
Data Mining and Knowledge Discovery (2023) 37:595–626
https://doi.org/10.1007/s10618-022-00908-2

On computing exact means of time series using the
move-split-merge metric

Jana Holznigenkemper1 · Christian Komusiewicz1 · Bernhard Seeger1

Received: 22 July 2022 / Accepted: 11 December 2022 / Published online: 9 January 2023
© The Author(s) 2023

Abstract
Computing an accurate mean of a set of time series is a critical task in applications
like nearest-neighbor classification and clustering of time series.While there are many
distance functions for time series, the most popular distance function used for the
computation of time series means is the non-metric dynamic time warping (DTW)
distance. A recent algorithm for the exact computation of aDTW- Mean has a running
time ofO(n2k+12kk), where k denotes the number of time series and n their maximum
length. In this paper, we study the mean problem for the move-split-merge (MSM)
metric that not only offers high practical accuracy for time series classification but
also carries of the advantages of the metric properties that enable further diverse
applications. The main contribution of this paper is an exact and efficient algorithm
for the MSM- Mean problem of time series. The running time of our algorithm is
O(nk+32kk3), and thus better than the previous DTW-based algorithm. The results
of an experimental comparison confirm the running time superiority of our algorithm
in comparison to the DTW- Mean competitor. Moreover, we introduce a heuristic to
improve the running time significantly without sacrificing much accuracy.

Keywords Time series means · Time series metrics · Dynamic programming · Exact
algorithm

Responsible editor: Eamonn Keogh

B Jana Holznigenkemper
holznigenkemper@mathematik.uni-marburg.de

Christian Komusiewicz
komusiewicz@mathematik.uni-marburg.de

Bernhard Seeger
seeger@mathematik.uni-marburg.de

1 Mathematics and Computer Science, University of Marburg, Marburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-022-00908-2&domain=pdf
http://orcid.org/0000-0003-4463-1149
http://orcid.org/0000-0003-0829-7032
http://orcid.org/0000-0002-9362-153X

596 J. Holznigenkemper et al.

1 Introduction

Time series databases have gained much attention in academia and industry due to
demands in many new challenging applications like Internet of Things (IoT), bioin-
formatics, social and system monitoring. In particular, because of the emergence of
IoT, the requirement for developing dedicated systems (Garcia-Arellano et al. 2020)
supporting time series as a first-class citizen has increased recently. In addition to sup-
porting fundamental database operations like filters and joins, analytical operations
like clustering and classification are highly relevant in time series databases.

The analysis of time series like clustering largely depends on the underlying distance
functions. In a recent study, Paparrizos et al. (2020) re-examined the impact of 71
distance functions on classification for many data sets. While dynamic time warping
(DTW) and related functions (Berndt et al. 1994) had the reputation of being the best
choice,

Paparrizos et al. (2020) foundDTWperforming inferior for time series classification
in comparison tomany other elastic distance functions. Among those is themove-split-
merge (MSM)metric (Stefan et al. 2012). It works similarly to the Levensthein distance
(Levenshtein 1996) by transforming one time series into another using three types of
operations. A move operation changes the value of a data point, a merge operation
fuses two consecutive points with equal values into one, and a split operation splits
a point into two adjacent points with the same value. In addition to its superiority
to DTW, MSM offers another significant advantage: it satisfies the properties of a
mathematical metric, and thus it is ready-to-use for metric indexing (Novak et al.
2011) and algorithms that presume the triangle inequality.

Partition-based algorithms such as k-means clustering are among the best methods
for clustering time series (Paparrizos and Gravano 2017). One of the fundamental
problems of k-means clustering for time series is how to compute a mean for a set
of time series. Brill et al. (2019) studied the problem for DTW and developed an
algorithm computing an exact mean of k time series inO(n2k+12kk) time, where n is
the maximum length of an input time series. To the best of our knowledge, the mean
problem of time series has not been addressed for other distance functions like the
MSM metric so far.

In this paper, we examine the mean problem of time series for the MSM metric.
The mean m of a set X of input time series is a time series that minimizes the sum
of the distances to the time series in X regarding the MSM metric. In the following,
we use MSM- Mean and DTW- Mean to denote the problem of computing means
with respect to theMSM metric and DTW distance function, respectively. The actual
means are referred to as MSM means and DTW means.

Some examples of MSMmeans are depicted in Fig. 1. Each comprises four sample
time series from a data set of the UCR time series archive (Chen et al. 2015) with their
respective MSM mean.

In contrast to DTWmeans, we show that each set of input time series has anMSM
mean consisting only of values present in the input time series. This observation is
crucial for the design and efficiency of our algorithm. We prove that the running time
of our algorithm is O(nk+32kk3), thus faster than the DTW-based competitor (Brill
et al. 2019).

123

On computing exact means of time series 597

Fig. 1 MSM means each of four time series from different data sets of the UCR Archive containing time
series samples of length n = 24. The respective values of the parameter c are shown in Table 1. For the
data set Italy Power Demand c is set to 0.1

In summary, our contributions are:

• We give new essential characteristics of theMSMmetric. We first prove that there
always exists an optimal transformation graph that is a forest to further specify the
values of some crucial nodes within this forest.

• We show that there is always an MSM mean consisting of data points that are
present in at least one time series of the input set.

123

598 J. Holznigenkemper et al.

• We develop a dynamic program computing the (optimal) MSM mean of k input
time series achieving a better theoretical running time than its competitor DTW-
Mean.

• In experiments on samples of real-world time series, we show that our algorithm
for solving MSM- Mean is faster than DTW- Mean in practice as well.

• We present preliminary heuristics for computing the MSM mean which are sig-
nificantly faster without sacrificing much accuracy.
The remainder of the paper is structured as follows. Section2 reviews related work.

In Sect. 3, we give some important preliminaries for the MSM metric and formulate
the MSM- Mean problem. Then, in Sect. 4, we introduce some new properties of
the MSM metric to prove at the end of the section that there always exists a mean
consisting of data points of the input time series. The dynamic program for the exact
MSM- Mean algorithm is given in Sect. 5. We experimentally evaluate our approach,
discuss various heuristics, and compare it to the DTW- Mean algorithm in Sect. 6,
and conclude in Sect. 7.

2 Related work

For the exploratory analysis of time series, clustering is used to discover interesting
patterns in time series data sets (Das et al. 1998). Much research has been done in this
area (Liao 2005). The surveys (Aghabozorgi et al. 2015; Rani and Sikka 2012) give
a recent overview of many methods. The problem of mean computation is discussed
for Euclidean distance and for the DTW distance, but not for the MSM metric.

Moreover, the use of classificationmethods is indispensable for accurate time series
analysis (Jiang 2020). The temporal aspect of time series has to be taken into account
for clustering and classification, though finding a representation of a set of time series
is a challenging task. Determining accurate means of time series is crucial for parti-
tioning clustering approaches (Niennattrakul and Ratanamahatana 2007) like k-means
(MacQueen 1967), where the prototype of a cluster is a mean of its objects, and for
nearest-neighbor classification (Petitjean et al. 2016). These methods are based on
the choice of the underlying distance function. Among the existing time series dis-
tance measures (Paparrizos et al. 2020), the DTW distance (Sakoe and Chiba 1978)
is a very important measure with application in, e.g., similarity search (Sakurai et al.
2005), speech recognition (Sankoff and Kruskal 1983), or gene expression (Aach and
Church 2001). We now give an overview of mean computation methods using the
DTW distance.

Besides the exact DTW- Mean algorithm (Brill et al. 2019) that minimizes the
Fréchet function (Fréchet 1948), there are many heuristics trying to address this prob-
lem. Some approaches first compute a multiple alignment of k input time series and
then average the aligned time series column-wise (Hautamäki et al. 2008; Petitjean
et al. 2012). DTW barycenter averaging (DBA) (Petitjean et al. 2011) is a heuristic
strategy that iteratively refines an initially average sequence in order to minimize its
square DTW-distance to the input time series. Other approaches exploit the properties
of the Fréchet function (Cuturi and Blondel 2017; Schultz and Jain 2018). Their meth-
ods are based on the observation that the Fréchet function is Lipschitz continuous and

123

On computing exact means of time series 599

thus differentiable almost everywhere. Cuturi et al. (2017) use a smoothed version of
the DTW-distance to obtain a differentiable Fréchet DTW-distance. Brill et al. (2019)
showed that none of the aforementioned approaches is sufficiently accurate compared
to the exact method. Since clustering methods based on partitioning rely on cluster
prototype determination (Aghabozorgi et al. 2015), it is necessary to compute an accu-
rate mean. All these observations make it indispensable to consider the problem for
other distance functions, like the MSM metric.

TheMSMmetric is already investigated for classification. One of the first studies of
the MSM metric concerning its application for classification problems was by Stefan
et al. (2012). They perform their tests on 20 data sets of the UCR archive (Chen et al.
2015). The MSM distance is tested against the DTW distance, the constrained DTW
distance, the edit distance on real sequence and the Euclidean distance. For a majority
of the tests, the MSM distance performs better than the compared measures. There
have been further studies of the accuracy of different time series distance measures
regarding 1-NN classification problems (Bagnall et al. 2017; Lines and Bagnall 2015).
Bagnall et al. (2017) also conclude that theMSM distance leads to results with higher
accuracy than DTW at the cost of a higher running time. All these studies come to a
similar result as the most recent study of Paparrizos et al. (2020). To the best of our
knowledge, there are no studies that investigate and extend the theoretical concepts
and applications of the MSM distance.

