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Abstract
Graph neural networks (GNNs) have achieved state-of-the-art results for semi-
supervised node classification on graphs. Nevertheless, the challenge of how to
effectively learn GNNs with very few labels is still under-explored. As one of the
prevalent semi-supervised methods, pseudo-labeling has been proposed to explicitly
address the label scarcity problem. It is the process of augmenting the training set with
pseudo-labeled unlabeled nodes to retrain a model in a self-training cycle. However,
the existing pseudo-labeling approaches often suffer from twomajor drawbacks. First,
these methods conservatively expand the label set by selecting only high-confidence
unlabeled nodeswithout assessing their informativeness. Second, thesemethods incor-
porate pseudo-labels to the same loss function with genuine labels, ignoring their
distinct contributions to the classification task. In this paper, we propose a novel infor-
mative pseudo-labeling framework (InfoGNN) to facilitate learning of GNNs with
very few labels. Our key idea is to pseudo-label the most informative nodes that
can maximally represent the local neighborhoods via mutual information maximiza-
tion. To mitigate the potential label noise and class-imbalance problem arising from
pseudo-labeling, we also carefully devise a generalized cross entropy with a class-
balanced regularization to incorporate pseudo-labels into model retraining. Extensive
experiments on six real-world graph datasets validate that our proposed approach
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significantly outperforms state-of-the-art baselines and competitive self-supervised
methods on graphs.

Keywords Graph neural networks · Pseudo-labeling · Mutual information
maximization

1 Introduction

Graph neural networks (GNNs) have emerged as state-of-the-art models for under-
taking semi-supervised node classification on graphs (Hamilton et al. 2017; Kipf and
Welling 2017; Veličković et al. 2018; Wu et al. 2019). The aim of these models is to
leverage a small subset of labeled nodes together with a large number of unlabeled
nodes to train an accurate classifier. Most modern GNNs rely on an iterative message
passing procedure that aggregates and transforms the features of neighboring nodes to
learn node embeddings, which are then used for node classification. However, under
extreme cases where very few labels are available (e.g., only a handful of labeled nodes
per class), popular GNN architectures, such as graph convolutional networks (GCNs)
typically with two layers, are ineffective in propagating the limited training labels to
learn discriminative node embeddings, resulting in inferior classification performance.
Recently, a central theme of latest studies has attempted to improve classification accu-
racy by designing deeper GNNs or new network architectures (Qu et al. 2019; Verma
et al. 2020). However, the challenge of how to effectively learn GNNs with few labels
is still under-explored.

Recently, pseudo-labeling, also called self-training, has been proposed as one
prevalent semi-supervised method to explicitly tackle the label scarcity problem on
graphs. Pseudo-labeling expands the label set by assigning a pseudo-label to high-
confidence unlabeled nodes, and iteratively retrains the model with both given labels
and pseudo-labels. Li et al. (2018) first proposed a self-trained GCN that chooses
top-K high-confidence unlabeled nodes to enlarge the training set for model retrain-
ing. Sun et al. (2020) pointed out the ineffectiveness of shallow GCNs in propagating
label information under few-label settings. Amulti-stage approach was then proposed,
which applies deep clustering techniques to assign pseudo-labels to unlabeled nodes
with high prediction confidence. Zhou et al. (2019) proposed a dynamic self-training
framework, which assigns a soft label confidence on the pseudo-label loss to control
its contribution to gradient update.

Despite offering promising results, the existing pseudo-labeling approaches on
GNNs have not fully explored the power of self-training, due to two major limitations.
First, these methods impose strict constraints that only unlabeled nodes with high pre-
diction probabilities are selected for pseudo-labeling. However, these selected nodes
often exhibit similar information conveyed by the given labels, causing information
redundancy in the expanded label set. On the contrary, if unlabeled nodes with lower
prediction probabilities are allowed to enlarge the label set, more pseudo-label noise
would be incurred to significantly degrade the classification performance. This creates
a dilemma for pseudo-labeling to achieve desirable performance improvements. Sec-
ond, current methods treat pseudo-labels and genuine labels equally important. They
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are all incorporated into the same loss function, such as the standard cross entropy
loss, for node classification, neglecting their distinct contributions to the classification
task. In the presence of unreliable or noisy pseudo-labels, model performance might
deteriorate during retraining.

Motivated by the above observations, we propose a novel informative pseudo-
labeling framework called InfoGNN for semi-supervised node classification with few
labels. Our aim is to fully harness the power of self-training by incorporating more
pseudo-labels, but alleviating possible negative impact caused by noisy (i.e., incorrect)
pseudo-labels. To address information redundancy, we define node informativeness
via neural estimation of mutual information (MI) between a node and its local context
subgraph in the embedding space. Our method offers two advantages: (1) It provides
an informativeness measure to select unlabeled nodes for pseudo-labeling, such that
the added pseudo-labels can bring in more information gain. (2) It implicitly encour-
ages each node to approximate its own local neighborhood and depart away from
other neighborhoods. The intuition behind is that an unlabeled node is considered
informative when it can maximally reflect its local neighborhood. By integrating this
informativeness measure with model prediction probabilities, our approach enables
to selectively pseudo-label nodes with maximum performance gain. To mitigate the
negative impact of noisy pseudo-labels, we adapt a generalized cross entropy loss
to pseudo-labels for improving model robustness. This loss allows to maximize the
pseudo-labeling capacity while minimizing the model collapsing risk. Moreover, to
cope with the potential class-imbalance problem caused by pseudo-labeling under
extremely few-label settings, we propose a class-balanced regularization that regular-
izes the number of pseudo-labels to keep relative equilibrium in each class.

