
Data Mining and Knowledge Discovery (2023) 37:67–109
https://doi.org/10.1007/s10618-022-00869-6

Large scale K -means clustering using GPUs

Mi Li1 · Eibe Frank1 · Bernhard Pfahringer1

Received: 28 February 2022 / Accepted: 9 September 2022 / Published online: 18 October 2022
© The Author(s) 2022

Abstract
The k-means algorithm is widely used for clustering, compressing, and summarizing
vector data. We present a fast and memory-efficient GPU-based algorithm for exact
k-means, Asynchronous Selective Batched K -means (ASB K -means). Unlike most
GPU-based k-means algorithms that require loading the whole dataset onto the GPU
for clustering, the amount of GPU memory required to run our algorithm can be
chosen to be much smaller than the size of the whole dataset. Thus, our algorithm can
cluster datasets whose size exceeds the available GPU memory. The algorithm works
in a batched fashion and applies the triangle inequality in each k-means iteration to
omit a data point if its membership assignment, i.e., the cluster it belongs to, remains
unchanged, thus significantly reducing the number of data points that need to be
transferred between the CPU’s RAM and the GPU’s global memory and enabling the
algorithm to very efficiently process large datasets. Our algorithm can be substantially
faster than a GPU-based implementation of standard k-means even in situations when
application of the standard algorithm is feasible because thewhole dataset fits intoGPU
memory. Experiments show that ASB K -means can run up to 15x times faster than
a standard GPU-based implementation of k-means, and it also outperforms the GPU-
based k-means implementation in NVIDIA’s open-source RAPIDS machine learning
library on all the datasets used in our experiments.

Keywords k-means · GPGPU · Data mining · Clustering

Responsible editor: Johannes Fürnkranz.

Eibe Frank and Bernhard Pfahringer contributed equally to this work.

B Mi Li
ml87@students.waikato.ac.nz

Eibe Frank
eibe.frank@waikato.ac.nz

Bernhard Pfahringer
bernhard.pfahringer@waikato.ac.nz

1 Department of Computer Science, University of Waikato, Hamilton, New Zealand

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-022-00869-6&domain=pdf
http://orcid.org/0000-0001-7158-3395

68 M. Li et al.

1 Introduction

Advances in science and technologies cause data to accumulate at an explosive speed
(Fahad et al. 2014; Sajana et al. 2016). For example, an enormous volume of data has
been collected by electronic devices and sensors in IoT networks, and online social
networks such as Twitter, Tumblr, andWeibo generate a huge amount of data every day.
These datasets often contains useful information—for example, knowledge extracted
from social media networks can be used to study public opinions, analyse consumer
trends, and provide intelligent advertisement and content catering to the user’s specific
interest—and how to efficiently extract it has attracted much interest in the realm of
data mining.

In this paper, we consider clustering of large datasets using the classic k-means
algorithm. Clustering is the process of partitioning data elements in a dataset so that
similar ones are collected in the same group (or cluster). It is applicable in many
domains and to many types of data (Berkhin 2006). Compared with the original data,
clusters can be digested by humans far more effectively and efficiently. As an unsu-
pervised learning task, clustering is applicable in many fields, including image and
video processing, social science, energy studies, bioinformatics, biochemistry, and
marketing (Xu and Wunsch 2005; Mohebi et al. 2016). Therefore, a lot of research
work has been done on new clustering algorithms in the past fifty years (Jain 2010).
However, in spite of its age, the classic k-means algorithm is still used very widely,
perhaps primarily due to its conceptual simplicity.

Batch clustering algorithms such as the standard k-means algorithmgenerally exam-
ine every data element of a dataset several times to find locally or globally optimal
solutions, rendering them computationally more expensive than one-pass algorithms
and time-consuming to run on very large datasets. Parallel computing has proven
to be a practical solution for handling big data (Fang et al. 2008; Jian et al. 2013;
Langdon 2013; Shirkhorshidi et al. 2014): many complex data mining tasks can be
dramatically sped up by dividing the task into many sub-tasks and executing them
concurrently. Traditionally, supercomputers are used for high-performance parallel
computing and have been applied to solve complex scientific problems (Upadhyaya
2013). However, traditional supercomputers are expensive to acquire and run, greatly
limiting their applicability. Graphics processing units (GPUs) offer an alternative.
They were designed originally for computer graphics, where each pixel of the screen
is processed by a separate processing element (thread), requiring massive parallelism.
This, coupled with increasing programmability, makes them an attractive platform
for general-purpose high-performance computing (Owens et al. 2008). GPUs have
been utilised in various domains and applications such as scientific and geometric
computations, matrix operations, FFT computation, embedded system design, bioin-
formatics, database operations, and data mining (Owens et al. 2005; Che et al. 2008;
Brodtkorb et al. 2013; Mittal and Vetter 2015). In particular, they have been used
to significantly accelerate algorithms for clustering problems (Li et al. 2013)—for
example, by applying the general-purpose CUDA programming model on NVIDIA
GPU architectures (Wu et al. 2009). However, existing GPU-based implementations
of the popular k-means clustering algorithm are bound by the limited amount of GPU

123

Large scale K-means clustering 69

global memory and do notmake use of geometric constraints to speed up the clustering
process, which we address in this paper.

Our primary contributions can be summarized as follows:

• We present the first GPU-based k-means algorithm that can handle datasets of any
size and very large numbers of cluster centers.

• Our method is the first GPU-based k-means algorithm that applies the triangle
inequality to avoid redundant distance computations and reduce the amount of
data that needs to be transferred between the CPU and GPU.

• We demonstrates how CUDA’s asynchronous APIs can be used to effectively hide
the overhead involved in transferring data between the CPU’s main memory and
the GPU’s global memory.

The rest of the paper is structured in the followingmanner.We give a brief overview
of prior work on k-means clustering and GPU-based k-means in Sect. 2. In Sect. 3,
we present our batched GPU-based k-means algorithm accelerated by the triangle
inequality and its implementation. Section 4 discusses the experimental results on
different datasets using different k-means algorithms. The last section presents our
conclusions.

2 Related work

First, we briefly review the background on general-purpose computation on GPUs
before focusing on existingwork comprising (a) CPU-based algorithms that accelerate
k-means using the triangle inequality and (b)GPU-based implementations of k-means.

2.1 GPGPU

General-purpose computing with graphics processing units (GPGPU) is the utilisation
of a GPU, which was originally designed for handling computation specifically for
computer graphics, to carry out computation traditionally performed by the a CPU.
GPGPUonly becamepractical and popular after 2001 because of programmable vertex
shaders and floating-point support introduced in modern graphics processors (Owens
et al. 2005). Because GPUs devote more transistor space than CPUs to data processing
rather than data caching and flow control, they are especially suitable for dealing with
problems that can be expressed as data-parallel computations with high arithmetic
intensity.

From the hardware perspective, and using the terminology employed by GPUman-
ufacturer NVIDIA, a GPU consists of a grid of so-called streaming multiprocessors
(SMPs), each of which consists of a set of simple scalar processors (SPs). These scalar
processors, also called “cores”, operate in a single instruction, multiple data fashion
(SIMD). Each SMP has its own set of registers, and each SMP has a shared memory
block that all cores in the SMP, and only those cores, can access. Thus, when it comes
to GPGPU, three main types of memory exist on GPUs: registers, shared memory, and
global memory (a.k.a., device memory). Another two types of memory: constant and

123

70 M. Li et al.

texture memory, are less used because they are beneficial for only very specific types
of applications.

Registers are 32-bit memory blocks that are private to each processing core. Access
to registers is extremely fast but their number is limited. Shared memory is on-chip
memory with faster access than device memory. It is limited in size (e.g., 16, 32
or 48KB) and usually used as a local buffer for fast data retrieval and information
exchange between threads running on the same SMP. Device memory is physically
located on the graphics card but not inside the processing unit. It is also called global
memory because it can be accessed from both the GPU and CPU (with the help of
some specialised API functions). Device memory is much larger, say 4, 20, 40, or
even 80GB, than shared memory and can be accessed by all threads on different
SMPs. Because it is off-chip, the access latency is hundreds of clock cycles, which
is much slower than accessing registers and shared memory. Therefore, appropriate
programming techniques should be employed to help hide memory access latency. For
example, tiled loading of data from devicememory into sharedmemory and pipelining
are two widely used techniques (NVIDIA 2021).

The CPU’s main memory located on the motherboard is normally large in size
but can only be accessed by the CPU. Data has to be explicitly transferred from
main memory to device memory before it can be processed by the GPU. Because
the bandwidth of the PCI-Express bus used for data transfer is limited, this can easily
become a bottleneck. The time incurred by transferring data between themainmemory
of the CPU and the device memory of the GPU is an extra cost relative to traditional
data mining methods running on CPUs only. This is a hindrance that needs to be
circumvented when mining large datasets on GPUs.

Threads are basic constructs of the GPGPU programming model. Because they
are lightweight and incur very little creation and context switching overhead, they
are often used to hide memory access latency. Threads are grouped into warps. All
threads in a warp execute the same instructions on different data elements. Warps
are further grouped into thread blocks. It is guaranteed that a thread block resides on
one streaming multiprocessor. Threads in the same block can cooperate by sharing
data through shared memory and their execution can be synchronised, but communi-
cation and synchronisation between thread blocks is limited. Thread blocks, in turn,
are organised into a computing grid, which is processed jointly by the collection of
streaming multiprocessors in the GPU.

2.2 K-means clustering

The k-means clustering algorithm is one of the most widely used clustering algorithms
in both academic research and industrial practice. Given a user-specified number of
clusters k, it partitions a set of n data points into k clusters according to a distance
measure. The metric used to measure distance is usually defined as the sum of squared
distances between each member in the cluster and the center (i.e., mean) of the cluster,
called intra-cluster distance. In this scenario, which is the one we consider in this
paper, the objective of k-means is to minimize the sum of all intra-cluster distances.
This sum is also referred to as the sum of squared errors (SSE).

123

Large scale K-means clustering 71

The standard implementation of k-means clustering is Lloyd’s algorithm (Lloyd
1982). It can be described as follows:

1. The k centers are initialized according to some rules (e.g., selected at random from
the data points). This is called the initialization step.

