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Abstract
Given a graph whose edges are assigned positive-type and negative-type weights, 
the problem of correlation clustering aims at grouping the graph vertices so as to 
minimize (resp. maximize) the sum of negative-type (resp. positive-type) intra-clus-
ter weights plus the sum of positive-type (resp. negative-type) inter-cluster weights. 
In correlation clustering, it is typically assumed that the weights are readily avail-
able. This is a rather strong hypothesis, which is unrealistic in several scenarios. To 
overcome this limitation, in this work we focus on the setting where edge weights 
of a correlation-clustering instance are unknown, and they have to be estimated in 
multiple rounds, while performing the clustering. The clustering solutions produced 
in the various rounds provide a feedback to properly adjust the weight estimates, 
and the goal is to maximize the cumulative quality of the clusterings. We tackle this 
problem by resorting to the reinforcement-learning paradigm, and, specifically, we 
design for the first time a Combinatorial Multi-Armed Bandit (CMAB) framework 
for correlation clustering. We provide a variety of contributions, namely (1) formu-
lations of the minimization and maximization variants of correlation clustering in a 
CMAB setting; (2) adaptation of well-established CMAB algorithms to the corre-
lation-clustering context; (3) regret analyses to theoretically bound the accuracy of 
these algorithms; (4) design of further (heuristic) algorithms to have the probability 
constraint satisfied at every round (key condition to soundly adopt efficient yet effec-
tive algorithms for correlation clustering as CMAB oracles); (5) extensive experi-
mental comparison among a variety of both CMAB and non-CMAB approaches for 
correlation clustering.
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1  Introduction

Correlation clustering is the problem of clustering the vertices of a graph whose 
edges are assigned positive-type and negative-type real-valued weights that express, 
respectively, positive and negative evidence of placing the endpoints of an edge in 
the same cluster (Bansal et al. 2004; Bonchi et al. 2022). Two formulations of cor-
relation clustering exist: the minimization one (Min-CC) aims at minimizing the 
sum of the negative-type intra-cluster edge weights plus the sum of the positive-type 
inter-cluster edge weights; in the maximization counterpart (Max-CC), the objective 
is dual, i.e., to maximize the sum of the positive-type intra-cluster edge weights plus 
the sum of the negative-type inter-cluster edge weights. Correlation clustering has 
been extensively studied from a theoretical point of view, and it has been applied in 
numerous real-world scenarios (Bonchi et al. 2014; Pandove et al. 2018).

Correlation clustering with unknown edge weights. Traditionally, in correla-
tion clustering it is assumed that the edge weights are all given as input; for instance, 
they could have been derived from, e.g., past user-interaction history, crowdsourc-
ing, experimental trials, and so on. This has the disadvantage that clustering has to 
be performed after that all the weights are available, which is unfeasible in several 
real contexts. To overcome this, here we focus for the first time on a correlation-
clustering setting where edge-weight assessment is carried out while performing the 
clustering.

We devise the following scenario. Edge weights are random variables whose 
probability distributions and means are unknown and do not change during the 
whole process. An estimate of the mean of the edge-weight distributions is main-
tained. Initial estimates are randomly generated or computed based on prior knowl-
edge. There are multiple rounds of clustering. A clustering performed at any round 
gives feedback on how to adjust the mean estimates, so as to make them improve 
round after round. The rationale is that, placing a clustering, actual interactions 
among the vertices can be observed, and hence used as a real evidence to profit-
ably update the mean estimates. More specifically, in Min-CC (resp. Max-CC) one 
gets feedback about the negative-type (resp. positive-type) intra-cluster edge weights 
and the positive-type (resp. negative-type) inter-cluster edge weights. A clustering 
at every round may be computed by taking into account the current mean estimates 
(exploitation) based on an (exact or approximate) oracle; alternatively, a clustering 
can be yielded without looking at the mean estimates, so as to get feedback on edge 
weights for which limited knowledge has been acquired so far (exploration). In our 
context, alternating between exploiting the oracle with estimated weights to deter-
mine a clustering and observing the feedbacks on the edges of the graph induced by 
this clustering, makes it possible to improve the estimate of the edge weights, since 
more observed data are collected upon which the estimates are computed.

Both exploitation and exploration have pros and cons. The former yields cluster-
ings that rely on established—but partial—knowledge. The latter allows for expand-
ing the current knowledge, which is supposed to yield better-quality clusterings in 
the next rounds, but it also may lead to possibly inaccurate clusterings in the first 
rounds.
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Getting the best exploration-exploitation tradeoff is a key desideratum. The effec-
tiveness of such a tradeoff is measured by the (expected) cumulative quality of the 
clusterings produced in all the rounds. This is the ultimate objective to be opti-
mized, and a major challenge in the design of proper algorithms.

It should be noted that the aforementioned exploration-exploitation tradeoff refers 
to a reinforcement learning paradigm, which, in this work, we adopt by resorting 
to the Combinatorial Multi-Armed Bandit (CMAB) framework (Chen et  al. 2016, 
2018a; Kveton et al. 2015a, b; Lagrée et al. 2016; Wang and Chen 2017; Xu et al. 
2020). The CMAB framework has been contextualized to several specific problems, 
including influence maximization  (Chen et  al. 2016; Vaswani and Lakshmanan 
2015; Wu et  al. 2019), community detection  (Mandaglio and Tagarelli 2019a, b), 
community exploration  (Chen et  al. 2018b), shortest-path discovery  (Talebi et  al. 
2017), feature selection  (Liu et  al. 2021). In our previous work  (Mandaglio et  al. 
2020), we devise non-CMAB algorithms for a correlation-clustering problem variant 
in which interactions between entities are characterized by known input probability 
distributions and conditioned by external factors within the environment where the 
entities interact. Remarkably, none of those settings is any close to the one we con-
sider in this work, i.e., devising a CMAB framework for (correlation) clustering.

Applications. The domain we consider in this work finds application in all those 
contexts where it is not preferable (or not permitted) to wait until edge weights have 
been produced before performing a clustering. Rather, it is desired to place cluster-
ing solutions soon, learn the weights along the way, and tolerate that the clustering 
quality will be less good in the initial rounds, while getting improved as the rounds 
go by.

For instance, we might consider a team formation scenario, where individu-
als need to be organized (clustered) into teams  (Juárez et  al. 2022). Individuals 
are associated with technical/soft skills which are required for task assignments 
within the teams. Any two individuals exhibiting a certain skill-level similarity 
should be assigned to the same team, and conversely to different teams if they 
are dissimilar to each other; clearly, given the variety of skills and their compat-
ibility levels, the exact degree of matching between two individuals’ skills are not 
a-priori known at the beginning of the team formation process, and indeed simi-
larities should be learned through team-formation history. In this regard, individ-
uals collaborate with both their teammates and individuals from other teams, for, 
e.g., general coordination purposes. A desirable goal is to establish teams so as to 
maximize the overall (i.e., intra-team plus inter-team) similarity between pairs of 
individuals. This is a problem that can easily be casted to correlation clustering, 
where vertices correspond to individuals, clusters correspond to teams, and the 
positive-type and negative-type edge weights correspond to intra-team and inter-
team similarities, respectively. Note that empathy (i.e., mutable) characteristics 
between individuals are here discarded, since this may cause drift in the likeli-
hood that they (dis)like each other once they are (temporarily) members of the 
same team, i.e., edge weights would change through the rounds. In this regard, an 
analogous scenario is the task allocation for robots, each of which is programmed 
to handle a number of operations. Correlation clustering would be helpful to 
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enable forming coalitions between robots, in order to allocate them to tasks to be 
completed optimally according to some efficiency requirements.

Two further example scenarios are commercial scheduling (e.g., Bollapragada 
and Garbiras 2004; Giallombardo et  al. 2016) and shelf space allocation (e.g., 
Hübner et  al. 2021). The former consists in optimally assigning a set of com-
mercials to fill in each advertisement slot scheduled by a TV broadcaster, where 
vertices are commercials and edge weights denote marketing-driven benefits in 
assigning, resp. separating, any two commercials within the same, resp. to dif-
ferent slots; edge weights might initially be estimated by accounting for require-
ments provided by either the brand customers and the TV braodcaster, then the 
weights will be adjusted by observing the feedback provided by (online) mar-
ket-surveys (e.g., delivered to targeted audience of the TV programme schedule). 
Shelf space allocation is to model the shelf space dimensioning and positioning 
for allocating selected products based on practical retail requirements, so as to 
maximize the product selling; here, the feedback observed from the selling out-
comes, as well as from how the customers welcome or not the retailer choices, 
would be related to the opportunity of ensuring brand visibility, or improving 
customers satisfaction.

All the aforementioned scenarios correspond to well-known optimization prob-
lems in operation research and related fields; nonetheless, they are also key-enabling 
in emerging contexts, such as the development of smart production systems brought 
by Industry 4.0  (Grillo et  al. 2022). However, such problems have not commonly 
been addressed in terms of correlation clustering; and the few existing exceptions 
(e.g., Dutta et al. (2019)) are far from a CMAB perspective—unlike we study in this 
work—which needs to be profitably adopted since correlation-clustering weights are 
unlikely to be apriori known.

Contributions. The one we deal with in this work is a natural reinforcement-
learning scenario, which, to the best of our knowledge, has never been considered 
in the context of correlation clustering. We tackle it by designing—for the first 
time—a Combinatorial Multi-Armed Bandit (CMAB) (Chen et al. 2016) framework 
for correlation clustering. In doing so, we achieve a mix of modeling, algorithmic, 
technical, and empirical contributions, including principled framework design and 
problem formulations, design and theoretical analysis of algorithms, tricks to make 
the algorithms work in practice, experimental evaluation. More in details, our main 
contributions are as follows:

•	 We novelly formulate correlation clustering in a CMAB setting, by providing 
a contextualization of the main ingredients of a typical CMAB framework and 
CMAB formulations for both Min-CC and Max-CC (Sect. 3). Among others, a 
key impactful consequence of this contribution is that it enables the use of gen-
eralist CMAB approximation algorithms/heuristics for CMAB-based Min-CC/
Max-CC with minimum customization effort. In this regard, we show how the 
popular Combinatorial Upper Confidence Bound (CUCB) method  (Chen et al. 
2016) can be employed in the context of Max-CC (Appendix A.2).

•	 We introduce the Combinatorial Lower Confidence Bound (CLCB) method, 
which can be viewed as the counterpart of CUCB for minimization problems, 
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and show how to suitably customize it in order to handle Min-CC instances 
(Sect. 4).

•	 The effectiveness of a CMAB algorithm is typically assessed in terms of regret, 
i.e., a measure of how far the (expected) cumulative quality of the solutions 
yielded by an algorithm is from the optimal cumulative quality. In this regard, 
Chen et al. (2016) provide a regret analysis of the CUCB method, which shows 
that, if the underlying combinatorial-optimization problem satisfies certain prop-
erties, CUCB is guaranteed to achieve a regret that is at most logarithmic in the 
number of clustering rounds, in presence of an approximation oracle. Here, we 
build upon Chen et al.’s result and show that:

•	 Our CMAB formulation of Max-CC satisfies Chen et  al.’s properties, thus, 
CUCB achieves logarithmic regret for Max-CC as well (Appendix A.2.1).

•	 We devise a principled regret definition for Min-CC. According to this defi-
nition, we also provide a regret analysis that, along the lines of Chen et al.’s 
analysis for CUCB, proves that CLCB achieves logarithmic regret in the num-
ber of clustering rounds for Min-CC in presence of an approximation oracle 
(Sect. 4.1). Our regret definition and analysis for Min-CC are general enough 
to be reused in any minimization CMAB problems with approximation ora-
cle. This is a per-se contribution, as, to the best of our knowledge, no regret 
definitions/analyses for CMAB minimization problems (with approximation 
oracle) exist in the literature.

•	 We further investigate the applicability of the CLCB-like algorithm in practice 
(Sect. 4.2). A key desideratum in this regard is to employ the traditional Pivot 
algorithm for Min-CC  (Ailon et al. 2008) as an (approximation) oracle within 
CLCB, for its efficiency, theoretical yet empirical effectiveness, and ease of 
implementation. A major challenge here is that, to achieve its approximation 
guarantees (and to provide effective solutions in practice too), Pivot needs the 
input edge weights to satisfy the probability constraint. Unfortunately, the CLCB 
algorithm does not guarantee the fulfilment of this constraint at every round. 
Thus, we design novel variants of the basic CLCB where the correlation-cluster-
ing problem instances to be given as input to Pivot (are close to) meet the prob-
ability constraint.

•	 We conduct an extensive evaluation to experimentally test the performance of 
CMAB correlation-clustering algorithms, including the algorithms devised in 
this work, as well as (correlation-clustering-customized) popular CMAB heu-
ristics, such as �-greedy, pure exploitation, and Combinatorial Thompson Sam-
pling  (Wang and Chen 2018) (Sects.  5–7). We consider the Min-CC context 
only, due to the availability of practical approximation oracles (unlike Max-CC). 
Results show superior and close accuracy of CMAB methods over non-CMAB 
baselines and a reference method that performs correlation clustering with the 
true edge weights, respectively. Also, the per-round runtime of CMAB methods 
is (at worst) comparable to the runtime of executing a linear-time correlation-
clustering algorithm once.
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Section 2 discusses background and related work. Section 8 concludes the paper.

2 � Background and related work

2.1 � Correlation clustering

The minimization (Min-CC) and maximization (Max-CC) formulations of cor-
relation clustering aim at minimizing disagreements and maximizing agreements, 
respectively. They are formally defined as follows:

Problem 1  (Min-CC  (Ailon et al. 2008)) Given a graph G = (V ,E) , and nonnega-
tive weights w+

uv
 , w−

uv
∈ ℝ

+
0
 for each edge (u, v) ∈ E , find a clustering C∗ ∶ V → ℕ

+ 
such that:

Problem 2  (Max-CC  (Ailon et al. 2008)) Given a graph G = (V ,E) , and nonnega-
tive weights w+

uv
 , w−

uv
∈ ℝ

+
0
 for each edge (u, v) ∈ E , find a clustering C∗ ∶ V → ℕ

+ 
such that:

In the above problems, and hereinafter, we let a clustering be represented as an 
injective function that expresses cluster-membership for the vertices in V.

Min-CC and Max-CC are equivalent in terms of optimality and complexity class 
[both NP-hard  (Bansal et al. 2004; Shamir et al. 2004)], but have different approx-
imation-guarantee properties, with the latter being easier in this regard. On general 
edge weights, both Min-CC and Max-CC are APX-hard  (Charikar et al. 2005), with 
Max-CC admitting constant-factor approximation algorithms (Charikar et al. 2005; 
Swamy 2004), and with the best known approximation factor for Min-CC being 
O(log |V|) (and unlikely to be meliorable)  (Charikar et  al. 2005; Demaine et  al. 
2006).

When restrictions on weights are imposed, the problems become more tractable. For 
instance, in the seminal work by Bansal et al. (2004), which requires the input graph 
to be complete, and the weights to be binary and with exactly one nonzero weight 
for each weight pair (i.e., ∀u, v ∈ V , (w+

uv
,w−

uv
)∈{(0, 1), (1, 0)} ), Max-CC admits a 

PTAS (Bansal et al. 2004), and Min-CC admits constant-factor approximations (Ailon 
et al. 2008; Bansal et al. 2004; Charikar et al. 2005; Chawla et al. 2015; van Zuylen and 
Williamson 2007) [although still remaining APX-hard  (Charikar et al. 2005)].

Attention has also been devoted to weight bounds that go beyond Bansal et  al.’s 
ones, but are still restrictive enough to allow Min-CC to achieve constant-factor 

(1)
C
∗ = argminC fmin(C) = argminC

∑

(u, v) ∈ E,

C(u) = C(v)

w−
uv

+
∑

(u, v) ∈ E,

C(u) ≠ C(v)

w+
uv
.