Our main contributions can be summarized as follows:

– Our study analyzes the ineffectiveness of the existing pseudo-labeling strategies
and proposes a novel pseudo-labeling framework for semi-supervised node clas-
sification with extremely few labels.

– Our approach has unique advantages to incorporate an MI-based informativeness
measure for pseudo-label candidate selection and to alleviate the negative impact
of noisy pseudo-labels via a generalized cross entropy loss.

– We validate our proposed approach on six real-world graph datasets of various
types, demonstrating its superior performance over state-of-the-art baselines.

2 Related works

2.1 Graph learning with few labels

GNNs have emerged as a new class of deep learning models on graphs (Kipf and
Welling 2017; Veličković et al. 2018). The principle of GNNs is to learn node embed-
dings by recursively aggregating and transforming features from local neighborhoods
(Wu et al. 2019). Node embeddings are then used as input to any differentiable pre-
diction layer, for example, a softmax layer for node classification. Recently, a series
of semi-supervised GNNs, such as GCNs and their variants, have been proposed
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for node classification. The success of these models relies on a sufficient number of
labeled nodes for training. How to train GNNs with a very small set of labeled nodes
has remained a challenging task.

Pseudo-labeling on graphs. To tackle label scarcity, pseudo-labeling has been pro-
posed as one of the prevalent semi-supervised methods. It refers to a specific training
regime,where themodel is bootstrappedwith additional labeled data obtained by using
confidence-based thresholding methods (Lee 2013; Rosenberg et al. 2005). Recently,
pseudo-labeling has shown promising results on semi-supervised node classification.
Li et al. (2018) proposed a self-trained GCN that enlarges the training set by assign-
ing pseudo-labels to top-K confidence unlabeled nodes, and then re-trains the model
using both given and pseudo-labels. The pseudo-labels are generated by another ran-
dom walk model rather than the GNN itself. A similar approach was proposed in
Zhan and Niu (2021). Sun et al. (2020) showed that a shallow GCN is ineffective in
propagating label information under few-label settings, and proposed a multi-stage
self-training framework that relies on a deep clustering model to assign pseudo-labels.
Zhou et al. (2019) proposed a dynamic pseudo-labeling approach called DSGCN
that selects unlabeled nodes with prediction probabilities higher than a pre-specified
threshold for pseudo-labeling, and assigns soft label confidence as label weight.

Weargue that current pseudo-labelingmethods onGNNs share twomajor problems:
information redundancy and noisy pseudo-labels. This work is proposed to explicitly
address these pitfalls. Our focus is upon developing a robust pseudo-labeling frame-
work that allows to expand the pseudo-label set with more informative nodes, and to
mitigate the negative impact of noisy pseudo-labels.

Our work is also related to learning with label noise, but most of the existing label
noise methods cannot be adopted to handle noisy pseudo-labels due to two reasons.
First, some methods require an extra clean set (Xiao et al. 2015) or other noise infor-
mation (Han et al. 2018) (e.g., the noise rate), which is unavailable in our setting;
Second, other methods often involve designing an extra network for label noise mod-
eling (Goldberger andBen-Reuven 2016; Sukhbaatar et al. 2015) or require some other
algorithmic modifications (Li et al. 2019; Ren et al. 2018). These modifications might
be inconsistent with our learning objectives, thereby degrading model performance,
and also incur extra computational complexity.

Graph few-shot learning.Originally designed for image classification, few-shot learn-
ing focuses on classification tasks where a classifier is adapted to accommodate new
classes unseen during training, given only a few labeled examples for each class (Snell
et al. 2017). Several recent studies (Ding et al. 2020; Huang and Zitnik 2020) have
attempted to generalize few-shot learning to graph domains. For example, Ding et al.
(2020) proposed a graph prototypical network for node classification, which learns
a transferable metric space via meta-learning, such that the model can extract meta-
knowledge to achieve good generalization ability on the target few-shot classification
task. Huang and Zitnik (2020) proposed to transfer subgraph-specific information and
learn transferable knowledge via meta gradients.

Although few-shot learning and our work both tackle the label scarcity problem,
their problem settings and learning objectives are fundamentally different. In few-shot
learning, the training and test sets typically reside in different class spaces. Hence, few-
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shot learning aims to learn transferable knowledge to enable rapid generalization to
new tasks. On the contrary, our work follows the transductive GNN setting where the
training and test sets share the same class space.

Graph self-supervised learning. Our work is related to self-supervised learning on
graphs (Velickovic et al. 2019), which also investigates how to best leverage the unla-
beled data. However, there is a clear distinction in the objectives: the primary aim of
self-supervised learning is to learn node/graph representations by designing pretext
tasks without label-related supervision, such that the generated representations could
facilitate specific classification tasks (Liu et al. 2022). For example, You et al. (2020a)
showed that self-supervised learning can provide regularization for graph-related clas-
sification tasks. This work proposed three pretext tasks (i.e., node clustering, graph
partitioning, and graph completion) based on graph properties. Other works attempted
to learn better node/graph representations through creating contrastive views, such as
local node vs. global graph view in Velickovic et al. (2019), or performing graph aug-
mentation (Zhu et al. 2020). In contrast, our work resorts to augmenting label-specific
supervision via pseudo-labeling for semi-supervised node classification.