2. Each data point is assigned to its closest centroid to form k clusters. This is referred
to as the assignment step.

3. All data points assigned to a given cluster are used to recalculate the centroid. This
is called the recalculation step.

4. The procedure (Steps 2 and 3) is repeated until a certain termination condition is
reached. This is referred to as the termination step.

It is important to note that the algorithm will converge to a local minimum of the
SSE but will not necessarily find a global minimum. Hence, it is common practice to
restart the algorithm multiple times with different randomly chosen initializations.

Many termination conditions have been reported in the literature. The most com-
monly used ones include:

1. A maximum number of iterations has been executed.
2. The centroids remain unchanged, i.e., the centroid positions do not change at all or

only change slightly in consecutive steps.
3. The assignment of each data point does not change. This is equivalent toCondition 2

in most situations but enables a different implementation.
4. The sum of squared errors (SSE) reaches the desired minimum value.

Researchers have developed several optimizations to improve on the basic k-means
algorithm, generally by exploiting either algorithmic improvements or parallelization.
Most of the algorithmic improvements are primarily concerned with optimizing the
membership assignment step of the algorithm (that is, finding the closest center for each
data point). With the advent of GPGPU, parallelization as an optimization technique
has also been widely studied. We will briefly review these two optimization strategies
in the next two sections. There is another direction of acceleration that considers
approximation techniques, e.g., sub-sampling (Bejarano et al. 2011). In this paper,
we consider exact techniques only.

2.3 Triangle inequality accelerated K-means clustering

Several variants of k-means speed up the clustering process by avoiding distance
calculations between the clustered data points and cluster centers using the triangle
inequality. All the optimizations covered in this section produce exactly the same
results as Lloyd’s algorithm given the same input and initialization, so they are suitable
as drop-in replacements.

Three observations can be made in the standard k-means algorithm (Elkan 2003):

1. In later iterations, there is little movement of centers.
2. Distance calculations use the most time.
3. Geometrically, distance calculations are mostly redundant.

Lloyd’s algorithm spends a lot of processing time computing distances between
each of the k cluster centers and the n data points to find the closest center for a data

123

72 M. Li et al.

point. However, since points usually stay in the same cluster after a few iterations of
the clustering algorithm, more often than not, much of this work is unnecessary and
wasted. By applying the triangle inequality, computing the distance between a data
point and any cluster center can be avoided if the center assignment is guaranteed to
remain unchanged.

Using the triangle inequality, the following two propositions can be proved:

Proposition 1 If d(c, c′) ≥ 2d(x, c), then d(x, c′) ≥ d(x, c).

Proof If
d(c, c′) ≥ 2d(x, c) (1)

then, using the triangle inequality d(x, c) + d(x, c′) ≥ d(c, c′), it follows that

d(x, c) + d(x, c′) ≥ 2d(x, c) (2)

that is,
d(x, c′) ≥ d(x, c). (3)

This means that, in this situation, the data point x is closer to center c than c′, and we
do not need to measure the distance d(x, c′). Assuming that the distances d(c, c′) and
d(x, c) have been cached, this is trivial to check. By applying the triangle inequality
in this way, computation of the distance from data point x to center c′ can be avoided.

Proposition 2 The distance from a data point x to a moved center c is bounded by the
movement of the center.

Proof Assuming the center c is moved to a new position c′ after an iteration, given the
distance of a data point x to c, i.e., d(x, c), and the distance between the center c and
the updated center c′, i.e., d(c, c′), we know from the triangle inequality that:

d(x, c) − d(c, c′) ≤ d(x, c′) ≤ d(x, c) + d(c, c′) (4)

This means the distance from the data point x to the updated center c′ must be inside
the range bounded by d(x, c) − d(c, c′), i.e., the lower bound, and d(x, c) + d(c, c′),
i.e., the upper bound. Again, assuming the distances d(x, c) and d(c, c′) have been
cached, it is trivial to calculate these bounds.

By applying Proposition 1 directly in the innermost loop of k-means, Phillips (2002)
presents two accelerated algorithms named compare-means and sort-means. The algo-
rithms compute and cache the center-point and center-center distances. If twice the
distance of a data point x to its assigned center c(x) is smaller than the distance of the
center c to another center c′, then the data point x will not be assigned to the center
c′ in the next iteration. In this way, some center-point distance recomputations can be
avoided.

Elkan (2003) presents an algorithm that uses both Propositions 1 and 2 to avoid
redundant distance calculations. He introduces the concept of upper and lower bounds
for distances between data points and centers, and demonstrates an effective way to

123

Large scale K-means clustering 73

speed up the standard k-means algorithm by maintaining 1 upper bound and k lower
bounds for each data point. The upper bound for data point x , u(x), is the greatest
possible value of the distance from the data point x to its assigned center c(x), while
the lower bounds, l(x, j), correspond to the least possible distances between the data
point x and each center j . The pseudo-code in Algorithm 1 shows the workflow of
Elkan’s algorithm.

By applying Proposition 1, Elkan proved that, given a data point x , its assigned
center c, and another center c′, if u(x) ≤ d(c, c′)/2, then x will stay closer to c than c′
in the next iteration. Hence, the distance computation between data point x and center
c′ is unnecessary and can be avoided. If the upper bound u(x) is smaller than all the
half-distances from center c to other centers, i.e., u(x) ≤ minc′∈C;c′ �=c(d(c, c′)/2)
where C is the set of centers, then there is no need to calculate the distance of x to any
center because its center assignment will not change.

By applying Proposition 2, Elkan also pointed out that, for a center, the calculation
of the point-center distance can be avoided if the data point’s upper bound is less
than or equal to the lower bound for that center. This can be proved as follows. Given
two centers c and c′, where c is the cluster center that point x is assigned to, if
u(x) ≤ l(x, c′), then d(x, c) ≤ u(x) ≤ l(x, c′) ≤ d(x, c′) (according to the definition
of the upper and lower bounds), that is, d(x, c) ≤ d(x, c′). This means that x stays
closer to c than c′, and there is no need to calculate the distance between x and c′.

This leaves the question of whether it is computationally cheaper to update the
upper and lower bounds than to calculate the point-center distances. Elkan shows
that this is indeed the case because the bounds can be efficiently updated by using
the information carried over from previous iterations and the center-center distances
computed and cached at the beginning of each iteration. As an optimization, the upper
and lower bounds are re-calculated when the upper bound becomes out of date, that
is, when the upper bound u is bigger than both the lower bound l and the half distance
from the assigned center to another center s. This tightening step can further eliminate
some point-center distance computations.

In summary, Elkan results show that, in most cases, the upper and lower bounds
are enough to determine whether a data point x will change its center assignment,
so there is no need to compute the exact distance between x and a center c, and
updating the upper and lower bounds does not necessarily require explicit calculation
of point-center distances either. Hence, Elkan’s algorithm can significantly speed up
the k-means clustering process by avoiding a large number of redundant point-center
distance calculations.

Elkan’s algorithm is a very efficient method for k-means clustering, especially for
high-dimensional datasets. Themethod does not use any indexing structure (e.g., a k-d
tree) or pre-processing; instead, it keeps a number of distance bounds that allow it to
avoid unnecessary distance computations. It is simple to implement and can provide
dramatic speedups of up to 40x. However, storing k lower bounds for each data point,
the algorithm keeps nk lower bounds in total, which consumes a substantial amount
of memory if both k and n are large. Hamerly (2010) improves the algorithm in this
regard, presenting an method that maintains only 1 lower bound l(x) per data point
x . The upper bound in Hamerly’s algorithm is kept the same as in Elkan’s one, but
the meaning of the lower bound is different. It now represents the distance to a data

123

74 M. Li et al.

Algorithm 1 Elkan’s Algorithm
1: Initialise bounds and centers
2: while not converged do
3: � compute inter-center distances
4: for each center index j in the k centers C do
5: for each center index j ′ �= j do
6: s

(
j, j ′

) ← d
(
C (j) ,C

(
j ′

))
/2

7: end for
8: s (j, j) ← min j ′ �= j s

(
j, j ′

)

9: end for
10: for each data point index i in the dataset x do
11: if u (i) ≤ s (c (i) , c (i)) then
12: continue with next i
13: end if
14: let tightening = true
15: for each center index j �= c (i) in the k centers C do
16: if u (i) ≤ max (l (i, j) , s (c (i) , j)) then
17: continue with next j
18: end if
19: if tightening then
20: u (i) ← d (x (i) ,C (c (i)))
21: l (i, j) ← u (i)
22: tightening = false
23: if u (i) ≤ max (l (i, j) , s (c (i) , j)) then
24: continue with next j
25: end if
26: end if
27: l (i, j) = d (x (i) ,C (c (j)))
28: if l (i, j) ≤ u (i) then
29: c (i) ← j
30: u (i) ← l (i, j)
31: end if
32: end for
33: end for
34: � update centers and track the movement of each center
35: for each center index j in the k centers C do
36: Compute the new value C ′ (j)
37: δ (j) ← d

(
C (j) ,C ′ (j)

)

38: end for
39: � update the upper and lower bounds
40: for each data point index i in the dataset x do
41: u (i) ← u (i) + δ (c (i))
42: for each center j do
43: l (i, j) ← l (i, j) − δ (j)
44: end for
45: end for
46: end while

point’s second-closest center. That is, the 1 lower bound corresponds to the minimum
distance that any center other than the data point’s currently assigned center can be to
the data point.

If u(x) ≤ l(x), it is not possible for any center to be closer to x than the assigned
center, which can be easily proved by applying Proposition 2 above. In this case, the
computation of the distances between x and the k centers can be avoided, that is, the

123

Large scale K-means clustering 75

corresponding loop can be skipped as a whole. On the other hand, if l(x) < u(x),
the closest center for x may change. In this case, the algorithm firstly tightens the
upper bound by computing the exact distance d(x, c) and then checks the upper and
lower bounds again to see if the u(x) ≤ l(x) condition is satisfied. If yes, it skips
the distance calculations between data point x and the k centers. If not, then it goes
into the innermost loop to compute those distances. The pseudo-code in Algorithm 2
shows the workflow of Hamerly’s algorithm.