(2)
C
∗ = argmaxC fmax(C) = argmaxC

∑

(u, v) ∈ E,

C(u) = C(v)

w+
uv

+
∑

(u, v) ∈ E,

C(u) ≠ C(v)

w−
uv
.
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guarantee. These include weights satisfying the probability constraint (i.e., 
w+
uv
+ w−

uv
= 1 , ∀u, v ∈ V)  (Ailon et  al. 2008), generalizations of it (i.e., ∀u, v ∈ V , 

w+
uv
≤ 1 , w−

uv
≤ h for some h ∈ [1,+∞) , and w+

uv
+ w−

uv
≥ 1)  (Puleo and Milenkovic 

2015), triangle inequality (i.e., w−
uz
≤ w−

uv
+ w−

vz
 , ∀u, v, z ∈ V)  (Ailon et  al. 2008), or 

global constraints  (Mandaglio et  al. 2021). The probability constraint is particularly 
appealing: in fact, under such a constraint, Pivot–a randomized algorithm for Min-CC 
that is widely recognized for its theoretical guarantees, efficiency, and ease of imple-
mentation—achieves a 5-approximation (in expectation) (Ailon et al. 2008). Coupling 
the probability constraint with triangle inequality lowers Pivot ’s (expected) approxi-
mation factor to 2 (Ailon et al. 2008).

Although considering various types of weight, all the above works still assume that 
edge weights are all available as input. In this work, we go beyond this limitative view, 
and focus on the context where edge weights are not available beforehand, but they 
have to be discovered while performing (multiple rounds of) clustering.

Beyond basic correlation clustering. Several extensions to the basic correlation-
clustering formulations have been studied, including constrained/relaxed formula-
tions (e.g., constraining the number/size of clusters, allowing overlapping clusters), 
and adaptations to more sophisticated types of graph (e.g., bipartite graphs, labeled 
graphs, multilayer graphs, hypergraphs) or nonconventional computational settings 
(e.g., online, parallel, streaming). We point the interested reader to Bonchi et al. (2014, 
2022); Pandove et al. (2018) for more details on these advanced topics. Here, let us 
just discuss the problem of query-efficient correlation clustering (Bressan et al. 2019; 
García-Soriano et al. 2020), which, to our knowledge, is the only correlation-clustering 
extension that exhibits some (slight) similarity with the setting we study in this work. 
Query-efficient correlation clustering assumes that edge weights are discovered by que-
rying an oracle, and the goal is to cluster the input graph by using a limited budget of 
Q queries ( Q ≪ O(|V|2) ). Although it is still assumed that edge weights are not avail-
able beforehand (like in our setting), query-efficient correlation clustering focuses on a 
scenario that remains profoundly different from the one tackled in this work. In fact, it 
considers a hard limit Q on the number of edge weights that can be ultimately discov-
ered, which is a restriction that is not present in our setting. Moreover, the feedback on 
edge weights is given by an oracle, which provides true edge weights for any query, at 
any time. Instead, in our setting, the feedback consists in a sample of the weight dis-
tributions that are used to update the weight estimates, and is provided by the cluster-
ing itself (there is no oracle). Finally, existing approaches to query-efficient correlation 
clustering (Bressan et al. 2019; García-Soriano et al. 2020) handle binary weights only.

2.2 � Combinatorial multi‑armed bandit

Combinatorial Multi-Armed Bandit (CMAB) is a popular reinforcement-learning 
framework to learn how to perform actions by exploring/exploiting the feedback 
from an environment  (Chen et  al. 2016). It extends basic Multi-Armed Bandit 
(MAB) (Berry and Fristedt 1985) so that the actions to be performed/learned cor-
respond to combinatorial structures (superarms) that are defined on top of sim-
pler, basic actions (base arms). Specifically, a CMAB instance consists of m base 
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arms. Each base arm i is assigned a set {Xi,t ∣ 1 ≤ i ≤ m, 1 ≤ t ≤ T} of random 
variables, where T is the number of rounds. The support of each Xi,t—assumed 
to range from [0, 1]—indicates the random “outcome” of playing base arm i in 
round t. This outcome is interpreted as a feedback from the environment and used 
to carry out the learning process. The random variables {Xi,t}

T
t=1

 of the same arm 
i are independent and identically distributed, according to some unknown dis-
tribution with unknown expectation �i . Random variables of different base arms 
may be dependent or distributed with different laws. Estimates {𝜇̂i}

m
i=1

 of the true 
unknown {�i}

m
i=1

 expectations are kept (and updated) at every round.
A CMAB instance also includes a set A ⊆ 2[m] of possible superarms. A is 

typically defined as the subset of all subsets of base arms satisfying certain con-
straints. At each round t, a superarm At ∈ A is played and the outcomes of the 
random variables Xj,t , for all the base arms j ∈ At , are observed. These outcomes 
can be used to update the knowledge on the estimates {𝜇̂j}j∈At

 . Playing a superarm 
At gives a reward Rt(At) , which is a random variable defined as a function of the 
outcomes of At ’s base arms. Rt(At) may simply be a summation 

∑
j∈At

Xj,t of the 
outcomes of At ’s base arms, but more complex (possibly nonlinear) rewards are 
allowed. In any case, it is often assumed that the expectation �[Rt(At)] is a func-
tion of only At ’s base arms and all the {�i}

m
i=1

 (true) expectations. For minimiza-
tion problems, the reward can be replaced by a notion Lt(At) of loss. The adapta-
tion is straightforward.

The objective of a CMAB algorithm is to select a superarm to be played at 
every round, so as to maximize the cumulative expected reward obtained in all the 
rounds, i.e., �[

∑T

t=1
Rt(At)] . With this ultimate goal in place, a superarm At can be 

chosen by either exploiting the knowledge acquired from the outcomes of previous 
rounds, or exploring arms that have not been played much. Here is the explora-
tion-exploitation tradeoff that usually appears in reinforcement-learning scenarios: 
a key design principle of any CMAB algorithm consists in deciding to what extent 
it should pick the arms that have provided good rewards so far (exploitation) or 
select different arms with the aim of getting even better rewards (exploration).

As for exploitation-aware superarms, it is assumed the availability of an 
oracle that computes a superarm based on the current estimates {𝜇̂i}

m
i=1

 of the 
base-arm expectations and the knowledge it possesses on the specific problem 
at hand. The oracle can be exact, i.e., it outputs A∗

t
= argmaxA⊆A�[R̂t(A)] , or an 

(�, �)-approximation one, for some �, � ≤ 1 , i.e., it outputs a superarm At so that 
Pr[�[R̂t(At)] ≥ 𝛼 �[R̂t(A

∗
t
)]] ≥ 𝛽 (where R̂t(⋅) denotes the reward computed based 

on {𝜇̂i}
m
i=1

).
The effectiveness of a (C)MAB algorithm is typically measured in terms of 

the so-called regret metric, which corresponds to the difference in the cumula-
tive expected reward between always playing the optimal arm (possibly scaled by 
factors � and � in case of (�, �)-approximation oracles) and playing arms accord-
ing to the algorithm. A major theoretical desideratum in this regard consists in 
providing a suitable regret analysis, which guarantees that the algorithm at hand 
achieves a certain bounded regret. The seminal work by Chen et al. (2016) shows 
that it is possible to design CMAB algorithms achieving O(log T) regret,
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and that this is a tight bound.
Regret definitions and analyses for CMAB maximization problems exist for both 

exact and approximation oracles (Chen et al. 2016; Wang and Chen 2017). As for 
minimization problems, to the best of our knowledge, they have been devised for 
exact oracles only (Cesa-Bianchi and Lugosi 2012; Talebi et al. 2017). In this work, 
we provide for the first time a regret analysis for a minimization problem (Min-CC) 
with approximation oracle. The generality of our regret definition and analysis make 
us believe that this is a contribution of interest for CMAB minimization problems in 
general, not only for (correlation) clustering.

3 � Problem definition

In this section we provide the details of the proposed contextualization of CMAB to 
correlation clustering. As a first step, we let the weights w+

e
,w−

e
 of every edge e ∈ E 

be modeled as random variables W+
e
,W−

e
 with [0, 1] support,1 and mean

All such random variables and their means are assumed to be unknown (as typical in 
CMAB), and not to change in the various clustering rounds. Any CMAB algorithm 
keeps estimates of the true means, which are denoted as:

Let also every edge e = (u, v) ∈ E be represented by a pair of replicas, ein and eout , 
which model the fact that e is an intra-cluster or inter-cluster edge (with respect to 
a given clustering), respectively. Let Sin = {ein ∣ e ∈ E} and Sout = {eout ∣ e ∈ E} be 
the sets of all intra-cluster and inter-cluster edge replicas, respectively. We make the 
base arms in CMAB correlation clustering correspond to the set S = S

in ∪ S
out of 

all edge replicas (thus, the number of base arms is m = 2|E| ), and a superarm be 
identified by a set of base arms that are consistent with the notion of clustering. For-
mally, a superarm corresponds to a clustering-compliant replica set:

Definition 1  (Clustering-compliant replica set) A set S ⊆ S of edge replicas is clus-
tering-compliant if (i) for all e ∈ E , S does not contain both ein and eout , and (ii) for 
all e1 = (x, y), e2 = (y, z), e3 = (x, z) ∈ E , if ein

1
, ein

2
∈ S , then ein

3
∈ S.

In the above definition, (i) is because an edge cannot be both intra-cluster and 
inter-cluster, while (ii) guarantees the transitive property that if vertices x,  y are 
within the same cluster and y, z are within the same cluster, then x, z must be in the 

(3)� = {�+,�−}, �+= {�+
e
= �[W+

e
]}e∈E, �−= {�−

e
= �[W−

e
]}e∈E.

(4)�̂ = {�̂+, �̂−}, �̂+= {𝜇̂+
e
}e∈E, �̂−= {𝜇̂−

e
}e∈E.

1  The [0,  1]-support assumption is frequently required to prove theoretical results in the CMAB set-
ting (Chen et al. 2016), and is indeed required in our proofs too. In practice, should this assumption not 
hold, any [0, 1]-normalization of the input edge weights can be performed beforehand.



1639

1 3

A CMAB approach to correlation clustering

same cluster too. Simply speaking, a superarm corresponds to a clustering. Thus, we 
hereinafter refer to “superarm” and “clustering” as two equivalent notions.

The outcome of the base arms that are triggered while playing a superarm 
depends on the correlation-clustering formulation. In Min-CC, the outcome 
of every intra-cluster edge replica ein comes from the corresponding negative-
type-weight W−

e
 random variable, while the outcome of every inter-cluster edge 

replica eout comes from the corresponding positive-type-weight W+
e

 random 
variable. The rationale is that, in Min-CC, the clustering quality is measured 
in terms of the negative-type weight of all intra-cluster edges and the positive-
type weight of all the inter-cluster edges. Thus, placing a clustering (i.e., play-
ing a superarm) is expected to give a feedback that is consistent with Min-CC 
’s objective function: the outcome of ein (resp. eout ) replicas should be used to 
update �−

e
 (resp. �+

e
 ). Conversely, in Max-CC, ein and eout are assigned (and their 

outcome come from) W+
e

 and W−
e

 , respectively.
The reward/loss corresponds to the correlation-clustering objective function, 

hence its definition depends on the correlation-clustering formulation too. Given a 
superarm S , let Sin and Sout denote the intra-cluster and inter-cluster edge replicas in 
S , respectively. Min-CC utilizes a disagreement-based loss d(S) defined as:

while Max-CC employs a reward a(C) defined in terms of agreements as:

The expectations of d(⋅) and a(⋅) are as follows (by linearity of the expectation):

where the “ � ” subscript in d̄� and ā� is to emphasize that those functions depend 
on the true means � . Denoting by CS the clustering corresponding to superarm S , 
Eq. (7) can alternatively (yet equivalently) be written as:

Table 1 summarizes the elements of our CMAB correlation-clustering formulation.
CMAB-Min-CC  and CMAB-Max-CC  problems. Given a graph G = (V ,E) , we 

perform discrete rounds t = 1,… , T  , where at each round t, a clustering Ct of the 
vertices in V is computed and used to update the mean estimates �̂+, �̂− of the ran-
dom variables modeling the positive-type and negative-type edge weights, respec-
tively. As discussed above, in Min-CC, the weight of an edge e between vertices 
within the same cluster (resp. in different clusters) is interpreted as a random sam-
ple useful to update 𝜇̂−

e
 (resp. 𝜇̂+

e
 ). In Max-CC, the opposite holds. The ultimate 

(5)d(S) =
∑

e∈Sin W
−
e
+
∑

e∈Sout W
+
e
,

(6)a(S) =
∑

e∈Sin W
+
e
+
∑

e∈Sout W
−
e
.

(7)d̄�(S) = �[d(S)] =
∑

e∈Sin

𝜇−
e
+
∑

e∈Sout

𝜇+
e
, ā�(S) = �[a(S)] =

∑

e∈Sin

𝜇+
e
+
∑

e∈Sout

𝜇−
e
.

(8)
d̄�(CS) =

∑

(u, v) ∈ E,

C
S
(u) = C

S
(v)

𝜇−
uv

+
∑

(u, v) ∈ E,

C
S
(u) ≠ C

S
(v)

𝜇+
uv
, ā�(CS) =

∑

(u, v) ∈ E,

C
S
(u) = C

S
(v)

𝜇+
uv

+
∑

(u, v) ∈ E,

C
S
(u) ≠ C

S
(v)

𝜇−
uv
,
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objective is to minimize/maximize the cumulative expected loss/reward of the clus-
terings yielded in all the rounds. Formally, the problems we tackle in this work are:

Problem  3  (CMAB-Min-CC) Given a graph G = (V ,E) and a number T > 0 of 
rounds, for every t = 1,… , T  find a clustering Ct ∶ V → ℕ

+ so as to minimize

Problem  4  (CMAB-Max-CC) Given a graph G = (V ,E) and a number T > 0 of 
rounds, for every t = 1,… , T  find a clustering Ct ∶ V → ℕ

+ so as to maximize

The expectation in Eqs. (9) and (10) is taken among all the random events gener-
ating the Ct clusterings (due to, e.g., possible randomization in the oracle that com-
putes the clusterings). There is a further expectation in those equations, which is 
implicit in the definition of expected loss d̄�(⋅) and expected reward ā�(⋅) (see Eq. 8).

As previously discussed, CMAB-Max-CC (resp. CMAB-Min-CC) requires 
an oracle to solve, for each round, a Max-CC (resp. Min-CC) instance according 
to the mean estimates �̂+, �̂− . However, oracles available for Max-CC  (Chari-
kar et al. 2005; Swamy 2004) are both inefficient and, more importantly, poorly 
useful in practice, since they are not able to output more than a fixed number 
of clusters (i.e., six). This implies that the corresponding CMAB setting (i.e., 
CMAB-Max-CC) will inherit this issue too, since the clusterings yielded at 
each round are obtained through these algorithms. This aspect is a showstopper 
in our context, as we are interested in algorithms that are effective and theoreti-
cally solid, yet capable of providing outputs whose quality is recognizable in 
practice too, not only theoretically. For this reason, we hereinafter focus our 
attention on algorithms for CMAB-Min-CC only. For completeness, algorithms 
for CMAB-Max-CC are however presented in Appendix A.2.

(9)�

�∑T

t=1
d̄�(Ct)

�
.

(10)�

�∑T

t=1
ā�(Ct)

�
.

Table 1   Contextualization of CMAB to correlation clustering

Min-CC Max-CC

Base arms Edge replicas S = S
in ∪ S

out

Superarm S ⊆ S satisfying Definition 1
Base-arm Intra-cluster base 

arm ein
∼ W

−
e

∼ W
+
e

Outcome Inter-cluster base 
arm eout

∼ W
+
e

∼ W
−
e

Reward/loss Loss in Eq. (5) Reward in Eq. (6)
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4 � Algorithms for CMAB‑Min‑CC

In this section, we present algorithms for CMAB-Min-CC (Problem 3). We first 
focus on the context of general oracles for Min-CC (Sect. 4.1), and, then, on the 
case where the employed Min-CC oracles achieve theoretical guarantees only 
if the input meets certain properties (Sect. 4.2). Finally, we discuss the special 
case of input edge-weight distributions satisfying specific constraints (Sect. 4.3).

