, unless additional mechanisms are 
used, such as the one proposed in this paper.

In Żogała‑Siudem and Jaroszewicz (2020) multidimensional indices were used 
to speed up stepwise regression in a scenario addressed in this paper.

2.2  Multidimensional indexing

We now present a brief overview of literature on multidimensional indexing. A 
multidimensional index is a data structure, which enables efficient searches for 
pre‑indexed vectors which are close to a given query vector q. Our approach 
requires two types of queries to be supported: k‑nn queries, where the search 
returns k vectors closest to the query q, and range queries, where all vectors 
within a given distance r from q are returned.

A multidimensional index can be exact or approximate. Among the most popu‑
lar exact indexes are kd‑trees (Bentley 1975) and ball‑trees (Omohundro 1989), 
however due to their poor performance for a larger number of dimensions (even 
as low as 20), we focused on approximate solutions.

Approximate multidimensional indexing is a very active research area which 
fairly recently came up with several new approaches such as Locality Sensitive 
Hashing (Indyk and Motwani 1998; The ANNOY library 2023), Hierarchical 
Navigable Small World (HNSW) graphs (Malkov and Yashunin 2020) or aniso‑
tropic nearest neighbor search (Guo et  al. 2020), the last two approaches being 
the current state of the art. Several solutions have also been proposed for correla‑
tion indexing, where the distance measure is the correlation coefficient itself (The 
ANNOY library 2023; Andoni et  al. 2015). (Aumüller et  al. 2020a) provides a 
recent overview of available techniques, with up‑to‑date benchmarks accessible 
at (Aumüller et al. 2020b).

Using an appropriate multidimensional index is a key factor in the implemen‑
tation of our method. Unfortunately most approaches and implementations turned 
out to be inadequate for our problem. First, many available software packages 
allow only k‑nn queries, not range queries which are necessary for our algorithms 
(see Sect. 3). Further, most approaches assume all indexed vectors must be stored 
in RAM, which makes them inappropriate for our use case. We ended up using 
the excellent Faiss library (Jégou et al. 2020) which allows for disk based indexes 
and range queries.

3  Index based Lasso path construction

In this section we briefly describe the homotopy algorithm for solving the Lasso 
problem and introduce our algorithm for the Lasso path construction.
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3.1  The basic homotopy algorithm

There exist many algorithms for solving the Lasso problem (Eq.  2) for a specific 
value of � as well as for finding the whole regularization path (i.e. estimating w⋆(𝜆) 
for all possible values of � ). Examples of path finding algorithms include LARS 
(Efron et al. 2004) and the homotopy method (Bach et al. 2012) used in this paper. 
An overview of the topic can be found in Bach et al. (2012).

The homotopy method (Algorithm 1) proceeds in steps, adding and removing var‑
iables one at a time. Let J be the set of indices of variables in the current active set. 
The algorithm starts with � high enough for J to be empty and, during each iteration, 
finds (by sequentially scanning all available predictors) the largest � value for which 
the next feature is going to be added or removed from the active set. Since the Lasso 
path is piecewise linear (Tibshirani 1996), this corresponds to finding the nearest 
‘kink’ on the regularization path. Variables are added and removed until a specified 
stopping criterion is reached, for example, the maximum number of iterations kmax , 
maximum size of the active set smax , or the minimum value of the regularization 
parameter �min . Details can be found in Bach et al. (2012).

The main bottleneck of the algorithm in the considered scenario is step 5, where 
all variables not in the current active set need to be checked sequentially. Since we 
assume p ⋙ n and the data not to fit in main memory, implementing this step in a 
brute force manner will be very slow. This motivates our multidimensional index 
based screening procedure described next.
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3.2  Index based Lasso screening criterion

In this section we are going to present the main contribution of the paper: a Lasso 
path algorithm based on a multidimensional index. In what follows, we assume that 
the index is already constructed and contains all available variables. This is justified, 
since we assume that multiple models are built against a fixed set of predictors (see 
Sect. 1).

We begin by presenting the theoretical results behind our index‑based screening 
procedure. First, we show that the equation in step 5 of Algorithm 1 can be rewrit‑
ten in terms of correlations of a potential new variable x with two specific vectors 
denoted s and u. Let J be the set of indices of variables in the current active set, let 
XJ denote the matrix of active variables, and let tJ = sgn(XT

J
(y − Xw⋆(𝜆))) . The fol‑

lowing theorem holds (the proofs of this and all remaining theorems can be found in 
Appendix 1).

Theorem 1 Let x be a variable not in the current active set J. Then the condition 
|xT (y − Xw⋆(𝜆))| = 𝜆 (step 5 of Algorithm 1)

can be written as

where

Further, u and s are normalized, orthogonal, du ⩽ 1 , ds ⩾ 1 , and |J| = 1 implies 
ds = 1.

Theorem 1 states that in order to find the value of � at which a variable x not cur‑
rently in the active set would enter the model, it is sufficient to find its correlations 
with two orthogonal vectors u and s. Notice that u is the normalized residual vector 
of Ordinary Least Squares regression of y on XJ (Rao 2009).

We begin with an intuitive explanation of our criterion and later provide a formal 
theorem with a proof. Due to orthogonality of u and s, cor(x, u)2 + cor(x, s)2 ⩽ 1 for 
any vector x, and we can visualize pairs (cor(x, u), cor(x, s)) as points lying in a unit 
circle.1 This interpretation, shown in Fig. 1, will be used to graphically illustrate our 
selection criterion.

Let us first note that not all points in this circle can be achieved by potential new 
variables:

(5)|ducor(x, u) + �dscor(x, s)| = �,

u =
y − XJ(X

T
J
XJ)

−1XT
J
y

du
, s =

XJ(X
T
J
XJ)

−1tJ

ds
,

du = ‖y − XJ(X
T
J
XJ)

−1XT
J
y‖2, ds = ‖XJ(X

T
J
XJ)

−1tJ‖2.

