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Abstract
Dynamic time warping (DTW ) is a popular time series distance measure that aligns
the points in two series with one another. These alignments support warping of the
time dimension to allow for processes that unfold at differing rates. The distance is the
minimum sum of costs of the resulting alignments over any allowable warping of the
time dimension. The cost of an alignment of two points is a function of the difference
in the values of those points. The original cost function was the absolute value of
this difference. Other cost functions have been proposed. A popular alternative is the
square of the difference. However, to our knowledge, this is the first investigation of
both the relative impacts of using different cost functions and the potential to tune cost
functions to different time series classification tasks. We do so in this paper by using
a tunable cost function λγ with parameter γ . We show that higher values of γ place
greater weight on larger pairwise differences, while lower values place greater weight
on smaller pairwise differences.We demonstrate that training γ significantly improves
the accuracy of both the DTW nearest neighbor and Proximity Forest classifiers.
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1 Introduction

Similarity and distance measures are fundamental to data analytics, supporting many
key operations including similarity search (Rakthanmanon et al. 2012), classification
(Shifaz et al. 2020), regression (Tan et al. 2021a), clustering (Petitjean et al. 2011),
anomaly and outlier detection (Diab et al. 2019), motif discovery (Alaee et al. 2021),
forecasting (Bandara et al. 2021), and subspace projection (Deng et al. 2020).

Dynamic time warping (DTW ) (Sakoe and Chiba 1971, 1978) is a popular distance
measure for time series and is often employed as a similarity measure such that the
lower the distance the greater the similarity. It is used in numerous applications includ-
ing speech recognition (Sakoe and Chiba 1971, 1978), gesture recognition (Cheng
et al. 2016), signature verification (Okawa 2021), shape matching (Yasseen et al.
2016), road surface monitoring (Singh et al. 2017), neuroscience (Cao et al. 2016) and
medical diagnosis (Varatharajan et al. 2018).

DTW aligns the points in two series and returns the sum of the pairwise-distances
between each of the pairs of points in the alignment. DTW provides flexibility in the
alignments to allow for series that evolve at differing rates. In the univariate case,
pairwise-distances are usually calculated using a cost function, λ(a ∈ R, b ∈ R) →
R+. When introducing DTW , Sakoe and Chiba (1971) defined the cost function as
λ(a, b) = |a − b|. However, other cost functions have subsequently been used. The
cost function λ(a, b) = (a − b)2 (Tan et al. 2018; Dau et al. 2019; Mueen and Keogh
2016; Löning et al. 2019; Tan et al. 2020) is now widely used, possibly inspired by
the (squared) Euclidean distance. ShapeDTW (Zhao and Itti 2018) computes the cost
between two points by computing the cost between the “shape descriptors” of these
points. Such a descriptor can be the Euclidean distance between segments centered on
this points, taking into account their local neighborhood.

To our knowledge, there has been little research into the influence of tuning the
cost function on the efficacy of DTW in practice. This paper specifically investigates
how actively tuning the cost function influences the outcome on a clearly defined
benchmark. We do so using λγ (a, b) = |a − b|γ as the cost function for DTW , where

Fig. 1 Tuning the cost function changes which series are considered more similar to one another.U exactly
matches the first 7 points of S, but then flattens, running through the center of the remaining points in S.
In contrast, T starts with lower amplitude than S over the first seven points, but then exactly matches S
for the remaining low amplitude waves. The original DTW cost function, λ(a, b) = |a − b|, results in
DTW(S, T ) = DTW(S,U ) = 9, with DTW rating T and U as equally similar to S. The commonly used
cost function, λ(a, b) = (a − b)2, results in DTW(S,U ) = 9.18 < DTW(S, T ) = 16.66. More weight is
placed on the high amplitude start, and S is more similar toU . Using the cost function λ(a, b) = |a− b|0.5
results in DTW(S,U ) = 8.98 > DTW(S, T ) = 6.64, placing more weight on the low amplitude end, and
S is more similar to T . In general, changing the cost function alters the amount of weight placed on low
amplitude vs high amplitude effects, allowing DTW to be better tuned to the varying needs of different
applications
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γ = 1 gives us the original cost function; and γ = 2 the now commonly used squared
Euclidean distance.

We motivate this research with an example illustrated in Fig. 1 relating to three
series, S, T and U . U exactly matches S in the high amplitude effect at the start,
but does not match the low amplitude effects thereafter. T does not match the high
amplitude effect at the start but exactly matches the low amplitude effects thereafter.
Given these three series, we can ask which of T or U is the nearest neighbor of S?