Algorithm 2 Hamerly’s Algorithm
1: Initialise bounds and centers
2: while not converged do
3: � compute inter-center distances
4: for each center index j and j ′ in the k centers C do
5: s (j) ← min j ′ �= j d

(
C (j) ,C

(
j ′

))
/2

6: end for
7: for each data point index i in the dataset x do
8: if u (i) ≤ max (l (i) , s (c (i))) then
9: continue with next i
10: end if
11: u (i) ← d (x (i) ,C (c (i)))
12: if u (i) ≤ max (l (i) , s (c (i))) then
13: continue with next i
14: end if
15: for each center index j �= c (i) in the k centers C do
16: let t ← d (x (i) ,C (j))
17: if t ≤ u (i) then
18: c (i) ← j
19: l (i) ← u (i)
20: u (i) ← t
21: else if t ≤ l (i) then
22: l (i) ← t
23: end if
24: end for
25: end for
26: � update centers and track the movement of each center
27: for each center index j in the k centers C do
28: Compute the new value C ′ (j)
29: δ (j) ← d

(
C (j) ,C ′ (j)

)

30: end for
31: � update the upper and lower bounds
32: for each data point index i in the dataset x do
33: u (i) ← u (i) + δ (c (i))
34: l (i) ← l (i) − max j∈c; j �=c(i) δ (j)
35: end for
36: end while

Hamerly demonstrates that using only one lower bound per data point eliminates
the innermost loop 80% of the time or more. Compared to Elkan’s algorithm, which
has k lower bounds each data point, Hamerly’s algorithm has a much smaller memory
overhead. However, this makes it less capable of reducing the required distance cal-
culations. Hamerly’s algorithm works better than Elkan’s one with low-dimensional

123

76 M. Li et al.

datasets only (Hamerly 2010) because centers tend to move more in high-dimensional
datasets.

Drake and Hamerly (2012) aim to find a balance between memory footprint and the
capability of pruning redundant distance calculations. Based on Elkan and Hamerly’s
algorithms, they propose an accelerated method with adaptive distance bounds, by
using 1 < b < k lower bounds on the b closest centers for each point. The algorithm
keeps the same upper bound on the distance to each point’s assigned center, but tracks
b lower bounds per point on the distances to its b next-closest centers, always ordered
by increasing distance, where 1 < b < k. The value of b can be selected in advance
or adaptively learned while the algorithm runs. Thus, Drake and Hamerly’s adaptive
method leverages the complementary strengths of Elkan’s and Hamerly’s algorithms
by keeping a variable number of lower bounds. Experimentally, their work implies
that for k > 8, k/8 is a good floor for b. For sufficiently large k, this hybrid approach
achieves superior efficiency on medium-dimensional data. However, the mechanism
required to maintain a variable number of bounds is more expensive than maintaining
all k bounds per point as in Elkan’smethod or simply 1 bound per point as inHamerly’s
approach.

There are other algorithms reported in the literature that are based on the triangle
inequality, such as annular k-means (Hamerly andDrake 2015), whichworks similarly
toHamerly’s algorithmbutwith norm-ordered centers, and the heap k-means (Hamerly
and Drake 2015), which uses k heaps of assigned points, ordered by bounded distance
from the corresponding center, and combines the upper and lower bounds into one
value.

As discussed above, using the triangle inequality to inexpensively maintain a set of
distance bounds between points and centers is an idea with great benefit. Hamerly’s
algorithm simplifies Elkan’s algorithm, so it greatly reduces the overhead of keeping
bounds, but still allows the algorithm to skip the innermost loop across all centers in
many cases. We base our GPU implementation on Hamerly’s approach because using
less memory for the bounds becomes a big advantage for GPU computing. Storing
more bounds not only takes more device memory, which is a precious resource in
GPU computing, but also requires more time to transfer the data between the main
memory and the device memory due to the increased size. It also takes more time for
the GPU to write the data into the device memory (writing to the device memory is
relatively slow). Crucially, similar to Elkan’s algorithm, Drake and Hamerly’s method
is capable of partially skipping the loop that computes distances between a point and
all the centers, but this does not reduce the number of data points that require transfer
to GPU memory: even if the distance to only one center is required to be computed
for a data point, it needs to be uploaded to the GPU.

2.4 GPU-based K-means implementations

GPUs can be used to significantly accelerate several clustering problems. Previous
research shows that GPUs outperform CPUs and concludes that GPU-based imple-
mentations can solve complex clustering problems (Jian et al. 2013; Chiosa and Kolb
2011): Clustering can be sped up substantially by offloading work to a GPU. Here,

123

Large scale K-means clustering 77

we focus on k-means. The main idea of GPU-based k-means is that data-parallel,
compute-intensive portions, e.g., data object assignment, of traditional k-means can
be off-loaded from the host to the device to improve performance.

Lee and Chu (2012) implement the hierarchical k-means algorithm using CUDA,
with nearest centroid finding and centroid updating running on the GPU. To achieve
a higher level of coalesced data access, a data rearrangement process is introduced,
which is executed before initialising the next layer.1 TheGPU implementation achieves
700x speedup over the CPU version on an artificial dataset, randomly generated, with
128 dimensions.

Farivar et al. (2008) speed up k-means clustering by running the data point assign-
ment (labelling) step on a GPU. One important aspect of the implementation is the use
of device constant memory (i.e., read-only memory) for storage of the centroid data.
Their CUDA implementation guarantees the same output as the original CPU-based
k-means algorithm and achieves an over 13x performance improvement compared to
a baseline 3 GHz Intel Pentium(R) based PC when running the same algorithm with
a G80 graphics card, the NVIDIA 8600GT. However, the use of constant memory for
centroids may not be practical when the number of centroids is large and the dimen-
sionality is high. NVIDIA GPUs usually provide 64KB of constant memory (or less).
For a dataset with 50 dimensions, only 320 centers can be loaded into it.

Zechner and Granitzer (2009) present an optimized k-means implementation on
the GPU. The algorithm performs distance calculations on the GPU in a parallel
fashion while sequentially updating cluster centroids on the CPU. They overcome
some drawbacks and limitations of previous related work, e.g., maximum data size
and clusters, by storing data points and centroids in global memory. A transposed
matrix is used to represent data points in global memory to favour coalesced access.
Centroids are loaded into shared memory in a batch fashion in each thread block to
reduce memory access latency. An empirical performance study on synthetic data
using an NVIDIA GeForce 9600 GT demonstrates a maximum 14x speed increase
compared to a fully SIMD optimized CPU implementation. As the authors point out,
the implementation is not suitable for sparse data in a high-dimensional space, e.g.,
document collections, and the GPU’s computational power is not fully utilised due to
the memory-bound nature of the implementation.

Hong-Tao et al. (2009) accelerate k-means by off-loading both the data objects’
assignment and the recalculation of the k centroids onto the GPU. Multiple threads
are employed to avoid memory access latency in the assignment stage. In order to
update the centroids efficiently, the cluster memberships are downloaded from the
GPU, all data points are rearranged, and the number of data objects contained in each
cluster is counted on the CPU. Then this information is uploaded to the GPU to get
the centroids updated. Data points and centroids are stored in global memory because
the constant and shared memory are limited in size. Their experiments show that the
GPU-based k-means runs 8 to 14 times faster than its CPU-based counterpart when
running on a PC with an Intel Pentium D 965 CPU 3.7 GHz with 1GB main memory
and an NVIDIA GeForce 8800 GTX graphic card with 768MB device memory.

1 No detail is provided on how this process is implemented in Lee and Chu (2012).

123

78 M. Li et al.

Jian et al. (2013) propose three CUDA-based parallel techniques: (1) a scalable
thread scheduling scheme for irregular patterns; (2) a parallel distributed top-k scheme;
and (3) a parallel high dimension reduction scheme. Then, they present a parallel
implementation of the k-means algorithm by off-loading the whole iterative process
onto the GPU, that is, the GPU performs data point assignment, centroid recalculation,
and centroid movement detection. The latter two are implemented using their parallel
high dimension reduction scheme. The scalable thread scheduling scheme is also
applied in the k-means implementation. The experimental results obtained on the
KDD-CUP 1999 intrusion detection dataset show that 2 to 5 times speedup is observed
when compared with the other state-of-the-art implementations (Fang et al. 2008).

Lutz et al. (2018) presented an approach that performs center assignment and update
steps of an iteration with a single pass over the data points, which all have to be loaded
into the GPU’s global memory. A couple of optimizations have been explored in order
to improve the throughput of the GPU, including a GPU-optimized center update
algorithm and a single-pass execution strategy. By applying their approach on subsets
of the data at a time, the algorithm is able to handle large datasets. However, the
whole dataset still needs to be loaded onto the GPU multiple times, once for each
iteration, which is inefficient. The algorithm is also incapable of efficiently handling
high dimensional datasets with a large number of centers due to the limited GPU local
memory, which is needed for some essential data manipulation operations.

Yang et al. (2020) examined the sensitivity of two CUDA implementations of k-
means to the number of clusters, dataset size and data dimension. One implementation
uses the GPU’s global memory to store cluster centers, the other uses shared memory.
All resultswere obtained by loading thewhole dataset into the device’s globalmemory.
No attempt was made to address the efficiency of transferring large datasets multiple
times between the CPU and GPU.

Although many papers have been published on accelerating k-means using GPUs,
almost all of them are based on the standard k-means algorithm by applying different
optimization techniques on various steps and require the whole dataset to be loaded
into the GPU’s global memory (Kruliš and Kratochvíl 2020; He et al. 2022; Taylor
and Gowanlock 2021). To the best of our knowledge, massively parallel processing of
the k-means clustering algorithm accelerated with the triangle inequality has not been
reported in the literature, especially an algorithm that is capable of handling datasets
larger than the global memory of the GPU.

3 Proposed algorithm

Our proposed GPU-accelerated algorithm is capable of handling big datasets effi-
ciently by combining elements of Hamerly’s k-means, batched processing, and GPU
acceleration for massively parallel processing. As reviewed above, Hamerly’s algo-
rithm is a simplification and modification of Elkan’s k-means algorithm. Unlike
Elkan’s algorithm,which uses k lower bounds for each data point, Hamerly’s algorithm
uses 1 lower bound per data point. This greatly reduces the memory usage, simplifies
the logic, and also decreases the amount of data required to be transfered between the
device and CPU.