2.2 Mutual informationmaximization

The infomax principle was first proposed to encourage an encoder to learn effective
representations that share maximized mutual information (MI) with the input (Belg-
hazi et al. 2018; Hjelm et al. 2019). Recently, the idea of MI maximization has been
applied to improve graph representations. Velickovic et al. (2019) applied MI max-
imization to learn node embeddings by contrasting local subgraphs with high-level,
global graph representations. Qiu et al. (2020) proposed to learn intrinsic and trans-
ferable structural representations by contrasting subgraphs from different graphs via a
discriminator. Hassani and Khasahmadi (2020) contrasted node representations from
a local view with graph representations from a global view to learn more informa-
tive node embeddings. In our context, we leverage the idea of contrastive learning
to maximize the MI between each node and its neighboring context. The estimated
MI enables to select more representative unlabeled nodes in local neighborhoods for
pseudo-labeling so as to advance model performance.

3 Problem statement

Let G = {V, E, X} represents an undirected graph, where V = {v1, v2, ..., vn}
denotes a set of n nodes, and E denotes a set of edges that connect pairs of nodes.
X = [x1, x2, . . . , xn]T ∈ R

n×d denotes the node feature matrix, and xi ∈ Rd is a
d-dimensional feature vector of node vi . The graph structure is represented by the
adjacent matrix A ∈ R

n×n , where A(i, j) ∈ {0, 1}. Since it is costly to acquire plen-
tiful node labels due to restricted access or privacy concerns, real-world graphs often
suffer from the label scarcity problem, with only a handful of labels provided for train-
ing. For example, the label rates on two real-world graphs, Coauther_CS (Shchur et al.
2018) andWikics (Mernyei and Cangea 2020), are only 0.29% and 1.7%, respectively.
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Thus, we assume that only a small portion of nodes are labeled in the node set,
with L = {(xi , yi )}|L|

i=1 denoting the set of labeled nodes. And most nodes remain to
be unlabeled, denoted by U . yi = {yi1, yi2, . . . , yic} is the one-hot encoding of node
vi ’s class label, and c is the number of classes.

We consider a semi-supervised node classification problem (Kipf andWelling 2017;
Veličković et al. 2018) under a pseudo-labeling paradigm, which is formally defined
as follows:

Problem 1 Given an undirected graph G = {V, E, X} together with a small subset
of labeled nodes L = {(xi , yi )}|L|

i=1, we aim to design a strategy 1(·) for expanding
the label set from unlabeled nodes, a method Y(·) for generating reliable pseudo-
labels, and an exclusive loss function �U (·) for pseudo-labels, such that 1(·),Y(·) and
�U (·) can be combined with the task-specific loss �L(·) to maximize the classification
performance of GNN fΘ(·). This problem can be formulated as

min
Θ

J =
∑

xi∈L
�L(yi , fΘ(xi )) +

∑

xi∈U
�U (Y(xi ), fΘ(xi )) · 1(xi ). (1)

The notations used in the paper can be found in Appendix A.

4 Methodology

4.1 Framework overview

The primary aim of our work is to develop a robust pseudo-labeling framework for
GNN training with few labels. As shown in Fig. 1, our proposed InfoGNN framework
comprises of three key modules: (1) the GNN encoder; (2) the informativeness esti-
mator; and (3) the pseudo-label selector. Taking a graph as input, the GNN encoder
is first utilized to learn node embeddings as well as to estimate class predictions and
confidence scores. Then, the informativeness estimator closely follows to produce
node informativeness scores for unlabeled nodes. Finally, according to informativeness
and confidence scores, informative nodes are selected for pseudo-labeling and model
retraining. During GNN retraining phase, besides the standard cross entropy (SCE)
loss applied on the given labels, a generalized cross entropy (GCE) loss is applied on
pseudo-labels to improve model robustness against potential noise. A class-balanced
regularization (CBR) is used to mitigate the potential class-imbalance problem arising
during pseudo-labeling.

4.2 The GNN encoder

The GNN encoder in our framework learns node embeddings and generates class
prediction probabilities, which reflect model confidence for making predictions. Any
GNN that focuses on node classification can be utilized here for embedding learning
and classification. The GNN encoder learns node embeddings by recursively aggre-
gating and transforming node features from neighborhoods. In our work, we utilize

123



234 Y. Li et al.

Fig. 1 Overview of the proposed InfoGNN framework, comprising of three main modules: the GNN
encoder, informativeness estimator, and pseudo-label selector. The GNN encoder is responsible for gen-
erating node embeddings and estimating confidence scores. Then, the informativeness estimator closely
follows, in charge of measuring node informativeness and producing quantitative scores. Finally, accord-
ing to both confidence and informativeness scores, informative nodes are selected for pseudo-labeling and
model retraining

GCN (Kipf and Welling 2017) as our GNN encoder fΘ(·) parameterized by Θ . For
v ∈ V , node embedding at k-th layer’s propagation can be obtained by:

hkv = σ(
∑

v′∈Nv

(D̃−1/2 ÃD̃−1/2)v,v′Θk−1hk−1
v′ ), (2)

σ(·) is the activation function, Ã = A + I is the adjacency matrix of G with added
self-connections. D̃ii = ∑

j Ãi j , andΘk−1 is a layer-specific trainable weight matrix.
We use the SCE loss to optimize GCN for node classification:

�L(y, fΘ(x)) = −
∑

i∈L
yi log( fΘ(xi )). (3)

Finally, according to class prediction probabilities, we obtain a confidence score for
each node v:

sc(v) = max
j

fΘ(xv) j . (4)

The confidence score sc(v) is utilized for node selection in combination with the
informativeness score, which is detailed below.

4.3 Candidate selection for pseudo-labelling

Current pseudo-labelingmethods typically select unlabeled nodes based onmodel con-
fidence or uncertainty (Zhou et al. 2019; Li et al. 2018). They pseudo-label only nodes

123



Informative pseudo-labeling for graph neural networks with few labels 235

with high prediction probabilities, preventing adding noisy pseudo-labels for model
retraining. However, such high-confidence nodes often carry redundant information
conveyed by the given labels, resulting in the limited capacity to improvemodel perfor-
mance. Thus, along with model confidence, we propose to take node informativeness
into account for pseudo-label selection so as to maximally boost model performance.
To this end, a key problem lies in how to measure node informativeness.