As shown in Fig. 1, the answer varies with γ . Low γ emphasizes low amplitude
effects and hence identifies S as more similar to T , while high γ emphasizes high
amplitude effects and assesses U as most similar to S. Hence, we theorized that
careful selection of an effective cost function on a task by task basis can greatly
improve accuracy, which we demonstrate in a set of nearest neighbor time series
classification experiments. Our findings extend directly to all applications relying on
nearest neighbor search, such as ensemble classification (we demonstrate this with
Proximity Forest Lucas et al. 2019) and clustering, and have implications for all
applications of DTW .

The remainder of this paper is organized as follows. In Sect. 2, we provide a detailed
introduction to DTW and its variants. In Sect. 3, we present the flexible parametric
cost function λγ and a straightforward method for tuning its parameter. Section4
presents experimental assessment of the impact of different DTW cost functions, and
the efficacy of DTW cost function tuning in similarity-based time series classification
(TSC). Section5 provides discussion, directions for future research and conclusions.

2 Background

2.1 Dynamic time warping

The DTW distance measure (Sakoe and Chiba 1971) is widely used in many time
series data analysis tasks, including nearest neighbor (NN) search (Rakthanmanon
et al. 2012; Tan et al. 2021a; Petitjean et al. 2011; Keogh and Pazzani 2001; Silva et al.
2018). Nearest neighbor with DTW (NN-DTW ) has been the historical approach to
time series classification and is still used widely today.

DTW computes the cost of an optimal alignment between two equal length series,
S and T with length L in O(L2) time (lower costs indicating more similar series), by
minimizing the cumulative cost of aligning their individual points, also known as the
warping path. The warping path of S and T is a sequence W = 〈W1, . . . ,WP 〉 of
alignments (dotted lines in Fig. 2). Each alignment is a pair Wk = (i, j) indicating
that Si is aligned with Tj .W must obey the following constraints:

– Boundary Conditions: W1 = (1, 1) and WP = (L, L).
– Continuity and Monotonicity: for any Wk = (i, j), 1 < k ≤ P , we have Wk+1 ∈

{(i+1, j), (i, j+1), (i+1, j+1)}.
The cost of a warping path is minimized using dynamic programming by building

a “cost matrix” MDTW for the two series S and T , such that MDTW (i, j) is the minimal
cumulative cost of aligning the first i points of S with the first j points of T . The cost
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Fig. 2 Pairwise alignments of DTW(S, T ) with γ = 2, accumulating a total cost of 16.66. We only show
non-zero alignments

Fig. 3 MDTW(S,T ) with warping window w = 2, and different cost function exponent, a γ = 1 and b
γ = 2. We haveDTW(S, T )=MDTW(S,T )(L, L). The amplitude of the cumulative cost is represented by a
green (minimal) to red (maximal) gradient. Cells cut-out by the warping window are in light gray, borders
are in dark gray. The warping path cells are highlighted with black borders. Notice how the deviation from
the diagonal in (b) corresponds to the alignments Fig. 2 (Color figure online)

matrix is defined in Eqs. (1a) to (1d), where λ(Si , Tj ) is the cost of aligning the two
points, discussed in Sect. 3. It follows that DTW(S, T )=MDTW (L, L).

MDTW (0, 0) = 0 (1a)

MDTW (i, 0) = +∞ (1b)

MDTW (0, j) = +∞ (1c)

MDTW (i, j) = λ(Si , Tj ) + min

⎧
⎨

⎩

MDTW (i−1, j−1)
MDTW (i−1, j)
MDTW (i, j−1)

(1d)

Figure 3 shows the cost matrix of computing DTW(S, T ). The warping path is
highlighted using the bold boxes going through the matrix.
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DTW is commonly used with a global constraint applied on the warping path, such
that Si and Tj can only be aligned if they are within a window range,w. This limits the
distance in the time dimension that can separate Si from points in T with which it can
be aligned (Sakoe and Chiba 1971; Keogh and Ratanamahatana 2005). This constraint
is known as the warping window,w (previously Sakoe-Chiba band) (Sakoe and Chiba
1971). Note that we have 0 ≤ w ≤ L − 2; DTW with w = 0 corresponds to a direct
alignment in which ∀(i, j)∈W i = j ; and DTW with w≥L − 2 places no constraints
on the distance between the points in an alignment. Figure3 shows an example with
warping window w=2, where the alignment of S and T is constrained to be inside the
colored band. Light gray cells are “forbidden” by the window.

Warping windows provide two main benefits: (1) preventing pathological warping
of S and T ; and (2) speeding up DTW by reducing its complexity from O(L2) to
O(W · L) (Tan et al. 2018, 2021b).