1 To see this note that u and s are orthonormal so the length of the projection of x onto the subspace they 
span is 

√
(xu)2 + (xs)2 . Since x is a unit vector we get (xu)2 + (xs)2 ⩽ ‖x‖2

2
= 1.
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Theorem 2 Let �k be the value of the regularization parameter at the time of the last 
‘kink’ on the path (i.e. point where a variable is added or removed from the model), 
XJ the active set at this point, and u, s, du , ds be defined as in Theorem 1. Then for 
any variable x not in the current active set

where rL(𝜆k) = y − Xw⋆(𝜆k) is the residual vector of the current Lasso solution.

Variables x which satisfy the above condition form a band in the (cor(x, u) , 
cor(x, s)) coordinates, shown as a shaded area in Fig. 1. The values of � at which a 
given x would enter the active set are presented with different shades of gray and 
cannot exceed �k . x’s which would enter the model at given � correspond to pairs 
of line segments (see Eq. 5) marked in the figure for a few possible values of � . 
We are interested in finding a variable with the maximum 𝜆 < 𝜆k , i.e. lying on the 
segment within the gray band which forms the largest angle with the y axis.

In order to restrict the search space of such variables, we first select a candidate 
variable x0 which would be added to the model at �0 (see Sect. 3.3). Then, we are 
going to search only variables which would enter the model for 𝜆k > 𝜆 > 𝜆0 . In 
the (cor(x, u) , cor(x, s)) coordinates such x’s correspond to points on line segments 
angled further away from the y‑axis than segments corresponding to �0 . The 
areas which we need to search are shown as red wedges in Fig. 2. Those areas lie 
within the hatched circular caps shown in the figure. Notice that there are no vari‑
ables corresponding to points in the caps which are not in the red wedges: such 
variables would have entered the model earlier with 𝜆 > 𝜆k which contradicts our 

(6)|xTrL(𝜆k)| = |ducor(x, u) + 𝜆kdscor(x, s)| < 𝜆k,

Fig. 1  The area of possible solutions to Eq.  5 with additional constraints based on Theorem  2 for 
�
k
= 0.5 . The shade of gray represents the value of � at which a variable corresponding to this point 

would be added to the model. A ‘third axis’ shows the correlation of potential new variables with current 
Lasso residual r

L
(�

k
)
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assumption that x is not in the active set. Therefore, searching within those caps 
provides a safe screening rule for the next variable to be added to the model.

As will be shown in the theorem below, points in the caps correspond to vari‑
ables highly correlated with a vector u⋆ = u cos 𝜃0 + s sin 𝜃0 for an appropriately 
chosen �0 . This allows all candidate variables to be selected using a range query 
around ±u⋆ . The correlation with u⋆ is shown as an additional ‘third axis’ in 
Fig. 2.

Theorem 3 Let vectors u, s ∈ ℝn and values du, ds ∈ ℝ be defined as in Theorem 1. 
Additionally, let x0 ∈ ℝn be a variable not in the current active set, and let �0 be the 
value for which it would enter the model. Define the vector

where tan �0 =
�0ds

du
 , �0 ∈ (0,

�

2
) . Then |cor(x0, u⋆)| =

sin 𝜃0

ds
 . Moreover, for any other 

variable x ∈ ℝn not in the active set, the value � at which x would enter the model 
satisfies

Theorem  3 states that all variables more strongly correlated with u⋆ than x0 
would be added to the model for larger values of � and that candidates better than 
x0 can only be found among such variables. The theorem thus provides a safe 
screening rule for the next variable to be added to the Lasso path. Since the test 
is based only on correlations it is suitable for use with multidimensional indices.

u⋆ = u cos 𝜃0 + s sin 𝜃0,

𝜆 > 𝜆0 ⇔ |cor(x, u⋆)| > |cor(x0, u⋆)|.

Fig. 2  The areas which must be 
searched in order to find all vari‑
ables better than a candidate x

0
 

are marked with dark red color. 
The hatched caps show the final 
search areas for new variables. 
A ‘third axis’ shows the correla‑
tion of potential new variables 
with a vector u⋆ defined in 
Theorem 3 (Color figure online)
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3.3  Index based homotopy algorithm

Based on Theorem 3 we can modify Algorithm 1, such that in step 5 we do not 
search through the entire set of all possible variables but will, instead, narrow 
the search to candidates selected based on range queries to the multidimensional 
index. Algorithm 2, which we call MI-Lasso, shows those modifications.

In each iteration we need to update the vectors u and s, and then find a can‑
didate vector x0 which should correspond to a large value of �0 to make prun‑
ing effective. We select x0 by finding predictors outside the active set which are 
most correlated with OLS and Lasso residual vectors (respectively u and rL ), and 
picking the one with a higher value of � . The search is implemented efficiently 
using 1‑nn queries to the index.

Based on Theorem 3, we compute in step 6 the query vector u⋆ and the search 
radius 

√
2 − 2v (see Eq. 1) for the range query used to obtain a subset Jcand of 

variables which need to be checked explicitly as in the standard homotopy algo‑
rithm. We show in Sect. 4 that very few variables are typically selected.
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Finding �b (step 10 of Algorithm 2) in which a variable may be removed from 
the active set proceeds as in the standard homotopy algorithm since it is not 
computationally demanding.

3.4  Approximate indices and Lasso path consistency

Theorem 3 guarantees that the Lasso paths obtained using Algorithms 1 and 2 are 
identical as long as the set Jcand is selected correctly. However, if an approximate 
multidimensional index is used, it may omit the actual variable which should be 
added to the path at a given iteration. Such a variable is going to be incorrectly pre‑
sent in the inactive set and may be selected by the index in consecutive steps, albeit 
with an incorrect value of � . This will lead to the regularization path being incon‑
sistent and/or discontinuous.