Informativeness measure by MI maximization.We define node informativeness as the
representativeness of a node in reference to its contextual neighborhood. The intuition
behind is that a node is considered informative when it could maximally represent its
surrounding neighborhood while minimally reflecting other arbitrary neighborhoods.
Hence, the representativeness of a node can be measured by the mutual information
(MI) between the node itself and its neighborhoodwith positive correlation.Onaccount
of this, we employMI maximization techniques (Belghazi et al. 2018) to estimate the
MI by measuring how much one node can represent its surrounding neighborhood
and discriminate an arbitrary neighborhood. This provides a score for quantifying
the informativeness of each node. This principle is formulated as a subgraph-based
contrastive learning task, which contrasts each node with its positive and negative
context subgraphs.

Given a graph G = {V, E, X} with learned node embeddings H , for each node
v ∈ V , we define its positive subgraph as a local r -hop subgraphNv centered at node
v, and its negative subgraph as an r -hop subgraph Nu centered at an arbitrary node
u. The mutual information IG(v) between node v and its neighborhood can then be
measured by a GAN-like divergence (Nowozin et al. 2016) as follows,

IG ≥ ÎG = max
ω

1

|V|
∑

v∈V
[MIω(hv, HNv

) + MIω(hv, HNu )], (5)

where hv is node v’s embedding generated from the GNN encoder, HNv
and HNu

are the embedding sets of subgraphs centered at node v and u, respectively. MIω is
a trainable neural network parameterized by ω. MIω(hv, HNv

) indicates the affin-
ity between positive pairs, while MIω(hv, HNu ) indicates the discrepancy between
negative pairs. Our objective is to estimate IG by maximizing MIω(hv, HNv

) while
minimizing MIω(hv, HNu ), which is in essence a contrastive objective.

This contrastive objective is achieved by employing a discriminator as shown in
Fig. 1. At each iteration, after obtaining the learned node embeddings H , both positive
and negative subgraphs for each node are first sampled and paired. Then, those nodes
and their corresponding paired subgraphs are passed on to a discriminator D(·) after
being separately processed by a multilayer perception (MLP) encoder ϕ(·) and a
subgraph encoder φ(·). This discriminator finally produces an informativeness score
for each node by distinguishing a node’s embedding from its subgraph embedding.

Formally, we specify MIω(hv, HNv
) = D(ϕ(hv), φ(HNv

)). Here, ϕ(·) is an MLP
encoder parameterized by ω(ϕ) for node embedding transformation. φ(·) is a sub-
graph encoder that aggregates embeddings of all nodes in the subgraph to generate
an embedding of the subgraph, which is implemented using a one-layer GCN on an
r -hop subgraph:
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φ(HNv
) = σ

⎛

⎝
∑

v′∈Nv

(D−1/2
r Ar D

−1/2
r )v,v′hv′ω(φ)

⎞

⎠ , (6)

whereω(φ) is a learnable parameter. Ar is the r -hop adjacent matrix, obtained by Ar =
Bin(AAr−1 + Ar−1). Bin(·) is a binary function that guarantees Ar (i, j) ∈ {0, 1}.
Dr is the corresponding degree matrix of Ar . Notice that we use an r -hop adjacent
matrix Ar , instead of the original adjacent matrix A, for feature aggregation, and the
aggregated embedding of the centre node is used as subgraph embedding. For the
discriminator D(·), we implement it using a bilinear layer:

D(ϕ(hv), φ(HNv
)) = σ(ϕ(hv)ω

(D)φ(HNv
)T ), (7)

where ω(D) is a learnable parameter. To enable the discriminator D(ϕ(hv), φ(HNv
))

to measure the affinity between node v and its corresponding local subgraph Nv , we
minimize the binary cross entropy loss between positive and negative pairs, which is
formulated as the contrastive loss:

�I = − 1

|V|
∑

v∈V
[logD(ϕ(hv), φ(HNv

)) + log(1 − D(ϕ(hv), φ(HNu )))]. (8)

By minimizing �I , the discriminator could maximally distinguish a node from any
arbitrary subgraphs that it does not belong to in the embedding space. This process is
equivalent to maximizing their MI in the sense of Eq. (5).

Pseudo-labeling. The discriminatorD(·)measures the affinity between each node and
its local subgraph. We utilize this affinity to define the informativeness score for each
node:

sr (v) = D(ϕ(hv), φ(HNv
)), (9)

where sr (v) indicates towhat extent a node could reflect its neighborhood, and a higher
score means that the node is more informativeness. Therefore, by considering both
the informativeness score and model prediction confidence, we derive the selection
criterion to construct the pseudo-label set Up:

Up = {v ∈ U |(sr (v) + sc(v))/2 > k, s.t . sc(v) > k}, (10)

where sc(v) is the confidence score as in Eq. (4), and k is a hyperparameter whose
value can be empirically determined (See Fig. 4b in Sect. 5.6). We then produce the
pseudo-labels for Up by utilizing the GNN encoder fΘ(·):

ŷv = argmax
j

fΘ(xv) j ; v ∈ Up, (11)

where the pseudo-label ŷv is actually the predicted label by the GNN encoder.
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4.4 Mitigating noisy pseudo-labels

During model retraining, existing pseudo-labeling methods regard the given labels
and pseudo-labels as equally important, so an identical loss function, e.g., the SCE
loss, is applied. However, with more nodes added in, it is inevitable to introduce
unreliable or noisy (i.e., incorrect) pseudo-labels. If the same SCE loss is applied
on unreliable pseudo-labels, it would degrade model performance. This is because,
the SCE loss implicitly weighs more on the difficult nodes whose predictions deviate
away from the supervised labels during gradient update (Zhang and Sabuncu 2018;
Van Rooyen et al. 2015). This is beneficial for training with clean labels and ensures
faster convergence. However, when there exist noisy pseudo-labels in the label set,
more emphasis would be put on noisy pseudo-labels as they are harder to fit than
correct ones. This would ultimately cause the model to overfit incorrect labels, thereby
degrading model performance.