Alternative window constraints have also been developed, such as the Itakura Paral-
lelogram (Itakura 1975) and the Ratanamahatana–Keogh band (Ratanamahatana and
Keogh 2004). In this paper, we focus on the Sakoe-Chiba Band which is the constraint
defined in the original definition of DTW .

2.2 Amerced dynamic time warping

DTW uses a crude step function to constrain the alignments, where any warping is
allowed within the warping window and none beyond it. This is unintuitive for many
applications, where some flexibility in the exact amount of warping might be desired.
The Amerced Dynamic Time Warping (ADTW ) distance measure is an intuitive and
effective variant of DTW (Herrmann and Webb in press). Rather than using a tunable
hard constraint like the warping window, it applies a tunable additive penalty ω for
non-diagonal (warping) alignments (Herrmann and Webb in press).

ADTW is computed with dynamic programming, similar to DTW , using a cost
matrix MADTW with ADTWω(S, T ) = MADTW (L, L). Equations2a to 2d describe
this cost matrix, where λ(Si , Tj ) is the cost of aligning the two points, discussed in
Sect. 3.

MADTW (0, 0) = 0 (2a)

MADTW (i, 0) = +∞ (2b)

MADTW (0, j) = +∞ (2c)

MADTW (i, j) = min

⎧
⎨

⎩

MADTW (i−1, j−1) + λ(Si , Tj )

MADTW (i−1, j) + λ(Si , Tj ) + ω

MADTW (i, j−1) + λ(Si , Tj ) + ω

(2d)

The parameter ω works similarly to the warping window, allowing ADTW to be as
flexible as DTW with w = L − 2, and as constrained as DTW with w = 0. A small
penalty should be used if large warping is desirable, while large penalty minimizes
warping. Since ω is an additive penalty, its scale relative to the time series in context
matters, as a small penalty in a given problem maybe a huge penalty in another one.
An automated parameter selection method has been proposed in the context of time
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series classification that considers the scale of ω (Herrmann and Webb in press). The
scale of penalties is determined by multiplying the maximum penalty ω′ by a ratio
0 ≤ r ≤ 1, i.e. ω = ω′ × r . The maximum penalty ω′ is set to the average “direct
alignment” sampled randomly from pairs of series in the training dataset, using the
specifed cost function.Adirect alignment does not allowanywarping, and corresponds
to the diagonal of the cost matrix (e.g. the warping path in Fig. 3a). Then 100 ratios
are sample from ri = ( i

100 )
5 for 1 ≤ i ≤ 100 to form the search space for ω. Apart

from being more intuitive, ADTW when used in a NN classifier is significantly more
accurate thanDTW on 112 UCR time series benchmark datasets (Herrmann andWebb
in press).

Note that ω can be considered as a direct penalty on path length. If series S and
T have length L and the length of the warping path for ADTWω(S, T ) is P , the sum
of the ω terms added will equal 2ω(P − L + 1). The longer the path, the greater the
penalty added by ω.

3 Tuning the cost function

DTW was originally introduced with the cost function λ(a, b) = |a − b|. Nowadays,
the cost function λ(a, b) = (a − b)2 = |a − b|2 is also widely used (Dau et al. 2019;
Mueen and Keogh 2016; Löning et al. 2019; Tan et al. 2020). Some generalizations of
DTW have also incorporated tunable cost functions (Deriso and Boyd 2022). To our
knowledge, the relative strengths and weaknesses of these two common cost functions
has not previously been thoroughly evaluated. To study the impact of the cost function
on DTW , and its recent refinement ADTW , we use the cost function λγ (a, b) =
|a − b|γ .

We primarily study the cost functions λγ for γ ∈ Γ = {1/2, 1/1.5, 1, 1.5, 2}. This
includes the original DTW cost function |a− b| = λ1(a, b), and the more recent (a−
b)2 = λ2(a, b). To the best of our knowledge, the remaining cost functions, λ0.5(a, b),
λ0.6̇(a, b) and λ1.5(a, b), have not been previously investigated. As illustrated in Fig. 4,
Relative to 1, larger values of γ penalize small differences less, and larger differences
more. Reciprocally, smaller values of γ penalize large differences more, and small
differences less.