4.1 � General Min‑CC oracles

The CC-CLCB  algorithm. We devise a variant of the so-called Combinato-
rial Upper Confidence Bound (CUCB) algorithm (Chen et al. 2016) which is an 
extension of the UCB1 method for MAB (Auer et al. 2002). It keeps, along with 
the estimate of the means of the base-arm random variables, confidence inter-
vals within which the true means fall with overwhelming probability, and plays 
superarms based on the upper bound of those intervals. Our proposed variant, 
termed Combinatorial Lower Confidence Bound (CLCB), is tailored for mini-
mization problems but follows the principles of CUCB: it maintains confidence 
intervals where the true means fall in with high probability, but, conversely to 
CUCB, it plays superarms based on the confidence-interval lower bounds.

Our customization of CLCB to Min-CC is termed CC-CLCB and outlined 
as Algorithm  1. CC-CLCB keeps track of the mean estimates �̂ = {�̂+, �̂−} 
(Eq. 4), and of the number T+

e
 (resp. T−

e
 ) of times a sample from W+

e
 (resp. W−

e
 ) 

random variable has been observed until the current round, for all e ∈ E . At 
the beginning, ∀e ∈ E ∶ T+

e
= T−

e
= 0 , and �̂ are initialized, e.g., randomly or 

based on prior domain knowledge (Line 1). In every round t, the current mean 
estimates are adjusted with a term �±

e
 (defined based on Chernoff-Hoeffding 

bounds (Auer et al. 2002; Chen et al. 2016)), so as to foster, to some extent, the 
exploration of less often played base arms (Line 3). This leads to the adjusted 
means {�̃+

e
, �̃−

e
}e∈E (Line  4), which are interpreted as positive-type and nega-

tive-type edge weights of a correlation-clustering instance, respectively, and 
are fed as input (along with G) to an oracle O that computes a Min-CC solu-
tion Ct (Line 5). Ct is used as a feedback to update the mean estimates (Sect. 3, 
Table 1). Specifically, the weight of each intra-cluster (resp. inter-cluster) edge 
e is interpreted as a sample of W−

e
 (resp. W+

e
 ), and is used to update 𝜇̂−

e
 , T−

e
 

(resp. 𝜇̂+
e
 , T+

e
 ). 𝜇̂+

e
 and 𝜇̂−

e
 are updated so as to be equal to the average of the 

samples from W+
e

 and W−
e

 observed so far, respectively (Lines 6–11).
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Regret analysis of CC-CLCB. As correlation clustering is NP-hard, it is unlikely 
that CC-CLCB can be equipped with an exact oracle O for Min-CC running in poly-
nomial time. Hence, in analyzing the theoretical guarantees of CC-CLCB, we con-
sider the case where O is a Min-CC(�, �)-approximation oracle:

Definition 2  (Min-CC-(�, �)-approximation oracle) Given a Min-CC instance 
I=⟨(V ,E), {(w+

e
,w−

e
)}e∈E⟩ , let C∗

I
 be the optimal solution to I. Given �, � ∈ (0, 1] , an 

algorithm for Min-CC is a min-(�, �)-approximation oracle if, for every input I, it 
yields a solution C such that Pr[fmin(C) ≤ 1

�
fmin(C

∗
I
)] ≥ � (where fmin(⋅) is Min-CC ’s 

objective function, Eq. (1)).

The condition in Definition 2 to recognize O as a Min-CC-(�, �)-approximation 
oracle needs to hold on every Min-CC instance that is given as input to O at each 
round. Hence, the condition has to hold on the mean estimates, not the true ones. 
Similarly to the maximization counterpart, existing Min-CC algorithms achiev-
ing ( O(log |V|) ) guarantees in expectation  (Charikar et al. 2005; Demaine et al. 
2006) can be employed as Min-CC-(�, �)-approximation oracles. More details in 
Appendix A.1.

We introduce a notion of (�, �)-approximation regret, which can be viewed as 
the minimization counterpart of the traditional one defined in Chen et al. (2016) 
and used in maximization problems. Applied to the Min-CC context, this measure 
is defined as follows:

Definition 3  (Min-CC-(�, �)-approximation regret) Let C∗
I
 be the clustering mini-

mizing the expected loss d̄�(⋅) (Eq. 7) on a CMAB-Min-CC instance I (w.r.t. the true 
� means, Eq. 3), let M = maxC∈C(I) d̄�(C) (where C(I) is the set of all clusterings 
of I), and let {Ct}Tt=1 be the clusterings output by an algorithm A run on I. The Min-
CC-(�, �)-approximation regret of A is



1643

1 3

A CMAB approach to correlation clustering

The rationale of the above definition is as follows. First, being the focus on a 
minimization problem, the lower the probability � of success, the higher the loss 
value to compare with. Moreover, to take into account possible divergences of the 
approximation oracle from the optimum, and recalling that here are losses, not 
rewards, we add an extra term to the 1

𝛼
d̄�(C

∗
I
) loss that “interpolates” between the 

highest � = 1 probability (thus, we compare with 1
𝛼
d̄�(C

∗
I
) ) and the worst � = 0 

probability (thus, we compare with the maximum value M of loss). Note that the 
T
[
1

𝛼
d̄�(C

∗
I
) + (M −

1

𝛼
d̄�(C

∗
I
))(1 − 𝛽)

]
 term in RegA

�,�,�
(T) is used as a comparison 

for the (expected) performance �
�∑T

t=1
d̄�(Ct)

�
 achieved by the CMAB method at 

hand in the various rounds. It is defined by noticing that, in every round 
t = 1,… , T  , a Min-CC-(�, �)-approximation oracle yields, with probability (at 
least) � , a solution whose d̄�(⋅) value is at most 1

�
 times the optimum (i.e., 

1

𝛼
d̄�(C

∗
I
) ), and, with probability (at most) 1 − � , a solution whose d̄�(⋅) value is 

more than 1
𝛼
d̄�(C

∗
I
) . In the latter case, consistently with the regret definition in 

maximization problems (Chen et al. 2016), we assume that the d̄�(⋅) value of the 
yielded solutions is equal to an upper bound UB = M on d̄� . More precisely:

The comparison term in RegA
�,�,�

(T) is pessimistic in assuming that when the (�, �)
-approximation oracle does not achieve approximation guarantees it yields solutions 
whose d̄�(⋅) value is equal to the upper bound M . However, note that this happens 
with probability 1 − � . In our context, 1 − � is in the order of |V|−c (cf. Appen-
dix A.1), with c set to 1 in our experiments (cf. Sect. 5). This means that the pessi-
mistic assumption arises just in a tiny minority |V|−1 T  of the rounds. Also, the com-
parison term still adopts the optimistic assumption that the true � weights are 
known, while they are actually not for the CMAB method that is being evaluated in 
terms of RegA

�,�,�
(T).

As typically required in (C)MAB, the above regret is consistent with the defini-
tion of cumulative expected reward/loss at hand (i.e., Eq. 9, in this case). Thus, min-
imizing that regret corresponds to solving CMAB-Min-CC (Problem 3). A key theo-
retical desideratum in CMAB (and online-learning settings in general), is having a 
regret bounded by some function that is sublinear in the number of rounds. This is 
motivated by the fact that the overall objective is typically a summation over the 
number of rounds, thus a regret growing (at least) linearly in the number of rounds is 
considered as a straightforward result that any algorithm can easily achieve.

As shown in the next theorem, CC-CLCB achieves a regret bound that is loga-
rithmic in the number of rounds:

(11)RegA
�,𝛼,𝛽

(T) = �

�∑T

t=1
d̄�(Ct)

�
− T

�
1

𝛼
d̄�(C

∗
I
) + (M −

1

𝛼
d̄�(C

∗
I
))(1 − 𝛽)

�
.

T
[
1

𝛼
𝛽 d̄�(C

∗

I
) + (1 − 𝛽)UB

]
= T

[
1

𝛼
𝛽 d̄�(C

∗

I
) + (1 − 𝛽)M

]
= T

[
1

𝛼
𝛽 d̄�(C

∗

I
) +M − 𝛽 M

+
1

𝛼
d̄�(C

∗

I
) −

1

𝛼
d̄�(C

∗

I
)
]
= T

[
1

𝛼
d̄�(C

∗

I
) +

(
M −

1

𝛼
d̄�(C

∗

I
)
)
(1 − 𝛽)

]
.
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Theorem  1  Given �, � ∈ (0, 1] , the Min-CC-(�, �)-approximation regret (Defini-
tion 3) of the CC-CLCB algorithm (Alg. 1), when equipped with a Min-CC-(�, �)
-approximation oracle O (Definition  2), is upper-bounded by a function that is 
O(log T).

Proof  (sketch) The proof relies on the following main result: the d̄�(⋅) function 
(Eq.  8) satisfies the properties of monotonicity and 1-norm bounded smoothness. 
This triggers a (rather long yet complex) chain of further results along the line of 
those derived in Wang and Chen (2017) for the regret analysis of algorithms for 
CMAB maximization problems. The ultimate of such results attests the desired log-
arithmic regret bound. A more detailed proof is reported in Appendix A.3. 	�  ◻

4.2 � Min‑CC oracles requiring the probability constraint

The CC-CLCB algorithm makes no assumptions on the input graph or edge-
weight distributions. Thus, to achieve regret guarantees, CC-CLCB needs a Min-
CC oracle whose approximation guarantees hold in general, without requiring 
restrictions on the input. As said above, algorithms of this kind, in the context of 
Min-CC, exist  (Charikar et al. 2005; Demaine et al. 2006), but they suffer from 
issues such as limited efficiency yet not easy implementation (they need to solve a 
linear program of size �(|V|3) ), and non-constant ( O(log |V|) ) approximation fac-
tor. A much better option would be to resort to the well-established Pivot  (Ailon 
et  al. 2008), which is efficient (it takes linear time), easy to implement (it just 
randomly picks a vertex u and builds a cluster as composed of u and all verti-
ces connected to u with and edge whose positive-type weight is no less than the 
negative-type one), and achieves constant-factor approximation. Unfortunately, 
the (expected factor-5) guarantees of Pivot hold only if the input graph is com-
plete and the edge weights satisfy the probability constraint, i.e., w+

uv
+ w−

uv
= 1 , 

∀u, v ∈ V  . For this purpose, here we focus on the design of heuristic variants of 
CC-CLCB that favor the fulfilment of the probability constraint on the Min-CC 
instances to be processed by the oracle. The rationale is that the closer a Min-CC 
instance is to meet the probability constraint, the closer Pivot is to its “theoretical 
comfort zone”, thus expected to perform better.

The PC+Exp-CLCB  algorithm. Our first proposal in this regard is the 
PC+Exp-CLCB algorithm (where “PC+Exp” means “probability constraint + 
exploration”). This algorithm, outlined as Algorithm 2, follows the same scheme as 
CC-CLCB, but it computes {�̃+

uv
, �̃−

uv
}u,v∈V adjusted means so as to simultaneously 

favor some exploration and make the resulting Min-CC instance satisfy the prob-
ability constraint.
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The Global-CLCB  algorithm. As our second variant of CC-CLCB, we devise 
an algorithm—dubbed Global-CLCB–which builds Min-CC instances at each 
round that are as close as possible to meet a global constraint on the edge weights 
similar the one defined in Mandaglio et al. (2021). The fulfilment of this global con-
straint makes the probability-constraint-aware approximation guarantees still hold 
even if the probability constraint is locally violated. Global-CLCB mainly relies on 
the following result:

Theorem  2  Let I = ⟨G = (V ,E), {�̃+
uv
}u,v∈V , {�̃

−
uv
}u,v∈V⟩ be a Min-CC instance. If 

�
�V�
2

�−1 ∑
u,v∈V (�̃

+
uv
+ �̃−

uv
) ≥ 1 , then any Min-CC algorithm (e.g., Pivot) achieving 

(expected) factor-� approximation in presence of the probability constraint achieves 
(expected) factor-� approximation on I too.

Proof  (sketch) The result here is a special case of the one originally proved in Theo-
rem 1  in Mandaglio et  al. (2021), specifically arising for �max = 1 . Therefore, the 
proof herein is exactly the same as the one of Theorem 1 in Mandaglio et al. (2021), 
with the only straightforward exception of replacing �max with the constant 1. 	�  ◻

Global-CLCB attempts to compute {�̃+
uv
, �̃−

uv
}u,v∈V adjusted means that are as 

close as possible to satisfy Theorem 2. Global-CLCB is the same as CC-CLCB, 
except for their respective Line  4. A detailed pseudocode of Global-CLCB is 
reported in Algorithm 3. We point out that CC-CLCB ’s regret analysis does not 
hold for PC+Exp-CLCB or Global-CLCB. Deriving theoretical regret guarantees 
for these (or similar) heuristics is a challenging open question that we defer to future 
work.
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4.3 � Special edge‑weight distributions

An interesting special input is the one of symmetric edge-weight distributions:

Definition 4  (Symmetric distributions) [0, 1]-support random variables W+
e

 , W−
e

 have 
symmetric distributions if and only if W+

e
(x) = W−

e
(1 − x) , for all x ∈ [0, 1].

Conceptually, this is like assuming that if a similarity equal to x holds for any two 
vertices, a (1 − x) distance implicitly holds for the same vertices as well.

CMAB-correlation-clustering instances where symmetry holds for all edge-
weight distributions are easier to solve. In fact, symmetry in the distributions makes 
the instance at hand a full-information bandit setting: observing a sample x ∼ W+

e
 

is equivalent to observing a sample (1 − x) ∼ W−
e

 , for all e ∈ E . This corresponds 
to having an outcome revealed for all the base arms, regardless of the superarm 
(clustering) played. In this case, therefore, exploration is meaningless. Rather, a full-
exploitation strategy is worth to be performed, where a clustering considering solely 
the current mean estimates is yielded in each round. This strategy achieves a regret 
bound that is constant in the number of rounds, as stated by Theorem 3:

Theorem  3  Given �, � ∈ (0, 1] , the Min-CC-(�, �)-approximation regret (Defini-
tion 3) of a full-exploitation strategy run on a CMAB-Min-CC instance where all 
edge-weight distributions are symmetric, and equipped with a Min-CC-(�, �)
-approximation oracle (Definition  2), is upper-bounded by a function of T that is 
O(1).

Proof  (sketch) The full-information bandit setting allows for simplifying some inter-
mediate math in the regret analysis of a non-full-information setting (Theorem 1). 
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These simplifications ultimately lead to a O(1) regret bound. A detailed proof and a 
pseudocode of the full-exploitation strategy are in Appendix A.4. 	�  ◻

4.4 � Visualization example

Figure  1 provides a visualization of the HighlandTribes and Contiguous-USA 
graphs, used as case in point (cf. Section 5), and their CMAB-Min-CC clusterings 
produced by �-greedy and CC-CLCB, respectively, using the same oracle in both 
cases. In particular, we show the outcomes referring to the using correlation-cluster-
ing linear-programming method in Charikar et al. (2005) as an oracle. Our goal here 
is to provide empirical evidence of the significance of the CMAB-Min-CC setting 
and effectiveness of the CMAB-Min-CC methods. To this purpose, we show three 
snapshots of execution on each graph, namely at the initial, middle and final round 
of a method. Besides visualizing the cluster memberships of vertices—note that ver-
tices of one cluster share the same color at any round, but color memberships may 
change at different rounds—we also use black edges and red edges to distinguish 
between edge-level agreements and disagreements, respectively, which denote that 
the disequality between the positive-type weight and negative-type weight of an edge 
holds, or does not hold, the same on the true weights and their estimates; formally, an 
edge (u, v) is colored as black if (𝜇+

uv
> 𝜇−

uv
∧ 𝜇̂+

uv
> 𝜇̂−

uv
) ∨ (𝜇+

uv
≤ 𝜇−

uv
∧ 𝜇̂+

uv
≤ 𝜇̂−

uv
) , 

otherwise as red.
Two major remarks stand out by looking at the plots for each graph. First, the 

similarity measured in terms of normalized mutual information (NMI) between the 
CMAB-Min-CC solution produced by the oracle over the graph with mean esti-
mates and the corresponding solution over the graph with true means, significantly 
improves as more rounds are carried out; in particular, as shown for HighlandTribes 
(plots (a-c)), already after few early rounds, NMI approaches the maximum value 
reached at the final round. Second, the number of edge-level agreements also rapidly 
increases after few rounds, until few disagreements are left at the final round.