Fortunately, there is a simple test to check whether the currently added variable 
should have in fact been added earlier: when a variable is added in step 9 of Algo‑
rithm 2 its coefficient should be equal to zero; a significantly larger value indicates 
an error. In order to correct such situations we can either discard such a variable 
and select the next best one, or find the true value of � at which it should have been 
added and restart the algorithm at that value.

In our experiments this situation did not happen often, only in about 0.2% of all 
iterations in all runs of our simulation experiments (described in Sect. 4). We thus 
decided to simply discard such variables.

4  Experimental evaluation

In this section we will evaluate MI-Lasso and compare it with another screening 
techniques.

4.1  Experiments on genetic data

First, let us test MI-Lasso on a relatively small data set which fits in RAM in order 
to test the effectiveness of the proposed screening rules in a general context. The 
dataset contains gene expression levels in the rat eye (Scheetz et  al. 2006; Huang 
et al. 2006). The task is to predict the expression level of gene TRIM32 (which is 
known to be one of the causes of a genetic disorder called the Bardet‑Biedl syn‑
drome) based on expression levels of other genes. The data set consists of 120 
observations and 31, 098 variables, and due to its size can be processed entirely in 
RAM. Thus, in this case we used the so called brute force multidimensional index 
which simply scans all variables to answer a query. This enables us to compare with 
state of the art method for memory based data, namely the dynamic version of GAP 
screening criterion with active warm starts (Ndiaye et al. 2017) implemented in the 
gsroptIM package (Ndiaye 2023) with the ‘active GS’ option.
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In our comparisons we will use the same value of �min (see Sect. 3.3) for all meth‑
ods. Also, �max = maxj |cor(xj, y)| is the same for all methods. Let k denote the num‑
ber of ‘kinks’ on the regularization path returned by the MI-Lasso algorithm.

Since our method explicitly finds the values of the regularization parameter � at 
which a variable is added or removed from the path, and the GAP screening method 
finds coefficient vectors for pre‑specified values of � , the comparison becomes diffi‑
cult. Let us first discuss the choice of the sequence �max = �1 ⩾ �2 ⩾ … ⩾ �m = �min 
for gsroptIM, where m is the length of the sequence. There are two ways of con‑
structing such a sequence used most frequently in literature. The first assumes equal 
spacing between consecutive lambdas, the second assumes lambdas to be equally 
spaced on the logarithmic scale, i.e. �i−1∕�i to be constant for all i. We chose the 
second strategy, since it corresponds the real life scenarios where the path changes 
more frequently for smaller �’s.

Let us first compare computation times for various values of �min and m. Let k 
denote the true number of ‘kinks’ on the regularization path returned by the MI-
Lasso algorithm. To make the comparisons meaningful we express m as multiples 
of k such that the computational effort of both methods is similar. Table 2 gives the 
results. Since MI-Lasso does not use the parameter m, its execution times are the 
same in all three subtables.

It can be seen that runtimes of both methods are comparable, with MI-Lasso gain‑
ing an upper hand when the number of points on the path approximated by gsrop-
tIM is larger; for m = 10k the differences become significant. This is despite the fact 
that MI-Lasso provides a complete regularization path, not an approximation. We 
also note, that our implementation is written pure Python (using the numpy library), 
while gsroptIM uses compiled code for faster execution.

We will now analyze how well does the GAP screening based method approxi‑
mate the full regularization path returned by MI-Lasso. To this end we will visualize 
how many variables changed (were added or removed from the model) between two 
consecutive approximation points �i−1 , �i . For MI-Lasso we will use true ‘kinks’ on 
the path, and the difference in model size will always be +1 or −1.

The results are shown in Fig.  3. The three plots correspond to increasing path 
approximation accuracy with, respectively, m = k (left), m = 2k (middle), m = 10k 
(right), where m is the number of points in the approximated path and k is the true 
number of change points on the path. For MI-Lasso each step results in either 

Table 2  Computation times in seconds for MI-Lasso and GAP safe screening (gsroptIM) for different 
values of �

min
 and varying number m of points on gsroptIM path approximation

Shortest computation times are marked in bold
k is the true number of change points on the regularization path between �

max
 and �

min

m = k m = 2k m = 10k

�
min

0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
k 67 217 254 67 217 254 67 217 254
MI-Lasso 0.50 1.79 2.18 0.50 1.79 2.18 0.50 1.79 2.18
gsroptIM 0.38 1.17 1.56 0.70 2.22 2.66 3.20 10.50 12.68
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adding or removing exactly one variable (as expected), but for the GAP screening 
based method we often end up with more than 5 variables being added between 
consecutive path points. This means that we are missing parts of the regularization 
path where significant changes to the model happen. With increasing number of 
points on the path the approximation improves, but the full path is never completely 
reconstructed.

We believe that the above experiments clearly demonstrate the advantages of our 
method since the approximation remains coarse, even when computation times sig‑
nificantly exceed those of MI-Lasso.

4.2  The Eurostat database

This section covers an experimental evaluation of Algorithm 2 on the huge Euro‑
stat database (Eurostat 2022). The Eurostat database consists of thousands of data 
sets which are organized in a hierarchical structure, starting with the general catego‑
ries, such as economy and finance, transport, etc. Below each main category there is 

Fig. 3  Change in model size between consecutive steps on the approximated path (gsroptIM) and the 
exact path (MI-Lasso). In each step on the exact path exactly one variable is added or discarded. The 
plots correspond to m = k (left), m = 2k (middle), m = 10k (right), where m is the number of points in 
approximated path and k is the true number of change points on the path

Fig. 4  The structure of the Eurostat database
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an extensive subcategory tree, and specific datasets are the leaves of the structure. 
Each of the datasets contains variables corresponding to different values of certain 
measures.