We will show in Sect. 4 that learning γ at train time over these 5 values is
already enough to significantly improve nearest neighbor classification test accu-
racy. We will also show that expanding Γ to a larger set {1/5, 1/4, 1/3, 1/2, 1/1.5,
1, 1.5, 2, 3, 4, 5}, or a denser set {1/2, 1/1.75, 1/1.5, 1/1.25, 1, 1.25, 1.5, 1.75, 2}
does not significantly improve the classification accuracy, even with doubling the
number of explored parameters. Note that all the sets have the form { 1n . . . 1 . . . n}.
Although this balancing is not necessary, we did so to strike a balance in the available
exponents.

Tuning λγ amounts to learning the parameter γ at train time. This means that we
now have two parameters for both DTW (the warping window w and γ ) and ADTW
(the penalty ω and γ ). In the current work, the w and ω parameters are always learned
independently for each γ , using the standard method (Herrmann and Webb in press).
We denote DTW with λx = |Si − Tj |x as DTWx , and ADTW with λx as ADTWx . We
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Fig. 4 Illustration of the effect
of γ ∈ {1/2, 1/1.5, 1, 1.5, 2} on
λγ

indicate that the cost function has been tuned with the superscript +, i.e. DTW+ and
ADTW+.

Note that with a window w = 0,

DTW+(S, T ) =
n∑

i=1

(Si − Ti )
γ (3)

for the selected exponent γ . In other words, it is the Minkowski distance (Thomp-
son and Thompson 1996) to the power γ , providing the same relative order as the
Minkowski distance, i.e. they both have the same effect for nearest neighbor search
applications.

The parameters w and ω have traditionally been learned through leave-one-out
cross-validation (LOOCV) evaluating 100 parameter values (Tan et al. 2018, 2020,
2021b; Lines and Bagnall 2015). Following this approach, we evaluate 100 parameter
values for w (and ω) per value of γ , i.e. we evaluate 500 parameter values for DTW+
and ADTW+. To enable a fair comparison in Sect. 4 ofDTW+ (resp. ADTW+) against
DTWγ (resp. ADTWγ ) with fixed γ , the latter are trained evaluating both 100 param-
eter values (to give the same space of values for w or ω) as well as 500 parameter
values (to give the same overall number of parameter values).

Given a fixed γ , LOOCVcan result inmultiple parameterizations forwhich the train
accuracy is equally best. We need a procedure to break ties. This could be achieved
through random choice, in which case the outcome becomes nondeterministic (which
may be desired). Another possibility is to pick a parameterization depending on other
considerations. For DTW , we pick the smallest windows as it leads to faster compu-
tations. For ADTW , we follow the paper (Herrmann and Webb in press) and pick the
median value.
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We also need a procedure to break ties when more than one pair of values over two
different parameters all achieve equivalent best performance. We do so by forming
a hierarchy over the parameters. We first pick a best value for w (or ω) per possible
γ , forming dependent pairs (γ,w) (or (γ, ω)). Then, we break ties between pairs by
picking the one with the median γ . In case of an even number of equal best values
for γ , taking a median would result in taking an average of dependent pairs, which
does not make sense for the dependent value (w or ω). In this case we select between
the two middle pairs the one with a γ value closer to 1, biasing the system towards a
balanced response to differences less than or greater than zero.

Our method does not change the overall time complexity of learning DTW ’s and
ADTW ’s parameters. The time complexity of using LOOCV for nearest neighbor
search with this distances is O(M .N 2.L2), where M is the number of parameters,
N is the number of training instances, and L is the length of the series. Our method
only impacts the number of parameters M . Hence, using 5 different exponents while
keeping a hundred parameters forw or ω effectively increases the training time 5 fold.

4 Experimentation

We evaluate the practical utility of cost function tuning by studying its performance
in nearest neighbor classification. While the technique has potential applications well
beyond classification, we choose this specific application because it has well accepted
benchmark problems with objective evaluation criteria (classification accuracy). We
experimented over the widely-used time series classification benchmark of the UCR
archive (Dau et al. 2018), removing the datasets containing series of variable length
or classes with only one training exemplar, leading to 109 datasets. We investigate
tuning the exponent γ for DTW+ and ADTW+ using the following sets (and we write
e.g. DTW+a when using the set a):

– The default set a = {1/2, 1/1.5, 1, 1.5, 2}
– The large set b = {1/5, 1/4, 1/3, 1/2, 1/1.5, 1, 1.5, 2, 3, 4, 5}
– The dense set c = {1/2, 1/1.75, 1/1.5, 1/1.25, 1, 1.25, 1.5, 1.75, 2}.