123

Large scale K-means clustering 79

We split the clusteringmethod into three components: The data point selection step,
the membership assignment step, and the center and bound update step. The data point
selection and center update steps are performed on the CPU (asynchronously) while
the assignment and bound update steps are performed on the GPU. With sufficient
statistics maintained in main memory, the center update step is very efficient and takes
little time to finish. The mechanism used in Hamerly’s algorithm to select data points
for the next iteration is applied in the data point selection step. Similar to Hamerly’s
algorithm, our algorithm uses efficiently updated distance bounds and the triangle
inequality to select those points that may change their cluster membership in the next
iteration. The point-center distance needs to be re-computed for these data points only.
In summary, the proposed algorithm has the following features:

1. It uses the triangle inequality to select the data points that need to be processed
in each iteration (based on the selection criteria used in Hamerly’s accelerated
k-means). These data points require computing the distances to all the centroids,
which is the most compute-intensive part of the algorithm. Data point selection not
only decreases the time spent on distance computations but also saves time on data
transferal.

2. The data point selection and center update steps can be performed asynchronously
on the CPU while the GPU is computing point-center distances for a selected
batch of data points. In most existing GPU k-means implementations, the CPU is
idle when the GPU is performing arithmetic computations. Consequently, most of
CPU’s computing power is wasted.

3. The algorithm makes use of the strengths of both the CPU and the GPU: The
CPU performs the logical checks (in the selection step) and sequential processing,
while theGPUperforms floating-point arithmetic operations andmassively parallel
processing.

4. The amount of data transferred between the CPU and the GPU is comparatively
small. In most cases, the number of data points that require re-computation of the
distances to all centroids is relatively small, which is especially true in the later
iterations of k-means. Most data points will not change their memberships often
between iterations. Based on our experiments, in most cases, 90% or more of data
points do not change their cluster assignment after the first few iterations.

5. The algorithm generates the same output as the standard k-means algorithm, and
it is also possible to use distance functions other than the Euclidian distance in the
membership assignment step running on the GPU.

As shown in the experiments, compared with Elkan and Hamerly’s k-means algo-
rithms, which are two of the fastest implementations known for CPU-based k-means
clustering, our GPU-based implementation speeds up the clustering process signifi-
cantly, while still obtaining the exactly same clustering results.

3.1 GPU-based triangle-inequality-accelerated k-means clustering

To facilitate the understanding of the algorithm, we describe a simplified version with
synchronized data transfer first. As shown in Figure 1, the algorithm works as follows.

123

80 M. Li et al.

Fi
g.
1

Sy
nc
hr
on

ou
s
ve
rs
io
n
of

th
e
B
at
ch
ed

Se
le
ct
iv
e
K
-m

ea
ns

123

Large scale K-means clustering 81

1. Create the initial set of centers: the k-means++ initialization algorithm (Vassilvitskii
and Arthur 2006) is used for this. k-means++ provides statistical guarantees on the
quality of clusterings. The upper and lower bounds and the assignments are also
initialized. This step is performed on the CPU.

2. Select a batch of data points: the triangle inequality is used to select the data points,
which decreases the amount of data transferred to the device and avoids redundant
distance computations. This is realized by using 1 upper bound and 1 lower bound
per data point—the mechanism used in Hamerly’s k-means algorithm. During data
selection, the data representation is also converted from a row-major matrix to
column-major to facilitate coalesced memory access in the global memory on the
GPU. The selected batch of data is then transferred to the device. This step is
performed on the CPU.

3. Compute the point-center distances: The GPU computes the distance to all centers
for each data point and finds out their cluster assignments. The distance to the
closest and second closest centers are also recorded. These distance computations
are expensive for the standard CPU-based k-means algorithm. They are delegated
to the GPU, which is more suitable for performing arithmetic operations. The
cluster assignments, together with the two distances, are transferred back to the
main memory after the GPU finishes computations.

4. Update the sufficient statistics: A data structure is constructed in main memory to
capture the information required for center and bound updates, including 1) the sum
and count of the data points in each cluster, 2) the cluster membership assignments,
and 3) the distance to the closest and second closest centers. This information is
efficiently updated by the CPU after each batch of data is processed by the device.

5. Repeat step 2-4 until all data points have been processed.
6. Update the centers: This step is performed very efficiently by the CPU based on

the sufficient statistics cached in main memory. New centers and their movements
are calculated. The two biggest movements are used to update bounds in the next
step of the algorithm, as discussed in Section 3.6. This information, together with
the cluster membership assignments and the upper and lower bounds recorded in
Step 4, are then uploaded to the device.

7. Update bounds and inter-center distances: The upper and lower bounds are updated
on the GPU, and the inter-center distances are computed. Then, the updated bounds
and inter-center distances are downloaded to main memory so that they can be used
to select data points for the next iteration.

8. Repeat Step 2-7 until the centers converge.

In the synchronized implementation, all steps are executed sequentially, that is,
no operation is performed simultaneously on the CPU and GPU. When one is busy
performing a task, the other is idle waiting. The computational powers of the CPU and
GPU are not fully used.

Figure 2 shows a detailed description of the asynchronous version of the algorithm,
which involves the same steps as in the synchronized version, except that 1) the data
are transferred asynchronously to/from the device, and 2) some tasks are performed
simultaneously on both the CPU and the GPU. For each batch in each iteration, the
CPU selects data points for the next batch and updates sufficient statistics using results

123

82 M. Li et al.

Fi
g.
2

A
sy
nc
hr
on

ou
s
ve
rs
io
n
of

th
e
B
at
ch
ed

Se
le
ct
iv
e
K
-m

ea
ns

123

Large scale K-means clustering 83

from the previous batch, while the GPU is performing the center-point distance com-
putations. A small optimization is introduced for the creation of the first batch of data
in an iteration. The first batch is created on the CPU while the GPU is updating the
upper and lower bounds and computing the inter-center distances. At this point in
time, because there is no updated information for data selection using the triangle
inequality, we simply select the first n data points from the dataset, and convert the
data from a row-major matrix to a column-major representation.

Because of the batched processing, the algorithm can handle datasets that are bigger
than the size of the global memory on the device. In theory, one can choose to load data
from a fastmass storage or data stream. In our implementation, we only handle datasets
that can be loaded into the computer’s main memory. (Note that this is generally much
larger than the GPU’s global memory.)

Some of the other algorithm details, such as the asynchronous data transfer, distance
computations on the GPU, update of sufficient statistics, and update of bounds, etc.,
are described below.

3.2 Data representation on the GPU

In our implementation, we use the GPU’s global memory for storage of the centers and
batch of data points. Reading data from global memory is slower than from shared
or constant memory, but if there are sufficient math instructions in the kernel and
enough threads to hide the latency, the global load/store instructions are a minor cost.
A possible optimization is to load centers in the device’s sharedmemory tile-by-tile (Li
et al. 2013). However, based on our experiments, using shared memory only slightly
improves the performance on modern GPUs. Moreover, the shared memory is limited
in size and using shared memory for a large number of centers greatly increases the
complexity of the code.

Appropriate layout of data is crucial for maximum performance on the GPU. To
facilitate coalesced global memory access, data instances are stored on the GPU in a
column-majored matrix with each column representing an instance. Each row of the
data matrix stores values of a dimension. Centers are stored in a matrix on the GPU
with each row representing a center.

To facilitate computation of the upper and lower bounds, in addition to saving the
cluster assignments, i.e., the index of the cluster each instance belongs to, we also
need to save the distances to the first two closest centers to implement the algorithm
discussed above. So, the data matrix on the GPU has three extra rows: the cluster
assignment is stored in the first row, the distance to the closest center in the second
row, and the distance to the second-closest center in the third row.

The GPU is responsible for finding the cluster an instance belongs to by computing
the distance to every center. The distances to the closest and the second-closest centers
are recorded. Algorithm 3 describes the GPU kernel for the distance computation.
Each GPU thread processes one instance, computing the distance between the point
and each center. While executing this loop, it also tracks the minimum distance to the
instance’s nearest center, and when the loop is completed, the results will be stored in
the device memory. Because this information is required for updating the upper and

123

84 M. Li et al.

lower bounds, it is transferred back to the host together with the assignments after the
GPU finishes processing all the data points.

Algorithm 3 Distance Computation on the GPU
1: Inputs: the dataset (x) and k centers (C)
2: Outputs: the center assignments (c), upper bounds (u) and lower bounds (l)
3: for each GPU thread i do
4: c (i) ← argmin j∈k d (x (i) ,C (j))
5: u (i) ← d (x (i) ,C (c (i)))
6: l (i) ← min j∈k; j �=c(i) d (x (i) ,C (j))
7: end for

3.3 Data transmission

The main goal of optimizing host-device interaction is to minimise the time spent
on data transferal. This can be achieved directly by minimising the amount of data
transferred between the host and the device and indirectly by overlapping GPU kernel
execution with memory copies. The centers are uploaded to the GPU’s global memory
before an iteration starts, which happens once only per iteration. The size of the centers
is relatively small compared to the size of the whole dataset, so the time taken for
transferring centers is negligible. However, data points need to be uploaded to the
GPU in each iteration in a batched fashion. Although the data selection mechanism
significantly reduces the number of data points that require uploading, transferring this
data still consumes some time. This data transfer should be performed asynchronously,
i.e., the data for the next batch is uploaded to the GPU while the previous batch is
being processed on the GPU.

Asynchronous operation means the host enqueues work and returns immediately
withoutwaiting for the completion of thework.UnlikeGPUkernel launches,which are
inherently asynchronous and automatically overlap with host operations, transferring
data asynchronously requires special treatment, involving the use of CUDA constructs
specifically designed for the purpose.

InCUDA, streams and events are the enablers of asynchronous operations. A stream
is a queue of device work. The host places work in the queue and continues imme-
diately. The device schedules work from streams when resources are free. CUDA
operations are placed within a stream, e.g., kernel launches and memory copies, etc.
Operations within the same stream are ordered and executed in a FIFO fashion and
they cannot overlap. Operations in different streams are unordered and can overlap.
A race condition may occur between different streams so care is required when using
these facilities.