The subject of time series, also known as data series, has attracted attention within
the database research domain recently, see (Jensen et al. 20117) for a recent survey.
There are time series data bases, also known as event stores, that are specially designed
for the analysis of time series (Bader et al. 2017; Garcia-Arellano et al. 2020). These
systems rarely support clustering, but focus on supporting the basic building blocks
for query processing.

Since the MSM distance obeys all properties of a mathematical metric, especially
the triangle inequality, it also applies to problems like metric indexing (Chen et al.
2017; Novak et al. 2011). In fact, metric indexing also requires the computation of
pivots that is closely related to the mean. However, pivots belong to the underlying
data set, while a mean (of a time series) is generally a newly generated object.

3 Preliminaries

Let us first introduce our notation and problem definition. For k ∈ N, let [k] :=
{1, . . . , k}. A time series of length n is a sequence x = (x1, . . . , xn), where each data
point, in short point, xi is a real number. Let V (x) = {xi | x ∈ x} be the set of all
values of points of x . For i < j , the point xi is a predecessor of the point x j and the
point x j is a successor of the point xi . For a set of time series X = {x (1), . . . , x (k)}, the
i th point of the j th time series of X is denoted as x (j)

i ; time series x (j) has length n j .
Further let V (X) = ∪ j∈[k]V (x (j)) = {v1, . . . , vr } be the set of the values of all points
of all time series in X .

123

600 J. Holznigenkemper et al.

3.1 Move-split-merge operations

We now define the MSM metric, following the notation of Stefan et al. (2012), and
the MSM- Mean problem. The MSM metric allows three transformation operations
to transfer one time series into another: move, split, and merge operations. For time
series x = (x1, . . . , xn) a move transforms a point xi into xi +w for somew ∈ R, that
is,Movei,w(x) := (x1, . . . , xi−1, xi + w, xi+1, . . . , xn), with cost Cost(Movei,w) =
|w|. Informally, we say that there is a move at point xi to another point xi + w. The
split operation splits the i th element of x into two consecutive points. A split at point xi
is defined as Spliti (x) := (x1, . . . , xi−1, xi , xi , xi+1, . . . , xn).

A merge operation may be applied to two consecutive points of equal value. For
xi = xi+1, it is given by Mergei (x) := (x1, . . . , xi−1, xi+1, . . . , xn). We say
that xi and xi+1 merge to a point z. Split and merge operations are inverse opera-
tions. Their costs are assumed to be equal and determined by a given nonnegative
constant c = Cost(Spliti) = Cost(Mergei). A sequence of transformation opera-
tions is given by S = (S1, . . . , Ss), where S j ∈ {Movei j ,w j ,Spliti j ,Mergei j }. A
transformation T (x,S) of a time series x for a given sequence of transformation oper-
ations S is defined as T (x,S) := T (S1(x), (S2, . . . , Ss)). If S is empty, we define
T (x,∅) := x . The cost of a sequence of transformation operations S is given by the
sum of all individual operations cost, that is, Cost(S) := ∑

S∈S Cost(S).We say that S
transforms x to y if T (x,S) = y. We call a transformation an optimal transformation
if it has minimal cost transforming x to y. The MSM distance d(x, y) between two
time series x and y is defined as the cost of an optimal transformation. The distance
D(X , y) of multiple time series X = {x (1), . . . , x (k)} to a time series y is given by
D(X , y) = ∑

x∈X d(x, y). A mean m of a set of time series X is defined as a time
series with minimum distance to X , that is, m = argminz∈Z D(X , z), where Z is
the set of all finite time series. The problem of computing a mean is thus defined as
follows:

MSM- Mean
Input: A set of time series X = {x (1), . . . , x (k)}.
Output: A time series m such that m = argminz∈Z D(X , z).

Before we regard the MSM- Mean problem in more detail, we will introduce
the concept of transformation graphs to describe the structure of a transformation
T (x,S) = y.

3.2 Transformation graphs

The transformation T (x,S) = y can be described by a directed acyclic graphGS(x, y),
the transformation graph, with source nodes N (x) = {u1, . . . , um} and sink nodes
N (y) = {v1, . . . , vn}, where a node ui represents the point xi and the node v j rep-
resents the point y j . All nodes which are neither source nor sink nodes are called
intermediate nodes. If the time series and operation sequence are clear from context,
we may write G instead of GS(x, y). Each node in the node set V of G is associated
with a value given by a function val : V → R. For source and sink nodes we have

123

On computing exact means of time series 601

Fig. 2 Optimal transformation
graph of x = (4, 5, 5, 10) to
y = (10, 7, 8) for c = 0.1. Move
edges are colored in red in this
work. The cost of a move edge is
the difference between the
source and the target point. We
have total cost merge and split
cost 3c and move cost of 8.
Hence, the distance between x
and y is d(x, y) = 8.3 (Color
figure online)

val(ui) = xi and val(v j) = y j . Each intermediate node is also associated with a
value. The edges represent the transformation operations of S. To create a transforma-
tion graph, for each operation in S a respectivemove edge or two split, ormerge edges
are added to the graph. A move edge can be further specified as an increasing (inc-) or
decreasing (dec-) edge if the move operation adds a positive or negative value to the
value of the parent node, respectively. An edge can be either a move, split or merge
edge. If a node α is connected to a node β by a split edge and β is a child of α, then
there exists a node γ �= β to which α is connected by a split edge and which is a child
of α. If the nodes α and β are connected by a merge edge and α is a parent of β, then
there exists a node γ �= α which is connected to β by amerge edge and is a parent of β.
Moreover, for the split and the merge case, it holds that val(α) = val(β) = val(γ).

Given a sequence of operations S, the transformation graph GS(x, y) is unique.
Given a transformation graph G, it may be derived from different sequences of
operations since a sequence S is only partially ordered. Taking the example of a trans-
formation graph (see Fig. 2), that means, that for example the move operation between
the node u1 and α and the move operation between u4 and v3 are interchangeable.

A transformation path, in short path, in GS(x, y) is a directed path from a source
node ui ∈ N (x) to a sink node v j ∈ N (y). We say that ui is aligned to v j . A path
can be further characterized by its sequence of edge labels. For example, in Fig. 2, the
path from u1 to v2 is an inc-merge-inc-split path. Analogously, we say that the path
consists of consecutive inc-merge-inc-split edges.

A transformation path is monotonic if the move edges on this path are only inc- or
only dec-edges. A monotonic path may be specified as increasing or decreasing. A
transformation is monotonic if the corresponding transformation graph only contains
monotonic paths. A transformation graph is optimal if it belongs to an optimal trans-
formation. Two transformation graphs are equivalent if they have the same sink and
source nodes.

In the next section, we recap some known properties about the transformation graph
and extend them proving some new essential characteristics.

123

602 J. Holznigenkemper et al.

3.3 Properties of transformation graphs

In the following, we summarize some important known properties about the trans-
formation graph by Stefan et al. (2012). The first lemma states that there exists an
optional transformation graph without split and merge edges that occur directly after
another on a path.

Lemma 1 (Proposition 2 (Stefan et al. 2012)) For any two time series x and y, there
exists an optimal sequence of transformation operations S such that GS(x, y) contains
no consecutive merge-split or split-merge edges.

By construction, two consecutive move-move edges are not useful, since they can
be combined into one move edge. We extend Lemma 1 to further path restrictions in
an optimal transformation graph. That is, that there exists an optimal transformation
graph without paths containing consecutive split-move-merge edges.

Lemma 2 For any two time series x and y,
there exists an optimal sequence of transformation operations S such that GS(x, y)
contains no consecutive split-move-merge edges.

Proof Assume an optimal transformation graph GS(x, y) including split-move-merge
edges. Since the underlying set of transformation operationsS ofG is partially ordered,
we can reorder the operations in S, choosing an order, where split, move and merge
operations are directly applied after one another. Figure3 shows two different possi-
bilities how consecutive split-move-merge edgesmay be contained in a transformation
graph.

Case I: We consider a split at node α to the nodes α′ and α′′ where val(α) =
val(α′) = val(α′′). It is followed by two move edges from α′ to β ′ and from α′′ to β ′′
and a merge of β ′ and β ′′ (see Fig. 3a). Therefore, the values added to val(α) have to
be equal on both move edges, that is a value w ∈ R. The cost of these transformation
operations are 2c+2|w|. Consider replacing the two split-move-merge edges with one
direct move edge from α to β addingw to val(α) (see Fig. 3b). This replacement leads
to an equivalent transformation with cost |w| < 2c + 2|w|. This is a contradiction to
our assumption that G is optimal.

Case II: Consider the part of a transformation graph in Fig. 3c. There is a split at
α to α′ and α′′. The node α′′ is connected by a move edge to β ′ adding a value w to
val(α′′). The node β ′ merges with β ′′ to β. Deleting the split-move-merge edge and
editing the part of the graph as shown in Fig. 3d leads to an equivalent transformation
graph, saving cost of 2c + |w|. This is a contradiction to our assumption that G is
optimal. �	

The next lemma states that there is always an optimal monotonic transformation.

Lemma 3 (Monotonicity lemma (Stefan et al. 2012)) For any two time series x and y,
there exists an optimal transformation that converts x into y and that is monotonic.