Figure 4 illustrates the location in the database of the variable describing infant 
mortality rate, used later in Sect. 4.3. The variable is located in the demo_minfind 
dataset, which is located in the popul category, demo subcategory which contains 
demographic data, and in the more specific demo_mor subcategory which contains 
mortality related data.

The demo_minfind dataset has two dimensions. The first, indic_de, 
describes the statistic under consideration and takes 5 different values: INFMORRT 
(infant mortality rate, used as a response variable later in our experiments), NEO‑
MORRT, ENEOMORRT, LFOEMORRT and PERIMORRT. The second dimen‑
sion is the unit in which the values were expressed, which in this dataset can take 
only one value: RT – the number of cases per 1000 births. The dataset therefore 
contains a total of 5 × 1 = 5 variables. Detailed descriptions of all datasets and 
variables can be found on the Eurostat website (Eurostat 2022). Variables can be 
indexed by various attributes, but in this work we only use variables indexed by 
(country,year) pairs. There are about 8 million such variables, which were all 
included in our experiments.

We limit our consideration to 32 European countries (all current EU members, 
the UK, and four EFTA members: Iceland, Norway, Liechtenstein, Switzerland) 
over 25 years (1990–2014). There are thus n = 800 observations for each variable. 
All included variables amounted to the total of 25 GB of uncompressed binary data. 
For experiments involving predictive accuracy we split the data into a training set 
(years 1990–2011) and a test set (years 2012–2014).

In the database, many values are missing. The actual amount varies depending on 
year and type of data. For example, for newer data in the environment section there 
are about 33% missing values, while for earlier years the value can be as high as 
90% in some categories. We used the following simple imputation scheme: missing 
values between two known time points were imputed using linear interpolation, and 
missing values at the beginning and end of a time series were imputed using, respec‑
tively, the first or last available value for a given country.

An important problem was the presence of highly correlated or even identical 
variables. Many of such correlations followed from statistical dependencies between 
features which must exist in such a broad database (for example, many factors are 
correlated with the country’s general level of economic development). Other reasons 
are of a more technical nature, e.g. the same variable may be present in more than 
one dataset, or expressed in different units.

We begin with performance evaluation of MI-Lasso on semi‑synthetic data, later 
we present an illustrative example demonstrating that our approach is capable of 
efficiently discovering useful and interpretable models even in the presence of mil‑
lions of highly correlated variables.
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4.2.1  Evaluation on semi‑synthetic data

In order to test the performance of Algorithm  2 in a controlled setting we resort 
to simulation experiments. To make them as close to real data as possible, we use 
original Eurostat variables as predictors, but the response vectors y are generated 
according to a known ground truth model with 3 randomly selected predictors. More 
specifically, we simulate the data according to the following steps: 

1. Select three Eurostat variables x1 , x2 and x3 at random and normalize them.
2. Generate y = 10x1 + 3x2 + x3 + � where � is an i.i.d. normally distributed noise 

with standard deviation of 0.02.
3. Split y and all available variables into train and test sets (see above).
4. Run Algorithm 2 with smax = 50 , �min = 0.01 on the training part of y with all 

indexed Eurostat variables as features.

The above simulation was repeated 100 times. The parameters in step 4 were cho‑
sen such that the algorithm selects 50 variables but stops early if the regularization 
parameter � decreases below 0.01.

The computations were performed on an Intel(R) Core(TM) i7‑8550U CPU run‑
ning at 1.80GHz with 32GB RAM. To compare models we used the RMSE metric 
which is most common in regression tasks. In our experiments we used an approxi‑
mate index from the Faiss library (Johnson et al. 2017). More specifically, we used 
the IVF4096,Flat index which allows for disk based operations. The index is 
based on a fairly simple but practically very effective algorithm (Babenko and Lem‑
pitsky 2014). The method applies k‑means clustering to the original data to obtain 
4096 clusters. To perform queries a brute force search is performed to find a given 
number (controlled by the nprobe parameter, which we set to 64) of clusters with 
centers closest to the query vector. The final solution is then found within only those 
clusters, see (Johnson et al. 2017) for details. While the approach is much simpler 
than newer algorithms, we found it to work surprisingly well for our use case.

4.2.2  Comparison with other Lasso screening methods

We compare our approach (MI-Lasso) with three other Lasso screening approaches: 
Strong Rules (strong), Dpp, and gap (see Sect. 2.1 for details). The first method is 
approximate, the second and third (as well as our method) are safe, i.e. they should 
return the same Lasso path that would be obtained if no screening was used. We 
consider the gap method, based on the duality gap of the Lasso optimization prob‑
lem, to be the current state of the art. As can be seen in Table 1, the three competing 
methods are spherical tests and can thus also be implemented using a multidimen‑
sional index. For a fair comparison, we modified the strong, Dpp, and gap algo‑
rithms to use the same index as the method proposed in this paper. This was possible 
since all those methods are based on spherical tests.

Moreover, we use iterative versions of strong, Dpp, and gap methods which 
allow for efficient screening for a whole sequence of values of � (see Sect.  2.1), 
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thus providing a sample from the regularization path. In our experiments we used a 
sequence of values between �min = 0.01 and �max = maxj |cor(xj, y)| , equally spaced 
at 0.002 intervals. This configuration gave the best results in our experiments.

Additionally, we include the Brute-Lasso method (Algorithm 1) which is a clas‑
sic Lasso implementation without any additional screening. Due to long computa‑
tion times (recall that the variables were stored on disk) only 50 simulations were 
run for this method.