In order to achieve overlapped data transfer over compute, the following require-
ments need to be satisfied (NVIDIA 2021):

1. Transfers must be in a non-default stream because the default stream is a synchro-
nizing stream.

2. Async copying APIs must be used.

123

Large scale K-means clustering 85

3. Perform one transfer per direction at a time. That is, there is not another memory
copy occurring in the same direction at the same time.

4. Memory on the host must be pinned.

Asynchronous data transfer requires the use of pinned (i.e., page-locked) host mem-
ory, which is allocated using special allocators and cannot be paged out by the OS.
Pinned memory is transferred using the system’s DMA engines instead of using the
host CPU as in data copying using pageable memory. This frees the CPU for asyn-
chronous execution and achieves a higher percentage of peak bandwidth.

CUDA events can be used to synchronize some operations between the host and the
device. A CUDA event is an object with one of two Boolean states: "occurred" (the
default state) or "not occurred". It provides a mechanism to signal when operations
have occurred in a stream, and is useful for profiling and synchronization. In our
implementation, CUDA events are used to synchronise device operations with the
host and between streams when a synchronisation is required.

To achieve asynchronous data transfer, two blocks of global memory are allocated
on the device: one block stores the data being processed and the other receives the
data for the next batch. A GPU stream is used for this data transfer. Since pinned
memory required for asynchronous data copying is a limited resource, it should be
used wisely—otherwise the system’s performance may be negatively affected. In our
implementation, a fixed, small size of pinnedmemory is allocated and reused.Multiple
asynchronous copying operations may be required when the size of the data for a batch
exceeds the amount of pinned memory allocated. After a batch of data has been pro-
cessed on the device, the results are copied back to the main memory asynchronously
using another GPU stream.

3.4 Sufficient statistics

In order to update the centers and bounds efficiently on the CPU, we need to cache
sufficient statistics in main memory. For each cluster, we maintain a vector sum of the
points assigned to the cluster and the number of points assigned to the cluster. Keeping
this information is inexpensive and avoids a sum over all points for each iteration. Each
time a point changes cluster membership, the relevant sufficient statistics are updated.
After the first few iterations,most points remain in the same cluster formany iterations.
Thus, updating sufficient statistics is much cheaper than a sum over all points. For each
data point, we maintain two values in memory, one for the upper bound and the other
for the lower bound.We also need to maintain an array to store the cluster membership
assignment of each data point.

3.5 Data point selection

As described in Algorithm 4, we go through the whole dataset to select the data
points for which the membership assignment may change and require re-calculation
of the distance to all centroids. The selection process is based on the lower and upper
bounds and the inter-center distances. A data point will not be selected if it satisfies
the following conditions, because its membership will not change in the next iteration:

123

86 M. Li et al.

• For a data point i , if its upper bound u (i) is less than or equal to its lower bound
l (i), the centroid assignment of the data point will not change in the next iteration.

• The data point will not change its centroid if the upper bound u (i) is less than or
equal to the distance to its second closest centroid s (c (i)) divided by 2.

In summary, if the condition u (i) ≤ max (l (i) , s (c (i)) /2)) is true, the data point
will not change its centroid assignment in the next iteration, so it will not be selected.
If a data point is selected, it is added into the buffer for the next iteration, and the index
to the original position in the data set is recorded. When the maximum number of data
points have been selected, the selection process terminates and the index of the last
processed data point is recorded. The selection process for the next batch begins from
this point.

Algorithm 4 Select Data Points for a batch on the CPU
1: Inputs: The dataset (x), center assignments (c), the upper bounds (u), the lower bounds (l), and the

distance to the second closest center divided by 2 (s)
2: Outputs: A batch of data points (b) and their corresponding indexes into the original dataset (g), the

index of the last data point examined (li)
3: for each data point index i starting from li do
4: let j = 0
5: let num_data_points_selected = 0
6: if u (i) ≤ max (l (i) , s (c (i))) then
7: b (j) = x (i)
8: g (j + +) = i
9: num_data_points_selected++
10: if num_data_points_selected = max_num_points_per_batch then
11: li = i + 1
12: break
13: end if
14: end if
15: end for

3.6 Center update

With sufficient statistics maintained in the main memory, center updates can be per-
formed efficiently on the CPU. Center movements are also computed in this step and
the largest and the second-largest center movements are recorded for updating the
lower bound later.

Algorithm 5 describes the center update process. It also finds the index of the center
that moves the most, γ , and the index of the second-largest mover δ.

Note that if the number of centroids is large (for example, we may have thousands
or tens of thousands of centers in some image segmentation applications), it may be
useful to move the centroid update to the GPU, which can reduce the time consumed,
but this is not currently done in our implementation.

123

Large scale K-means clustering 87

Algorithm 5 Center Update on the CPU
1: Inputs: The vector sum (S) and number of the points (n) assigned to a cluster, and the current centers

(C)
2: Outputs: The updated centers (C), center movements (m), the index of the center that moves the most

(γ), and the index of the second-largest mover (δ)
3: for each center index j do
4: C

′
(j) = S (j) /n (j)

5: m (j) = d
(
C

′
(j) ,C (j)

)

6: C (j) = C
′
(j)

7: if m (γ) < m (j) then
8: δ = γ

9: γ = j
10: else if m (δ) < m (j) then
11: δ = j
12: end if
13: end for

3.7 Updating the bounds

The upper or lower bound for each data point can be updated efficiently by adding or
subtracting the distance moved by a center each time when the center moves after an
iteration. This allows us to maintain both upper and lower distance bounds between a
point and a moving center without explicitly calculating distances. Updating bounds
for every data point requires a loop of the size of the dataset. Although this step can
be performed efficiently on the CPU, due to the large size of the datasets considered,
performing the task on the GPU is much faster, with one GPU thread updating the
bounds for one data point.

When the step is performed on the GPU, the center movements, the index to the
largest and the second-largest centermovements obtained inAlgorithm5, togetherwith
cluster membership assignments, and the upper and lower bounds, are transferred to
the global memory asynchronously. Algorithm 6 describes the process on the GPU.

Algorithm 6 Bound Update on the GPU
1: Inputs: The center assignments (c), center movements (m), upper bounds (u), lower bounds (l), the

index of the center that moves the most (γ), and the index of the second-largest mover (δ)
2: Outputs: The updated upper bounds (u) and lower bounds (l)
3: for each GPU thread i do
4: u (i)+ = m (c (i))
5: if γ = c (i) then
6: l (i) − = m (δ)

7: else
8: l (i) − = m (γ)

9: end if
10: end for

123

88 M. Li et al.

3.8 Inter-center distance computations

Our algorithm also requires a function to compute the inter-center distances, keeping
only the closest distances, and updating s. After this, s (c) will contain the distance
between the center c and its closest other center, divided by two. The division here
saves repeated work later, since the algorithm always requires the distance divided by
2. This step can be performed efficiently on the CPU when the number of centers is
small. For a large number of centers, it is much cheaper to execute it on the GPU.
Because we have downloaded the required data to the global memory in Algorithm 6
above, it is trivial to calculate the smallest inter-center distance on the GPU. Algorithm
7 describes the process.

Algorithm 7 Inter-center Distance Computations on the GPU
1: Inputs: The k centers (C)
2: Outputs: The distance of each center to the corresponding closest other center divided by 2 (s)
3: for each GPU thread j < k do
4: let dt = 0
5: for each center j

′ �= j do

6: dt = d
(
C (j) ,C

(
j
′))

/2.0

7: if dt < s (j) then
8: s (j) = dt
9: end if
10: end for
11: end for

4 Experimental results

We now proceed to present empirical results obtained using our algorithm, for two
real-world and one synthetic domain, comparing to relevant baselines.

4.1 Experimental configuration

The computing environment used to execute and test our algorithm is equipped with a
CPU Intel Core i7 (2.8 GHz), 64GB of RAM and an NVIDIA Titan XGPU, with 3584
CUDA cores, 11 Tera ops in single precision (i.e., 11 TFLOPS), 12GB GDDR5X of
device memory size, and 480GB/s of memory bandwidth. The operating system is
Ubuntu 16.04 server edition with the CUDA version 10.2 GPU computing platform
installed.

4.2 Datasets

In our experiments, three different types of datasets are used:

1. datasets containing large collections of image patches

123

Large scale K-means clustering 89

2. Twitter Glove datasets
3. synthetic datasets

The image datasets are composed of small grayscale image patches, which are
collected from unlabelled imagery by cropping out random n-by-n chunks. Each n-
by-n pixel grayscale patch is represented as a vector of n × n pixel intensities (i.e.,
x(i) ∈ R(n×n)). The method described in the paper (Coates and Ng 2012) is used to
normalize the brightness and contrast of the patches: for each x(i), we subtract out the
mean of the intensities and divide by the standard deviation. A small value is added
to the variance before division to avoid dividing by zero and also suppress noise. The
images used to create the image patches datasets are obtained from Google image
collections that are used to train the TensorFlow deep learning platform for animal
species recognition.

The Twitter Glove dataset (Glove.Twitter.27B) is downloaded from the Global
Vectors for Word Representation project (Pennington et al. 2021) established by the
Natural Language Processing Group at Stanford University. It is a dataset containing
pre-trained word vectors generated from a word corpus of 2 billion tweets, which
contains 27 billion tokens and 1.2 million vocabularies. The dataset contains word
vectors with 50, 100 and 200 dimensions, respectively. The 200d word vector dataset
is used in this paper to demonstrate that our algorithm can cope well with high-
dimensional real-world datasets.

The synthetic datasets are created by using a random data generator producing a
uniform data distribution, so that no natural clustering structure exists. This is to avoid
biases introduced by pre-clustered data and represents the worst-case scenario for any
clustering algorithm.

Note that the size of some datasets used in the experiments is smaller than the
total amount of device memory available on the GPU so that the whole dataset can
be loaded into the GPU global memory. This is because some algorithms used in our
experimental comparison require the whole dataset to reside in the GPU’s memory.
However, we also present results obtained on datasets that are bigger than the GPU’s
global memory, in order to demonstrate that our algorithm is capable of also handling
such large data with good performance.