Summarizing the above properties, there always exists an optimal transformation
graph only containing paths from source to sink nodes of the following consecutive
edge types:

123

On computing exact means of time series 603

(a) (b) (c) (d)

Fig. 3 (a) First possibility of a transformation graph including consecutive split-move-merge edges. (b)
Equivalent transformation graph to (a). (c) Second possibility of a transformation graph including consec-
utive split-move-merge edges. (d) Equivalent transformation graph to (c)

Type 1: move - move - · · · - move - move
Type 2: split/move - split/move - · · · - split/move -split/move
Type 3: merge/move - merge/move - · · · - merge/move - merge/move
Type 4: Type 3 - merge - move - split - Type 2

Note, that paths of Type 2 and Type 3 contain at least one split or merge edge,
respectively. In the following,we consider only transformation graphs that contain only
paths of Type 1–4. To identify independent transformation operations, we decompose
an optimal transformation graph into its weakly connected components. A weakly
connected component is a tree if its underlying subgraph is a tree.

In the following, we give a more substantive view on those weakly connected
components which are trees (see Fig. 4).
The first ones are trees of Type 1. These trees contain only paths of Type 1, that is, there
is only one move edge in the tree connecting one source and sink node (see Fig. 4a).
A weakly connected component containing only paths of Type 2 has only one source
node and at least two paths of Type 2, that is, it has at least two sink nodes. It is a tree
since all all nodes have indegree 1. We call these trees trees of Type 2 (see Fig. 4b).
Trees of Type 3 contain only paths of merge or move operations (Type 3). These trees
have at least two source nodes whose paths reach the same sink node. All nodes have
outdegree 1 (see Fig. 4c). The last weakly connected component which is a tree is a
tree of Type 4. These trees include only paths of Type 4. They contain only and at least
two paths of Type 4, that is, that they have at least two source and two sink nodes (see
Fig. 4d). For the following sections, we need a more detailed description of Type-4-
Trees. All source nodes merge and move to some intermediate node σ . After σ , there
is a move to σ ∗ with subsequent split and move edges leading to the source nodes.
All source and sink nodes of this tree are connected by one single path which we call
a bottleneck with σ as the first bottleneck node and σ ∗ as the second bottleneck node.
All nodes above and including the first bottleneck node have outdegree 1. We call this

123

604 J. Holznigenkemper et al.

(a) (b) (c) (d)

Fig. 4 All red edges are move operations. Black arrows are merge or split edges. The dashed lines represent
paths from one node to another without specifying how many intermediate node are on them. (a) Tree of
Type 1. (b) Tree of Type 2. (c) Tree of Type 3. (d) Tree of Type 4 (Color figure online)

subgraph the upper tree of σ . All nodes below and including the second bottleneck
node have indegree 1. We call this subgraph a lower tree of σ ∗.

The following lemma states that there always exists an optimal transformation
graph, where every weakly connected component is a tree of Type 1–4.

Lemma 4 Let x and y be two time series. Then there exists an optimal transformation
graph GS(x, y) such that its weakly connected components are only trees of Type 1–4.

Proof We show that if a weakly connected component of a given optimal transforma-
tion graph G is not a tree of Type 1–3, then it has to be a tree of Type 4. We consider a
path of Type 4. In a path of Type 4 there is one part with consecutive merge-move-split
edges. Let σ be the node between this merge and move operation and σ ∗ be the node
between this move and split operation. We add further move and merge operations to
the part above σ . We still have outdegree 1 of each node above σ . The same applies for
the part below σ ∗: Adding further move and split operations still leads to indegree 1
of each node below σ ∗. Hence, the subgraph of G consisting of the edge from σ to σ ∗
and all move or merge edges above σ and all move or split edges below σ ∗ is a tree of
Type 4. We now show that this tree structure cannot be extended without violating our
assumptions of the above Lemmas. Let α be a node in the upper tree that is connected
to a node α′ that is neither in the upper nor in the lower tree. If α is a source node or
an intermediate node except of σ , the first operation is a split, where one split edge is
on the path to σ and the other is on the path to α′. We get a contradiction to Lemma 2,
because the first path includes consecutive split-move-merge edges. If α = σ , we have
again a split at α, which is a contradiction to Lemma 1 because we have a consecutive
merge-split edge. The same argumentation is applied for an extension of the lower
tree, because it is the symmetric case of the one we described. �	

123

On computing exact means of time series 605

It follows that we can decompose an optimal transformation graph GS(x, y) into
a sequence of distinct trees (T1, . . . , Tt). Each tree Ti has a set of sink nodes NTi (x)
and a set of source nodes NTi (y). All nodes of NTi (x) and NTi (y) are successors of
NTi−1(x) and NTi−1(y), respectively. We call a tree monotonic if all paths in the tree
are monotonic. Further a tree may be specified as increasing or decreasing. Two trees
are equivalent if they have the same set of source and sink nodes. The cost of a tree T
is the sum of the cost of all edges in the tree.

In the following, we denote an optimal transformation graph fulfilling all the above
properties as an optimal transformation forest.

4 Properties of theMSMmetric

As a main result of this section, we prove that for a set of time series X there exists
a mean m such that all points of m are points of at least one time series of X . To this
end, we first analyze the structure of trees of optimal transformation forests. Some of
the following results are only proven for trees of Type 4 since these trees include all
types of possible paths; as a consequence the proofs for other tree types are simpler
versions of the ones for Type 4.

4.1 Properties of alignment trees

We first regard some properties of so-called subtrees, which are substructures of trees
of Type 4.

4.1.1 Subtrees

Let GS(x, y) be an optimal transformation forest. For an intermediate node δ in G,
that has two parent nodes connected to it by a merge edge each, let S(δ) be the
subtree of δ consisting of all source nodes of G that have a path to δ and of all
nodes and edges on these paths. Each subtree has a set of source nodes NS(δ)(x). Let
NS(δ)(x) = {ui , . . . , u j } be the source nodes of S(δ); we call ui the start node of
S(δ) and u j the end node of S(δ). A subtree is increasing (decreasing) if all paths to δ

are increasing (decreasing). In the following, we will give some properties of subtrees.
If there are two move edges to some nodes α2 and β2 that merges to another node γ

(see Fig. 5a), we first observe that these two move edges cannot be both increasing or
decreasing.

Lemma 5 Let GS(x, y) be an optimal transformation forest with nodes α1, α2, β1, β2
and γ and move edges between α1, α2 and β1, β2. If α2 and β2 merge to γ , then the
edges between α1, α2 and β1, β2 cannot be both increasing or decreasing.

Proof Without loss of generality, we prove this assumption for increasing paths.
Assume towards a contradiction two inc-edges between α1 and α2 and between β1 and
β2 with val(α1) < val(β1) (see Fig. 5a). Since val(α2) = val(β2) = val(γ) the cost for

123

606 J. Holznigenkemper et al.

Fig. 5 (a)Merge structure of the
(intermediate) nodes
α1, α2, β1, β2 and γ . (b)
Equivalent tree to the tree
in (a)

(a) (b)

Fig. 6 Structure of the subtree of
δ explained in the proof of
Lemma 6. Note, that this is only
a schematic representation and
that there may be further
intermediate nodes which are
not marked

these move operations are 2 val(γ) − val(β1) − val(α1). We now consider a modified
merge structure with an additional intermediate node γ1 with val(γ1) = val(β1)

(see Fig. 5b). We now have an inc-edge from α1 to γ1, which merges with the new
node β1 to a new node γ2. At γ2, there is an inc-edge to γ . The modified transfor-
mation forest is equivalent to the old one, since the parent and children nodes of the
regarded nodes stay the same (see Fig. 5). The cost for the modified move opera-
tions are val(γ) − val(β1) + val(β1) − val(α1) < 2 val(γ) − val(β1) − val(α1) since
val(β1) < val(γ). This is a contradiction to G being optimal. �	

We nowmake two observations about the value of the node δ in a subtree S(δ). The
first lemma states, that the value of δ is equal to one value of the source nodes of S(δ).
Recall that u1, . . . , um are the source nodes of GS(x, y) with values x1, . . . , xm .

Lemma 6 Let S(δ) be an increasing (decreasing) subtree of δ in an optimal
transformation forest GS(x, y) with NS(δ)(x) = {ui , . . . , u j }. Then, val(δ) =
max(xi , . . . , x j) for increasing subtrees and val(δ) = min(xi , . . . , x j) for decreasing
subtrees.

123

On computing exact means of time series 607

Fig. 7 Structure of the subtree of
δ described in the proof of
Lemma 7. Note that this is only
a schematic representation and
that there may be further
intermediate nodes which are
not marked

Proof of Lemma 6 Without loss of generality, we prove this assumption for increas-
ing subtrees. Figure6 depicts this subgraph with all mentioned intermediate nodes.
Assume towards a contradiction, that val(δ) �= max(xi , . . . , x j). Therefore, there
exists an u� ∈ {ui , . . . , u j } such that val(δ) �= x�. For val(δ) < x�, it follows
that we have a decreasing edge between u� and δ, which is a contradiction. For
val(δ) > x�, let α be the first intermediate node below {ui , . . . , u j } such that
val(α) �= maxu∈NS(α)(x)(u), where NS(α)(x) ⊆ NS(δ)(x) are the source nodes
of the subtree S(α) of α. There exist two intermediate nodes α′ and α′′ such that
for the source nodes of their subtrees S(α′) and S(α′′), respectively, it holds that
NS(α′)(x) ∪ NS(α′′)(x) = NS(α)(x). It follows that there exists a path from α′ to α

and from α′′ to α. Since α is the first intermediate node below NS(δ)(x) such
that val(α) �= maxu∈NS(δ)(x)(u), it holds that val(α′) = maxu∈NS(α′)(x)(u) and
val(α′′) = maxu∈NS(α′′)(x)(u). Consequently, there is an inc-edge on the path from α′
to α and on the path from α′′ to α. Applying Lemma 5, this is a contradiction to G
being optimal. �	

In the next lemma, we specify the value of δ in a subtree S(δ), stating that it is
always equal to the value of a specific source node of NS(δ)(x).