5 � Experimental methodology

Data. We consider ten publicly-available real-world graphs, as summarized in 
Table 2. Each of the five networks from bottom corresponds to the flattening of a 
network originally represented as a set of snapshot-graphs (Galimberti et al. 2020) 

Fig. 1   Example CMAB-Min-CC solutions obtained by � -greedy on HighlandTribes, and by CC-CLCB 
on Contiguous-USA, over T = 200 rounds, using the linear-programming method in Charikar et  al. 
(2005) as an oracle. Vertex colors correspond to cluster memberships, while edges are colored as black, 
resp. red, if there is an edge-level agreement, resp. disagreement, between the true edge weights and 
their estimated values; by edge-level agreement, we mean that the disequality between the positive-type 
weight and negative-type weight of an edge holds the same on the true weights and their estimates. Val-
ues within parentheses refer to NMI (with arithmetic mean normalization) between the CMAB-Min-CC 
solution by the oracle over the graph with mean estimates and the corresponding solution over the graph 
with true means

▸
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(i.e., an edge between u and v exists in the flattened network if u and v were linked in 
at least one snapshot).

Edge weight distributions. The random variables W+
e
,W−

e
 modeling the positive-

type and negative-type edge weights in a Min-CC instance are assumed to follow a 
Bernoulli distribution, whose means are generated according to three schemes.

In the first two schemes, termed R-wd and PC-wd , the original—possibly 
incomplete—network topology of the underlying input graph is maintained, 
meaning that �+

e
= �[W+

e
] = �−

e
= �[W−

e
] = 0 , for all e ∉ E . As far as the means 

�+
e
 , �−

e
 for each e ∈ E , R-wd samples uniformly at random both �+

e
 and �−

e
 from the 

[0,  1] interval, independently from one another, i.e., �+
e
,�−

e
∼ Uniform(0, 1) , for 

all e ∈ E . On the other hand, PC-wd ensures that the probability constraint holds 
on the generated means, which corresponds to first sample �+

e
∼ Uniform(0, 1) , 

and then set �−
e
= 1 − �+

e
 , for all e ∈ E . As a result, for both R-wd and PC-wd , 

�+
e
,�−

e
∈ [0, 1] , while the samples observed from the edge weight distributions 

at each CMAB round ∈ {0, 1} , for all e ∈ E . In particular, samples W+
e
=1 and 

W+
e
=0 (resp. W−

e
=1 and W−

e
=0 ) are observed with probability �+

e
 and 1−�+

e
 

(resp. �−
e
 and 1−�−

e
 ), respectively.

The third scheme assumes the actual network topology imposes a binary, mutu-
ally exclusive setting for each pair of vertices, i.e., �+

uv
=1,�−

uv
=0 , if (u, v) ∈ E , 

and �+
uv
=0,�−

uv
=1 , if (u, v) ∉ E . Since this setting leads to a new complete graph, 

the scheme is referred to as C-wd , and it will be considered only for the smaller 
datasets, as it is computationally unfeasible to handle complete versions of the 
larger datasets. As �+

uv
,�−

uv
∈ {0, 1} , for all u, v ∈ V  , the underlying W+

uv
,W−

uv
 dis-

tributions are actually degenerate, and every sample observed in a CMAB round 
from W+

uv
 (resp., W−

uv
 ) will be equal to 1 if �+

uv
= 1 (resp., �−

uv
= 1 ), and it will be 0 

if �+
uv
= 0 (resp., �−

uv
= 0).

Assessment criteria. The means �+
e
 , �−

e
 generated via the above schemes cor-

respond to the true correlation-clustering edge weights that are unknown to any 
CMAB method. These are used to evaluate the quality of the clusterings yielded 
in the various CMAB rounds via the average expected normalized cumulative 
Min-CC loss, calculated until each round t:

where Ci is the clustering of the i-th round, U =
∑

u,v∈V max{�+
uv
,�−

uv
} is a normali-

zation constant (equal to an upper bound on the Min-CC objective-function value, 
so that d̄(Ci)∕U∈[0, 1] ), and the �[⋅] expectation is computed by averaging the d̄�(⋅) 
values obtained over all the runs of execution of the randomized Min-CC oracles 
(see below). Note that Eq. (12) is a shorter and normalized version of Eq. (11). In 
fact, Eq. (12) is limited to the first term only in Eq. (11), as the second term is com-
mon to all the methods (under the same oracle). It is also normalized, so as to have 
the results on graphs of different size more easily comparable to each other.

As a second assessment criterion, we consider the error of the 𝜇̂+
e,t

 , 𝜇̂−
e,t

 weight 
estimates at each round t, which is measured in terms of relative error norm as

(12)f (t) =
1

t

∑t

i=1 �

�
d̄�(Ci)

U

�
,
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For both f (t) and ren(t) lower values correspond to better performance. Our main 
focus is on the f (T) , ren(T) values at the final round t = T  , as they give a compact yet 
general evidence of the overall performance of a method. However, we also analyze 
the trend of ren(t) over the various rounds to assess statistical significance (Sect. 6.5), 
and report evidence of such trends (Sect. 7).

Within this view, in the result tables presented in Sect. 6, we shall report f (T) 
and ren(T) values. Moreover, for the CMAB methods only, we also provide the 
growth rates, i.e., the average amount of relative change between the initial and 
the final round over the span T (in percentage):

Finally, we are also interested in assessing the running time of the various tested 
methods (Sect. 6.4).

Methods. We involve methods falling into four approaches: (i) CMAB-Min-CC 
methods adopting the CLCB paradigm, (ii) classic general CMAB heuristics that, in 
this context, are customized to work for CMAB-Min-CC, (iii) baselines that do not 
follow the CMAB paradigm, and (iv) a reference method that performs clustering by 
utilizing the true edge weights. More specifically: 

	 (i)	 As CLCB-based methods, we include CC-CLCB (Algorithm 1), PC+Exp-
CLCB (Algorithm 2), and Global-CLCB (Algorithm 3). Moreover, for 
both CC-CLCB and Global-CLCB, we also consider their CC-CLCB-m 

(13)ren(t) =

�∑
e∈E(𝜇

+
e
− 𝜇̂+

e,t)
2 +

∑
e∈E(𝜇

−
e
− 𝜇̂−

e,t)
2

∑
e∈E(𝜇

+
e
)2 +

∑
e∈E(𝜇

−
e
)2

,

(14)gr%
f

=

(
d̄�(CT )

d̄�(C1)
− 1

)
× 100, gr%

ren
=

(
ren(T)

ren(1)
− 1

)
× 100.

Table 2   Main characteristics of the real-world datasets used in our evaluation

∗Available from http://​konect.​cc/​netwo​rks/    ∗∗Available from http://​www.​socio​patte​rns.​org/​datas​ets/

|V| |E| Density Avg. degree Avg. path Clustering
Length Coefficient

Karate∗ 34 78 0.139 4.588 2.408 0.256

Dolphins∗ 62 159 0.084 5.129 3.357 0.309

Zebra∗ 27 111 0.316 8.222 1.842 0.845

Highland-Tribes∗ 16 58 0.483 7.250 1.542 0.527

Contiguous-USA∗ 49 107 0.091 4.367 4.163 0.406
Last.fm 992 369,973 0.753 745.913 1.247 0.860
Primary school∗∗ 242 8,317 0.285 68.736 1.733 0.480
Prosper loans 89,269 3,330,022 8E-04 74.607 3.239 0.003
Wikipedia 343,860 10,519,921 2E-04 61.187 3.099 0.065
DBLP 1,824,701 8,344,615 5E-06 9.146 6.514 0.169

http://konect.cc/networks/
http://www.sociopatterns.org/datasets/
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and Global-CLCB-m variants, which are less biased towards exploration. 
Specifically, following Wang and Chen (2018), CC-CLCB-m and Global-
CLCB-m utilize uncertain terms defined as �±

e
=
√
ln t∕2T±

e  (instead of 
�±
e
=
√
3 ln t∕2T±

e ).
	 (ii)	 As CMAB heuristics, we involve the well-established �-greedy, pure exploita-

tion (PE), and Combinatorial Thompson Sampling (CTS) (Wang and Chen 
2018). As for �-greedy, we consider both a fixed exploration rate, set to 0.1, 
and an adaptive exploration rate, set to be proportional to t−1 , at each t. These 
variants are dubbed EG-fixed and EG, respectively.

	 (iii)	 As far as non-CMAB baselines, the idea is to set both types of unknown 
edge weights based on topological affinity of any two vertices’ neighbor-
hoods, and then run a Min-CC algorithm [specifically, Pivot   (Ailon 
et al. 2008) in most experiments, and the linear programming approach 
dubbed LP+R   (Charikar et al. 2005) in the experiment in Sect. 6.3] on 
such an input, employing no weight learning strategy. More precisely, we 
resort to two well-known topological similarity measures, namely Jac-
card index and Adamic-Adar index, to set the positive-type weights: 
for each (u, v) ∈ E , w+

uv
= |N(u) ∩ N(v)|∕|N(u) ∪ N(v)| using Jaccard, or 

w+
uv
= �N(u) ∩ N(v)�−1 ∑z∈N(u)∩N(v)(log �N(z)�)−1 using (normalized) Adamic-

Adar, where N(u) is the set of u’s neighbors. The negative-type weights 
are then derived in such a way that the probability constraint holds, i.e., 
w−
uv
= 1 − w+

uv
.

	 (iv)	 As a reference method, we consider clustering with the actual (i.e., true) edge 
weights via a state-of-the-art Min-CC algorithm (i.e., Pivot  (Ailon et al. 2008) 
in most experiments, and LP+R  (Charikar et al. 2005) in the experiment in 
Sect. 6.3). This method is termed Actual-weight.

Unless otherwise specified, all the CMAB methods are assumed to be equipped with 
the Pivot algorithm (Ailon et al. 2008) as an oracle for Min-CC. Pivot is used as a 
reference oracle because it is more usable in practice, due to its efficiency, approxi-
mation guarantees, and ease of implementation. However, we also carry out an 
experiment to evaluate the impact of a different oracle, specifically the LP+R algo-
rithm (Ailon et al. 2008) (Sect. 6.3). As LP+R takes �(|V|3) time just to build the 
linear program, this experiment is performed on the smaller datasets only.

Since the chosen Min-CC oracles are randomized algorithms, for every experi-
ment, we perform log2 |V| independent runs of the selected oracle per CMAB round 
(setting � = 1, c = 1 , cf. Appendix A.1), and take the best solution in terms of Min-
CC objective with respect to the current weight estimates. In all the experiments, the 
number T of CMAB rounds is set to 500, while the number of runs of the Min-CC 
oracle for every round is set to 10.

Evaluation goals. As this is the first work that investigates Min-CC in a CMAB 
setting, our experiments are not really intended to assess the superiority of some 
proposed method(s) over the state of the art. Rather, our main objective here is to 
provide a comparative evaluation of a variety of CMAB heuristics, approximation 
algorithms, and heuristic variants of approximation algorithms in the context of 
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CMAB-Min-CC, and derive experimental insights on the peculiarities of the various 
tested methods. Specifically, the main goals of our experimental evaluation are as 
follows:

•	 Assess the performance of the CMAB methods (CC-CLCB, EG, EG-fixed, PE, 
CTS) in terms of f (T) and ren(T) , and compare them to non-CMAB baselines 
(Adamic-Adar, Jaccard) and the reference Actual-weight method (Sect. 6.1).

•	 Compare the performance of the various CLCB variants (CC-CLCB, CC-
CLCB-m, PC+Exp-CLCB, Global-CLCB, Global-CLCB-m) to each other, in 
terms of f (T) and ren(T) (Sect. 6.2).

•	 Evaluate the impact of varying the Min-CC oracle on the performance of the 
various CMAB methods (Sect. 6.3).

•	 Evaluate the efficiency of all the selected methods (Sect. 6.4).
•	 Perform a statistical significance analysis of the reported results (Sect. 6.5).

Further characterization. We also analyze the number of output clusters and the 
stability of the performance over the various rounds and runs of the tested methods 
(Sect. 7). This analysis is intended not really as a performance assessment, rather as 
an additional useful insight to better characterize the tested methods.

Implementation and testing environment. All the tested methods are imple-
mented in Python 3.8, with some of them using external libraries. In particular, 
LP+R adopts the PuLP library for linear programming,2 Adamic-Adar and Jac-
card use, respectively, the NetworkX and python-igraph libraries to com-
pute the topological similarity scores.3 All the experiments are carried out on the 
Cresco6 cluster,4 a high-performance computing system running Linux Centos 7.4, 
and consisting of 434 nodes, where each one is equipped with two Intel(R) Xeon(R) 
Platinum 8160 CPU @2.10GHz x24 processor and 192GB ram.

6 � Results

6.1 � Performance of the CMAB methods

Quality of the clusterings (Table  3). As a first general remark, the non-CMAB 
baselines (Adamic-Adar, Jaccard) achieve the worst performance in all the data-
sets and weight settings, while Actual-weight is always the best method, with only 
a couple of exceptions. This was expected, as the non-CMAB baselines employ 
no strategy to learn the true weights, whereas Actual-weight operates on the true 
weights. Importantly, in most cases, the CMAB methods (CC-CLCB, EG, EG-
fixed, PE, CTS) perform comparably or close to Actual-weight. The loss values of 
all the CMAB methods follow a decreasing trend over the rounds, as testified by the 

2  https://​coin-​or.​github.​io/​pulp/.
3  https://​netwo​rkx.​org    https://​igraph.​readt​hedocs.​io.
4  https://​www.​eneag​rid.​enea.​it/​CRESC​Oport​al/.

https://coin-or.github.io/pulp/
https://networkx.org
https://igraph.readthedocs.io
https://www.eneagrid.enea.it/CRESCOportal/
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negative growth rates (and better shown in Fig. 2, Sect. 7). This was expected, since 
the CMAB algorithms learn how to cluster the vertices over time. In general, all 
the CMAB algorithms converge to solutions with lower growth rate in the PC-wd 
setting than the R-wd setting. Also, with the exception of HighlandTribes, the dif-
ference of the best loss scores is higher in the PC-wd setting than the the R-wd one. 
This complies with the fact that the probability constraint leads to an easier Min-CC 
clustering task.

Focusing on the CMAB methods, the best performance corresponds to PE. This 
can be explained since (i) the Min-CC oracle therein used (i.e., Pivot) is a rand-
omized algorithm, thus, although with a pure-exploitation bandit strategy, it results 
in some implicit exploration; (ii) due to the peculiarity of our problem, each super 
arm admits a feedback from half the total number of arms, thus a bandit strategy 
with minimal exploration would likely perform better in the long run. CC-CLCB 
exhibits very good performance: it is comparable or close to the best methods in 
most datasets and weight settings, achieving maximum and average difference in 
loss with respect to the best performer(s) over all the configurations of 0.038 and 
0.014, respectively.