The default set a is the one used in Fig. 4, and the one we recommend.
We show that a wide range of different exponents γ each perform best on different

datasets. We then compare DTW+a and ADTW+a against their classic counterparts
using γ = 1 and γ = 2. We also address the question of the number of evaluated
parameters, showing with both DTW and ADTW that tuning the cost function is more
beneficial than evaluating 500 values of either w or ω with a fixed cost function. We
then show that compared to the large set b (which looks at exponents beyond 1/2
and 2) and to the dense set c (which looks at more exponents between 1/2 and 2), a
offer similar accuracy while being less computationally demanding (evaluating less
parameters). Just as ADTW is significantly more accurate than DTW (Herrmann and
Webb in press), ADTW+a remains significantly more accurate than DTW+a . This
holds for sets b and c.
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Finally, we show that parameterizing the cost function is also beneficial in an
ensemble classifier, showing a significant improvement in accuracy for the leading
similarity-based TSC algorithm, Proximity Forest (Lucas et al. 2019).

4.1 Analysis of the impact of exponent selection on accuracy

Figure5 shows the number of datasets for which each exponent results in the highest
accuracy on the test data for each of our NN classifiers and each of the three sets of
exponents. It is clear that there is great diversity across datasets in terms of which γ is
most effective. ForDTW , the extremely small γ = 0.2 is desirable for 12% of datasets
and the extremely large γ = 5.0 for 8%.

The optimal exponent differs between DTWγ and ADTWγ , due to different inter-
actions between the window parameterw forDTW and the warping penalty parameter
ω for ADTW . We hypothesize that low values of γ can serve as a form of pseudo ω,
penalizing longer paths by penalizing large numbers of small difference alignments.
ADTW directly penalizes longer paths through its ω parameter, reducing the need to
deploy γ in this role. If this is correct then ADTW has greater freedom to deploy γ to
focus more on low or high amplitude effects in the series, as illustrated in Fig. 1.

4.2 Comparison against non tuned cost functions

Figures 6 and 7 present accuracy scatter plots over the UCR archive. A dot represents
the test accuracy of two classifiers on a dataset. A dot on the diagonal indicates equal
performance for the dataset. A dot off the diagonal means that the classifier on the
corresponding side (indicated in top left and bottom right corners) is more accurate
than its competitor on this dataset.

On each scatter plot, we also indicate the number of times a classifier is strictly
more accurate than its competitor, the number of ties, and the result of a Wilcoxon
signed ranks test indicating whether the accuracy of the classifiers can be considered
significantly different. Following common practice, we use a significance level of 0.05.

Figures 6 and 7 show that tuning the cost function is beneficial for both DTW and
ADTW , when compared to both the original cost function λ1, and the popular λ2. The
Wilcoxon signed ranks test for DTW+ show that DTW+ significantly outperforms
both DTW1 and DTW2. Similarly, ADTW+ significantly outperforms both ADTW1

and ADTW2.

4.3 Investigation of the number of parameter values

DTW+ and ADTW+ are tuned on 500 parameter options. To assess whether their
improved accuracy is due to an increased number of parameter options rather than
due to the addition of cost tuning per se, we also compared them against DTW1 and
ADTW1 also tuned with 500 options for their parameters w and ω instead of the usual
100. Figure8 shows that increasing the number of parameter values available toDTW1

and ADTW1 does not alter the advantage of cost tuning. Note that the warping window
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a b

c d

e f

Fig. 5 Counts of the numbers of datasets for which each value of γ results in the highest accuracy on the
test data
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Fig. 6 Accuracy scatter plot over the UCR archive comparing DTW+a against DTW1 and DTW2

Fig. 7 Accuracy scatter plot over the UCR archive comparing ADTW+a against ADTW1 and ADTW2

w ofDTW is a natural number for which the range of values that can result in different
outcomes is 0 ≤ w ≤ �−2. In consequence, we cannot trainDTW on more than �−1
meaningfully different parameter values. This means that for short series (� < 100),
increasing the number of possible windows from 100 to 500 has no effect. ADTW
suffers less from this issue due to the penalty ω being sampled in a continuous space.
Still, increasing the number of parameter values yields ever diminishing returns, while
increasing the risk of overfitting. This also means that for a fixed budget of parameter
values to be explored, tuning the cost function as well as w or ω allows the budget to
be spent exploring a broader range of possibilities.
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Fig. 8 Comparison of DTW+a and ADTW+a trained over 500 different values (5 values for gamma, 100
values for w and ω per gamma), against DTW1