Lemma 7 Let the nodes δ1 and δ2merge to a node δ in an optimal transformation forest
G. Let S(δ) be the subtree of δ, S(δ1) be the subtree of δ1 with the end node ui−1,
and S(δ2) be the subtree of δ2 with the start node ui . If the subtree S(δ) is increasing
(decreasing) and xi−1 > xi , then val(δ) = xi−1 (val(δ) = xi). If xi−1 < xi , then
val(δ) = xi (val(δ) = xi−1 for decreasing subtrees).

Proof Without loss of generality,S(δ) is increasing. Figure7depicts this subgraphwith
all mentioned intermediate points.Wewill only show the case that xi−1 > xi since the
other case is analogous. By Lemma 6, it holds that val(δ) = max(val(δ1), val(δ2)).
We first show that val(δ) = val(δ1). Assume towards a contradiction that val(δ1) <

val(δ2) = val(δ). Since xi−1 > xi , there exists intermediate nodes γ ′ and γ ′′ on

123

608 J. Holznigenkemper et al.

the path between ui and δ2 such that xi−1 ≥ val(γ ′) and xi−1 < val(γ ′′). Let S ′(δ)
be the modified subtree of S(δ). The only difference between S and S ′ is that γ ′
merges to some intermediate node on the path between ui−1 and δ1. The cost of
S ′(δ) is Cost(S ′(δ)) = Cost(S(δ)) − val(γ ′′) − val(γ ′) < Cost(S(δ)). This is a
contradiction toG being optimal. Applying Lemmas 5 and 6, we get val(δ) = val(δ1).

In a second step, we prove that val(δ1) = xi−1 = maxu∈NS(δ1)(x)(val(u)).
Assume towards a contradiction, that there exists a u j ∈ NS((δ1)(x)\ui−1 such
that val(δ1) = x j > xi−1 > xi . Then, it holds that there exist two intermediate
nodes δ′ and δ′′ on the path between ui−1 and δ1 such that val(δ′) < val(δ1) and
val(δ′′) = val(δ1). We consider the modified subtree S ′′(δ), which is almost equal
to S(δ), the only difference being that δ2 merges to some intermediate node on the
path between δ′ and δ′′. The cost of S ′′(δ) are Cost(S ′′(δ)) = Cost(S(δ))− val(δ1)−
val(δ2) < Cost(S(δ)). This is a contradiction to G being optimal. �	

We will now apply the above properties to the bottleneck nodes in a tree of Type 4
stating that the first and second bottleneck nodes always have values of the input time
series x and y, respectively. Recall, that the first bottleneck node σ is the intermediate
node where all source nodes in the tree of Type 4 merge to, followed by a move edge
to the second bottleneck node σ ∗.

Corollary 1 Let GS(x, y) be an optimal transformation forest. In a tree T of Type 4
val(σ) ∈ VT (x) and val(σ ∗) ∈ VT (y).

Proof To prove that σ ∈ VT (x) we apply Lemma 6 since the upper part of the tree T
is the subtree of σ . By symmetry reasons, it follows that σ ∗ ∈ VT (y). �	

4.2 The effect of perturbing single values

Weaim to show that there exists ameanof a set of time series that only consists of points
of the input set. To this end, we make observations on the effect of shifting points of a
time series that are not from V (X). The first proof step is to analyze for two time series
x and y, how the distance between x and ymay be affected by shifting one point of x by
ε ∈ R. We let xε,i denote the new time series that is equal to x except at the position i ,
where it has the new point xi + ε. The change of the node ui in the transformation
forest is denoted by uε

i . In the following we say that if the distance between xε,i

and y is shorter than between x and y, the replacement of x by xε,i is beneficial.
If it leads to a longer distance, it is detrimental, and if the distance does not change it
is neutral. Assume that xi /∈ V (y), the next lemma states that if the replacement of x
by xε,i is not neutral, it is beneficial for either ε or −ε.

Lemma 8 Let x and y be two time series with distance d(x, y). If xi−1 �= xi �= xi+1
and xi /∈ V (y), there either exists an ε′ > 0 such that for all ε ∈ [0, ε′] one of the
following equations holds:

(1) d(xε,i , y) + ε = d(x, y) = d(x−ε,i , y) − ε (beneficial increase),
(2) d(x−ε,i , y) + ε = d(x, y) = d(xε,i , y) − ε (beneficial decrease),

or there exist εI , εD > 0 such that

123

On computing exact means of time series 609

(3.1) d(x, y) = d(xε,i , y) for all ε ∈ [0, εI] (neutral increase), and
(3.2) d(x, y) = d(x−ε,i , y) for all ε ∈ [0, εD] (neutral decrease).
Moreover, for beneficial increases xi + ε′ ∈ (V (y) ∪ {xi−1, xi+1}), for beneficial
decreases xi − ε′ ∈ (V (y) ∪ {xi−1, xi+1}), and for neutral increases and decreases
xi + εI , xi − εD ∈ (V (y) ∪ {xi−1, xi+1}).
Proof We show the lemma for trees of Type 4. All other cases are simpler versions of
this proof. Let T be a tree of Type 4 inGS(x, y). By Lemma 3, the tree T is monotonic.
We assume, without loss of generality, that all monotonic paths in T are increasing.
We distinguish whether ui has only predecessors or only successors (Case 1) or both
(Case 2) in T . We denote the predecessors of ui as P and the successors of ui as F .

Case 1: ui has only predecessors or successors in T . We prove the case that ui has
only predecessors, the other case is analogous.We first describe the possible structures
of the upper tree in T for this case, which are depicted in Fig. 8. There is a potential
move at ui to a node γ . The node γ merges to δ with a node α∗, which is the node
resulting from a move at α. The nodes {ui−�, . . . , ui−1} ⊆ P are the source nodes of
the subtree of α. Below δ there may be further subsequent merge and move operations
to the first bottleneck node σ . Since xi−1 �= xi there has to be an inc-edge either
between ui and γ , if xi−1 > xi , or between ui−1 and α∗, if xi−1 < xi because in the
first case val(δ) = xi−1 and in the second case val(δ) = xi (see Lemma 7).

Case 1.1: xi−1 > xi . There is an inc-edge between ui and γ (see Fig. 8a). The
replacement of x by xε,i is a beneficial increase for all ε ∈ [0, ε′]with ε′ = val(γ)−xi
because the node uε

i approaches the node γ and the cost of the adapted move decrease
by ε. Thus, we get the left side of Equation (1), d(xε,i , y) + ε = d(x, y). Since the
subtree of δ is increasing and xi−1 > xi , it holds by Lemma 7 that val(δ) = xi−1. We
get that xi−1 = val(γ) = xi +ε′. For the right side of Equation (1), the argumentation
is similar: After replacing x by x−ε,i for ε ≤ ε′, the cost for the move between xi − ε

and γ are val(γ) − xi + ε. Therefore, they increase by ε.
Case 1.2: xi−1 < xi . There is an inc-edge between ui−1 and α∗ (see Fig. 8b). We

modify the structure ofT for the replacement of x by xε,i for ε ∈ [0, εI], εI > 0. LetT ′
be the modified tree with a new node uε

i instead of ui . In T ′, the nodes α∗ and δ does
not exist but T ′ contains a new node δ′ such that val(δ′) ∈ [val(α∗), val(σ ∗)]. The
node uε

i merges to δ′. The rest of the tree stays unchanged. For all ε ∈ [0, εI] with
εI = val(σ ∗) − xi the cost of T ′ is equal to the cost of T because we only shifted a
merge operation to another position in the tree (see Fig. 8c). This is a neutral increase
for all ε ∈ [0, εI]. It holds that xi + εI = σ ∗ ∈ V (y) (see Corollary 1). Let T ′′
be another modified tree of T with a new node u−ε

i instead of ui for ε ∈ [0, εD],
εD > 0. The tree T ′′ does not contain the node δ but contains a new node δ′′ such
that val(δ′′) ∈ [xi−1, val(α∗)] and u−ε

i merges to δ′′ (see Fig. 8d). For all ε ∈ [0, εD]
with εD = val(α∗) − xi−1 we get equal cost of T and T ′′ since we only shifted
a merge operation. From Lemma 7 we get that val(α∗) = val(δ) = xi and hence
xi − εD = xi−1.

Case 2: ui has predecessorsP and successorsF . Again, we first describe the upper
Type-4-Tree T (see Fig. 9). Let {ui−�, . . . , ui−1} ⊆ P be the source nodes of the
subtree of α. At α there is a potential move to α∗. Let {ui+1, . . . , ui+r } ⊆ F be the
source nodes of the subtree of ζ . At ζ there is a potential move to ζ ∗ After a potential

123

610 J. Holznigenkemper et al.

(a) (b) (d)

(c)

Fig. 8 Schematic representation of the trees discussed for Case 1 in the proof of Lemma 8. The node ui
has only predecessors. The dashed red edges show potential move operations. (a) Case 1.1: xi−1 > xi . (b)
Case 2.1: xi−1 < xi . (c) Proof mechanism introducing the modified tree T ′, where the path on which the
new node δ′ can be shifted on is marked in blue. (d) Proof mechanism introducing the modified tree T ′′
following the same mechanism as in (c) (Color figure online)

move from ui to γ there is a merge with α∗, which is afterwards merged with ζ ∗ to an
intermediate node δ. Without loss of generality, we assume this order of merge to δ.
What follows are potential move and merge operations until all nodes in NT (x)merge
to the first bottleneck node σ . Since T is increasing, the subtree of δ is increasing.
We further analyze the relation between xi to its direct predecessor xi−1 and its direct
successor xi+1.