Quality of the learned edge weights (Table  4). A first general observation is 
that the weight estimates of all the CMAB methods improve as the rounds progress, 
and the relative error goes down over time, leading to a negative growth rate. This 
is consistent with the clustering improvement by increasing rounds observed from 
Table 3. As expected, the non-CMAB baselines yield the highest error values, while 
Actual-weight clearly achieves zero error everywhere. Among the CMAB methods, 
EG and EG-fixed yield the most accurate estimates in the C-wd weight setting. In 
the R-wd and PC-wd settings, EG-fixed is (comparable to) the best performer on 
the smaller datasets (Karate, Dolphins, Zebra, HighlandTribes, Contiguous-USA), 
while on the bigger datasets, CTS is (comparable to) the best method. CC-CLCB 
achieves the best performance in three datasets (Zebra, Last.fm, PrimarySchool) for 
R-wd and PC-wd distributions. Importantly, for some methods, the good/bad perfor-
mance on the weight-estimation task does not necessarily translate into an equally 
good/bad performance in the clustering results discussed above. This has a twofold 
motivation: (1) the underlying oracle is not an exact algorithm for Min-CC, thus 
it may happen that clustering with weight estimates lead to clusterings that are of 
better quality when evaluated in terms of the actual weights, and (2) CMAB meth-
ods like CC-CLCB adopt exploration strategies that perturb the current weight esti-
mates before giving them to the oracle, which corresponds to perform clustering 
with weights that are actually different from the estimated ones.

6.2 � Performance of the CLCB‑based CMAB methods

Quality of the clusterings (Table 5). In general, we observe that all the CC-CLCB 
variants perform rather closely to each other in all the configurations. Deepening 
the analysis, CC-CLCB-m and Global-CLCB-m are the best methods (in all the 
datasets but one) in the R-wd weight setting. Conversely, in the PC-wd and C-wd 
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settings, the best method is PC+Exp-CLCB in most cases: specifically, it is the 
best performer on all the datasets (though on par with CC-CLCB-m and Global-
CLCB-m on the larger ones) in PC-wd , and on three out of five datasets in C-wd . 
Also, Global-CLCB performs better in the PC-wd and C-wd settings than the R-wd 
one. These findings comply with the design principles of the CC-CLCB variants 
that favor the fulfilment of the probability constraint on the Min-CC instances to be 
processed by the underlying oracle (cf. Sect. 4.2), which clearly benefit from those 
settings like PC-wd and C-wd where the probability constraint actually holds.

Interestingly, CLCB and Global-CLCB achieve the same results in all the con-
figurations (and the same holds for CLCB-m vs. Global-CLCB-m). This can be 
explained as CC-CLCB and Global-CLCB (and the same is for CLCB-m and 
Global-CLCB-m) compute adjusted weight estimates (Line 4 in Algorithms 1 and 
3) so that the ordering between the positive-type weight estimate and the negative-
type weight estimate is likely to be the same for both algorithms. In other words, 
despite CC-CLCB and Global-CLCB may compute different actual values of those 
weight estimates, the two algorithms are mostly consistent in yielding a positive-
type weight estimate that is higher/lower than the negative-type one. This leads to 
very similar clusterings yielded by the Pivot Min-CC oracle in every run and every 
round of both CC-CLCB and Global-CLCB, as Pivot places any two vertices in 
the same clustering by solely checking whether the positive-type weight on the edge 
between those vertices is higher than the negative-type one, without looking at the 
specific values of those weights.

Quality of the learned edge weights (Table 6). In terms of edge weights, the 
picture in the PC-wd and C-wd settings is roughly consistent with what observed 
in terms of clustering quality. Some differences arise in the R-wd setting, where, 
unlike the clustering quality criterion, CC-CLCB-m and Global-CLCB-m are 
the best methods only in a few configurations (they are outperformed mostly by 
PC+Exp-CLCB).

As another interesting observation, here are some differences between CLCB 
and Global-CLCB, and between CLCB-m and Global-CLCB-m. This confirms 
the argument discussed above, i.e., that those methods achieve the same clustering 
results even though they can learn different weight estimates.

6.3 � Varying the Min‑CC oracle

Table  7 shows the performance of all the competing methods when using LP+R 
as a Min-CC oracle (instead of Pivot). Here, we also show the relative difference 
(in percentage) between the score with LP+R and the corresponding score with 
Pivot. Thus, the more positive (resp. negative) such a relative difference, the worse 
(resp. better) the performance of using LP+R than using Pivot. The general trend 
in terms of clustering quality (Table  7a) is that LP+R leads to an increase (resp. 
decrease) in performance in the R-wd and PC-wd settings (resp. C-wd setting). This 
is likely due to the fact that R-wd and PC-wd are more challenging than C-wd , as 
it is well-known that Min-CC is easier on complete-graph input instances  (Chari-
kar et  al. 2005). In fact, LP+R provides approximation guarantees at each round, 
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regardless of the weights in input to the oracle. Conversely, Pivot provides quality 
guarantees if the probability constraint holds on the given input, but this is not the 
case in a generic round t. The C-wd setting (i.e., complete graph with probability 
constraint) corresponds to the most favorable scenario for Pivot to provide approxi-
mation guarantees.

In terms of learned edge weights (Table 7b) the advantage of using LP+R is less 
evident. A reason might lie in the different random choices of the two algorithms 
(i.e., choosing the node around which a cluster is being built in Pivot, and integer 
rounding in LP+R): the random choices of Pivot likely lead to more exploration, 
hence a better chance to discover weights close to the true ones.

6.4 � Efficiency

Table 8 shows the runtimes of the tested methods on the larger datasets, averaged 
over the various runs and over the R-wd and PC-wd weight settings. Despite all the 
CMAB methods are roughly comparable with each other, CTS is however the slow-
est method, as it involves additional sampling operations with respect to the other 
ones.

The CMAB methods take seconds on the smaller Last.fm and PrimarySchool 
datasets, around one hour on ProsperLoans, and up to 3–5 h on the largest datasets, 
i.e., Wikipedia and DBLP. In general, however, we can conclude that all the CMAB 
methods are rather efficient. Even the highest runtimes on Wikipedia and DBLP are 
not worrying, considering that such datasets have around 10  M edges, and, more 
importantly, that the reported runtimes are cumulative of all the 500 CMAB rounds. 
In fact, the highest per-round runtime of a CMAB method is always—at worst—
comparable to the runtime of Actual-weight, which performs Min-CC clustering just 
once. In most cases, it is even less, likely because the time of the round-independent 
steps is amortized over the various rounds.

Further results are shown in Table 9 and include the use of both oracles for the 
smallest datasets in our collection, according to all weight settings. As it can be 
noted in the table, the above qualitative remarks on the relative differences between 
the methods are equally evident.

6.5 � Statistical significance

Here we present a further step of analysis to assess the statistical significance of the 
performance of the CMAB-Min-CC methods CC-CLCB, Global-CLCB, PC+Exp-
CLCB, CTS, and EG, when equipped with Pivot as a Min-CC oracle.

To this purpose, we resorted to a Friedman’s test. We designed it by consider-
ing all the methods, all the datasets, and all the weight settings in one single test. 
More specifically, we organized the data into a matrix with 5 columns (treatments) 
corresponding to the methods, and 250 rows (blocks) corresponding to the number 
of combinations between runs (10), datasets (10), and weight settings (R-wd and 
PC-wd available for all 10 datasets and C-wd available for 5 datasets), where each 
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Table 8   Running times (in secs.) on the larger datasets. Results correspond to average runtime perfor-
mances in the R-wd and PC-wd distribution settings and Pivot as a Min-CC oracle

Method Last.fm PrimarySchool ProsperLoans Wikipedia DBLP

CC-CLCB 194.77 3.57 3290.48 12089.04 16294.69
CC-CLCB-m 203.89 3.57 3255.32 11988.76 16263.11
PC+Exp-CLCB 197.65 3.55 3312.86 12017.06 16371.6
Global-CLCB 194.58 3.56 3286.15 12082.44 16424.53
Global-CLCB-m 194.88 3.55 3252.51 12261.51 16354.55
EG 184.67 3.41 3233.76 11554.83 16411.67
EG-fixed 190.89 3.43 3085.8 11431.45 15992.45
PE 193.51 3.58 3469.18 12310.03 17187.58
CTS 210.58 4.4 3753.27 12966.74 17819.99
Adamic-Adar 2.93 0.1 112.1 347.45 315.22
Jaccard 2.62 0.06 105.68 337.34 305.87
Actual-weight 2.24 0.04 40.18 145.75 199.42

Table 9   Running times (in secs.)

Results correspond to average runtime performances in the R-wd , PC-wd and C-wd distribution settings

Method Oracle Karate Dolphins HighlandTribes Contiguous-USA Zebra

CC-CLCB Pivot 0.17 0.37 0.07 0.25 0.11
LP+R 172.86 3058.17 7.66 963.88 57.41

CC-CLCB-m Pivot 0.17 0.37 0.07 0.25 0.11
LP+R 172.85 3013.26 7.58 962.15 56.72

PC+Exp-CLCB Pivot 0.16 0.37 0.07 0.24 0.11
Global-CLCB Pivot 0.17 0.38 0.07 0.29 0.11
Global-CLCB-m Pivot 0.17 0.37 0.07 0.24 0.11
EG Pivot 0.16 0.42 0.07 0.23 0.1

LP+R 136.11 2403.18 5.64 743.16 48.2
EG-fixed Pivot 0.16 0.34 0.06 0.27 0.1

LP+R 130.89 2318.57 5.32 726.31 44.97
PE Pivot 0.16 0.37 0.07 0.25 0.11

LP+R 166.88 2896.21 7.93 941.58 51.64
CTS Pivot 0.28 0.51 0.11 0.47 0.25

LP+R 190.96 3579.58 9.14 1084.56 71.9
Adamic-Adar Pivot 0.0 0.01 0.0 0.0 0.01

LP+R 1.61 31.23 0.08 10.95 0.59
Jaccard Pivot 0.0 0.01 0.0 0.0 0.0

LP+R 1.53 29.26 0.08 9.46 0.65
Actual-weight Pivot 0.0 0.01 0.0 0.0 0.01

LP+R 1.82 32.6 0.08 10.08 0.72
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cell measures the average expected normalized cumulative loss (i.e., f (T) (Eq. 12) 
obtained by a particular method at the last round ( T = 500 ) on a particular configu-
ration of run, dataset, weight setting. (Note that each run corresponds to a different 
fixed seed for handling computation randomness.)

Our Friedman’s test results indicate that there are significant differ-
ences—�2(4) = 158.1 , p-value < 2.2E-16—in the average expected normalized 
cumulative losses in run/dataset/weight-setting blocks based on the methods, i.e., 
the methods have different effect on average expected normalized cumulative loss 
obtained on each run/dataset/weight-setting combination.

We also computed the Kendall’s coefficient of concordance (Kendall’s W) for 
measuring the effect size (degree of difference) for Friedman’s test. From the result 
above, Kendall’s W is 0.304, which indicates an effect size at the boundary of the 
“small” and the “moderate” effects based on Cohen’s interpretation guidelines 
(Tomczak and Tomczak 2014).

Since Friedman’s test is an omnibus test statistic, in order to know which meth-
ods are significantly different, we carried out Nemenyi’s all-pairs test as a post-hoc 
test for pairwise comparisons of methods, where the Bonferroni correction was used 
to adjust the p-values for multiple hypothesis testing at a 5% cut-off. Results show 
p-values in the range (10−14, 10−4) (i.e., significant differences) for all pairs but CC-
CLCB vs. Global-CLCB. It should be noted that the lack of statistical difference 
between CC-CLCB and Global-CLCB is not surprising: in fact, in Sect.  6.2, we 
already noticed and explained why CC-CLCB and Global-CLCB achieve the same 
performance in terms of f (T) , in all the datasets and weight settings.

7 � Additional experiments

Clustering size. Tables 10,  11 and 12 show the number of clusters yielded by the 
tested methods, averaged over all the CMAB rounds and runs of the Min-CC oracle. 
For the CMAB methods, we also provide the difference (in percentage) between the 
number of clusters at the final round and the number of clusters at the first round 
(both averaged over the runs of the Min-CC oracle). By inspecting such results, we 
notice that in the cases of R-wd and PC-wd weight distributions, the use of LP+R 
oracle generally corresponds to less clusters compared to the Pivot oracle; some 
exceptions are observed for small-world datasets (e.g., Zebra, HighlandTribes) by 
most methods, especially with R-wd . The PC-wd mostly lead to less clusters than 
R-wd . Conversely, with the C-wd setting, the LP+R oracle leads consistently to a 
much larger number of clusters (at least double in many cases) than Pivot.

Moreover, we observe that the non-CMAB methods (i.e., Adamic-Adar and Jac-
card) produce a relatively small number of clusters as long as the characteristics of 
the input dataset are those typical of a small-world network; for instance, in Last.
fm and PrimarySchool, the clustering size is about 90% and 97% of the vertex set 
size, respectively. This is not surprising, as the adopted approaches of (CMAB) 
correlation clustering are not designed to optimize some criterion function defined 
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Table 10   Number of clusters for R-wd weight setting: average over all rounds and runs, and (for the 
CMAB methods) relative (percentage) difference between the last and first round

Method Oracle Karate Dolphins Zebra Highland-
Tribes

Contiguous-
USA

CC-CLCB Pivot 17.8 29.8 9.2 6.2 20.4
-47.65% -51.94% -65.93% -61.25% -58.37%

LP+R 14.4 21 11.4 9.4 13.6
-57.65% -66.13% -57.78% -41.25% -72.24%

CC-CLCB-m Pivot 18.2 30 8.2 6.4 22.2
-46.47% -51.61% -69.63% -60% -54.69%

LP+R 14 20 10.2 8.2 14.4
-58.82% -67.74% -62.22% -48.75% -70.61%

PC+Exp-
CLCB

Pivot 18.4 31 9.4 5.2 20.4
-45.88% -50% -65.19% -67.5% -58.37%

Global-CLCB Pivot 18 29.8 8.8 6.2 20.8
-47.06% -51.94% -67.41% -61.25% -57.55%

Global-
CLCB-m

Pivot 18.2 30 8.2 6.4 22.6
-46.47% -51.61% -69.63% -60% -53.88%

EG Pivot 20 32.8 10 6.8 23.2
21.87% 5.24% 8.86% 2.83% 5.54%

LP+R 13.8 21 13.4 5.6 15
-11.83% -30.2% 57.5% 18.33% -27.98%

EG-fixed Pivot 20.8 32.6 9.4 7.4 23.8
-38.82% -47.42% -65.19% -53.75% -51.43%

LP+R 13.8 18.6 12.2 5.6 15.4
-59.41% -70% -54.81% -65% -68.57%

PE Pivot 21.2 37 9.6 7.6 27.6
-37.65% -40.32% -64.44% -52.5% -43.67%

LP+R 16.4 24.4 16.4 12 19.2
-51.76% -60.65% -39.26% -25% -60.82%

CTS Pivot 18.4 31.8 9.2 6.6 23.2
-10.72% -1.06% -13.67% 10.5% -3.32%

LP+R 13.6 18.8 10.8 5.2 13.8
28.55% -5.55% -8.03% -19.17% -4.41%

Adamic-Adar Pivot 23.2 40.8 17.2 9.4 15.2
LP+R 18 36 19 8 3

Jaccard Pivot 23.8 49.8 7 7.2 35.2
LP+R 25 51 10 7 32

Actual-weight Pivot 20.4 31.4 10 6.8 21.6
LP+R 14 20.2 14 5.6 13

Method Last.fm Primary-
School

Prosper-
Loans

Wikipedia DBLP

CC-CLCB 29.8 23.8 3.768E+4 2.644E+5 1.02E+6
-97% -90.17% -57.8% -23.1% -44.07%
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on topological properties at meso- and macroscopic level (e.g., modularity), which 
results in a need for refining the clustering solutions through a cluster aggregation 
stage.