4.3 Initialization

To avoid some common problems like empty clusters, Lloyd’s algorithm for k-means
clustering algorithm is known to require a number of small tweaks (Bahmani et al.
2012). One important consideration is the choice of initial centers. Though it is com-
mon to solve this problem by randomly choosing instances from the data to be centers,
this does not work well in practice. Data points may tend to group too densely in some
areas, and thus initializing k-means with randomly chosen vectors may lead to a large
number of centers starting close together. Many of these centers ultimately end up
becoming near-empty clusters. Another way to pick initial centers is k-means++ (Vas-
silvitskii and Arthur 2006), which we apply in our experiments. The idea is to still
randomly choose instances, but with a probability which is not uniform: it is pro-
portional to the distance of each remaining instance to the nearest center selected so

123

90 M. Li et al.

Fig. 3 Execution time vs. batch size on the two image dataset 1

far. K -means++ ensures that the centroids selected in the initialization stage are as
far as possible. From a theoretical side, the k-means++ refinement is proven to make
Lloyd’s process reach the optimal solution with an approximation ratio O(log k) in
expectation.

4.4 Batch size

In order to understand how different batch sizes affect the runtime of our approach, we
measure the runtime of the algorithm on different datasets using different batch sizes.
Figure 3 and 4 shows the impact of different batch sizes on execution time. The batch
sizes are multiples of the number of the GPU cores. 1x means the number of instances
in a batch is the same as the number of GPU cores, 2x means the number of instances
in a batch is 2 times of the number of GPU cores, and so on. No obvious change to
the execution time is observed for batch sizes from 1x up to 10x. The execution time
increases slightly with batch sizes from 20x to 200x, and increases dramatically when
the batch size is 500x and 1000x.When the batch size is big, the time spent on selecting
a batch of instances on the CPU is longer than the time spent on clustering a batch of
instance on the GPU, and this causes the GPU to idle and wait. In addition, big batch
sizes decrease the parallelism of the algorithm, especially in the later iterations where
the number of instances that will be selected for distance calculation is small.

The same pattern on the execution time is also observed on other datasets used in
our experiments. Based on these results, in the further experiments presented below, a
batch size of 35,840 data points is used, which is 10 times the number of GPU cores.

4.5 Performance evaluation

In this section, we present the results of running our algorithm on different datasets
and compare them to the results generated by other k-means algorithms on the same

123

Large scale K-means clustering 91

Fig. 4 Execution time vs. batch size on the two image dataset 2

datasets. Firstly, we compare our algorithm with the k-means implementation from
the NVIDIA RAPIDS library. Then, we look at the performance of our algorithm in
terms of execution time together with a GPU version of the Lloyd k-means algorithm,
and CPU versions of Elkan’s and Hamerly’s accelerated k-means algorithms. In order
to make the results comparable, the data used for comparison were all generated based
on the same experimental configuration, that is, the same initial set of centers is used
by all algorithms in an experiment, and the number of iterations is fixed to 300 in all
experiments.

4.6 ASB k-means vs. RAPIDS k-means

RAPIDS k-means is the k-means implementation from the RAPIDS Machine Learn-
ing Library (cuML). The RAPIDS suite, created by NVIDIA, is a suite of open-source
software libraries aiming to enable execution of end-to-end data science and analyt-
ics pipelines entirely on GPUs. It relies on NVIDIA CUDA primitives for low-level
compute optimization, but exposes that GPU parallelism and high-bandwidth memory
speed through Python interfaces. cuML, included in the RAPIDS suite and sharing
compatible APIs with other RAPIDS projects, is a set of libraries that implement
machine learning algorithms and mathematical primitive functions. NVIDIA claims
that for large datasets these GPU-based implementations can complete 10-50x faster
than their CPU equivalents.

Firstly, we compare the performance of our ABS-KM algorithm and the RAPIDS-
KM on synthetic datasets. Table 1 lists all the datasets used in the experiment.

4.6.1 Results for synthetic datasets

Figure 5 shows that ABS-KM is consistently faster than RAPIDS-KM on all datasets.
FromTable 2, we can see that ABS-KM is slightly (i.e., 1.2 times) faster thanRAPIDS-

123

92 M. Li et al.

Table 1 The synthetic datasets used in the experiment

Dataset Name Number of Dimensions Number of Instances Number of Centers

300k 100 300,000 256

600k 100 600,000 256

900k 100 900,000 256

1200k 100 1,200,000 256

1500k 100 1,500,000 256

2000k 100 2,000,000 256

3000k 100 3,000,000 256

4000k 100 4,000,000 256

5000k 100 5,000,000 256

Fig. 5 Execution time of RAPIDS-KM and ASB-KM on different synthetic datasets

Fig. 6 Execution time of RAPIDS-KM and ASB-KM on different image datasets

123

Large scale K-means clustering 93

Table 2 Execution time of RAPIDS-KM and ASB-KM on different synthetic datasets

300k 600k 900k 1200k 1500k 2000k 3000k 4000k 5000k

RAPIDS-KM 52.46 92.66 135.4 178.18 222.85 297.98 448.04 592.95 743.04

ASB-KM 43.78 57.87 83.77 111.76 140.13 184.5 287.86 385.68 491.01

1.20x 1.60x 1.62x 1.59x 1.59x 1.62x 1.56x 1.54x 1.51x

Table 3 Execution time of RAPIDS-KM and ASB-KM on different image datasets

300k 600k 900k 1200k 1500k

RAPIDS-KM 113.37 191.11 287.39 382.94 479.33

ASB-KM 70.69 136.2 158.88 208.65 249.17

1.60x 1.40x 1.81x 1.84x 1.92x

Table 4 Execution time of RAPIDS-KM and ASB-KM on the three Twitter datasets (500c)

Glove.Twitter. Glove.Twitter. Glove.Twitter.
27B.50D 27B.100D 27B.200D

RAPIDS-KM 94.56 167.74 297.67

ASB-KM 57.43 130.91 272.7

1.65x 1.28x 1.09x

KM on the synthetic dataset with 300K instances, where ABS-KM and RAPIDS-KM
take 43.78 and 52.46 seconds, respectively. ABS-KM performs about 1.5 times faster
than RAPIDS-KM on all other datasets.

4.6.2 Results for the image datasets

Figure 6 shows the execution time of ABS-KM and RAPIDS-KM running on different
image datasets. On all these datasets, ABS-KM outperforms RAPIDS-KM. For the
dataset with 1.5 million instances, ABS-KM uses about half of the time taken to run
RAPIDS-KM. Similar results are also observed on the datasets with 900K and 1.2M
instances.

4.6.3 Results for the twitter datasets

ABS-KM performs slightly better than RAPIDS-KM on the three Twitter datasets, as
illustrated in Figure 7.ABS-KMruns 40% faster on theGlove.Twitter.27B.50Ddataset
and 15% faster on the Glove.Twitter.27B.100D dataset, and marginally outperforms
RAPIDS-KM on the Glove.Twitter.27B.200D dataset.

123

94 M. Li et al.

Table 5 Execution time of RAPIDS-KM and ASB-KM on a synthetic dataset of 1500k instances and 100
dimensions using different numbers of centroids

100c 250c 500c 1000c 1500c 2000c

RAPIDS-KM 93.00 222.85 419.90 827.17 1354.28 1648.69

ASB-KM 61.08 140.13 270.42 581.17 946.6 1126.94

1.52x 1.59x 1.55x 1.42x 1.43x 1.46x

Fig. 7 Execution time of RAPIDS-KM and ASB-KM on the three Twitter datasets

Fig. 8 Execution time of RAPIDS-KM and ASB-KM on a synthetic dataset of 1500k instances and 100
dimensions using different numbers of centroids

123

Large scale K-means clustering 95

Table 6 Execution time of RAPIDS-KM and ASB-KM on an image dataset with 900k instances and 256
dimensions using different numbers of centers

100c 250c 500c 1000c 1500c

RAPIDS-KM 125.96 287.39 594.37 1167.83 1935.72

ASB-KM 76.55 158.88 323.9 678.92 911.67

1.65x 1.81x 1.84x 1.72x 2.12x

Table 7 Execution time of
RAPIDS-KM and ASB-KM on
the Glove.Twitter.27B.50D
dataset using different numbers
of centers

100c 250c 500c 1000c 1500c

RAPID-KM 26.7 54.06 94.56 185.92 301.98

ASB-KM 17.09 28.59 57.43 138.63 225.47

1.56x 1.89x 1.65x 1.34x 1.34x

Fig. 9 Execution time of RAPIDS-KM and ASB-KM on an image dataset with 900k instances and 256
dimensions using different numbers of centers

4.6.4 Execution time using different numbers of centers

To understand how ABS-KM performs when the number of centers increases, we
evaluate bothABS-KMandRAPIDS-KMon the synthetic dataset with 1.5M instances
of 100 dimensions, the image data with 900K instances and 256 dimensions, and the
Glove.Twitter.27B.50D dataset, with the number of centers varying from 100 up to
1500. The results are shown in Figure 8, 9 and 10. ABS-KM out-performs RAPIDS-
KM in all the experiments.

4.7 ASB k-means vs. Elkan k-means, Hamerly k-means, and Lloyd k-means

The k-means algorithms used in this experiment are listed below:

123

96 M. Li et al.

Fig. 10 Execution time ofRAPIDS-KMandASB-KMon theGlove.Twitter.27B.50Ddataset using different
numbers of centers

Table 8 The synthetic datasets used in the experiment

Dataset Name No. of Instances No. of Dimensions Size (MB)

rnd-ds1 200,000 500 400

rnd-ds2 400,000 500 800

rnd-ds3 800,000 640 2048

rnd-ds4 1,000,000 640 2560

rnd-ds5 1,500,000 640 3840

rnd-ds6 1,000,000 128 512

rnd-ds7 2,000,000 512 4096

1. Asynchronous Selective Batched K -means (ASB-KM)
2. GPU-based Lloyd/naive k-means (NK-GPU)
3. Elkan k-means running on CPU with 8 threads (Elkan-KM-8T)
4. Elkan k-means running on CPU with 1 thread (Elkan-KM-1T)
5. Hamerly k-means running on CPU with 1 thread (Hamerly-KM-1T)
6. Lloyd k-means running on CPU with 1 thread (Lloyd-KM-1T)

4.7.1 Synthetic datasets

Seven synthetic datasetswere used in our experiment, as shown inTable 8. The smallest
dataset, which is 400MB in size, contains 200 thousand instances with 500 attributes
each, while the largest one contains 2 million data points with 512 attributes each, and
is 4,096MB in size.