500 and ADTW1
500 with 500 values for w and ω

Fig. 9 Comparison of default exponent set a and larger set b

4.4 Comparison against larger tuning sets

Our experiments so far allow to achieve our primary goal: to demonstrate that tuning
the cost function is beneficial. We did so with the set of exponents a. This set is not
completely arbitrary (1 and 2 come from current practice, we added their mean 1.5 and
the reciprocals). However, it remains an open question whether or not it is a reasonable
default choice. Ideally, practitioners need to use expert knowledge to offer the best
possible set of cost functions to choose from for a given application. In particular,
using an alternative form of cost function to λγ could be effective, although we do not
investigate this possibility in this paper.
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Fig. 10 Comparison of default exponent set a and denser set c

Figure 9 shows the results obtained when using the larger set b, made of 11 values
extending a with 3, 4, 5 and their reciprocals. Compared to a, the change benefits
DTW+ (albeit not significantly according to the Wilcoxon test), at the cost of more
than doubling the number of assessed parameter values. On the other hand, ADTW+
is mostly unaffected by the change.

Figure 10 shows the results obtained when using the denser set c, made of 9 values
between 0.5 and 2. In this case, neither distance benefits from the change.

4.5 Runtime

There is usually a tradeoff between runtime and accuracy for a practical machine
learning algorithm.Sections 4.2 and4.3 show that tuning the cost function significantly
improves the accuracy of both ADTW and DTW in nearest neighbor classification
tasks. However, this comes at the cost of having more parameters (500 instead of 100
with a single exponent). TSC using the nearest neighbor algorithm paired with O(L2)

complexity elastic distances are well-known to be computationally expensive, taking
hours to days to train (Tan et al. 2021b). Therefore, we discuss in this section, the
computational details of tuning the cost function γ and assess the tradeoff in accuracy
gain.

We performed a runtime analysis by recording the total time taken to train and
test both DTW and ADTW for each γ from the default set a. Our experiments were
coded in C++ and parallelised on a machine with 32 cores and AMD EPYC-Rome
2.2Ghz Processor for speed. The C++ pow function that supports exponentiation of
arbitrary values is computationally demanding. Hence, we use specialized code to
calculate the exponents 0.5, 1.0 and 2.0 efficiently, using sqrt for 0.5, abs for 1.0
and multiplication for 2.0.

Figure11 shows the LOOCV training time for both ADTW and DTW on each γ ,
while Fig. 12 shows the test time. The runtimes for γ = 0.67 and γ = 1.5 are both
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a b

Fig. 11 LOOCV train time in seconds on the UCR Archive (109 datasets) of each distance, per exponent.
These timings are done on a machine with 32 cores and AMD EPYC-Rome 2.2Ghz Processor

a b

Fig. 12 Test time in seconds on the UCR Archive (109 datasets) of each distance, per exponent. These
timings are done on a machine with 32 cores and AMD EPYC-Rome 2.2Ghz Processor

substantially longer than those of the specialized exponents. The total time to tune
the cost function and their parameters on 109 UCR time series datasets are 6250.94
(2h) and 9948.98 (3h) seconds for ADTW and DTW respectively. This translates to
ADTW+ and DTW+ being approximately 25 and 38 times slower than the baseline
setting with γ = 2. Potential strategies for reducing these substantial computational
burdens are to only use exponents that admit efficient computation, such as powers of
2 and their reciprocals. Also, the parameter tuning for w and ω in these experiment
does not exploit the substantial speedups of recent DTW parameter search methods
(Tan et al. 2021b). Despite being slower than both distances at γ = 2, completing the
training of all 109 datasets under 3h is still significantly faster than many other TSC
algorithms (Tan et al. 2022; Middlehurst et al. 2021)

4.6 Noise

As γ alters DTW ’s relative responsiveness to different magnitudes of effect in a pair
of series, it is credible that tuning it may be helpful when the series are noisy. On one
hand, higher values of γ will help focus on large magnitude effects, allowing DTW
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Fig. 13 Critical difference diagram for DTWw=∞ on the UCR Archive (109 datasets) with no additional
noise

Fig. 14 Critical difference diagram for DTWw=∞ on the UCR Archive (109 datasets) with moderate
additional noise

to pay less attention to smaller magnitude effects introduced by noise. On the other
hand, lower values of γ will increase focus on small magnitude effects introduced by
noise, increasing the ability of DTWγ to penalize long warping paths that align sets
of similar values.

To examine these questions we created two variants of each of the UCR datasets.
For the first dataset we added moderate random noise, adding 0.1 × N (0, σ ) to each
time step, where σ is the standard deviation in the values in the series. For the second
dataset (substantial noise) we added N (0, σ ) to each time step.