Case 2.1: xi−1 < xi < xi+1. By Lemma 7, it follows that val(δ) = xi+1. Fur-
thermore, there is no inc-edge between ui and γ because ui merges with α∗ to β

with a subsequent inc-edge to β∗ (see Fig. 9a). We modify the tree structure of T
for the replacement of x by xε,i . Let T ′ be the modified tree of T , where we have
the new node uε

i instead of ui for ε ∈ [0, εI], εI > 0. In T ′ the node β does not
exist anymore but T ′ includes a new node β ′, such that val(β ′) ∈ [val(α∗), val(β∗)],
where uε

i merges with α∗. The rest of the tree stays unchanged. For ε ∈ [0, εI]
with εI = val(β∗) − xi the cost of T ′ is equal to the cost of T because we only
shifted a merge operation to another position in the tree. This is a neutral increase
for all ε ∈ [0, εI]. It holds that xi + εI = val(β∗) = xi+1. Let further be T ′′
another modified tree of T . The tree T ′′ does not contain the node β, instead it contains
a new node β ′′, such that val(β ′′) ∈ [ui−1, val(α∗)], where u−ε

i merges to. Again, we
only shifted a merge operation, that leads to equal cost of T and T ′′ for all ε ∈ [0, εD]
with εD = val(α∗) − xi−1. We have val(α∗) = xi and hence xi − εD = xi−1.

Case 2.2: xi−1 > xi > xi+1. This case is analogous to Case 2.1.
Case 2.3: xi−1 < xi > xi+1. We further assume, without loss of generality, that

xi−1 < xi+1. By Lemma 7 it holds that xi = val(δ). We have inc-edges between ui−1
and α∗ and between ui+1 and ζ ∗ (see Fig. 9b). The replacement of x by x−ε,i for an

123

On computing exact means of time series 611

(b)(a) (c)

Fig. 9 Schematic representation of the trees discussed for Case 2 in the proof of Lemma 8. The node ui has
predecessors and successors. (a) Case 2.1: xi−1 < xi < xi+1. (b) Case 2.3: xi−1 < xi > xi+1. (c) Case
2.4: xi−1 > xi < xi+1

ε ∈ [0, εD] is a beneficial decrease because themerge points β and δ are shifted by−ε:
Themove cost are val(α∗)−ε−xi−1 andval(ζ ∗)−ε−xi+1 for the twomoveoperations,
that is a decrease of 2ε. The new merge node of β∗ and ζ ∗ is denoted by δ′. For the
new path between δ′ and σ ∗ we have cost of |σ ∗ − δ′ + ε|, that is an increase of cost
by ε. We get the left side of Equation (2), that is, d(x−ε,i , y) + ε = d(x, y) for all
ε ∈ [0, ε′] with εD = xi − xi+1. It holds that xi − εD = xi+1. The argumentation of
the detrimental replacement of x by xε,i is analogous to Case 1.1.

Case 2.4: xi−1 > xi < xi+1. There is an inc-edge between ui and γ (see Fig. 9c).
Again, we further assume, without loss of generality, that xi−1 < xi+1. Following the
same argumentation as in Case 1.1, the replacement of x by xε,i is a beneficial increase
for all ε ∈ [0, εI] with εI = val(γ) − xi . By Lemma 7, it holds that val(β) = xi−1
and val(δ) = xi+1. Note, that there are no increasing paths between ui−1 and β∗ and
ui+1 and ζ ∗ because otherwise there is no move between ui and γ (see Lemma 5).
It holds that val(γ) = xi−1 = xi + ε′. The detrimental replacement of x by x−ε,i is
analogous to Case 1.1. �	

Let us briefly discuss the trees of Type 1–3. If the tree T is of Type 3, then val(σ ∗)
is already in NT (y). The same proof as for trees of Type 4 can be applied. Since the
symmetries properties hold for the MSMmetric, the Lemma holds for trees of Type 2
as well. For a tree containing only a move edge, the argumentation is the same as in
Case 1.1.

In the following,we regard ablockB of adjacent sourcenodes NB(x) = {ui , . . . , u�}
representing points of equal value of a time series x . A block is a maximal contigu-
ous sequence of nodes with the same value. Our aim is to show a generalization of
Lemma 8 shifting all points of a block B by some ε ∈ R. We show that shifting a
block is either beneficial for one direction or neutral for both directions. Let xε,i,�,
i < �, denote the time series that is equal to x except at the positions i, . . . , �, where
the points xi of x are replaced by xi + ε. The definitions of beneficial, detrimental or
neutral replacements of x by xε,i,� are analogous to the previous one. A block may be

123

612 J. Holznigenkemper et al.

(a) (b) (c)

Fig. 10 Schematic representation of the three cases for proving Lemma 9, depending on the structure of
a block B. (a) Case 1.1: NT (x) = NB(x). (b) Case 1.2: |NT (x)| > |NB(x)|. (c) Case 2: The nodes in
NB(x) belong to different trees

contained in several trees, hence shifting a block affects the cost of all these trees. To
count the number of trees with beneficial or detrimental replacement, we introduce
two further parameters ρI , ρD ∈ N.

Lemma 9 Let x = (x1, . . . , xm) and y = (y1, . . . , yn) be two time series with a
distance d(x, y). If we consider a block B of similar points NB(x) = {ui , . . . , u�}
with xi /∈ V (y), then there either exists an ε′ > 0 and ρI , ρD ∈ N such that for all
ε ∈ [0, ε′] one of the following equations holds:

(1) d(xε,i,�, y) + ρI · ε = d(x, y) = d(x−ε,i,�, y) − ρD · ε (b. increase),
(2) d(x−ε,i,�, y) + ρD · ε = d(x, y) = d(xε,i,�, y) − ρI · ε (b. decrease),

or there exist εI , εD > 0 such that

(3.1) d(x, y) = d(xε,i , y) for all ε ∈ [0, εI] (neutral increase), and
(3.2) d(x, y) = d(x−ε,i , y) for all ε ∈ [0, εD] (neutral decrease).
Moreover, for beneficial increases xi + ε′ ∈ (V (y) ∪ {xi−1, xi+1}), for beneficial
decreases xi−ε′ ∈ (V (y)∪{xi−1, xi+1}), and for neutral increases and decreases xi+
εI , xi − εD ∈ (V (y) ∪ {xi−1, xi+1}).

Proof We distinguish whether all nodes of a block B belong to the same tree or if they
are in different trees. Without loss of generality, we specify monotonic paths and trees
to be increasing.

Case 1: All nodes NB(x) are in one tree T (see Fig. 10a,b). Without loss of gener-
ality, T is considered to be a tree of Type 4, since all other cases follows the same or
a simpler argumentation. We further distinguish whether the nodes of NB(x) are the
only nodes in T .

Case 1.1: NT (x) = NB(x). For the bottleneck nodes it holds that val(σ) = xi
and val(σ ∗) ∈ V (y) (see Corollary 1). The replacement of x by xε,i,� is a beneficial
increase for all ε ∈ [0, ε′] with ε′ = σ ∗ − xi because the intermediate node is also
shifted to σ +ε that leads to lowermove cost of val(σ ∗)−val(σ)−ε, that is, a decrease

123

On computing exact means of time series 613

by ε. Therefore, we get the left side of the first equation d(xε,i,�, y) + ε = d(x, y)
for ρI = 1. It holds that xi + ε′ = val(σ ∗) ∈ V (y). For the right side of the equation
with ρD = 1, the argumentation is similar. Replacing x by x−ε,i,� we get new move
cost of val(σ ∗) − val(σ) + ε, that is, an increase by ε.

Case 1.2: |NT (x)| > |NB(x)|. Since T is a tree of Type 4, all nodes in NT (x)
merge to the intermediate node σ . Moreover, it is evident that the merge of adjacent
points in T that are equal creates lower cost than merging two points that are different.
Therefore, there exists an intermediate node σ ′ where all nodes in NB(x)merge to (see
Fig. 10b). Then Lemma 8 can be applied for ui = σ ′ with ρI = ρD = 1. Depending
on the case, an εI is specified such that we get one of the above equations for an
ε ∈ [0, εI]. For ε = εI , the block is shifted until it reaches a value of the adjacent
points of the block, that is xi−1 or x�+1, or it reaches a point in V (y).

Case 2: The nodes in NB(x) belong to different trees (see Fig. 10c). In this case, we
need to count how many trees we have beneficial increases and decreases. To decide
whether a replacement is beneficial or detrimental, there are two possible cases of trees
belonging to the block B. The first case is that all nodes in a tree in B belong to NB(x).
Then we can apply Case 1.1. The second case concerns the boundary values of NB(x)
merging with the predecessors or successors of the block B. Following the argumen-
tation of Case 1.2, we determine if the replacement of x by xε,i,� is beneficial, neutral,
or detrimental. Ignoring neutral replacements, we set x+

i,� as the number of trees for

which we have a beneficial increase and x−
i,� as the number of trees for which we

have a beneficial decrease. Shifting a whole block may therefore lead to a reduction
of distance of more than ε. We get the above statement for ρI = x+

i,� and ρD = x−
i,�.