As mentioned in the previous section, it is difficult to directly compare earlier 
methods with MI-Lasso because they compute sets of active variables for a fixed 
sequence of values of the � parameter, while our method directly finds points on the 
path where variables are added/removed. We overcome this problem by aligning the 
regularization paths returned by all methods by the moment the given size of the 
active set is reached. The size of the active set is used as the x‑axis in charts compar‑
ing the methods’ performance. This way, meaningful comparisons of cost needed to 
obtain a model of a given size become possible.

Additionally, we impose a limit of 200, 000 (about 2.5% of available predictors) 
on the number of variables returned by the multidimensional index due to perfor‑
mance issues with strong, Dpp, and gap methods; the limit was never reached by 
MI-Lasso.

4.2.3  Computation time

We begin with a high level comparison of computation times. Since we assume that 
many models will be built against the same set of predictors, index construction time 
is not included in reported computation times. For completeness we note that index 
construction took 33 min and 27 s and was much faster than downloading the full 
Eurostat database and converting it into tabular form which took several hours.

Figure 5 shows the computation time needed to construct a Lasso model with 50 
variables averaged over 100 simulation (20 simulations were used for Brute-Lasso 
due to very long computation time).

Fig. 5  Computation time needed to obtain a Lasso model with 50 variables for various screening meth‑
ods
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It can be seen that MI-Lasso is an order of magnitude faster than strong (an 
approximate method) and GAP. It is two orders of magnitude faster than Dpp, which 
in turn is much faster than Brute-Lasso.

4.2.4  Screening effectiveness

To better pinpoint the differences in performance of the methods we investigate the 
effectiveness of screening, i.e.  the percentage of variables which pass the test and 
need to be checked explicitly (as in step 5 of Algorithm 1). The results are shown in 
Fig. 6 as a function of model size. Sizes are averaged in groups of 5 for clarity.

We can see that the percentage of variables preselected by MI-Lasso remains 
relatively constant, but increases rapidly with the size of active set for strong, Dpp, 
and gap. For Dpp it quickly reaches the upper bound of 200, 000 variables. Screen‑
ing effectiveness of the proposed method is thus orders of magnitude higher for 
larger active sets. For models with a small number of variables Dpp and strong 
are more effective but the overall number of candidates is small for such models, 
so there is little effect on the overall performance, as seen in Fig. 5. Moreover, it 
is important to remember that MI-Lasso constructs a complete regularization path 
which the other methods only sample at predefined points.

4.2.5  Predictive accuracy

Now, let us take a look at predictive accuracy of the models. While all methods 
(except for the approximate strong) should in principle return the same regulariza‑
tion path, the use of an approximate multidimensional index may result in signifi‑
cant differences. Moreover, after screening, the actual Lasso coefficients need to be 
found through optimization which may not be reliable for larger sets of candidates 

Fig. 6  Percentage of candidate variables left after screening as a function of the size of the active set. 
The bands show values between first and third quartiles over all simulations
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due to numerical issues2. Larger sets of candidates which pass screening make it 
more likely that a wrong variable will enter the model due to numerical problems. 
Numerical issues may also adversely affect the estimated coefficients.

In order to test predictive accuracy we need to select a single model based on the 
Lasso path. Lasso is known to often find wrong variables quite early on the regu‑
larization path (Su et al. 2017), so we decided use the Lasso itself as a screening 
procedure as suggested in Bühlmann and Van De Geer (2011). To this end we used 
the first 50 variables selected by Lasso and built, based on them, a new linear model 
using a second stage of variable selection. We chose the SOS algorithm proposed in 
Pokarowski and Mielniczuk (2015), which combines the Lasso with the Zheng‑Loh 
model selection proceedure (Zheng and Loh 1995), i.e. orders variables preselected 
by Lasso based on their t‑statistics and considers models obtained by adding vari‑
ables in that order. The final model is selected based on the EBIC criterion (Chen 
and Chen 2008).

Figure 7 presents root mean squared errors for all screening methods on training 
and test data. Additionally a nuLL, intercept‑only model is included for comparison.

As we can see, MI-Lasso offers the best predictive performance of all screening 
methods, comparable with the orders of magnitude slower Brute-Lasso. All meth‑
ods clearly outperform the nuLL model, proving that Lasso can work reliably even in 
the presence of millions of highly correlated potential predictors.

4.2.6  Variable selection

The final question we are going to ask is whether the true predictors used to build 
the ground truth model are included in the variables selected by the Lasso estima‑
tor. Unfortunately, since the Eurostat data contains many highly correlated (or even 
identical) variables, one cannot expect to select the exact same variables which were 
used to construct the base models. To overcome this issue we check how many of 
the variables selected by Lasso have high correlation with any of the original vari‑
ables used in the ground truth model. More precisely, we consider a variable to be 
correctly selected if its correlation with one of the original variables is above 0.95. 

Fig. 7  Predictive accuracy for Lasso models constructed using different variable screening methods

2 We used the optimization procedure implemented in the scikit-learn package.
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As in the previous experiments we continued the Lasso path construction until 50 
variables were selected or �min = 0.01 was reached; the set of variables active at that 
point was used as the final selection.

Figure 8 shows the results. The left part of the figure shows the fraction of simu‑
lations in which at least one variable highly correlated with, respectively, first ( x1 ), 
second ( x2 ), and third ( x3 ) ground truth variable was found. It can be seen that the 
proposed algorithm always selected at least one variable highly correlated with the 
first predictor (denoted x1 in Sect. 4.2.1) which had the largest coefficient equal to 
10. In about 40% of simulations MI-Lasso found at least two correct variables. The 
recall is thus not perfect but the results are certainly useful.

The performance of GAP and Strong screening methods was much worse and 
even the first variable was recovered in less than 50% of cases. We conjecture that 
the reason was their lower screening effectiveness which resulted in the index return‑
ing too many variables in response to range queries.