Firstly, we consider how different k-means algorithms perform on rnd-ds1 and
rnd-ds2. Figure 11 shows the execution time of ABS-KM, NK-GPU, Elkan-KM-8T,
Elkan-KM-1T, Hamerly-KM-1T and Lloyd-KM-1T on synthetic dataset 1 and 2 with

123

Large scale K-means clustering 97

Table 9 Execution time of different K-means algorithms on the synthetic dataset 1 & 2

Algorithms Rnd-ds1 Rnd-ds2

Runtime (s) Speedup Runtime (s) Speedup

ASB-KM 155.73 143.63x 389.81 115.17x

NK-GPU 259.75 86.11x 519.37 86.44x

Elkan-KM-8T 225.33 99.27x 403.46 111.27x

Elkan-KM-1T 1024.6 21.83x 2453.94 18.29x

Hamerly-KM-1T 5189.56 4.31x 14396.00 3.12x

Lloyd-KM-1T 22367.6 1.0x 44894.50 1.0x

256 centers. On dataset 1, Hamerly’s algorithm is 4.31 times faster than GPU-based
Lloyd (naive) k-means, Elkan k-means is 21.83 times faster when 1 CPU thread is
used and 99.27 times faster when 8 CPU threads are used. The 8-thread version of
Elkan k-means out-performs the GPU-based Lloyd (naive) k-means, which is 86.11
times faster than the CPU-based implementation of Lloyd’s algorithm. Our k-means
implementation (i.e., ASB-KM) is the most efficient one, being 143.63 times faster
than theCPU-basedLloyd implementation.The same trend canbe seenon the synthetic
dataset 2 as demonstrated by the results shown in Table 9. Since Lloyd’s andHamerly’s
k-means tookmuch longer to finish than Elkan’s k-means on all the datasets used in our
experiment,we just show the results of these two slower algorithmson the two synthetic
datasets. In our experiments, among the three CPU based k-means implementations,
Elkan’s algorithm always clearly outperforms the other two. Therefore, amongst the
CPU-based algorithms, onlyElkan’s algorithm is used for comparison in the remaining
experiments.

Table 10 shows the execution time of ASB-KM, NK-GPU, Elkan-KM-8T, and
Elkan-KM-1T on different synthetic datasets, and the results is also graphically dis-
played in Figure 12. The single-thread Elkan algorithm ran the slowest on all datasets.
It is used as a baseline here. On the three smaller datasets, the eight-threaded Elkan
algorithm ran slightly faster than the GPU-based Lloyd k-means (i.e., NK-GPU)
implementation, and NK-GPU outperformed Elkan-KM-8T on the two larger datasets
(rnd-ds4 and rnd-ds5). Our ASB-KM algorithm performed the best on all the datasets,
and is 6.58x, 6.30x, 11.76x, 8.27x and 9.14x faster than Elkan-KM-1T respectively.

Secondly, we investigate how the three k-means implementations perform with
different numbers of centers. Synthetic dataset 6 was used in this experiment. The
results are shown in Table 11 and Figure 13. It can be observed that ASB-KM and
Elkan-KM-8T outperformed NK-GPU in all experiments on this dataset with different
numbers of centers. Elkan-KM-8T performed the best, and is 1.56 times faster than
NK-GPU, when the number of centers is small, i.e., 200. Our ASB-KM is just slightly
faster than NK-GPU in this case. However, ASB-KMperforms better than Elkan-KM-
8T when the number of centers is equal to or larger than 400.

Lastly, we look at how well our ASB-KM is able to handle a large number of
centers. Table 12 and Figure 14 show the runtime of ASB-KM k-means algorithm on
the synthetic dataset 7 with different numbers of centers. The results show that our

123

98 M. Li et al.

Table 10 Execution time of ASB-KM, NK-GPU, Elkan-KM-8T and Elkan-KM-1T on different synthetic
datasets

Algorithm rnd-ds1 rnd-ds2 rnd-ds3 rnd-ds4 rnd-ds5

ASB-KM Runtime 155.73 389.81 1035.26 2083.56 3062.22

Speedup 6.58x 6.30x 11.76x 8.27x 9.14x

NK-GPU Runtime 259.75 519.37 1981.4 2482.2 4017.04

Speedup 3.94x 4.72x 6.15x 6.94x 6.99x

Elkan-KM-8T Runtime 225.33 403.46 1687.28 2865.89 4647.26

Speedup 4.55x 6.08x 7.22x 6.01x 6.04x

Elkan-KM-1T Runtime 1024.6 2453.94 12181.3 17220.9 28064.1

Speedup 1.00x 1.00x 1.00x 1.00x 1.00x

Fig. 11 Execution time ofABS-KM,NK-GPU, Elkan-KM-8T, Elkan-KM-1T,Hamerly-KM-1T andLloyd-
KM-1T on synthetic dataset 1 and 2 with 256 centers

algorithm scales well with the number of centers. The time taken by the algorithm
using 50 centers is 2850.67 seconds and it is 4098.12 seconds for 1500 centers: the
number of centers increased by a factor of 30 while the time taken just increased by a
factor of 1.4.

4.7.2 The image datasets

Table 13 lists the five image datasets used in the experiments, which were created
from Google’s image collection used for animal and plant species classification and
recognition as described in the dataset generation section above. The smallest dataset
is 2048 MB in size and contains 2 million of instances with 256 features each, while
the largest one has 60 million of instances with 256 features each, and the total size is
61,440MB.

123

Large scale K-means clustering 99

Fig. 12 Execution time of ASB-KM, NK-GPU, Elkan-KM-8T and Elkan-KM-1T on different synthetic
datasets

Table 11 Execution time of ASB-KM,NK-GPU and Elkan-KM-8T on the synthetic dataset 6 with different
number of centers

Algorithm 200c 400c 600c 800c 1000c 1200c 1400c

ASB-KM Runtime 290.4 307.1 314.2 364.2 411.8 479.2 612.1

Speedup 1.02x 1.34x 1.67x 1.76x 1.84x 1.83x 1.62x

NK-GPU Runtime 296.5 410.7 525.9 642.0 759.3 876.8 994.6

Speedup 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x

Elkan-KM-8T Runtime 190.0 339.8 474.3 609.9 716.1 842.8 939.6

Speedup 1.56x 1.21x 1.11x 1.05x 1.06x 1.04x 1.06x

Table 12 Execution time of ASB-KM on the synthetic dataset 7 with different number of centers

Algorithm 50c 100c 200c 250c 500c 750c 1000c 1250c 1500c

ASB-KM 2850.67 2875.07 2924.87 3019.22 2935.67 2990.79 3577.18 4001.5 4098.12

Table 14 and Figure 15 show the runtime of ABS-KM, NK-GPU, Elkan-KM-8T
and Elkan-KM-1T on the image datasets 1 and 2. Dataset 1 & 2 are used here because
they can be loaded into the GPU’s global memory as a whole, which is required by
the GPU-based Lloyd k-means implementation (i.e., NK-GPU).

It took 527.70 seconds for Elkan-KM-1t to complete the clustering process on the
image dataset 1, which is the slowest in the four implementations, while it took 217.24
seconds for NK-GPU, 125.81 seconds for ASB-KM, and 122.63 seconds for Elkan-
KM-8T. ASB-KM is very close to Elkan-KM-8T performance wise on this dataset,
which is the smallest in the five datasets. On image dataset 2, it took 547.63, 742.23,
1168.33 and 3034.78 seconds for ASB-KM, Elkan-KM-8T, NK-GP and Elkan-KM-
1T respectively to complete the clustering process, where ASB-KM, Elkan-KM-8T

123

100 M. Li et al.

Fig. 13 Execution time of ASB-KM, NK-GPU and Elkan-KM-8T on the synthetic dataset 6 with different
number of centers

Fig. 14 Execution time of ASB-KM on the synthetic dataset 7 with different number of centers

and NK-GPU are respectively 5.54x, 4.09x and 2.60x times faster than Elkan-KM-
1T. ASB-KM outperforms the other three implementations on the larger of the two
datasets.

To understand how our algorithm scales with respect to the number of data points,
we perform the same tests discussed above with datasets larger than the size of the
GPU’s global memory. In general, the previously described trends hold for the larger
data sets as can be seen in Table 15 and Figure 16. For example, it took 7235.92
seconds for ASB k-means algorithm to cluster Image Dataset 5, whereas it would take
days for other CPU-based algorithms to complete the clustering process.

Table 16 and Figure 17 show the time taken by ASB k-means to cluster the Image
Dataset 1 with different numbers of centers. It took 36.76 seconds to cluster the dataset
into 50 groups (i.e., centers), and 87.12, 194.67, 632.75 and 1374.81 seconds for 100,

123

Large scale K-means clustering 101

Table 13 The image datasets used in the experiment

Dataset Name No. of Instances No. of Dimensions Size (MB)

Image Dataset 1 2,000,000 256 2048

Image Dataset 2 8,000,000 256 8192

Image Dataset 3 20,000,000 256 20,480

Image Dataset 4 40,000,000 256 40,960

Image Dataset 5 60,000,000 256 61,440

Table 14 Execution time of ASB-KM, Nk-GPU, Elkan-KM-8T and Elkan-KM-1T on the image dataset 1
& 2

ASB-KM NK-GPU Elkan-KM-1T Elkan-KM-8T

Image Dataset1 Runtime 125.81 217.24 527.70 122.63

Speedup 4.19x 2.43x 1x 4.30x

Image Dataset2 Runtime 547.63 1168.33 3034.78 742.23

Speedup 5.54x 2.60x 1x 4.09x

Fig. 15 Execution time of different K-means algorithms on image dataset 1 & 2

200, 500 and 1000 centers respectively. Hence, the algorithm performed well when
the number of centers/clusters increased by 20 times.