The results forDTWγ
w=∞ (DTW with no window) are presented in Fig. 13 (no addi-

tional noise), Fig. 14 (moderate additional noise) and Fig. 15 (substantial additional
noise). Each figure presents a critical difference diagram.DTWγ has been appliedwith
all 109 datasets at each γ ∈ a. For each dataset, the performance for each γ is ranked
in descending order on accuracy. The diagram presents the mean rank for eachDTWγ

across all datasets, with the best mean rank listed rightmost. Lines connect results that
are not significantly different at the 0.05 level on aWilcoxon singed rank test (for each
line, the settings indicated with dots are not significantly different). With no additional
noise, no setting of γ significantly outperforms the others. With a moderate amount
of noise, the three lower values of γ significantly outperform the higher values. We
hypothesize that this is as a result of DTW using the small differences introduced by
noise to penalize excessively long warping paths. With high noise, the three lowest
γ are still significantly outperforming the highest level, but the difference in ranks
is closing. We hypothesize that this is due to increasingly large differences in value
being the only ones that remain meaningful, and hence increasingly needing to be
emphasized.

The results for ADTWγ are presented in Fig. 16 (no additional noise), Fig. 17 (mod-
erate additional noise) and Fig. 18 (substantial additional noise). With no additional
noise, γ values of 1.5 and 1.0 both significantly outperform 0.5. With a moderate
amount of noise, γ = 2.0 increases its rank and no value significantly outperforms
any other.With substantial noise, the two highest γ significantly outperform all others.
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Fig. 15 Critical difference diagram for DTWw=∞ on the UCR Archive (109 datasets) with substantial
additional noise

Fig. 16 Critical difference diagram for ADTW on the UCR Archive (109 datasets) with no additional noise

Fig. 17 Critical difference diagram for ADTW on the UCRArchive (109 datasets) with moderate additional
noise

Fig. 18 Critical difference diagram forADTW on theUCRArchive (109 datasets)with substantial additional
noise

As ADTW has a direct penalty for longer paths, we hypothesize that this gain in rank
for the highest γ is due to ADTW placing higher emphasis on larger differences that
are less likely to be the result of noise.

The results for DTW with window tuning are presented in Fig. 19 (no additional
noise), Fig. 20 (moderate additional noise) and Fig. 21 (substantial additional noise).
No setting of γ has a significant advantage over any other at any level of noise. We
hypothesize that this is because the constraint a window places on how far a warping
path can deviate from the diagonal only partially restricts path length, allowing any
amount of warping within the window. Thus,DTW still benefits from the use of low γ

to penalize excessive path warping that might otherwise fit noise. However, it is also
subject to a countervailing pressure towards higher values of γ in order to focus on
larger differences in values that are less likely to be the result of noise.

It is evident from these results that γ interacts in different ways with the w and ω

parameters of DTW and ADTW with respect to noise. For ADTW , larger values of γ

are an effective mechanism to counter noisy series.
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Fig. 19 Critical difference diagram for DTW on the UCR Archive (109 datasets) with no additional noise

Fig. 20 Critical difference diagram forDTW on the UCRArchive (109 datasets) with lomoderate additional
noise

Fig. 21 Critical difference diagram forDTW on the UCRArchive (109 datasets) with substantial additional
noise

4.7 Comparing DTW+ versus ADTW+

From Herrmann andWebb (in press), ADTW2 is more accurate thanDTW2. Figure22
shows that ADTW+a is also significantly more accurate thanDTW+a . Interestingly, it
also shows that ADTW+a is also more accurate than DTW+b, even though the latter
benefits from the larger exponent set b.

4.8 Comparing PF versus PF+

Proximity Forest (PF) (Lucas et al. 2019) is an ensemble classifier relying on the same
11 distances as the Elastic Ensemble (EE) (Lines and Bagnall 2015), with the same
parameter spaces. Instead of using LOOCV to optimise each distance and ensemble
their result, PF builds trees of proximity classifiers, randomly choosing an exemplar, a
distance and a parameter at each node. This strategy makes it both more accurate and
more efficient than EE and the most accurate similarity-based time series classifier on
the UCR benchmark.