To address this issue, we propose to apply the negative Box-Cox transformation
(Box and Cox 1964) to the loss function �U (·) on pseudo-label set Up, inspired by
(Zhang and Sabuncu, 2018). The transformed loss function is given as follows:

�U (ŷi , fΘ(xi )) = 1 − fΘ(xi )
q
j

q
; xi ∈ Up,

ŷi = argmax
j

fΘ(xi ) j ,
(12)

where q ∈ (0, 1], ŷi is the pseudo-label. To further elaborate how this loss impacts
parameter update, we have its gradient as follows:

∂�U (ŷi , fΘ(xi ))
∂Θ

= fΘ(xi )
q
j

(
− 1

fΘ(xi ) j
∇Θ fΘ(xi ) j

)
, (13)

where fΘ(xi ) j ∈ (0, 1] for ∀i . Compared with the SCE loss, �U actually weighs each
gradient by an additional fΘ(xi )

q
j , which reduces the gradient descending on those

unreliable pseudo-labels with lower prediction probabilities. In fact, �U (ŷi , fΘ(xi ))
can be regarded as the generalization of the SCE loss and the unhinged loss. It is
equivalent to SCE when q approaches zero, and becomes the unhinged loss when q is
equal to one. Thus, this loss allows the network to collect more additional information
from a larger amount of pseudo-labels while alleviating their potential negative effect.

In practice, we apply a truncated version of �U (·) to filter out the potential impact
from unlabeled nodes with low prediction probabilities, given by:

�T (ŷi , fΘ(xi )) =
{

�U (k), fΘ(xi ) j ≤ k
�U (ŷi , fΘ(xi )), fΘ(xi ) j > k,

(14)

where k ∈ (0, 1), and �U (k) = (1 − kq)/q. Formally, the truncated loss version is
derived as:
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�T (ŷ, fΘ(x)) =
∑

i∈U
λi�U (ŷi , fΘ(xi )) + (1 − λi )�U (k), (15)

where λi = 1 if i ∈ Up, otherwise λi = 0. �T is referred to as the generalized cross
entropy (GCE) loss. Intuitively, when the prediction probability of one node is lower
than k, the GCE loss would be a constant. As the gradient of a constant loss is zero,
this node would not contribute to gradient update, thus eliminating the negative effect
of pseudo-labels with low confidence.

4.5 Class-balanced regularization

Under extreme cases where only very few labels are available for training, severe
class-imbalance problems would occur during pseudo-labeling. That means, one or
two particular classes might dominate the whole pseudo-label set, thus conversely
impacting model retraining. To mitigate this issue, we propose to apply a Kullback–
Leibler (KL) divergence between the pseudo-label distribution and a default label
distribution for class-balanced regularization (CBR):

�K L =
c∑

j=1

p j log
p j

f (X) j
, (16)

where p j is the default probability of class j . Since the true label distribution is
unknown, we apply a uniform distribution for this regularization. That is, we set the
probability of each class as p j = 1/c in our work. f (X) j is the mean value of class
prediction probability distribution over pseudo-labels, which is calculated as:

f (X) j = 1

|Up|
∑

xi∈Up

f (xi ) j . (17)

It is worth noting that, under the uniform distribution assumption, we do not attempt
to approximate the real label distribution, which is unknown a priori during training.
Instead, we expect to regularize the class distribution in the pseudo-label set to bemore
uniformly distributed, preventing only one or two classes from dominating the selected
pseudo-labels. Accordingly, hyperparamterβ is employed to control the impact of �K L

as in Eq. (19). More empirical analysis on the impact of class-balanced regularization
will be provided in Sect. 5.6.

4.6 Model training and computational complexity

Our proposed InfoGNN framework is given by Algorithm 1, which consists of one
pre-training phase and one formal training phase. The pre-training phase (Step 2-4)
is used to train a parameterized GNN with the given labels. Accordingly, network

123



Informative pseudo-labeling for graph neural networks with few labels 239

parameters are updated by:

�pre = �L + α�I . (18)

During the formal training phase, the pre-trained GNN is first applied to generate the
prediction probability and informativeness score for each node, which are then used
to produce pseudo-labels (Step 5–7). Finally, both given and pseudo- labels are used
to retrain the GNN by minimizing the following loss function (Step 8):

� = �L + �T + α�I + β�K L . (19)

Algorithm 1: Training InfoGNN with few labels

Input: Graph G = {V,E,X}, α, β, r , q and k, Initialized network parameters {Θ0, ω0}
Output: updated model parameters {Θ t , ωt}

1 for t = 0; t < epochs; t = t + 1 do
2 if t < start_epoch then
3 Pre-train the network according to Eq. (18);

4 else
5 Generate node prediction probabilities fΘ(xi );
6 Generate informativeness scores based on Eq. (9);
7 Construct pseudo-label set based on Eq. (10);
8 Update network parameters based on Eq. (19);

9 return model parameters {Θ t , ωt }

In terms of computational complexity, by comparison with GNN models based on
the SCE loss, InfoGNN incurs slightly extra computational overhead in its attempt to
mitigate label noise. This is mainly due to the calculation of the contrastive loss �I
with subgraph encoder. Since we utilize a one-layer GCN as the subgraph encoder on
an r -hop subgraph, its computational complexity is linear with the number of edges
O(|Er |), where Er is the number of edges in the r -hop subgraph. This is reasonably
acceptable.