For illustration, the right chart of Fig. 8 shows maximal correlation across simu‑
lations of any selected variable with each ground truth variable. This chart confirms 
that MI-Lasso found variables which tended to be more correlated with those in the 
ground truth model.

4.3  An illustrative example

In this section we show an example of using Algorithm 2 on the Eurostat database, 
and demonstrate that interpretable results may be obtained with standard Lasso even 
on such a big and highly correlated dataset. As the response variable we chose infant 
mortality rate per country per year (INFMORRT  variable in the demo_minfind 
dataset3). The reason was the availability of data for this variable for all countries 
over long periods of time, as well as its popularity in social sciences, which makes 

Fig. 8  Variable selection effectiveness. Left chart: fraction of simulations in which variables highly cor‑
related with each variable in the ground truth model were found. Right chart: maximal correlation across 
simulations of any selected variable with each ground truth variable

3 https:// ec. europa. eu/ euros tat/ datab rowser/ bookm ark/ 65bc6 4f2‑ a011‑ 40e7‑ 9880‑ 75413 4facd 65.

https://ec.europa.eu/eurostat/databrowser/bookmark/65bc64f2-a011-40e7-9880-754134facd65
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it easier to verify our findings. Since in this example we focus on the interpretabil‑
ity of the model, we decided to stop the construction of the path after selecting five 
variables.

Before we started the modeling process, we discarded variables leaking 
information about the target, specifically the data sets demo_r_minfind, 
demo_mlifetable, demo_r_minfind, demo_minfind, hlth_cd_asdr, 
demo_mlexpec, hlth_cd_asdr2, hlth_cd_aperrto, demo_r_mlife, 
hlth_cd_acdr as well as all variables with designation INFMORRT  from the 
hlth_cd_info dataset. Those datasets either contain copies of the target vari‑
able itself or variables highly influenced by it, such as various measures of life 
expectancy. During each iteration we ignored variables having too many missing 
values (more than 50%).

Table 3  Variables added to the model predicting infant mortality rate during the first five iterations

Full descriptions of the variables can be found on the Eurostat website. The total time for finding those 
variables was 2.89 s

Eurostat id Description

1. First variable ( x
1
 ) added to the model

Section: economy, dataset:nama_10_co3_p3, 
variable:coicop:CP01, unit:PC_GDP

Final consumption expenditure on food and non‑
alcoholic beverages of households as a percent‑
age of gross domestic product

link: https:// ec. europa. eu/ euros tat/ datab rowser/ bookm ark/ 31924 0c5‑ 5f39‑ 4d81‑ 906e‑ af950 a9fc3 b1
First variable, direct index search,    � = 0.820

2. Second variable ( x
2
 ) added to the model

Section: general, dataset:nama_10_gdp, 
variable:na_item:D21, unit:PD10_NAC

GDP component (in national currency) concerning 
taxes, in reference to 2010 prices

Link: https:// ec. europa. eu/ euros tat/ datab rowser/ bookm ark/ 1920b 00f‑ 6de8‑ 4ed1‑ ad1e‑ 2f6ed 4b7df ee
Candidates selected: 123 (0,0015% total),    � = 0.753

3. Third variable ( x
3
 ) added to the model

Section: popul, dataset:demo_find, 
variable:AGEMOTH

Mean age of women at childbirth

Link: https:// ec. europa. eu/ euros tat/ datab rowser/ bookm ark/ b6d7e b96‑ e4d0‑ 4f56‑ 9535‑ 2be38 316a0 a5
Candidates selected: 27728 (0.37 % total),    � = 0.715

4. Fourth variable ( x
4
 ) added to the model

Section: economy, dataset:nama_10_co3_p3, 
variable:coicop:CP011, unit:PC_GDP

Final consumption expenditure on food of house‑
holds as a percentage of gross domestic product

Link: https:// ec. europa. eu/ euros tat/ datab rowser/ bookm ark/ d9e63 1b5‑ a43c‑ 4241‑ b749‑ 051b3 f8c45 e1
Candidates selected: 43801 (0,58% total),    � = 0.690

5. Fifth variable ( x
5
 ) added to the model

Section: popul, dataset:demo_find, 
variable:AGEMOTH3

Mean age of women at birth of third child

Link: https:// ec. europa. eu/ euros tat/ datab rowser/ bookm ark/ c4c52 360‑ afda‑ 4c0f‑ a640‑ 916bb f033f 92
Candidates selected: 41499 (0.55% total),    � = 0.575

https://ec.europa.eu/eurostat/databrowser/bookmark/319240c5-5f39-4d81-906e-af950a9fc3b1
https://ec.europa.eu/eurostat/databrowser/bookmark/1920b00f-6de8-4ed1-ad1e-2f6ed4b7dfee
https://ec.europa.eu/eurostat/databrowser/bookmark/b6d7eb96-e4d0-4f56-9535-2be38316a0a5
https://ec.europa.eu/eurostat/databrowser/bookmark/d9e631b5-a43c-4241-b749-051b3f8c45e1
https://ec.europa.eu/eurostat/databrowser/bookmark/c4c52360-afda-4c0f-a640-916bbf033f92
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The model construction process is summarized in Table 3, where the first five 
selected variables are shown. For each variable we provide Eurostat identifiers, 
a bookmark to the variable on the Eurostat website, and a short description. The 
actual Lasso path for those variables is shown in Fig. 9.

The first variable, which is simply the one most correlated with the tar‑
get, describes consumption expenditure on food as percentage of GDP. This 
value is likely to be high in poorer countries, where satisfying the basic needs 
is more challenging. The relation between poverty and infant mortality rates is 
well known (Sims et al. 2007), and the higher (relatively to e.g.  total GDP) the 
expenditure on basic needs, the worse the economic situation of a country is. Fig‑
ure 9 shows that the coefficient of the variable is positive, as expected.