By Lemma 8, we get an εT for all trees T in a block B restricting a beneficial or
neutral replacement. Let ε+

min be the minimum of all εT for which we have a bene-
ficial increase. Analogously, ε−

min is defined for beneficial decreases. Without loss of
generality, we assume x+

i,� > x−
i,�. Hence, it holds that for xi + ε+

min is in {xi−1, x�+1}
or in V (y). �	

4.3 MSMmean values

We now use beneficial and neutral replacements to prove that for any set X there exists
a mean m such that all points of m are points of at least one time series of X .

Lemma 10 Let X = {x (1), . . . , x (k)} be a set of k time series. Then there exists a mean
m = (m1, . . . ,mN) of X such that mi ∈ V (X) for all mi , i ∈ [N].
Proof Assume towards a contradiction that every mean has at least one point that is
not in V (X). Among all means, choose ameanm such that 1) nV , the number of points
ofm that are in V (X), is maximum and 2) among all means with nV points from V (X),
the number of transitions fromm(i)

j tom(i)
j+1 wherem

(i)
j �= m(i)

j+1 is minimum. In other
words, m has a minimal number of blocks. Let B be a block in m whose points are
not in V (X). We apply Lemma 9 to show that there exists an ε ∈ R such that mε,i,�

is a mean where the points of the shifted block B reach a point of a predecessor or
successor of B or a point in V (X). We now specify ε. First, we determine whether
ε is positive or negative. For each sequence, one of the Cases (1) to (3) of Lemma 9

123

614 J. Holznigenkemper et al.

applies. For each time series in X , we introduce two variables to count how many
beneficial increases and decreases we have. Neutral replacements are not counted. Let
x+ be the sum of ρI for beneficial increases and x− be the sum of ρD for beneficial
decreases of all time series. If x+ ≥ x−, we set ε as theminimum of the specified ε′ for
beneficial increases and all εI (see Lemma 9). If x+ < x− we set ε as the maximum of
the specified −ε′ for beneficial decreases and all −εD . Compared to the mean m, all
values of mε,i,� are the same except the values of the shifted block. By Lemma 9 the
points of the new mean mε,i,� are shifted for the specified ε until they reach a point of
the right or left neighbor block or a point in V (X). If they reach a point of the right or
left neighbor block, we have a contradiction to the selection of a mean with a minimal
number of transitions. If they reach a point in V (X), we have the contradiction to the
selection of a mean with minimal number of values that are not in V (X). �	

5 Computing anMSMmean

Based on Lemma 10, we now give a dynamic program computing a mean m of k
time series X = {x (1), . . . , x (k)}. The transformation operations are described for the
direction transforming X to m.

5.1 Dynamic program

We fill a (k + 2)-dimensional table D with entries D[(p1, . . . , pk), �, s], where

• pi ∈ [ni] indicates the current position in time series x (i),
• the index � ∈ [N] indicates the current position of m, and
• s is the index of a point vs ∈ V (X).

We also say that (p1, . . . , pk) are the current positions of X . For clarity, we write
p = (p1, . . . , pk). The entry D[p, �, s] represents the cost of the partial time series
{(x (1)

1 , . . . , x (1)
p1), . . . , (x (k)

1 , . . . , x (k)
pk)} transforming to a mean (m1, . . . ,m�) assum-

ing thatm� = vs .Giving a recursive formulafilling table Dwehave two transformation
cases. The case distinction is based on the computation of the MSM distance for
two time series x = (x1, . . . , xm) and (y1, . . . , yn). This computation fills a two-
dimensional table D∗. An entry D∗[i, j] represents the cost of transforming the partial
time series (x1, . . . , xi) to the partial time series (y1, . . . , y j). The distance d(x, y)
is given by D∗[m, n]. Stefan et al. (2012) give the recursive formulation of the MSM
metric as the minimum of the cost for the three transformation operations.

D∗[i, j] = min{AMO [i, j], AM [i, j], ASP [i, j]},where
AMO [i, j] = D∗[i − 1, j − 1] + |xi − yi | (move)

AM [i, j] = D∗[i − 1, j] + C(xi , xi−1, y j) (merge)

ASP [i, j] = D∗[i, j − 1] + C(y j , xi , y j−1) (spli t)

123

On computing exact means of time series 615

for

C(xi , xi−1, y j) =
{
c if xi−1 ≤ xi ≤ y j or xi−1 ≥ xi ≥ y j
c + min(|xi − xi−1|, |xi − y j |) otherwise.

When the recursion reaches a border of D∗, we have the special cases D∗[i, 1] =
D∗[i − 1, 1] + C(xi , xi−1, y1) (only merge operation may be further applied) and
D∗[1, j] = D∗[1, j − 1] + C(y j , x1, y j−1) (only split operation may be further
applied). The base case is reached for D∗[1, 1] = |x1 − y1| where only a move
operation is applied.

For the recursion formula for the MSM- Mean problem, we distinguish between
applying moves and splits (AMS) and only merges (AME):

D[p, �, s] = min{AMS[p, �, s], AME [p, �, s]}.

To distinguish between these cases, we introduce index sets IMO , ISP , and IME for
move, split, and merge operations, respectively. They represent the indices for those
time series which eithermove, split, ormerge. All index sets are subsets of I = [k]. Let
pIMO

be the tuple obtained from p by setting pi = pi − 1 for all i ∈ IMO . The tuple
pIME

is defined analogously. The first case considers that at some current positions
of X there are move and at all other positions there are split operations. It holds that
IMO ∪ ISP = I . For these operations, the recursive call of the function decreases the
current position of m:

AMS[p, �, s] = min
vs′ ∈V (X)

{ min
IMO ,ISP

(
D[pIMO

, � − 1, s′]

+
∑

i∈IMO

|x (i)
pi − vs | +

∑

i∈ISP
C(vs, x

(i)
pi , vs′)

)}.

The second case treats merge operations of at least one current position of X . If a
merge is applied, all other time series pause since the recursive call does not decrease
the position of m:

AME [p, �, s] =min
IME

(
D[pIME

, �, s] +
∑

i∈IME

C(x (i)
pi , x (i)

pi−1, vs)}.

For the last step in the recursion, the entries D[(1, . . . , 1), 1, s] for all vs ∈ V (X) are
calculated by

D[(1, . . . , 1), 1, s] =
∑

i∈I
|x (i)

1 − vs |.

123

616 J. Holznigenkemper et al.

All entries D[p, �, s] for which pi < 1 for some i ∈ [k] is set to +∞. If � = 1 and
all pi > 1, only merge operations may be applied:

D[p, 1, s] = min
IME⊆I

(
D[pIME

, 1, s] +
∑

i∈IME

C(x (i)
pi , x (i)

pi
, vs).

The correctness of the dynamic program hinges on the fact that in the recursive
definition of the pairwise distance, the value of D∗[i, j] depends only on the values
of D∗[i, j − 1], D∗[i − 1, j], xi , y j , xi−1, and y j−1; we omit the formal correctness
proof.

5.2 Running time bound

We now show an upper bound on the maximum mean length in terms of the total
length of X . To this end, we first make the observation that the index set IMO is never
empty. That is, it is not optimal to apply only split operations in one recursion step.

Lemma 11 Let m be a mean of a set of k time series X. It holds that D[p, �, s] <

minvs′ ∈V (X){D[p, � − 1, s′] + ∑
i∈I C(vs, x

(i)
pi , vs′)}.

Proof Let D(X ,m) be the distance of ameanm to X . Assume towards a contradiction,
that there exists a recursion step, where IMO = ∅. That is, in each time series in X
there is a split at a point x (i)

pi , i ∈ I to the points m� and m�−1. We regard the cost
for the transformation up to the positions (p1, . . . , pk) of X and � of m. Applying the
recursion formula for ISP = I , we get D[p, �, s] = minvs′ ∈V (X){D[p, � − 1, s′] +
∑

i∈I C(vs, x
(i)
pi , vs′)}. Let m′ be a mean of X equal to m but where m� is deleted. For

the mean m′, we save the cost for splitting
∑

i∈I C(vs, x
(i)
pi , vs′), without changing

the alignment of all other points in X . It follows that D(X ,m′) < D(X ,m). This is a
contradiction to m being a mean. �	

Lemma 11 now leads to the following upper bound for the MSM mean length.

Lemma 12 Let X = {x (1), . . . , x (k)} be a set of time series with maximum length
max j∈[k]|x (j)| = n. Then, every mean m has length at most (n − 1)k + 1.

Proof Towards a contradiction, let m be a mean of X with length N > (n − 1)k + 1.
The entry of the first recursion call is D[(n1, . . . , nk), N , s]. Consider any sequence
of recursion steps from D[(n1, . . . , nk), N , s] to D[(1, . . . , 1), ·, ·]; each step is asso-
ciated with index sets IMO and ISP , or IME . By Lemma 11, it holds that IMO �= ∅
in each step. That is, at least one current position of X is reduced by one in each
recursion step until the entry D[(1, . . . , 1), �′, s′] is reached. These are at most
(n − 1)k + 1 recursion steps. Since N > (n − 1)k + 1, it holds that �′ > 1. The
only possibility for a further recursion step for D[(1, . . . , 1), �′, s′] is to set ISP = I ,
since D[p, �, s] = +∞ whenever pi < 1 for some i . By Lemma 11, we get a
contradiction to m being a mean. �	

We now bound the running time of our algorithm.

123

On computing exact means of time series 617

Lemma 13 The MSM- Mean problem for k input time series of length at most n can
be solved in time O(nk+32kk3).