Performance over the CMAB rounds. Figures 2 and 3 illustrate the performance—
in terms of average expected normalized cumulative Min-CC loss f (t) (Eq. 12)—of the 
tested methods over the various CMAB rounds t. As expected, the CMAB methods 
mostly exhibit a decreasing trend, with a decrease in loss scores that is more consistent 
in the first rounds, until it gets progressively vanishing as the rounds go on, meaning 
convergence in the weight learning process (and, thus, in the clustering quality too). 
A few exceptions to this strictly monotonically decreasing trend arise (e.g., with some 
CLCB-based methods in Last.fm PC-wd , ProsperLoans R-wd , ProsperLoans PC-wd , 
DBLP PC-wd ). However, the minimum of the f (t) function in all those exceptional 
cases is only slightly less than the value of f (t) at convergence (i.e., the difference is less 
than 0.004). Thus, remembering also that f (t) is an average of all the losses computed 
up to round t, we can conclude that those non-monotonic trends actually correspond to 
the normal fluctuations of the loss values in the first CMAB rounds, when there cannot 
be enough knowledge on the actual edge weights to get stable clustering quality.

Table 10   (continued)

Method Last.fm Primary-
School

Prosper-
Loans

Wikipedia DBLP

CC-CLCB-
m

33.6 26.8 3.854E+4 2.648E+5 1.027E+6

-96.61% -88.93% -56.83% -22.98% -43.7%
PC+Exp-
CLCB

29.8 23.2 3.86E+4 2.638E+5 1.01E+6
-97% -90.41% -56.77% -23.27% -44.64%

Global-
CLCB

29.8 23.8 3.768E+4 2.644E+5 1.02E+6
-97% -90.17% -57.79% -23.1% -44.08%

Global-
CLCB-m

32.6 26.8 3.854E+4 2.648E+5 1.027E+6
-96.71% -88.93% -56.83% -22.98% -43.7%

EG 47.4 30.8 3.701E+4 2.686E+5 1.063E+6
324.15% 46.71% 105.86% 73.5% 30.98%

EG-fixed 36.6 29.6 3.617E+4 2.456E+5 1.007E+6
-96.31% -87.77% -59.48% -28.58% -44.81%

PE 41 30.2 4.32E+4 2.706E+5 1.121E+6
-95.87% -87.52% -51.61% -21.32% -38.56%

CTS 41 29 3.909E+4 2.665E+5 1.042E+6
-4.8% 1.2% 0.04% 0.01% 0.02%

Adamic-
Adar

992 242 8.924E+4 3.419E+5 1.393E+6

Jaccard 66.2 114.8 8.921E+4 2.912E+5 1.172E+6
Actual-

weight
43.2 28.4 3.921E+4 2.666E+5 1.042E+6
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Table 11   Number of clusters for PC-wd weight setting: average over all rounds and runs, and (for the 
CMAB methods) relative (percentage) difference between the last and first round

Method Oracle Karate Dolphins Zebra Highland-
Tribes

Contiguous-
USA

CC-CLCB Pivot 17.2 29 9.6 5.6 22.8
-49.41% -53.23% -64.44% -65% -53.47%

LP+R 8.8 19.2 9.8 11.6 18.4
-74.12% -69.03% -63.7% -27.5% -62.45%

CC-CLCB-m Pivot 17.6 30.2 9 5.6 22.6
-48.24% -51.29% -66.67% -65% -53.88%

LP+R 10.8 22.4 10.4 10 17
-68.24% -63.87% -61.48% -37.5% -65.31%

PC+Exp-
CLCB

Pivot 18 31 9.8 5.8 22.2
-47.06% -50% -63.7% -63.75% -54.69%

Global-CLCB Pivot 17.2 29 9.6 5.6 22.8
-49.41% -53.23% -64.44% -65% -53.47%

Global-
CLCB-m

Pivot 17.6 30.6 9 5.6 22.8
-48.24% -50.65% -66.67% -65% -53.47%

EG Pivot 16.6 29.4 10.2 5.8 22
-1.22% -5.37% 10.28% -11% 0%

LP+R 8.8 17.2 7.8 7.2 17.2
-42.61% -43.16% -9.85% 58.33% -17.91%

EG-fixed Pivot 19.2 31 9.6 6.2 21.8
-43.53% -50% -64.44% -61.25% -55.51%

LP+R 8.4 17.4 10 6.4 19
-75.29% -71.94% -62.96% -60% -61.22%

PE Pivot 20.4 35 10.4 5.8 23.8
-40% -43.55% -61.48% -63.75% -51.43%

LP+R 11.4 20.4 17.2 13.2 18
-66.47% -67.1% -36.3% -17.5% -63.27%

CTS Pivot 15.2 29.4 9 6 21.4
-25.94% -8.38% -16% -1% -10.83%

LP+R 9.4 18.4 9 7.4 17.6
-10.14% -6.42% -22.81% 31% 22.67%

Adamic-Adar Pivot 23.2 40.8 17.2 9.4 15.2
LP+R 18 36 19 8 3

Jaccard Pivot 23.8 49.8 7 7.2 35.2
LP+R 25 51 10 7 32

Actual-weight Pivot 18.2 29 9.2 6.8 22.6
LP+R 8.4 16 8.6 6.4 18

Method Last.fm Primary-
School

Prosper-
Loans

Wikipedia DBLP

CC-CLCB 37.6 24 3.804E+4 2.646E+5 1.023E+6
-96.21% -90.08% -57.39% -23.05% -43.92%
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Stability over the CMAB rounds. Tables 13, 14, 15, 16, 17 and 18 show the coef-
ficient of variation (i.e., ratio between standard deviation and mean) of the scores of 
the tested methods in terms of f (T) (Eq. 12) and ren(T) (Eq. 13) criteria, respectively. 
It can be observed that the coefficients of variations of f (T) are typically vary small 
for all the methods: they mostly range from [10−3, 10−2] in the smaller datasets, and 
from [10−6, 10−4] in the larger datasets, with only a very few exceptions. In terms of 
ren(T) , the coefficients of variations in the R-wd and PC-wd weight settings are higher 
(especially in the smaller datasets), but they still remain rather small. In the C-wd set-
ting, they are instead mostly equal or very close to zero. Therefore, as a general conclu-
sion, we can state that the various tested methods exhibit high stability over the CMAB 
rounds and runs of the Min-CC oracle.

8 � Conclusion

We have focused on the novel setting of correlation clustering where edge weights are 
unknown, and they need be discovered while performing multiple rounds of cluster-
ing. We have provided a Combinatorial Multi-Armed Bandit (CMAB) framework for 

Table 11   (continued)

Method Last.fm Primary-
School

Prosper-
Loans

Wikipedia DBLP

CC-CLCB-
m

44.6 26 3.867E+4 2.653E+5 1.032E+6

-95.5% -89.26% -56.68% -22.86% -43.45%
PC+Exp-
CLCB

44.6 27.4 3.935E+4 2.662E+5 1.041E+6
-95.5% -88.68% -55.92% -22.57% -42.93%

Global-
CLCB

37.6 24 3.804E+4 2.646E+5 1.023E+6
-96.21% -90.08% -57.39% -23.05% -43.92%

Global-
CLCB-m

44.8 25.6 3.867E+4 2.653E+5 1.032E+6
-95.48% -89.42% -56.68% -22.86% -43.45%

EG 43 30 3.603E+4 2.675E+5 1.053E+6
299% 42.79% 100.44% 72.82% 29.79%

EG-fixed 33.6 29.2 3.547E+4 2.45E+5 1.002E+6
-96.61% -87.93% -60.27% -28.74% -45.06%

PE 49 29.4 4.178E+4 2.691E+5 1.091E+6
-95.06% -87.85% -53.19% -21.74% -40.2%

CTS 43.4 28.6 3.898E+4 2.667E+5 1.042E+6
1.15% -0.88% -0.23% 0.11% 0%

Adamic-
Adar

992 242 8.924E+4 3.419E+5 1.393E+6

Jaccard 66.2 114.8 8.921E+4 2.912E+5 1.172E+6
Actual-

weight
44.4 30.2 3.921E+4 2.666E+5 1.042E+6
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correlation clustering, algorithms for it, analyses of the theoretical guarantees of these 
algorithms, more practical heuristics, and extensive experiments.

In the future, we plan to investigate the theoretical properties of our heuristics, 
advanced CMAB settings, and clustering problems other than correlation clustering.

For reproducibility purposes, we make source code and data available at: https://​
github.​com/​Ralyhu/​CMAB-​CC, and http://​people.​dimes.​unical.​it/​andre​ataga​relli/​
CMAB-​CC/.

Appendix

A.1: From expected theoretical guarantees to (˛,ˇ)‑approximation oracle

Approximation algorithms for correlation clustering are typically randomized and 
achieve quality guarantees in expectation (Ailon et al. 2008; Charikar et al. 2005; 
Demaine et al. 2006; Swamy 2004). Here we show how to use a correlation-clus-
tering algorithm with expected factor-� approximation as an (�, �)-approximation 

Fig. 2   Performance in terms of f (t) (Eq. 12), over a number t = 1,… , 400 of rounds, for the larger data-
sets, and R-wd and PC-wd weight distributions. All the CMAB methods are equipped with Pivot as a 
Min-CC oracle

https://github.com/Ralyhu/CMAB-CC
https://github.com/Ralyhu/CMAB-CC
http://people.dimes.unical.it/andreatagarelli/CMAB-CC/
http://people.dimes.unical.it/andreatagarelli/CMAB-CC/
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Fig. 3   Performance in terms of f (t) (Eq. 12), over a number t = 1,… , 400 of rounds (iterations), for the 
larger datasets, and R-wd and PC-wd weight distributions
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Table 13   Coefficient of variation of f (T) (Eq.  12) over all the CMAB rounds and runs of the Min-CC 
oracle, for R-wd weight setting

Method Oracle Karate Dolphins Zebra HighlandTribes Contiguous-
USA

CC-CLCB Pivot 0.002 0.002 0.003 0.004 0.002
LP+R 0.001 0.002 0.003 0.004 0.001

CC-CLCB-m Pivot 0.004 0.002 0.004 0.005 0.001
LP+R 0.004 0.003 0.003 0.005 0.002

PC+Exp-
CLCB

Pivot 0.005 0.004 0.001 0.003 0.002

Global-CLCB Pivot 0.002 0.002 0.003 0.002 0.002
Global-CLCB-
m

Pivot 0.004 0.002 0.004 0.005 0.001

EG Pivot 0.009 0.006 0.002 0.008 0.002
LP+R 0.02 0.01 0.02 0.03 0.006

EG-fixed Pivot 0.004 0.004 0.003 0.006 0.005
LP+R 0.01 0.009 0.02 0.03 0.009

PE Pivot 0.01 0.006 0.005 0.02 0.02
LP+R 0.04 0.02 0.06 0.1 0.02

CTS Pivot 0.003 0.002 0.002 0.008 0.001
LP+R 0.004 0.003 0.01 0.02 0.004

Adamic-Adar Pivot 0.008 0.02 0.004 0.04 0.03
LP+R 0 0 0 0 0

Jaccard Pivot 0.007 0.006 0 0.02 0.004
LP+R 0 0 0 0 0

Actual-weight Pivot 0.02 0.009 0.01 0.03 0.009
LP+R 0 0.008 0 0.02 0

Method Last.fm Primary-
School

Prosper-
Loans

Wikipedia DBLP

CC-CLCB 3E-05 0.0001 3E-06 3E-06 7E-06
CC-CLCB-
m

3E-05 0.0001 5E-06 5E-06 3E-06

PC+Exp-
CLCB

4E-05 0.0002 1E-05 5E-06 5E-06

Global-
CLCB

3E-05 0.0001 3E-06 3E-06 5E-06

Global-
CLCB-m

3E-05 0.0001 5E-06 5E-06 6E-06

EG 3E-05 0.0003 7E-05 4E-05 0.0007
EG-fixed 4E-05 0.0007 0.0001 7E-05 0.0008
PE 2E-05 0.0001 6E-06 7E-06 2E-05
CTS 2E-05 0.0001 1E-06 2E-06 6E-06
Adamic-

Adar
0 0 3E-07 2E-06 4E-05

Jaccard 0.0001 0.0006 2E-07 2E-05 3E-05
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oracle within CMAB correlation-clustering algorithms (where � need not to be 
necessarily a constant; for instance, in the algorithms in Charikar et  al. (2005); 
Demaine et al. (2006), � is O(log |V|) ). We focus on the Min-CC context, thus on 
the notion of Min-CC-(�, �)-approximation oracle (Definition  2). A similar rea-
soning holds for Max-CC as well.

If 𝜀 > 1 is the expected approximation factor of a (randomized) Min-
CC algorithm, it means that, for every Min-CC instance I, it holds that 
�[fmin(C)] ≤ � fmin(C

∗
I
) , where C is the clustering output by the algorithm and C∗

I
 is 

the optimal clustering for I. To have a Min-CC-(�, �)-approximation oracle, we 
need to convert these guarantees—which hold in expectation, but not necessarily 
in every run—into guarantees that hold in every run with a certain probability 
at least � (with � typically in the order of 1 − (poly(|V|))−1).

More specifically, it is well-known that an algorithm with � guarantees in 
expectation can be converted into an algorithm with (1 + �)� guarantees with 
high probability, for any 𝛿 > 0 , by exploiting Markov’s inequality  (Gupta 
2005). In particular, running the algorithm with � guarantees in expectation 
k = c ⋅ log1+�(|V|) times (for any c > 0 ) and keeping the best output among all 
of those trials, it yields a clustering with (1 + �)� quality guarantee with prob-
ability at least 1 − |V|−c . The aforementioned procedure corresponds to a Min-
CC-(�(�), �(c))-approximation oracle where �(�) = (1 + �)� and �(c) = 1 − |V|−c . 
Note that, given that � is arbitrary, it means that there exist various Min-
CC-(�(�), �(c))-approximation oracles, each one corresponding to specific values 
of � and c. Also, the worse the required approximation guarantee (i.e., higher � , 
thus higher �(�) ), the higher the �(c) success probability of the oracle (due to 
the relationship k = c log1+� |V| between � and c). By suitably choosing 𝛿 > 0 
and c > 0 (so as to define the number k = c log1+� |V| of trials), one can get the 
desired �(�), �(c) values.

A.2: Algorithms for CMAB‑Max‑CC

In this section, we present algorithms for CMAB-Max-CC (Problem 4). When basic 
Chen et al.’s CMAB framework  (Chen et  al. 2016) is contextualized to a specific 
maximization problem, a major algorithmic contribution typically consists in adapt-
ing the so-called Combinatorial Upper Confidence Bound (CUCB) method to the 
context at hand, and showing how its theoretical guarantees are maintained/change 
while carrying out such an adaptation (Chen et al. 2018b; Liu et al. 2021; Manda-
glio and Tagarelli 2019a, b; Talebi et al. 2017; Vaswani and Lakshmanan 2015; Wu 
et al. 2019). Here we follow that bulk of literature: we focus on the customization of 

Table 13   (continued)

Method Last.fm Primary-
School

Prosper-
Loans

Wikipedia DBLP

Actual-
weight

0.0003 0.0009 4E-05 3E-05 3E-05
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Table 14   Coefficient of variation of f (T) (Eq.  12) over all the CMAB rounds and runs of the Min-CC 
oracle, for PC-wd weight setting

Method Oracle Karate Dolphins Zebra HighlandTribes Contiguous-
USA

CC-CLCB Pivot 0.003 0.004 0.003 0.001 0.003
LP+R 0.004 0.003 0.005 0.08 0.003

CC-CLCB-m Pivot 0.002 0.003 0.003 0.001 0.004
LP+R 0.007 0.006 0.006 0.1 0.002

PC+Exp-
CLCB

Pivot 0.002 0.004 0.003 0.003 0.005

Global-CLCB Pivot 0.003 0.004 0.004 0.001 0.003
Global-CLCB-
m

Pivot 0.002 0.003 0.003 0.001 0.004

EG Pivot 0.003 0.003 0.004 0.009 0.004
LP+R 0.01 0.01 0.03 0.02 0.01

EG-fixed Pivot 0.005 0.004 0.004 0.006 0.004
LP+R 0.009 0.01 0.04 0.02 0.01

PE Pivot 0.02 0.01 0.003 0.03 0.005
LP+R 0.04 0.04 0.1 0.1 0.04

CTS Pivot 0.004 0.003 0.004 0.009 0.002
LP+R 0.004 0.01 0.02 0.02 0.003

Adamic-Adar Pivot 0.03 0.009 0.003 0.03 0.06
LP+R 0 0 0 0 0

Jaccard Pivot 0.009 0.01 0 0.03 0.02
LP+R 0 0 0 0 0

Actual-weight Pivot 0.03 0.01 0.02 0.05 0.02
LP+R 0.03 0 0.04 0.05 1E-16

Method Last.fm Primary-
School

Prosper-
Loans

Wikipedia DBLP

CC-CLCB 3E-05 0.0002 9E-06 3E-06 1E-05
CC-CLCB-m 3E-05 0.0003 9E-06 5E-06 1E-05
PC+Exp-
CLCB

3E-05 0.0003 1E-05 1E-05 1E-05

Global-CLCB 3E-05 0.0002 9E-06 3E-06 1E-05
Global-
CLCB-m

4E-05 0.0003 9E-06 5E-06 1E-05

EG 4E-05 0.0003 0.0001 6E-05 0.001
EG-fixed 6E-05 0.001 0.0002 0.0001 0.001
PE 4E-05 0.0003 1E-05 7E-06 2E-05
CTS 2E-05 0.0002 2E-06 1E-06 4E-06
Adamic-Adar 0 0 2E-07 3E-06 7E-05
Jaccard 0.0002 0.001 8E-08 2E-05 3E-05
Actual-weight 0.0003 0.004 6E-05 5E-05 4E-05
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CUCB to the Max-CC context, and show that the theoretical guarantees of CUCB 
carry over rather easily to this customization.