Proximity Forest and the Elastic Ensenble use the following distances: the (squared)
Euclidean distance (SQED); DTW with and without a window; DDTW adding the
derivative to DTW (Keogh and Pazzani 2001); WDTW (Jeong et al. 2011); DWDTW
adding the derivative toWDTW ; LCSS (Hirschberg 1977); ERP (Chen and Ng 2004);
MSM (Stefan et al. 2013); and TWE (Marteau 2009).
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Fig. 22 Accuracy scatter plot over the UCR archive comparing ADTW+a against DTW+ tuned over a and
b

Fig. 23 Accuracy scatter plot over the UCR archive comparing the original Proximity Forest (PF) against
Proximity Forest using λγ for DTW , and its variants (PF+)

We define a new variant of Proximity Forest, PF+, which differs only in replacing
original cost functions for DTW and its variants by our proposed parameterized cost
function. We replace the cost function of DTW (with and without window), WDTW ,
DDTW ,DWDTW and SQED by λγ , and randomly select γ from the a set at each node.
Note that the replacing the cost function of SQED in this manner makes it similar to
a Minkowski distance.
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Table 1 Six benchmark UCR datasets for which PF+ is more accurate than all four algorithms that have
been identified as defining the current state of the art in TSC

Dataset PF+ HC2 TS-C MR IT

ArrowHead 0.8971 0.8629 0.8057 0.8629 0.8629

Earthquakes 0.7698 0.7482 0.7482 0.7482 0.7410

Lightning2 0.8689 0.7869 0.8361 0.6885 0.8197

SemgHandGenderCh2 0.9683 0.9567 0.9233 0.9583 0.8700

SemgHandMovementCh2 0.8800 0.8556 0.8778 0.7756 0.5689

SemgHandSubjectCh2 0.9311 0.9022 0.9244 0.9244 0.7644

We leave the tuning of other distances and their specific cost functions for future
work. This is not a technical limitation, but a theoretical one: we first have to ensure
that such a change would not break their properties.

The scatter plot presented in Fig. 23 shows that PF+ significantly outperforms PF,
further demonstrating the value of extending the range of possible parameters to the
cost function.

While similarity-based approaches no longer dominate performance across the
majority of theUCRbenchmark datasets, there remain some tasks forwhich similarity-
based approaches still dominate. Table 1 shows the accuracy of PF+ against four TSC
algorithms that have been identified (Middlehurst et al. 2021) as defining the state of
the art—HIVE-COTE 2.0 (Middlehurst et al. 2021), TS-CHIEF (Shifaz et al. 2020),
MultiRocket (Tan et al. 2022) and InceptionTime (Fawaz et al. 2020). This demon-
strates that similarity-based methods remain an important part of the TSC toolkit.

5 Conclusion

DTW is a widely used time series distance measure. It relies on a cost function to
determine the relative weight to place on each difference between values for a possible
alignment between a value in one series to a value in another. In this paper, we show
that the choice of the cost function has substantial impact on nearest neighbor search
tasks. We also show that the utility of a specific cost function is task-dependent, and
hence that DTW can benefit from cost function tuning on a task to task basis.

We present a technique to tune the cost function by adjusting the γ exponent in a
family of cost functions λγ (a, b) = |a − b|γ . We introduced new time series distance
measures utilizing this family of cost functions: DTW+ and ADTW+. Our analysis
shows that larger γ exponents penalize alignmentswith large differenceswhile smaller
γ exponents penalize alignments with smaller differences, allowing the focus to be
tuned between small and large amplitude effects in the series.

We demonstrated the usefulness of this technique in both the nearest neighbor and
Proximity Forest classifiers. The new variant of Proximity Forest, PF+, establishes a
new benchmark for similarity-based TSC, and dominates all of HiveCote2, TS-Chief,
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MultiRocket and InceptionTime on six of the UCR benchmark tasks, demonstrating
that similarity-based methods remain a valuable alternative in some contexts.

We argue that cost function tuning can address noise through twomechanisms. Low
exponents can exploit noise to penalize excessively long warping paths. It appears that
DTW benefits from this when windowing is not used. High exponents direct focus to
larger differences that are least affected by noise. It appears that ADTW benefits from
this effect.

We need to stress that we only experimented with one family of cost function,
on a limited set of exponents. Even though we obtained satisfactory results, we urge
practitioners to apply expert knowledge when choosing their cost functions, or a set of
cost functions to select from. Without such knowledge, we suggest what seems to be
a reasonable default set of choices for DTW+ and ADTW+, significantly improving
the accuracy over DTW and ADTW . We show that a denser set does not substantially
change the outcome, while DTW may benefit from a larger set that contains more
extreme values of γ such as 0.2 and 5.

A small number of exponents, specifically 0.5, 1 and 2, lead themselves to much
more efficient implementations than alternatives. It remains for future research to
investigate the contexts in which the benefits of a wider range of exponents justify
their computational costs.

We expect our findings to be broadly applicable to time series nearest neighbor
search tasks. We believe that these finding also hold forth promise of benefit from
greater consideration of cost functions in the myriad of other applications of DTW
and its variants.
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