Proof In the dynamic programming table D at most nk+2k2 entries have to be com-
puted. This number is the dimension of k time series with maximum length n, the
maximum length of the mean (n−1)k+1 ≤ kn and the size of V (X)which is at most
kn. For each table entry, theminimum over the set V (X) is taken, which includes again
kn data points. For each minimum over V (X) all subsets of [k] are considered which
are at most 2k sets. All subsets of [k] are only generated once for both IMO and IME .
Thus, filling the table iteratively takes time O(nk+32kk3).

For the traceback, the start entry of D is any of the position (n1, . . . , nk) with
minimal cost, that is,

D[(n1, . . . , nk), �start , sstart] = min
�,s

D[(n1, . . . , nk), �, s].

The length of the mean m is �start with mstart = vsstart . In each traceback step, the
predecessors of the current entry are determined, that are the entries leading to the
cost of the current entry. A predecessor of an entry is not unique. For setting the mean
data point we consider the current entry D[(p1, . . . , pk), �, s] and the entry of the
predecessor D[(q1, . . . , qk), �′, s′]. If �′ = �− 1, the point vs′ is assigned to the mean
point m�′ and we continue with the next traceback step. Otherwise, the next traceback
step is directly applied without assigning a mean point. We repeat this procedure until
we reach the entry D[(1, . . . , 1), 1, s∗]. The running time of filling the table clearly
dominates the linear time for the traceback. �	

5.3 Implementation &window heuristic

We fill the table D iteratively and apply the above described traceback mechanism
afterwards. Since the running time of MSM- Meanwill often be too high formoderate
problem sizes, we introduce the window heuristic to avoid computing all entries of
table D. Similar to a heuristic of the Levenshtein distance (Ukkonen 1985), the key
idea is to introduce a parameter d called the window size representing the maximum
difference between the current positions of the time series within the recursion. All
entries whose current positions are not within distance d will be discarded. For exam-
ple, an entry with current position (6, 3, 4) of X will not be computed for d = 2. In
the case of a set of time series with unequal lengths, where nmin and nmax denotes the
minimum length and the maximum lengths, respectively, of all time series, d has to
be greater than nmax − nmin .

6 Experimental evaluation

This section provides important results from a selection of experiments using imple-
mentations of mean algorithms.1 After a description of the experimental setup, we

1 All code is available on GitHub: https://github.com/JanaHolznigenkemper/msm_mean.

123

https://github.com/JanaHolznigenkemper/msm_mean

618 J. Holznigenkemper et al.

Table 1 List of 21 UCR time series data sets

Data Set #Classes #TS Training TS Length MSM c

50words 50 450 270 1

Adiac 37 390 176 1

Beef 5 30 470 0.1

CBF 3 30 128 0.1

Coffee 2 28 286 0.01

ECG 2 100 96 1

FaceAll 14 560 131 1

Face (four) 4 24 350 1

Fish 7 175 463 0.1

Gun Point 2 50 150 0.01

Italy Power* 2 67 24 *

Lightning-2 2 60 367 0.01

Lightning-7 7 70 319 1

OliveOil 4 30 470 0.01

OSU Leaf 6 200 427 0.1

Swedish Leaf 15 500 128 1

Synthetic C 6 300 60 0.1

Trace 4 100 275 0.01

Two Pattern 4 1000 128 1

Wafer 2 1000 152 1

Yoga 2 300 426 0.1

For our running time experiment, we did not take the Italy PowerDemand data set (*) since the time series are
too short. The quality analysis ofMSM- Mean using this data setwas conducted for c ∈ {0.01, 0.1, 0.2, 0.5}

first provide a running time comparison of the DTW- Mean algorithm (Brill et al.
2019) and our MSM- Mean algorithm. Furthermore, we examine accuracy and run-
ning times of MSM- Mean for various heuristics.

6.1 Experimental setup

The running times of our Java implementations are measured on a server with Ubuntu
Linux 20.04 LTS, two AMD EPYC 7742 CPUs at 2.25 Ghz (2.8 Ghz boost), 1TB of
RAM, Java version 15.0.2. Our implementations are single-threaded. For our results
at most 26GB of RAM were occupied.

The experiments are conducted on 20 UCR data sets (Chen et al. 2015) that Stefan
et al. (2012) already used (see Table 1). The UCR data sets were collected for the use
of time series classification. Each set consists of a training and a testing set. The data
sets consists of time series of different classes and different lengths. Since we are not
using the sets for classification use cases yet, we just take the training sets of each
data set for our experimental setup. The parameter c is set constant for every data set
following the suggestions of Stefan et al. (2012).

123

On computing exact means of time series 619

Fig. 11 Running time
comparison of MSM- Mean and
DTW- mean for k = 3 as a
function of n

Fig. 12 Running time comparison of MSM- Mean and DTW- mean for k = 4

Due to the complexity of the algorithms, we draw time series samples from the
training sets obtained from the UCR archive in the following way. For each class of
the training sets, we randomly pick k time series, k ∈ {3, 4, 5}, and for each of them,
we cut out a contiguous subsequence of length n starting at a random data point,
n ∈ {10, . . . , 50}. In addition, we limit the length of the mean time series to at most n.

6.2 Running time comparisons

In our first experiment, we consider the running times for k = 3, 4. Figure11 shows
the average running time over all 20 data sets as a function of n. Our MSM- Mean
algorithm is substantially faster than the DTW counterpart. The outlier in the DTW
graph is due to a data set where the implementation does not complete within 10min.
Figure12 in the appendix provides box plots depicting the running times of both
algorithms for k = 4 and n = 10, . . . , 13. They reveal that theMSM- Mean algorithm
has smaller medians and interquartile ranges and fewer outliers of high running times
compared to the DTW- Mean algorithm. TheMSM- Mean implementation was able
to compute any instance for k = 3, n < 43, k = 4, n < 19, and k = 5, n < 11
within 10min. For DTW- Mean, this was only the case for k = 3, n < 29 and k = 4,
n < 14.

123

620 J. Holznigenkemper et al.

Table 2 Distance of the mean to
time series of the data set
ItalyPowerDemand of one class
and to time series of mixed
classes for k = 3 and n = 24 for
varying c

c 0.01 0.1 0.2 0.5

One class 5.55 7.05 8.02 9.72

Two classes 11.66 15.41 18.46 26.1

6.2.1 MSMmean quality

To evaluate the quality of the computed MSM mean, we use the algorithm on the
ItalyPowerDemand data set (Chen et al. 2015) where each time series has length 24.
The data set contains two classes. For different values of c ∈ {0.01, 0.1, 0.2, 0.5},
Table 2 shows the distance of the MSM mean to three other time series. The first row
reports the distance when the time series belong to one class, while the second row
provides the distance when taking them from both classes. The results confirm for all
c that distances of theMSMmean are lower when the time series belong to one class.

6.2.2 Length of the mean

We implemented two versions of theMSM- Mean algorithm, onewith a fixed length n
of the mean and one without length constraints. As shown in Lemma 12, the length
of an MSM mean is at most (n − 1)k + 1. However, in our experiments for k = 3
and n ∈ {10, . . . , 30}, the length of an MSM mean is always exactly n. Thus, it is
advisable to use this constraint as done in the experiments discussed above.

6.2.3 Impact of parameter c

For a short informal analysis of the effect of the parameter c, consider Figs. 13 and 14.
Each figure shows two MSM- Mean instances for the same four time series and
different values of c. The top graphs show the input time series and an optimal mean.
The graphs below depict the detailed transformation structure from one of the input
time series to the respective mean.

In Fig. 13 on the left c is set to 0.1; on the right c is set to 1. The four time series of
the data set (samples from OSU Leaf) are not very similar and consequently, there is
no intuitively correct mean. The three alignment plots below depict the transformation
structure of the time series TS1, TS3 and TS4 to the mean. The alignment of TS2 to
the mean only contains move operations and is therefore omitted. The mean is quite
different from TS1, TS3, and TS4. For c = 0.1, this leads to many merge and split
operations in the transformations. For c = 1, the merge and split costs are too high
and many more move operations are executed, some of them being quite costly.

In the second example of four time series of the data set ItalyPowerDemand, all time
series show a similar behavior. For both c = 0.01 (left) and c = 0.1 (right), the mean
follows an intuitively correct curve. For both cases, the majority of transformation
operations are short moves and only short consecutive intervals are merged or split in
the mean or in the input time series.

123

On computing exact means of time series 621

Fig. 13 OSU Leaf, left: c = 0.1, right: c = 1. The alignment plot from TS2 to the MSM mean is omitted
since it only includes move operations in both cases

6.3 MSM-MEAN heuristics

6.3.1 Discretization heuristic

Because the domain size of the values of a time series has a significant effect on the
performance of MSM- Mean algorithm, we propose a second heuristic where the

123

622 J. Holznigenkemper et al.

Fig. 14 Italy Power Demand, left: c = 0.01, right: c = 0.1

123

On computing exact means of time series 623

Fig. 15 Running time for
MSM- Mean calculation for
k = 3 and n = 30 regarding the
discretization heuristic

Fig. 16 Average running time of
computing the exact mean and
mean using the window heuristic
for d = 1, 2, 3 for k = 3 and
n ∈ {10, . . . , 42}

domain is split into v buckets of equal length. Each value x of a time series is then
replaced by the center point of the bucket to which x belongs. Thus, there are at most
v different values in total.

Figure15 shows the running time of this heuristic as a function of v for k = 3
and n = 30. There is a substantial (close to linear) decrease in the running time with
a decreasing number of buckets. Moreover, the relative error is quite moderate: We
observed an average and maximum error of 4.6% and 8.47%, respectively.