5 Experiments

To validate the effectiveness of the proposed pseudo-labeling framework, we carry
out extensive experiments on six real-world graph datasets to compare against state-
of-the-art baselines. We also conduct the ablation studies and sensitivity analyses to
better understand the key ingredients of our approach.

5.1 Datasets

Our experiments use six real-world graph datasets from three different domains:
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Table 1 Details of six
benchmark datasets

Dataset Nodes Edges Classes Features

Citeseer 3,327 4,732 6 3,703

Cora 2,708 5,429 7 1,433

Dblp 17,716 105,734 4 1,639

Wikics 11,701 216,123 10 300

Coauthor_CS 18,333 81,894 15 6,805

Coauthor_Phy 34,493 247,962 5 8,415

– Citation networks:Cora, Citeseer (Kipf andWelling 2017) and Dblp1 (Bojchevski
and Günnemann 2018) are citation networks, where each node indicates a paper
with a certain label and edges indicates the citation links among papers. Node
features are bag-of-words vectors of papers.

– Webpage networks:Wikics2 (Mernyei and Cangea 2020) is a network of computer
science relatedWebpages. Nodes represent articles and edges represent hyperlinks
between articles. Node features are mean vectors of GloVe word embeddings of
articles.

– Coauther networks: Coauther-CS and Coauther-Phy3 (Shchur et al. 2018) are
coauthor networks in computer science and Physics. Nodes denote authors and
edges denote whether two authors coauthor a paper. Node features are keywords
from the author’s papers.

Detailed dataset statistics are listed in Table 1.

5.2 Baselines

For comparison, we use a total of 12 state-of-the-art methods as baselines. Since all
methods are built upon the original GCN (Kipf andWelling 2017), we compare against
GCN as the benchmark. The other 11 recently proposed methods on graphs are used
as strong competitors, which can be categorized into two groups:

– Pseudo-labeling methods: M3S (Sun et al. 2020), Self-training (Li et al. 2018),
Co-training (Li et al. 2018), Union (Li et al. 2018), Intersection (Li et al. 2018),
and DSGCN (Zhou et al. 2019);

– Self-supervised methods: Super-GCN (Kim andOh 2021), GMI (Peng et al. 2020),
SSGCN-clu (You et al. 2020b), SSGCN-comp (You et al. 2020b), and SSGCN-par
(You et al. 2020b).

We run all experiments 10 times with different random seeds, and report the mean
Micro-F1 scores. Due to algorithmic design, the number of selected pseudo-labels
might vary among different methods. Thus, we report the best performance of each
baseline method with its optimized hyperparameters.

1 https://github.com/abojchevski/graph2gauss
2 https://github.com/pmernyei/wiki-cs-dataset/raw/master/dataset
3 https://github.com/shchur/gnn-benchmark
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Table 2 Details of
hyperparameters

Given labels (per class) α β k

{1, 3, 5} 1.0 1.0 0.55

{10, 15, 20, 30, 40, 50} 0.2 0.2 0.55

5.3 Experimental setup

Model specification. For fair comparison, all baselines are adapted to use a two-layer
GCNwith 16 units of the hidden layer. The hyperparameters are set the samewithGCN
(Kipf andWelling 2017), with the L2 regularization of 5×10−4, learning rate of 0.01,
ReLU activation, and dropout rate of 0.5. For subgraph encoder φ(·), we use a one-
layer GCN with the c-dimension output, where c is number of classes. Both positive
and negative subgraphs share the same subgraph encoder. ϕ(·) is a one-layer MLP
with the c-dimension output. The discriminator D(·) is a one-layer bilinear network
with one-dimension output, and it uses the sigmoid activation function. The stability
analysis of the discriminator can be found in Appendix B.

Following the setup of self-trainingmethods (Zhou et al. 2019),we split each dataset
into training and test sets. We randomly choose {1, 3, 5, 10, 15, 20, 30, 40, 50} nodes
per class for training as different settings, and the remaining nodes are used for testing.
The performance of different methods is assessed on the test set for comparison.

Hyperparameter specification.We specify hyperparameters conforming to the fol-
lowing rules: Generally, a larger α and β value would be beneficial to model training
when the given labels are scarce, while smaller α and β values are more likely to
achieve better performance as the number of given labels increases. For k, we fix its
value to 0.55 for all settings. The specification of the three hyperparameters are sum-
marized in Table 2. In terms of q, we empirically find that our model has relatively
lower sensitivity to q with the regularization of loss �I , so its value is fixed under
most of the settings. Specifically, we set q = 1.0 when one label per class is given,
and q = 0.1 for all other label rates. The best r value for subgraph embedding in loss
�I depends on the edge density of the input graph. Particularly, we apply r = 3 for
edge-sparse graphs (Cora, Citeseer, Dblp, Coauther_CS), r = 2 forWikics, and r = 1
for Coauther_Phy.
Implementation details. When training InfoGNN, we first pre-train the network to
generate reliable predictions using Eq. (18) for 200 epochs, and then proceed with
formal training using the full loss function Eq. (19) for another 200 epochs. During
formal training, in order to get a steady model, we allow the model to update the
pseudo-label set every 5 epochs using Eq. (10). When updating the pseudo-label set,
we use themean scores of unlabeled nodes in its last 10 training epochs, rather than the
current prediction and informativeness scores. Our framework is implemented using
Pytorch. All experiments are run on a machine powered by Intel(R) Xeon(R) Gold
6126 @ 2.60GHz CPU and 2 Nvidia Tesla V100 32GB Memory Cards with Cuda
version 10.2.
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5.4 Comparison with state-of-the-art baselines