The CC-CUCB  algorithm. CUCB  (Chen et  al. 2016) is an extension of the 
UCB1 method for MAB (Auer et al. 2002). It keeps, along with the estimate of the 
means of the base-arm random variables, confidence intervals within which the true 
means fall with overwhelming probability, and plays superarms based on the upper 
bound of those intervals.

Table 15   Coefficient of variation of f (T) (Eq.  12) over all the CMAB rounds and runs of the Min-CC 
oracle, for C-wd weight setting

Method Oracle Karate Dolphins Zebra HighlandTribes Contiguous-USA

CC-CLCB Pivot 0.002 0.002 0.04 0.002 0.001
LP+R 0 0 0.01 1E-16 0

CC-CLCB-m Pivot 0.003 0.002 0.1 0.002 0.002
LP+R 0 0 0.02 1E-16 0

PC+Exp-CLCB Pivot 0.001 0.001 0.01 0.002 0.001
Global-CLCB Pivot 0.002 0.002 0.04 0.002 0.001
Global-CLCB-m Pivot 0.003 0.002 0.1 0.002 0.002
EG Pivot 0.01 0.01 0.01 0.003 0.01

LP+R 0.008 0.01 0.005 0.002 0.008
EG-fixed Pivot 0.01 0.008 0.008 0.0006 0.01

LP+R 0.005 0.009 0.009 0.003 0.008
PE Pivot 0.002 0.001 0.01 0.002 0.001

LP+R 0 0 0 1E-16 0
CTS Pivot 0.003 0.004 0.01 0.002 0.003

LP+R 0.007 0.01 0.002 0.007 0.03
Adamic-Adar Pivot 0.07 0.05 0.02 0.1 0.06

LP+R 0 0 0 1E-16 0
Jaccard Pivot 0.02 0.008 0 0.02 0.009

LP+R 0 0 0 1E-16 1E-16
Actual-weight Pivot 0.03 0.03 0.1 0.03 0.04

LP+R 0 0 0 1E-16 0
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Table 16   Coefficient of variation of ren(T) (Eq. 13) over all the CMAB rounds and runs of the Min-CC 
oracle, for R-wd weight setting

Method Oracle Karate Dolphins Zebra HighlandTribes Contiguous-
USA

CC-CLCB Pivot 0.02 0.03 0.04 0.2 0.02
LP+R 0.1 0.08 0.2 0.06 0.3

CC-CLCB-m Pivot 0.08 0.1 0.07 0.3 0.04
LP+R 0.1 0.1 0.08 0.2 0.1

PC+Exp-
CLCB

Pivot 0.2 0.1 0.4 0.3 0.2

Global-CLCB Pivot 0.02 0.02 0.03 0.2 0.03
Global-CLCB-
m

Pivot 0.08 0.1 0.07 0.3 0.04

EG Pivot 0.02 0.2 0.1 0.2 0.2
LP+R 0.2 0.08 0.07 0.2 0.07

EG-fixed Pivot 0.1 0.09 0.1 0.1 0.2
LP+R 0.07 0.06 0.1 0.1 0.09

PE Pivot 0.1 0.08 0.3 0.2 0.1
LP+R 0.08 0.03 0.1 0.2 0.07

CTS Pivot 0.1 0.04 0.3 0.09 0.08
LP+R 0.08 0.07 0.1 0.1 0.04

Adamic-Adar Pivot 0 0 0 0 0
LP+R 0 0 0 0 0

Jaccard Pivot 0 0 0 0 0
LP+R 0 0 0 0 0

Actual-weight Pivot 0 0 0 0 0
LP+R 0 0 0 0 0

Method Last.fm Primary-
School

Prosper-
Loans

Wikipedia DBLP

CC-CLCB 0.0008 0.007 0.002 0.02 0.002
CC-CLCB-m 0 0.008 0.002 0.02 0.002
PC+Exp-
CLCB

0.001 0.006 0.0004 0.01 0.001

Global-CLCB 0.0008 0.007 0.002 0.02 0.002
Global-CLCB-
m

0 0.008 0.002 0.02 0.002

EG 0.004 0.01 0.02 0.02 0.04
EG-fixed 0.006 0.02 0.02 0.03 0.03
PE 0.003 0.02 0.001 0.01 0.0007
CTS 0.004 0.004 0.0006 0.007 0.0009
Adamic-Adar 0 0 0 0 0
Jaccard 0 0 0 0 0
Actual-weight 0 0 0 0 0
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Our customization of CUCB to Max-CC is termed CC-CUCB and outlined as 
Algorithm 4. CC-CUCB keeps track of the mean estimates �̂ = {�̂+, �̂−} (Eq. 4), 
and of the number T+

e
 (resp. T−

e
 ) of times a sample from W+

e
 (resp. W−

e
 ) random 

variable has been observed until the current round, for all e ∈ E . At the begin-
ning, ∀e ∈ E ∶ T+

e
= T−

e
= 0 , and �̂ are initialized, e.g., randomly or based on 

prior domain knowledge (Line 1). In every round t, the current mean estimates 
are adjusted with a term �±

e
 (defined based on Chernoff-Hoeffding bounds (Auer 

et al. 2002; Chen et al. 2016)), so as to foster, to some extent, the exploration of 
less often played base arms (Line 3). This leads to the adjusted means {�̃+

e
, �̃−

e
}e∈E 

(Line 4), which are interpreted as positive-type and negative-type edge weights of 
a correlation-clustering instance, respectively, and are fed as input (along with 
G) to an oracle O that computes a Max-CC solution Ct (Line 5). Ct is used as a 
feedback to update the mean estimates (Sect. 3, Table 1). Specifically, the weight 
of each intra-cluster (resp. inter-cluster) edge e is interpreted as a sample of W+

e
 

(resp. W−
e

 ), and is used to update 𝜇̂+
e
 , T+

e
 (resp. 𝜇̂−

e
 , T−

e
 ). 𝜇̂+

e
 and 𝜇̂−

e
 are updated 

so as to be equal to the average of the samples from W+
e

 and W−
e

 observed so far, 
respectively (Lines 6–11).

A.2.1: Regret analysis of CC‑CUCB

As correlation clustering is NP-hard, it is unlikely that CC-CUCB can be 
equipped with an exact oracle O for Max-CC running in polynomial time. Hence, 
in analyzing the theoretical guarantees of CC-CUCB, we consider the case where 
O is a Max-CC-(�, �)-approximation oracle:

Definition 5  (Max-CC-(�, �)-approximation oracle) Given a Max-CC instance 
I=⟨(V ,E), {(w+

e
, w−

e
)}e∈E⟩ , let C∗

I
 be the optimal solution to I. Given �, � ∈ (0, 1] , an 
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Table 17   Coefficient of variation of ren(T) (Eq. 13) over all the CMAB rounds and runs of the Min-CC 
oracle, for PC-wd weight setting

Method Oracle Karate Dolphins Zebra HighlandTribes Contiguous-
USA

CC-CLCB Pivot 0.008 0.02 0.05 0.07 0.08
LP+R 0.09 0.2 0.01 0.5 0.05

CC-CLCB-m Pivot 0.1 0.1 0.4 0.1 0.1
LP+R 0.05 0.02 0.1 1 0.09

PC+Exp-
CLCB

Pivot 0.05 0.07 0.1 0.05 0.04

Global-CLCB Pivot 0.008 0.02 0.05 0.2 0.08
Global-CLCB-
m

Pivot 0.1 0.1 0.4 0.1 0.1

EG Pivot 0.2 0.1 0.1 0.2 0.05
LP+R 0.2 0.09 0.07 0.1 0.2

EG-fixed Pivot 0.07 0.2 0.04 0.2 0.04
LP+R 0.1 0.1 0.1 0.09 0.09

PE Pivot 0.2 0.1 0.3 0.1 0.1
LP+R 0.1 0.06 0.07 0.3 0.1

CTS Pivot 0.08 0.04 0.05 0.1 0.1
LP+R 0.08 0.07 0.1 0.08 0.05

Adamic-Adar Pivot 0 0 0 0 0
LP+R 0 0 0 0 0

Jaccard Pivot 0 0 0 0 0
LP+R 0 0 0 0 0

Actual-weight Pivot 0 0 0 0 0
LP+R 0 0 0 0 0

Method Last.fm Primary-
School

Prosper-
Loans

Wikipedia DBLP

CC-CLCB 0.0008 0.01 0.002 0.02 0.002
CC-CLCB-m 0.0009 0.009 0.002 0.02 0.002
PC+Exp-
CLCB

0.002 0.002 0.0007 0.02 0.0009

Global-CLCB 0.0008 0.01 0.002 0.02 0.002
Global-
CLCB-m

0.0009 0.009 0.002 0.02 0.002

EG 0.005 0.02 0.02 0.03 0.04
EG-fixed 0.006 0.02 0.02 0.03 0.03
PE 0.004 0.01 0.002 0.01 0.002
CTS 0.003 0.007 0.0007 0.006 0.0006
Adamic-Adar 0 0 0 0 0
Jaccard 0 0 0 0 0
Actual-weight 0 0 0 0 0
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algorithm for Max-CC is a max-(�, �)-approximation oracle if, for every input I, it 
yields a solution C such that Pr[fmax(C) ≥ � fmax(C

∗
I
)] ≥ � (where fmax(⋅) is Max-CC 

’s objective function, Eq. (2)).

When used as an oracle O within CC-CUCB, the condition in Definition  5 
to recognize O as a Max-CC-(�, �)-approximation oracle needs to hold on every 
Max-CC instance that is given as input to O at each round. Hence, the condi-
tion has to hold on the mean estimates, not the true ones. Existing algorithms 
for Max-CC achieving constant-factor guarantees in expectation  (Charikar et al. 
2005; Swamy 2004) can be employed as Max-CC-(�, �)-approximation oracles. 
We show the details of this in Appendix A.1.

When approximation oracles are used, the quality of a CMAB algorithm is 
typically measured in terms of the (�, �)-approximation regret metric, which is 
defined as the �� fraction of the expected reward of playing the best superarm in 
every round, minus the sum of expected reward of the superarms played by the 
algorithm in all the rounds  (Chen et  al. 2016). In the CMAB-Max-CC setting, 
this metric becomes:

Table 18   Coefficient of variation of ren(T) (Eq. 13) over all the CMAB rounds and runs of the Min-CC 
oracle, for C-wd weight setting

Method oracle Karate Dolphins Zebra HighlandTribes Contiguous-USA

CC-CLCB Pivot 0 1E-16 0.005 0 0
LP+R 0 1E-16 0.2 0 0

CC-CLCB-m Pivot 0 1E-16 0.006 0 0
LP+R 0 1E-16 0 0 0

PC+Exp-CLCB Pivot 0 0 0 0 0
Global-CLCB Pivot 0 1E-16 0.005 0 0
Global-CLCB-m Pivot 0 1E-16 0.006 0 0
EG Pivot 0 0 0 0 0

LP+R 0 0 0 0 0
EG-fixed Pivot 0 0 0 0 0

LP+R 0 0 0 0 0
PE Pivot 0.03 0.0005 0.008 0 0.0002

LP+R 0 1E-16 0 0 0
CTS Pivot 0.01 0.01 0.03 0.1 0.009

LP+R 0.003 0.002 0.005 0.02 0.002
Adamic-Adar Pivot 0 0 0 0 0

LP+R 0 0 0 0 0
Jaccard Pivot 0 0 0 0 0

LP+R 0 0 0 0 0
Actual-weight Pivot 0 0 0 0 0

LP+R 0 0 0 0 0
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Definition 6  (Max-CC-(�, �)-approximation regret) Let C∗
I
 be the clustering maxi-

mizing ā�(⋅) (Eq.  7) on a CMAB-Max-CC instance I (w.r.t. the true � means, 
Eq. (3)), and let {Ct}Tt=1 be the clusterings output by an algorithm A run on I. For any 
�, � ∈ (0, 1] , the Max-CC-(�, �)-approximation regret of A is

Chen et al. (2016); Wang and Chen (2017) show that, if the (expected) reward 
function satisfies certain properties (see Appendix  A.2.2), the CUCB method 
indeed achieves a regret at most in the order of O(log T) . Here we show that this 
guarantee carries over to our CC-CUCB:

Theorem  4  Given �, � ∈ (0, 1] , the Max-CC-(�, �)-approximation regret (Defini-
tion 6) of the CC-CUCB algorithm (Alg. 4), when equipped with a Max-CC-(�, �)
-approximation oracle O (Definition  5), is upper-bounded by a function that is 
O(log T).

Proof  (sketch) The expected reward ā�(⋅) used in CC-CUCB satisfies all the prop-
erties that Chen et al. (2016); Wang and Chen (2017) require to have a CUCB-like 
method achieving a logarithmic (in the number of rounds) regret bound. A detailed 
proof is shown in Appendix A.2.2. 	� ◻

The guarantees in Theorem  4 are on the regret computed based on the true � 
means, despite the guarantees of the oracle are on the �̂ estimates. This is possible 
thanks to the way how CC-CUCB computes the mean estimates and the properties 
of the reward function required by the theorem. More details on this are reported in 
Appendix A.2.2.

A.2.2: Proof of Theorem 4

Definition 7  (Base arms induced by a clustering (CMAB-Max-CC)) Let S be the 
set of all base arms and C a clustering, we denote with SC the set of base arms cor-
responding to the clustering-compliant replica set induced by the clustering C , i.e., 
SC = {�+

uv
∣ e = (u, v) ∈ ein} ∪ {�−

uv
∣ e = (u, v) ∈ eout}.

Definition 8  (Bad superarm (CMAB-Max-CC)  (Wang and Chen 2017)) Let C∗
I
 be 

the clustering minimizing the expected reward ā�(⋅) (Eq. 7) on a CMAB-Max-CC 
instance I (w.r.t. the true � means, Eq.  3). Given a Max-CC-(�, �)-approximation 
oracle, a superarm (output of the oracle) C is bad if ā�(C) < 𝛼 ā�(C

∗
I
).