6.3.2 Window heuristic

In the following, we investigate the window heuristic described in Sect. 5.3 for the
MSM- Mean problem and k = 3, n ∈ {10, . . . , 42}. We examine the window size
d = 1, 2, 3 in our experiments. We analyze relative error of the exact mean and the
means obtained from the window heuristic. As expected, the higher the window size d
the smaller is the relative error. The relative error averaged over all n and all data sets
was 4.8%, 3.2%, 2.4% and the maximum relative error was 9.1%, 6.4%, 5.4% for
d = 1, 2, 3, respectively. Figure16 shows the running time of the window heuristic
in comparison to the exact computation as a function of n. Note that the y-axis plots
the running time on a logarithmic scale. For all parameter settings, the running times
improve substantially in comparison to the exact approach.

123

624 J. Holznigenkemper et al.

7 Conclusion and future work

This paper introduces the MSM- Mean problem of computing the mean of a set of
time series for the Move-Split-Merge (MSM) metric. We present an exact algorithm
for MSM- Mean with a better running time than a recent algorithm for computing
the mean for the DTW distance. Experimental results confirm the theoretically proven
superiority of ourMSM- Mean algorithm in comparison to the DTWcounterpart. The
key observation of our method is that anMSMmean exists whose data points occur in
at least one of the underlying time series. In addition, we provide an an upper bound for
the length of an MSM mean. In our experiments, the maximum mean length is much
shorter, rarely exceeding the length of the longest time series. The paper also provides
two heuristics for speeding up the computation of the mean without sacrificing much
accuracy, as shown in our experimental evaluation.

In future work we will tackle the following issues for MSM- Mean. First, we
will examine how to use MSM- Mean in real clustering and classification problems.
Second, we plan to develop optimization strategies such as the A*-Algorithm (Hart
et al. 1968) for further improving the running time of our algorithm to avoid filling
up the entire dynamic programming table. As a starting point, the structure of the
transformation forests and the metric properties of theMSM distance could be further
explored. Third, the metric properties, especially the triangle inequality, of the MSM
distance enables applications of MSM means in metric indexing. Finally, we conjec-
ture MSM- Mean to be NP-hard. Proving this conjecture could be a next research
step.

More broadly, it would also be interesting to consider extensions of the MSM
metric to more general types of time series data. Following the classification of Su
et al. (2020), a first extension could be to consider time series with explicit time stamps
for the data points. For such time series, one could consider for example merge costs
that take into account the temporal distance between themerged points. Moreover, one
could consider time series in higher-dimensional spaces, for example 3-dimensional
trajectory data. Here, the main issue seems to be to suitably adapt the move distance
to higher dimensions. One could use for example, Euclidean distances but this is only
an option. After establishing appropriate generalizations of the MSMmetric, it would
remain to examine the performance of these generalizations in different applications,
for example in trajectory clustering.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted

123

On computing exact means of time series 625

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aach J, Church GM (2001) Aligning gene expression time series with time warping algorithms. Bioinfor-
matics 17:6495–508

Aghabozorgi S, Shirkhorshidi AS, Wah TY (2015) Time-series clustering-a decade review. Inf Syst 53:16–
38

Bader A, Kopp O, Falkenthal M (2017) Survey and comparison of open source time series databases.
Datenbanksysteme für Business, Technologie und Web (BTW 2017)-Workshopband

BagnallA, Lines J, BostromA,Large J,KeoghE (2017)The great time series classification bake off: a review
and experimental evaluation of recent algorithmic advances. Data Min Knowl Discov 313:606–660

Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: Knowledge
discovery in databases: papers from the 1994 AAAI workshop. Technical Report WS-94-03, vol 10,
pp 359–370

Brill M, Fluschnik T, Froese V, Jain B, Niedermeier R, Schultz D (2019) Exact mean computation in
dynamic time warping spaces. Data Min Knowl Discov 331:252–291

ChenY,KeoghE,HuB,BegumN,Bagnall A,MueenA,BatistaG (2015) TheUCR time series classification
archive. http://www.cs.ucr.edu/~eamonn/time_series_data/

Chen L, Gao Y, Zheng B, Jensen CS, Yang H, Yang K (2017) Pivot-based metric indexing. Proc VLDB
Endow 10(10):1058–1069

Cuturi M, Blondel M (2017) Soft-DTW: a differentiable loss function for time-series. In: Proceedings of
the 34th international conference on machine learning (ICML ’17), vol 70, pp 894–903. PMLR

Das G, Lin K,Mannila H, Renganathan G, Smyth P (1998) Rule discovery from time series. In: Proceedings
of the fourth international conference on knowledge discovery and data mining (KDD ’98). AAAI
Press, pp 16–22

Fréchet M (1948) Les éléments aléatoires de nature quelconque dans un espace distancié. Annales de
l’Institut Henri Poincaré 10:215–310

Garcia-Arellano C, Storm AJ, Kalmuk D, Roumani H, Barber R, Tian Y, Pirahesh H (2020) Db2 event
store: a purpose-built IoT database engine. Proc VLDB Endow 13(12):3299–3312

Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost
paths. IEEE Trans Syst Sci Cybernet 42:100–107

HautamäkiV,NykänenP, Fränti P, (2008)Time-series clustering by approximate prototypes. In: Proceedings
of the 19th international conference on pattern recognition (ICPR ’08). IEEE Computer Society, pp
1–4

Jensen SK, Pedersen TB, Thomsen C (2017) Time series management systems: a survey. IEEE Trans Knowl
Data Eng 29(11):2581–2600

Jiang W (2020) Time series classification: nearest neighbor versus deep learning models. SN Appl Sci
2(4):1–17

Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and reversals. Soviet Phys
Dokl 10:707–710

Liao TW (2005) Clustering of time series data-a survey. Pattern Recognit 38(11):1857–1874
Lines J, Bagnall A (2015) Time series classification with ensembles of elastic distance measures. Data Min

Knowl Discov 29(3):565–592
MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceed-

ings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297
Niennattrakul V, Ratanamahatana CA, (2007) On clustering multimedia time series data using k-means

and dynamic time warping. In: Proceedings of the 2007 international conference on multimedia and
ubiquitous engineering (MUE ’07), pp 733–738

Novak D, Batko M, Zezula P (2011) Metric index: an efficient and scalable solution for precise and approx-
imate similarity search. Inf Syst 36(4):721–733

Paparrizos J, Gravano L (2017) Fast and accurate time-series clustering. ACMTrans Database Syst (TODS)
4(2):21–49

123

http://creativecommons.org/licenses/by/4.0/
http://www.cs.ucr.edu/~eamonn/time_series_data/

626 J. Holznigenkemper et al.

Paparrizos J, Liu C, Elmore AJ, Franklin MJ (2020) Debunking four long-standing misconceptions of
time-series distance measures. Proceedings of the 2020 ACM SIGMOD international conference on
management of data, pp 1887–1905

Petitjean F, Gançarski P (2012) Summarizing a set of time series by averaging: from steiner sequence to
compact multiple alignment. Theor Comput Sci 414(1):76–91

Petitjean F, Ketterlin A, Gançarski P (2011) A global averaging method for dynamic time warping, with
applications to clustering. Pattern Recognit 44(3):678–693

Petitjean F, Forestier G, Webb GI, Nicholson AE, Chen Y, Keogh E (2016) Faster and more accurate
classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowl
Inf Syst 4(7):11–26

Rani S, Sikka G (2012) Recent techniques of clustering of time series data: a survey. Int J Comput Appl
52(15):1–19

SakoeH, Chiba S (1978) Dynamic programming algorithm optimization for spokenword recognition. IEEE
Trans Acoust Speech Signal process 26(1):43–49

Sakurai Y, Yoshikawa M, Faloutsos C (2005) FTW: fast similarity search under the time warping distance.
In: Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on principles of
database systems. ACM, pp 326–337

Sankoff D, Kruskal JP (1983) Time warps, string edits, and macromolecules: the theory and practice
of sequence comparison Time warps, string edits, and macromolecules: the theory and practice of
sequence comparison, vol 10. Addison-Wesley, Boston

Schultz D, Jain B (2018) Nonsmooth analysis and subgradient methods for averaging in dynamic time
warping spaces. Pattern Recognit 74:340–358

Stefan A, Athitsos V, Das G (2012) The move-split-merge metric for time series. IEEE Trans Knowl Data
Eng 25(6):1425–1438

Su H, Liu S, Zheng B, Zhou X, Zheng K (2020) A survey of trajectory distance measures and performance
evaluation. VLDB J 29:13–32

Ukkonen E (1985) Algorithms for approximate string matching. Inf Control 64(1–3):100–118

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	On computing exact means of time series using the move-split-merge metric
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Move-split-merge operations
	3.2 Transformation graphs
	3.3 Properties of transformation graphs

	4 Properties of the MSM metric
	4.1 Properties of alignment trees
	4.1.1 Subtrees

	4.2 The effect of perturbing single values
	4.3 MSM mean values

	5 Computing an MSM mean
	5.1 Dynamic program
	5.2 Running time bound
	5.3 Implementation & window heuristic

	6 Experimental evaluation
	6.1 Experimental setup
	6.2 Running time comparisons
	6.2.1 MSM mean quality
	6.2.2 Length of the mean
	6.2.3 Impact of parameter c

	6.3 MSM-Mean heuristics
	6.3.1 Discretization heuristic
	6.3.2 Window heuristic

	7 Conclusion and future work
	References