The mean Micro-F1 scores of all methods w.r.t. various label rates are reported in
Tables 3 and 4. Table 3 focuses on the cases where the given labels are very sparse,
whereas Table 4 reports on the cases with relatively higher label rates. The best
performer is highlighted by bold, and the second best performer is highlighted by
underline on each setting. We perform paired t-test between the Micro-F1 scores
achieved by InfoGNN and the best baseline methods, where we use •(◦) to indicate
that InfoGNN is significantly better (worse) than the compared baseline methods at
95% significance level.

Table 3 reports the overall performance comparison under the severe label sparsity
settings. Overall, our proposed InfoGNNmethod outperforms other baseline methods
by a large margin at almost all the settings. Compared with GCN, InfoGNN averagely
achieves a performance improvement of 12.1%, 9.2%, 8.0%, 6.3%, 4.1%, and 3.5%
on the six datasets, when 1, 3, 5, 10, 15, and 20 nodes per class are labeled, respectively.
In particular, InfoGNN achieves better classification results with lower label rates. At
the presence of less than 10 labeled nodes per class, InfoGNN succeeds in achieving
similar Micro-F1 scores as GCN uses 20 labeled nodes per class over all datasets.
As for self-supervised baselines, their performance is inconsistent across different
datasets. For example, SSGCN-clu achieves advantageous results on Coauthor_CS
and Coauthor_Phy, but yields undesirable results on the other four datasets. SSGCN-
Comp performs poorly on Wikics. This is due to the fact that specific pretext tasks
designed by SSGCN do not generalize well on graphs with different properties.

Table 4 further compares the performance of all methods w.r.t. higher label rates,
with 30, 40, and 50 given labels per class. As can be seen, as the number of given
labels per class increases beyond 20, Micro-F1 scores of all methods continue to
increase but with a declining growth rate. In the meanwhile, the advantages of pseudo-
labeling methods gradually diminish as compared to the original GCN. However, our
InfoGNN still outperforms other baselines in most cases, especially on Cora and Cite-
seer. For example, when 50 labeled nodes per class are given on Cora, our InfoGNN
achieves a Micro-F1 score of 85.3%, markedly outperforming the second best per-
former (SSGCN-clu) and GCN by 1.6% and 2.4%, respectively. This proves that our
InfoGNN is able to effectively alleviate the information redundancy problem when
label information is relatively sufficient.

5.5 Ablation study

To further analyze how different components of the proposed InfoGNN take effect,
we conduct a series of ablation experiments. Due to space limit, we only report experi-
mental results on the settings where 3 and 10 nodes are labeled per class. The ablations
are designed as follows:

– InfoGNN-I: Only �I is applied based on GCN, which is used to evaluate the role
of the contrastive loss;
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– InfoGNN-IT : Both �I and �T are applied, which is utilized to evaluate the impact
of the GCE loss by comparing with InfoGNN-I. Note that only model confidence
scores are used here for �T , i.e., Up = {v ∈ U | f (xv) j > k};

– InfoGNN-ITS:On the basis of InfoGNN-IT, the informativeness score, i.e., Eq.(10),
is also applied for �T , which is to test the efficacy of the informativeness score
by comparing with InfoGNN-IT. The impact of the �K L loss can be revealed by
comparing with InfoGNN.

The ablation results are reported in Table 5, under two settings where the number
of given labels per class is 3 and 10, respectively. The constrastive loss �I seems to
make similar contributions with both label rates, achieving an average improvement
of 3.7% and 3.9% over GCN on the six datasets. On top of �I , the use of GCE leads to
further performance improvements. TakingWikics as an example, GCE further boosts
the accuracy by 3.8% and 3.0% on the basis of �I , with 3 and 10 given labels per class,
respectively. By comparing the performance of InfoGNN-IT and InfoGNN-ITS, we
can find that the informativeness scores make distinct contributions under the two
settings; for example, InfoGNN-ITS achieves an improvement of 3.3% with 3 given
labels per class in contrast to an improvement of 0.5% with 10 given labels per class
on Citeseer. This is because an increasing number of training labels counteracts the
effect of informativeness scoring. The similar phenomenon can also be observed on
the contribution of �K L . It also plays amore significant role at a lower label rate, where
imbalanced predictions are more likely to occur.

5.6 Hyperparameter sensitivity analysis

We also conduct experiments to test the impact of hyperparameters (α, β, q, k and r )
on the performance of InfoGNN.We take turns to test the effect of each hyperparameter
while fixing the values of the rest. Due to space limit, we only report the results when
3 and 10 labels per class are given for training.

Hyperparameter α controls the contribution of the contrastive loss �I to the total
loss, whose impact is shown in Fig. 2. With 3 given labels per class, we find that
a larger α value can lead to better performance before α reaches 0.6. After that, the
performance remains stablewith very slight changes.With 10 labels per class provided,
except on Dblp, the changes of α values do not largely impact model performance
on Cora and Citeseer. This indicates that, when label information is very limited,
our model requires stronger structural regularization to generate discriminative node
embeddings. On the other hand, when label information is relatively sufficient, model
training is dominated by the supervised loss from the given labels. Thus, the role of
�I is more profound when given labels are scarce.