Definition 9  (Gap (CMAB-Max-CC) (Wang and Chen 2017)) Given a superarm C , 
the gap �C of C is defined as 𝛥C = max{0, 𝛼 ā�(C

∗
I
) − ā�(C))} , where C∗

I
 is the opti-

mal solution of the Max-CC instance at hand. Moreover, for a base arm p ∈ S , we 
define 𝛥p

min
= minC∣p∈SC,𝛥C>0

𝛥C and 𝛥p
max = maxC∣p∈SC,𝛥C>0

𝛥C . As a convention, if for 

(15)RegA
�,𝛼,𝛽

(T) = T 𝛼 𝛽 ā�(C
∗
I
) − �

�∑T

t=1
ā�(Ct)

�
.
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a base arm p there is no superarm C such that p ∈ SC and 𝛥C > 0 then �p

min
= +∞ 

and �p
max = 0 . Also let �max = maxp∈S �

p
max and �min = minp∈S �

p

min
.

Property 1  (Monotonicity (CMAB-Max-CC ) (Wang and Chen 2017)) The reward 
function is monotonically non-decreasing w.r.t. the expectations, i.e., for any two 
expectation vectors � = (�1,… ,�m) and �� = (��

1
,… ,��

m
) , and for any clustering C , 

it holds that ā�(C) ≤ ā�� (C) , if �i ≤ �′
i
 , for all i = 1,… ,m.

Property 2  (1-Norm Bounded Smoothness (CMAB-Max-CC )  (Wang and 
Chen 2017)) There exists a bounded smoothness constant B ∈ ℝ

+ such that 
for any two expectation vectors � and �′ , and for any clustering C , it holds that 
�ā�(C) − ā�� (C)� ≤ B

∑
p∈SC

�𝜇p − 𝜇�
p
�.

Lemma 1  Property 1 holds for ā�(⋅) (Eq. 8).

Proof  Straightforward because ā�(⋅) is defined as a sum of the expectation values. 	
� ◻

Lemma 2  Property 2 with B = 1 holds for ā�(⋅) (Eq. 8).

Proof 
	�  ◻

Theorem  5  Given �, � ∈ (0, 1] , the Max-CC-(�, �)-approximation regret (Defini-
tion 6) of the CC-CUCB algorithm (Alg. 4), when equipped with a Max-CC-(�, �)
-approximation oracle O (Definition 5), is upper-bounded as follows:

Proof  Theorem 4 in the Appendix of Wang and Chen (2017) states that the CUCB 
method achieves a regret bound of the form in Eq. (16) if the expected reward satis-
fies Property 1 and Property 2. According to Lemmas 1 and 2, the expected reward 
ā�(⋅) (Eq. 8) used in CMAB-Max-CC satisfies both those properties. 	�  ◻

A.3: Regret Analysis of CC‑CLCB (Proof of Theorem 1)

Next we provide several definitions which, sometimes with minor modifications, are 
taken from Wang and Chen (2017).

|ā�(C) − ā�� (C)| =
|||||

∑

(u, v) ∈ E,

C(u) = C(v)

(𝜇+
uv
− 𝜇�+

uv
) +

∑

(u, v) ∈ E,

C(u) ≠ C(v)

(𝜇−
uv
− 𝜇�−

uv
)
|||||
≤ ∑

p∈SC

|𝜇p − 𝜇�
p
|.

(16)RegA
�,�,�

(T) ≤ 2

3
�2 |E| �max + 4|E| +

∑

p∈S

48|E| lnT
�
p

min

.
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Property 3  (Monotonicity (CMAB-Min-CC )  (Wang and Chen 2017)) The loss 
function is monotonically non-decreasing w.r.t. the expectations, i.e., for any two 
expectation vectors � = (�1,… ,�m) and �� = (��

1
,… ,��

m
) , and for any clustering C , 

it holds that d̄�(C) ≤ d̄�� (C) , if �i ≤ �′
i
 , for all i = 1,… ,m.

Property 4  (1-Norm Bounded Smoothness (CMAB-Min-CC )  (Wang and 
Chen 2017)) There exists a bounded smoothness constant B ∈ ℝ

+ such that 
for any two expectation vectors � and �′ , and for any clustering C , it holds that 
�d̄�(C) − d̄�� (C)� ≤ B

∑
p∈SC

�𝜇p − 𝜇�
p
�.

Lemma 3  Property 3 holds for d̄�(⋅) (Eq. 8).

Proof  Straightforward because d̄�(⋅) is defined as a sum of the expectation values. 	
� ◻

Lemma 4  Property 4 with B = 1 holds for d̄�(⋅) (Eq. 8).

Proof 

	�
◻

Definition 10  (Base arms induced by a clustering (CMAB-Min-CC)) Let S be the 
set of all base arms and C a clustering, we denote with SC the set of base arms cor-
responding to the clustering-compliant replica set induced by the clustering C , i.e., 
SC = {�−

uv
∣ e = (u, v) ∈ ein} ∪ {�+

uv
∣ e = (u, v) ∈ eout}.

Definition 11  (Bad super arm (CMAB-Min-CC) (Wang and Chen 2017)) Let C∗
I
 

be the clustering minimizing the expected loss d̄�(⋅) (Eq. 7) on a CMAB-Min-CC 
instance I (w.r.t. the true � means, Eq.  3). Given a Min-CC-(�, �)-approximation 
oracle for Min-CC, a super arm (output of the oracle) C is bad if d̄�(C) >

1

𝛼
⋅ d̄�(C

∗
I
).

Definition 12  (Gap (CMAB-Min-CC) (Wang and Chen 2017)) For a 
CMAB-Min-CC instance, for a given super arm C we define the gap as 
𝛥C = max{0, d̄�(C) −

1

𝛼
⋅ d̄�(C

∗
I
)} , where C∗

I
 is the optimal solution of the Min-

CC instance at hand. For each base arm p ∈ S we define 𝛥p

min
= minC∣p∈SC,𝛥C>0

𝛥C 
and 𝛥p

max = maxC∣p∈SC,𝛥C>0
𝛥C . As a convention, if for a base arm p there is no 

super arm C such that p ∈ SC and 𝛥C > 0 then �p

min
= +∞ and �p

max = 0 . Also let 
�max = maxp∈S �

p
max and �min = minp∈S �

p

min
.

|d̄�(C) − d̄�� (C)| =
|||||

∑

(u, v) ∈ E,

C(u) = C(v)

(𝜇−
uv
− 𝜇�−

uv
) +

∑

(u, v) ∈ E,

C(u) ≠ C(v)

(𝜇+
uv
− 𝜇�+

uv
)
|||||
≤ ∑

p∈SC

|𝜇p − 𝜇�
p
|.
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Similarly to Wang and Chen (2017), we introduce the following definition to 
assist our analysis.

Definition 13  (Event-filtered regret) Let C∗
I
 be the clustering minimizing the 

expected loss d̄�(⋅) (Eq. 7) on a CMAB-Min-CC instance I (w.r.t. the true � means, 
Eq. 3) and let {Ct}Tt=1 be the clusterings output by an algorithm A run on I. For any 
series of events {E}t≥1 indexed by round number t, we define RegA

�,�
(T , {E}t≥1) as the 

regret filtered by events {E}t≥1 , that is, regret is only counted in round t if Et happens 
in round t. Formally

Theorem 1 Given �, � ∈ (0, 1] , the Min-CC-(�, �)-approximation regret (Defini-
tion 3) of the CC-CLCB algorithm (Alg. 1), when equipped with a Min-CC-(�, �)
-approximation oracle O (Definition 2), is upper-bounded as follows:

Proof  The proof is very similar to the proof of Theorem  4 in Wang and Chen 
(2017) (Section B.2 in the Supplementary Materials), thus, here we avoid replicat-
ing all the steps. Although the adopted (event-filtered) regret definition (Defini-
tion 3) in our case is different from the one considered in Wang and Chen (2017), 
the derived regret bound is the same. Our proof relies on the following main result: 
the d̄�(⋅) function (Eq. 8) satisfies the properties of monotonicity (Lemma 3) and 
1-norm bounded smoothness (Lemma  4). Other technical differences between 
our proof and the one in Wang and Chen (2017) correspond to (1) changing, in 
some intermediate steps, inequality signs since rewards are replaced with losses, 
and (2) using the argument that, for the considered regret definition, it holds that 
𝛥max ≤ M −

1

𝛼
⋅ d̄�(C

∗
I
) . 	 � ◻

RegA
�,𝛼

(T , {E}t≥1) = �

�∑T

t=1
1{Et}

�
d̄�(Ct) −

1

𝛼
⋅ d̄�(C

∗
I
)
��

.

(17)RegA
�,�,�

(T) ≤ 2

3
�2 |E| �max + 4|E| +

∑

p∈S

48|E| lnT
�
p

min

.
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A.4: Details on the symmetric‑distribution setting (Sect. 4.3)

Lemma 5  (Hoeffding’s inequality (Hoeffding 1963)) Let X1,⋯ ,Xn be independent 
random variables, where each Xi is bounded in [ai, bi] . Define 𝜇̂ = (X1 +⋯ + Xn)∕n 
the empirical mean of these variables and let 𝜇 = �[𝜇̂] the expected value of these 
mean, it holds that:

Theorem  3  Given �, � ∈ (0, 1] , the Min-CC-(�, �)-approximation regret (Defini-
tion  3) of a full-exploitation strategy A run on a CMAB-Min-CC instance where 
all edge-weight distributions are symmetric, and equipped with a Min-CC-(�, �)
-approximation oracle (Definition 2), is upper-bounded as follows:

Proof  Let Ft be the event that the Min-CC-(�, �)-approximation oracle fails to pro-
duce an α-approximate answer with respect to its input.

Following the reasoning of Chen et al. (2018b) (Appendix D.5), we decompose 
the filtered regret (Definition 13) with null event as follows:

 It can be easily shown Chen et  al. (2018b) that Reg(Ft) ≤ (1 − �)TΔmax . Let C∗
�
 

(resp. C∗
𝛍̂𝐭

 ) be the clustering minimizing the expected loss d̄�(⋅) (Eq. 7) w.r.t. the true 

Pr
�
�𝜇̂ − 𝜇� ≥ 𝛿

� ≤ 2 exp

�
−

2n2𝛿2∑n

i=1
(bi − ai)

2

�
.

(18)RegA
�,�,�

(T) ≤
(
1 +

2(
1

�
+ 1)2|E|3

�2
min

)
�max.

Reg({}) = Reg(Ft) + Reg(¬Ft)
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� means (resp. w.r.t. the estimates at round t,denoted as 𝝁̂
t
 ). In order to bound 

Reg(¬Ft) , we first bound �Ct
 when ¬Ft holds:

If |𝜇̂±
uv,t

− 𝜇±
uv
| < 𝛥min∕(

1

𝛼
+ 1)|E| for each (u, v) ∈ E (event denoted with Bt ), 

then 𝛥Ct
< 𝛥min , and, thus, �Ct

= 0 by definition of �min . This means that, when 
¬Ft holds, �Ct

 can be non-zero only when there is at least one pair of verti-
ces for which |𝜇̂±

uv,t
− 𝜇±

uv
| ≥ 𝛥min∕(

1

𝛼
+ 1)|E| , i.e., ¬Bt holds. In other words, 

Reg(¬Ft) = Reg(¬Ft ∧ Bt) + Reg(¬Ft ∧ ¬Bt) , with Reg(¬Ft ∧ Bt) = 0 . Next we 
bound Reg(¬Ft ∧ ¬Bt):

𝛥C
t
= max

{
0, d̄�(Ct) −

1

𝛼
d̄�(C

∗
𝜇
)
}

= max

{
0, d̄�(Ct) + d̄�̂

t
(C

t
) − d̄�̂

t
(C

t
) −

1

𝛼
d̄�(C

∗
𝜇
)
}

≤ max

{
0, d̄�(Ct) +

1

𝛼
d̄�̂

t
(C∗

𝜇
) − d̄�̂

t
(C

t
) −

1

𝛼
d̄�(C

∗
𝜇
)
}

(¬F
t
⇒ d̄�̂

t
(C

t
) ≤ 1

𝛼
d̄�̂

t
(C∗

𝜇̂
) ≤ 1

𝛼
d̄�̂

t
(C∗

𝜇
))

≤ max

{
0, | 1

𝛼
d̄�̂

t
(C∗

𝜇
) −

1

𝛼
d̄�(C

∗
𝜇
)| + |d̄�(Ct) − d̄�̂

t
(C

t
)|
}

≤ 1

𝛼
|d̄�̂

t
(C∗

𝜇
) − d̄�(C

∗
𝜇
)| + |d̄�(Ct) − d̄�̂

t
(C

t
)| (1 − Norm bounded smoothness of d̄�(⋅))

≤ 1

𝛼

( ∑

(u, v) ∈ E,

C
∗
𝜇
(u) = C

∗
𝜇
(v)

|𝜇̂−
uv,t

− 𝜇−
uv
| +

∑

(u, v) ∈ E,

C
∗
𝜇
(u) ≠ C

∗
𝜇
(v)

|𝜇̂+
uv,t

− 𝜇+
uv
|
)
+

( ∑

(u, v) ∈ E,

C
t
(u) = C

t
(v)

|𝜇̂−
uv,t

− 𝜇−
uv
| +

∑

(u, v) ∈ E,

C
t
(u) ≠ C

t
(v)

|𝜇̂+
uv,t

− 𝜇+
uv
|
)
.

Reg(¬Ft ∧ ¬Bt) ≤
T∑

t=1

Pr
[
¬Ft ∧ ¬Bt

]
𝛥max

≤
T∑

t=1

Pr
[
¬Bt

]
𝛥max

(
since Pr

[
¬Ft ∧ ¬Bt

] ≤ Pr
[
¬Bt

])

≤
T∑

t=1

𝛥max

∑

(u,v)∈E

(
Pr

[
|𝜇̂+

uv,t
− 𝜇−

uv
| ≥ 𝛥min

(
1

𝛼
+ 1)|E|

]
+ Pr

[
|𝜇̂−

uv,t
− 𝜇−

uv
| ≥ 𝛥min

(
1

𝛼
+ 1)|E|

])
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Moreover, by the definition of filtered regret:

where, in the last step, we used the fact that 𝛥max ≤ M −
1

𝛼
⋅ d̄�(C

∗
�
) . ◻
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≤
T∑

t=1

�max

∑

(u,v)∈E

(
2e

−2T+
uv,t−1

�2
min

(
1
�
+1)2 |E|2 + 2e

−2T−
uv,t

�2
min

(
1
�
+1)2 |E|2

)
(Hoeffding’s inequality)

=

T∑

t=1

�max

∑

(u,v)∈E

(
2e

−2(t−1)
�2
min

(
1
�
+1)2 |E|2 + 2e

−2(t−1)
�2
min

(
1
�
+1)2 |E|2

)
(full-information setting ∶ T±

uv,t−1
= t − 1)

≤ �max +
∑

(u,v)∈E

�max

T∑

t=2

(
2e

−2(t−1)
�2
min

(
1
�
+1)2 |E|2 + 2e

−2(t−1)
�2
min

(
1
�
+1)2 |E|2

)

= �max + 4|E|�max

T∑

t=2

e
−2(t−1)

�2
min

(
1
�
+1)2 |E|2 ≤ �max + 4|E|�max �

∞

t=0

e
−2t

�2
min

(
1
�
+1)2 |E|2 dt

= �max +
2(

1

�
+ 1)2|E|3

�2
min

�max =

(
1 +

2(
1

�
+ 1)2|E|3

�2
min

)
�max.

RegA
�,𝛼,𝛽

(T) = Reg({}) − T ⋅ (1 − 𝛽) ⋅ (M −
1

𝛼
⋅ d̄�(C

∗
�
))

= Reg(Ft) + Reg(¬Ft ∧ Bt) + Reg(¬Ft ∧ ¬Bt) − T ⋅ (1 − 𝛽) ⋅ (M −
1

𝛼
⋅ d̄�(C

∗
�
)))

≤ (1 − 𝛽)T𝛥max +

(
1 +

2(
1

𝛼
+ 1)2|E|3

𝛥2
min

)
𝛥max − T ⋅ (1 − 𝛽) ⋅ (M −

1

𝛼
⋅ d̄�(C

∗
�
)))

≤
(
1 +

2(
1

𝛼
+ 1)2|E|3

𝛥2
min

)
𝛥max,
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