The second variable added to the model is one of the components of a country’s 
GDP, which in turn is related to infant health and development perspectives (Finlay 
et al. 2011). The variable’s coefficient is negative (Fig. 9): higher GDP correlates with 
lower infant mortality. The next feature concerns mean age of women at childbirth, 
which is known to be related to infant health; the coefficient is negative (Fig. 9) because 
children born by underage mothers tend to have higher mortality (Finlay et al. 2011). 
The next variable is very similar to the first one and is in fact highly correlated with it. 
As the Lasso path evolves (Fig. 9), the fourth variable’s coefficient keeps growing and 
it eventually completely replaces the first variable added to the model. This illustrates 
the fact that Lasso may mistakenly add variables early on in the regularization path (Su 
et al. 2017). A similar situation occurs when the fifth feature, concerning the age of 
women at birth of a third child is added, as it is closely related to the third variable.

To summarize, the example demonstrates that the proposed method is able to 
quickly construct interpretable models. We believe, that we correctly identified the 
most important factors influencing infant mortality rate such as economic development 

Fig. 9  The regularization path for the Lasso estimator of infant mortality rate. Numbers on the left axis 
correspond to variable numbers in Table 3. The figure shows the part of the path until the fifth variable 
is added to the model at � = 0.575 . For illustrative purposes the path is continued for those five variables 
until � = 0
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level and age of mothers at childbirth. We were able to find plausible explanations in 
literature for all the first five variables included in the model. Moreover, the signs of 
their coefficients agree with intuitive interpretations. For this example, model construc‑
tion took just under 3 seconds.

5  Conclusion

We introduced a new screening technique for the homotopy based Lasso path 
construction. Our criterion is different from other currently available approaches, 
as it allows for explicit selection of the next variable on the regularization path 
without the need for specifying the value of the regularization parameter � . We 
also assumed that the data used to build the model contains a huge number of 
fixed predictors which can be reused for multiple analyses. As a result we pro‑
posed to use a multidimensional index to speed up model construction. We have 
rigorously proven the correctness of our screening criterion, when an exact multi‑
dimensional index is used.

Experiments on genetic data which fits in main memory confirmed that our cri‑
terion is competitive with current state of the art, even though we provide a full and 
exact regularization path, unlike other methods which only approximate the path at 
selected values of the regularization parameter. Our analyses have shown that even 
very dense sampling will not fully recover the path. The approach also proved effec‑
tive for large datasets not fitting in main memory, where an approximate multidi‑
mensional index was used to speed up model construction. The proposed algorithm 
again outperformed other available screening methods in terms of computation time, 
screening efficiency and predictive accuracy.

Finally, we have shown that the Lasso method is capable of efficiently construct‑
ing interpretable models even in the presence of millions of highly correlated vari‑
ables. In the paper, we have created a model predicting infant mortality rate in vari‑
ous countries and confirmed the selected variables based on relevant literature.

Future work will involve extending the method to classification problems such 
as logistic regression. The challenge is that in this case the Lasso path is no longer 
piecewise linear and several formulas on which we relied for linear regression no 
longer hold.

Appendix 1: Proofs of theorems

Proof of Theorem 1 Let us first prove that u and s are normalized. It is easy to see 
that is suffices to show that the sums of their coordinates are zero. Since u is a vector 
of OLS residuals of y on XJ , and the sum of OLS residuals is equal to zero (Rao 
2009), u is normalized. Since the columns of XJ are assumed to be normalized, we 
have (1,… , 1)s =

1

ds
(1,… , 1)XJ(X

T
J
XJ)

−1tJ = 0 implying s is also normalized.



73

1 3

Variable screening for Lasso...

For a vector w, let wJ = (wj ∶ j ∈ J) be its projection on J. First, let us notice that 
we can substitute Xw⋆(𝜆) with XJw

⋆
J
(𝜆) , because the remaining coordinates of w⋆ 

are equal to 0. The expression |xT (y − Xw⋆(𝜆))| can then be rewritten as

The first equality follows from an explicit expression for w⋆(𝜆) given in (Bach et al. 
2012, Chapter 6.2) and the last from the fact that the vectors x, u, s are normalized. 
To see that s and u are orthogonal, notice that

Notice further that du is the l2 norm of a residual vector of an OLS model of y on XJ , 
and since ‖y‖2 = 1 and the norm of the residual vector cannot be larger than that of 
y, du ⩽ 1 . Further

Due to the normalization of the columns of XJ , we can observe that XT
J
XJ has 1’s on 

its diagonal

and since the elements of the matrix XT
J
XJ are correlations between normalized vari‑

ables, all its elements have absolute value not greater than 1.
The Gershgorin theorem (see e.g. Horn and Johnson (2012)) states that each 

eigenvalue of a symmetric matrix A = (aij) belongs to at least one Gershgorin disc 
centered at aii with radius equal to Ri =

∑
i≠j �aij� . If we take A = XT

J
XJ then 

Ri ⩽ |J| − 1 , and the largest eigenvalue of XT
J
XJ cannot be greater than |J| . Conse‑

quently, the smallest eigenvalue of (XT
J
XJ)

−1 is not smaller than 1|J|.
Denote with �i, vi the eigenvalues and eigenvectors of (XT

J
XJ)

−1 , so 
(XT

J
XJ)

−1vi = �ivi . Since vi ’s can be chosen to form an orthonormal basis, we can 
write tJ =

∑
i

�ivi for some constants �i yielding

(A1)

|xT (y − Xw⋆(𝜆))|
= |xT (y − XJ(X

T
J
XJ)

−1(XT
J
y − 𝜆tJ))|

= |xT (y − XJ(X
T
J
XJ)

−1XT
J
y + 𝜆XJ(X

T
J
XJ)

−1tJ)|
= |xT (duu + 𝜆dss)| = |ducor(x, u) + 𝜆dscor(x, s)|.