Figure 3 shows performance comparisons w.r.t. different values of β. With only 3
labels per class provided, since the class-imbalance problem is more likely to occur
during pseudo-labeling, our model favors a larger β value for class-balance regular-
ization in the pseudo-label set, as shown in Fig. 3a. As β increases from 0.1 to 1.0, our
model boosts its classification accuracy by around 3% on Citeseer and Cora. When 10
labels per class are given, the class-imbalance problem is less likely to arise as more
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Fig. 2 Sensitivity analysis w.r.t. hyperparameter α

Fig. 3 Sensitivity analysis w.r.t. hyperparameter β

label information can be exploited. Overall, the change in β values does not largely
impact model performance.

Hyperparameter q is the generalization coefficient in �T . Figure 4a illustratesmodel
performance changes with an increase of q when one label per class is given. We can
see that, as q rises, the performance of our method shows a gradual increase on the
three datasets. This is because the severe lack of label information is more probable
to incur noise in pseudo-labels. A larger q value could then decay the gradient update
on unreliable samples, thereby improving model robustness. On the other hand, when
q descends near zero, the GCE loss approaches close to SCE, and the model has a
significant performance drop. This further proves the superiority of the GCE loss over
SCE when only few labels are given for training.

Hyperparameter k is the threshold for �T , which controls the number of unlabeled
nodes selected for pseudo-labeling. Figure 4b shows model performance by varying
k with one given label per class. As we can see, a medium k value achieves better
accuracy, whereas too small or too large values degrade model performance.

Hyperparameter r indicates the number of hops for generating positive and nega-
tive subgraphs to calculate informativeness measures. Figure 5 shows how r affects
model performance on the three datasets (Cora, Wikics, and Coauthor_Phy) with
diverse topology characteristics. As depicted in this figure, for edge-sparse graphs
(e.g., Cora), a larger r tends to result in better performance. For edge-dense graphs
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Fig. 4 Sensitivity analysis w.r.t. the generalization coefficient q and the threshold k in �T

Fig. 5 Sensitivity analysis w.r.t. number of hops r for sampled subgraphs

(e.g., Coauther_Phy), a smaller r is more likely to exert better performance. For graphs
with medium edge density (e.g., Wikics), the best results are achieved with a medium
r . When r exceeds 3 hops, model performance has a slight drop on all three datasets.
In summary, our method favors a smaller subgraph scale on dense graphs, but a rela-
tively larger scale on sparse graphs for sampling sufficient structural contexts in local
neighborhoods.

6 Conclusion and future work

In this paper, we propose an informativeness augmented pseudo-labeling framework,
called InfoGNN, to address semi-supervised node classification with few labels. We
argue that current pseudo-labeling approaches on GNNs suffer from two major pit-
falls: information redundancy and noisy pseudo-labels. To address these issues, we
propose to quantify node informativeness based onMI estimation maximization. Tak-
ing both informativeness and prediction confidence into account, more informative
unlabeled nodes are selected for pseudo-labeling. We then adapt a generalized cross
entropy loss onpseudo-labels tomitigate the adverse effect of unreliable pseudo-labels.
Furthermore, we apply a class-balanced regularization in response to the potential
class-imbalance problem arising frompseudo-labeling. Extensive experimental results
and ablation studies verify the effectiveness of our proposed framework, and demon-
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strate its superior performance over state-of-the-art baseline models, especially under
very few-label settings.

For future work, we plan to extend our proposed method from two aspects. First,
although our proposed method employs a GCE loss to mitigate the negative effect of
unreliable pseudo-labels, inaccurate model predictions still inevitably incur accumu-
lated errors during pseudo-labeling. Thus, we will devise better strategies to combat
such confirmation biases for pseudo-labeling. Second, we will generalize our cur-
rent model to heterophilous graphs. Unlike homophilous graphs, where linked nodes
tend to share the same labels, heterophilous graphs typically have edges connecting
nodes from different classes. Therefore, this requires new informativeness measures
for estimating node importance on heterophilous graphs.
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Appendix A: Table of symbols and notations

Table 6 summarizes a list of frequently used symbols and notations in this paper.

Table 6 A List of symbols and notations

Symbol Description

G = {V,E,X} Undirected graph G with node set V , edge set E and node feature
matrix X

xi , yi Feature vector and one-hot label of node vi

L, U Label set and unlabel set

Up Selected pseudo-label set

hkv Embedding of node v at k-th layer’s propagation

A, Ã Adjacent matrix and adjacent matrix with added self-connection

D, D̃ Degree matrix of A, Ã

Ar ,Dr r -hop adjacent matrix and the corresponding degree matrix

sc(v), sr (v) Confidence score and informativeness score for node v

Nv Neighbors of node v
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Table 6 continued

Symbol Description

HNv
Neighboring node embedding matrix of node v

D(·) Discriminator network

ϕ(·) MLP encoder

φ(·) Subgraph encoder

fΘ(·) GNN parameterized by Θ

r Number of hops for sampling subgraphs

�I (·) Contrastive loss

�L (·) Cross entropy (SCE) loss

�T (·) Generalized cross entropy (GCE) loss

�K L (·) Class-balanced regularization (CBR)

Appendix B: Stability analysis of the discriminator

In terms of the stability of the discriminator, we conduct a series of experiments to
investigate the changes in its lossw.r.t. training epochs. The experiments are performed
on Cora and Citeseer with 10 given labels per class. Figure 6 visually shows the
changes in the loss during training. We can find that as the training proceeds, the loss
rapidly decreases to a low level, and then stabilizes till the training ends. These results
empirically show that the training of the discriminator is quite stable.

Fig. 6 The loss changes of the discriminator D(·) with 10 given labels per class for training
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