(duds)s
Tu = tT

J
(XT

J
XJ)

−1XT
J
(I − XJ(X

T
J
XJ)

−1XT
J
)y

= tT
J
(XT

J
XJ)

−1XT
J
y − tT

J
(XT

J
XJ)

−1XT
J
XJ(X

T
J
XJ)

−1XT
J
y = 0.

d2
s
= (XJ(X

T
J
XJ)

−1tJ)
TXJ(X

T
J
XJ)

−1tJ

= tT
J
(XT

J
XJ)

−1tJ .

(XT
J
XJ)ii =

n∑

k=1

(XJ)
2
ki
= 1,
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due to vivj = �ij (the Kronecker symbol) and 
∑
i

�2
i
= tT

J
tJ = �J�.

Finally, for |J| = 1 : ds = ‖XJ(X
T
J
XJ)

−1tJ‖ = ‖XJtJ‖ = ‖XJ‖ = 1, since XJ consists 
of a single normalized column.   ◻

Proof of Theorem 2 The fact is a simple consequence of the optimality conditions for 
the Lasso (see e.g. subsec. 1.4 in Bach et al. (2012)), which state that for any vari‑
able x not in the active set

  ◻

Proof of Theorem  3 It is easy to see that the vector u⋆ is normalized. Also, since 
�0 ∈ (0,

�

2
) , we have sin 𝜃0, cos 𝜃0 > 0.

Let us first compute the correlation of u⋆ with the candidate variable x0 based on 
which it was computed. Assume first that cor(x0, s) ⩾ −

du

�0ds
cor(x0, u) such that we 

can drop the absolute value in (5). We have

The first equality follows from the fact that x0 , u, s and u⋆ are all normalized (corre‑
lation becomes identical to dot product), the second from (5), and the third from the 
fact that, by definition, tan �0 =

�0ds

du
 , so cos �0 =

du

�0ds
sin �0 . When 

cor(x0, s) < −
du

𝜆0ds
cor(x0, u) an analogous reasoning leads to cor(x0, u⋆) = −

sin 𝜃0

ds
 and 

thus to

Let us now consider the case when cor(x, s) > −
du

𝜆ds
cor(x, u) (calculations are analo‑

gous for cor(x, s) < −
du

𝜆0ds
cor(x, u) ). In this case (5) implies

tT
J
(XT

J
XJ)

−1tJ = tT
J
(XT

J
XJ)

−1
∑

i

�ivi

= tT
J

∑

i

�i�ivi = (
∑

i

�ivi)
T (
∑

j

�j�jvj)

=
∑

i

�2
i
�i ⩾ (min

j
�j)

∑

i

�2
i

= (min
j

�j)t
T
J
tJ ⩾

1

|J|
|J| = 1,

|xT (y − Xw⋆(𝜆))| < 𝜆.

(A2)

cor(x0, u
⋆) = cos 𝜃0cor(x0, u) + sin 𝜃0cor(x0, s)

= cos 𝜃0cor(x0, u) − sin 𝜃0
du

𝜆0ds
cor(x0, u) +

sin 𝜃0

ds

= cos 𝜃0cor(x0, u) − cos 𝜃0cor(x0, u) +
sin 𝜃0

ds
=

sin 𝜃0

ds
.

(A3)|cor(x0, u⋆)| =
sin 𝜃0

ds
.
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From (A4) and Theorem 2 it follows that

The condition 𝜆 < 𝜆k now implies 1 − 𝜆k

𝜆
< 0 and

Theorem 2 also implies

and (by an argument similar to the proof for cor(x0, u⋆) above)

where the last equality follows from (A3). Now 𝜆0 < 𝜆k implies 1 − 𝜆0

𝜆k
> 0 , which, 

together with (A5) implies

Another bound on the correlation of u⋆ with x can be obtained as follows:

where the second equality follows from (5). Now, (A5) implies the equivalence

which combined with (A7) yields the desired result.   ◻

(A4)cor(x, s) = −
du

�ds
cor(x, u) +

1

ds
.

ducor(x, u) + 𝜆kdscor(x, s) = ducor(x, u) + 𝜆kds

[
−

du

𝜆ds
cor(x, u) +

1

ds

]

= ducor(x, u)

(
1 −

𝜆k

𝜆

)
+ 𝜆k < 𝜆k.

(A5)cor(x, u) > 0.

(A6)cor(x, s) ⩾ −
du

�kds
cor(x, u) −

1

ds
,

cor(x, u⋆) = cos 𝜃0cor(x, u) + sin 𝜃0cor(x, s)

⩾ cos 𝜃0cor(x, u) + sin 𝜃0

[
−

du

𝜆kds
cor(x, u) −

1

ds

]

= cos 𝜃0cor(x, u)

(
1 −

𝜆0

𝜆k

)
− |cor(x0, u⋆)|,

(A7)cor(x, u⋆) ⩾ −|cor(x0, u⋆)|.

cor(x, u⋆) = cos 𝜃0cor(x, u) + sin 𝜃0cor(x, s)

= cos 𝜃0cor(x, u) − sin 𝜃0
du

𝜆ds
cor(x, u) +

sin 𝜃0

ds

= cor(x, u)

(
cos 𝜃0 − sin 𝜃0

du

𝜆ds

)
+

sin 𝜃0

ds

= cor(x, u) sin 𝜃0
du

ds

(
1

𝜆0
−

1

𝜆

)
+ |cor(x0, u⋆)|,

𝜆 > 𝜆0 ⇔ cor(x, u⋆) > |cor(x0, u⋆)|,
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