4.7.3 The twitter datasets

Table 17 shows the number of instances, dimensions, and size of the three Twit-
ter datasets used in the experiments. All three datasets contain the same number of
instances with different numbers of dimensions, that is, 50, 100 and 200 respectively.

For each dataset, the execution times of different k-means algorithms are obtained
using 100, 500 and 1000 centers. Table 18 and Figure 18 display the runtime of

123

102 M. Li et al.

Fig. 16 Execution time of the ASB-KM on different image datasets

Table 15 Execution time of ASB-KM on different image datasets

img-ds1 img-ds2 img-ds3 img-ds4 img-ds5

ASB-KM 87.12 332.67 703.98 3067.78 7235.92

Table 16 Execution time of
ASB-KM on different image
dataset 1 using different number
of centers

50c 100c 200c 500c 1000c

ASB-KM 36.76 87.12 194.67 632.75 1374.81

Fig. 17 Execution time of the ASB-KM on image dataset 1 using different numbers of centers

123

Large scale K-means clustering 103

Table 17 The three Twitter datasets used in the experiment

No. of instances No. of dimensions Size (Bytes)

DS1 (Glove.Twitter.27B.50D) 1193514 50 238,702,800

DS2 (Glove.Twitter.27B.100D) 1193514 100 477,405,600

DS3 (Glove.Twitter.27B.200D) 1193514 200 954,811,200

Table 18 Execution time of ASB-KM, NK-GPU, Elkan-KM and Elkan-KM-8 on the Twitter datasets with
100 centers

ASB-KM NK-GPU Elkan-KM-1T Elkan-KM-8T

ds1 Runtime 17.09 33.83 230.81 55.5

Speedup 13.51x 6.82x 1x 4.16x

ds2 Runtime 46.36 65.72 427.18 83.78

Speedup 9.21x 6.50x 1x 5.10x

ds3 Runtime 66.28 102.13 665.16 114.85

Speedup 10.04x 6.51x 1x 5.79x

different algorithms on the three datasets with 100 centers. It can be seen that ASB-
KM completed the clustering process in 17.09 seconds on the ds1 dataset, while
the runtimes are 33.83, 55.5 and 230.81 seconds for NK-GPU, Elkan-KM-8T and
Elkan-KM-1T respectively. ASB-KM performed the best, and is 13.51 times faster
than Elkan-KM-1T, compared to 6.82 and 4.16 times for NK-GPU and Elkan-KM-8T
respectively. Similar results were also observed on the ds2 and ds3 datasets. ASB-KM
is 9.21 times faster than Elkan-KM-1T on the ds2 dataset, compared to 6.50 and 5.10
times for NK-GPU and Elkan-KM-8T respectively. Finally, ASB-KM is 10.04 times
faster than Elkan-KM-1T on the ds3 dataset, compared to 6.51 and 5.79 times for
NK-GPU and Elkan-KM-8T respectively.

Table 19 and Figure 19 show the runtime of different algorithms on the three
datasets with 500 centers. Similar to the results on these datasets with 100 centers,
ASB-KM outperformed all other algorithms in this experiment. It is 17.39, 12.22 and
10.12 times faster than Elkan-KM-1T on ds1, ds2 and ds3 respectively, followed by
NK-GPU, which is 7.13, 5.33 and 4.40 times faster than Elkan-KM-1T. NK-GPU
performed better than Elkan-KM-8T on the ds1 and ds2 datasets (7.13x vs 3.95x on
ds1 and 5.33x vs 4.80x on ds2) but was beaten by Elkan-KM-8T on the ds3 dataset
(4.40x vs. 5.49x).

Table 20 and Figure 20 show the runtime of different algorithms on the three
datasets with 1000 centers. As expected, ASB-KM outperformed other algorithms on
all the three datasets, with 14.13 times faster than the Elkan-KM-1T on the ds1 dataset,
10.61x on the ds2 dataset and 8.92x on the ds3 dataset.

Table 21 and Figure 21 summarize the runtime of the ASB-KM algorithm on the
three Twitter datasets with different number of centers. It can be seen that the algorithm
scales well with the number of centers. On all the three datasets, when the number of

123

104 M. Li et al.

Fig. 18 Execution time of ASB-KM, NK-GPU, Elkan-KM-1T and Elkan-KM-8T on the Twitter datasets
with 100 centers

Fig. 19 Execution time of ASB-KM, NK-GPU, Elkan-KM-1T and Elkan-KM-8T on the Twitter datasets
with 500 centers

Table 19 Execution time of ASB-KM, NK-GPU, Elkan-KM-1T and Elkan-KM-8T on the Twitter datasets
with 500 centers

ASB-KM NK-GPU Elkan-KM-1T Elkan-KM-8T

ds1 Runtime 57.43 140.12 998.68 252.63

Speedup 17.39x 7.13x 1x 3.95x

ds2 Runtime 130.91 300.24 1599.42 333.05

Speedup 12.22x 5.33x 1x 4.80x

ds3 Runtime 272.7 626.82 2760.76 503.1

Speedup 10.12x 4.40x 1x 5.49x

123

Large scale K-means clustering 105

Table 20 Execution time of ASB-KM, NK-GPU, Elkan-KM-1T and Elkan-KM-8T on the Twitter datasets
with 1000 centers

ASB-KM NK-GPU Elkan-KM-1T Elkan-KM-8T

ds1 Runtime 138.63 274 1959 502.18

Speedup 14.13x 7.15x 1x 3.90x

ds2 Runtime 293.82 596.23 3116.09 669.14

Speedup 10.61x 5.23x 1x 4.66x

ds3 Runtime 580.74 1250.7 5180.85 959.86

Speedup 8.92x 4.14x 1x 5.40x

Fig. 20 Execution time of ASB-KM, NK-GPU, Elkan-KM-1T and Elkan-KM-8T on the Twitter datasets
with 1000 centers

Fig. 21 Execution time of the ASB-KM on the three twitter datasets with different numbers of centers

123

106 M. Li et al.

Table 21 Execution time of
ASB-KM on the three Twitter
datasets with different numbers
of centers

100c 500c 1000c

ds1 17.09 57.43 138.63

ds2 46.36 130.91 293.82

ds3 66.28 272.70 580.74

Table 22 GPU memory usage of different GPU-based k-means

ABS-KM Lloyd-KMGPU RAPID-KM Dataset Size
(Bytes)

Glove.Twitter.27B.50D 152MiB 324MiB 1586MiB 238,702,800

Glove.Twitter.27B.100D 171MiB 593MiB 2803MiB 477,405,600

Glove.Twitter.27B.200D 195MiB 1055MiB 4719MiB 954,811,200

centers increased 10 times from 100 to 1000, the runtime increased by 8.11 times for
the ds1 dataset, 5.89x and 9.21x for the ds2 and ds3 datasets respectively.

4.8 GPUmemory usage of different k-means algorithms

One advantage of the ABS k-means algorithm is the small memory usage. Unlike
most GPU-based k-means algorithms that load the whole dataset onto the GPU, the
size of memory usage in ABS-KM is just a fraction of the whole dataset size: it is the
size of the data points in one batch (i.e., batch size) plus the size of the centers. Table
22 shows the memory usage of three GPU-based k-means methods, observed during
the experiments on the three Twitter datasets. It is obvious that the GPU memory
usage of ASB-KM is small compared to the size of the whole dataset, especially when
the size of the dataset is big. For example, ABS-KM uses 195 MB of GPU memory
only when the size of the dataset is about 1GB, whereas memory usage is 1,055MB
for Lloyd-KM and 4,719MB for RAPID-KM. ASB-KM’s low memory usage might
make it feasible to cluster large datasets on edge devices with small memory GPUs,
like mobile phones and smart sensors. This may, in some cases, eliminate the need of
passing large amounts of raw data back to a powerful central server to analyse: instead
a summary or excerpt of the data can be generated on the edge device by applying our
algorithm and only this summary is then transferred to the central computing unit for
further processing.

5 Conclusions and future work

In this paper, we have investigated the potential of applying the triangle inequal-
ity in a GPU-accelerated k-means implementation and proposed a new algorithm
that can be used as a drop-in replacement of the classic k-means algorithm. Exper-
iments on a variety of test datasets show significant speedup and demonstrate good
scalability in handling large datasets with high dimensions, while consuming very lim-

123

Large scale K-means clustering 107

ited GPU memory. Our GPU implementation achieves good results on both synthetic
and real-world datasets when compared to other popular k-means implementations.
The algorithm performs particularly well for large high-dimensional datasets that
need to be clustered into many clusters. Using the triangle inequality, many distance
re-computations can be avoided, which dramatically reduces the data transfer rates
between CPU and GPU memory. These transfers are a major bottleneck for any GPU
implementation that needs to split large data into batches that fit into GPU memory.

Considering future work, there are a number of GPU programming options that can
be explored. These include loading cluster centers into sharedGPUmemory to improve
access speed, general loop unrolling, and considering smaller block sizes, which may
help to improve hardware load balancing. In addition, more of the processing could
be moved onto the GPU. Currently only the most computationally expensive parts of
the algorithm, which are cluster assignment and re-computation of the bounds, are
executed on the GPU.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose. This research
was supported by the University of Waikato.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bahmani B, Moseley B, Vattani A et al (2012) Scalable k-means++. Proc VLDB Endow 5(7):622–633
Bejarano J, Koushiki B, Brannan T, et al (2011) Samplingwithin k-means algorithm to cluster large datasets.

Tech. Rep. HPCF-2011-12, UMBC High Performance Computing Facility, University of Maryland,
Baltimore County, Maryland, USA

Berkhin P (2006) A survey of clustering data mining techniques. In: Grouping Multidimensional Data.
Springer, p 25–71

Brodtkorb AR, Hagen TR, Sætra ML (2013) Graphics processing unit (GPU) programming strategies and
trends in GPU computing. J Parallel Distrib Comput 73(1):4–13

Che S, Boyer M, Meng J et al (2008) A performance study of general-purpose applications on graphics
processors using CUDA. J Parallel Distrib Comput 68(10):1370–1380

Chiosa I, Kolb A (2011) GPU-based multilevel clustering. IEEE Trans Visual Comput Graphics 17(2):132–
145

Coates A, Ng AY (2012) Learning feature representations with k-means. In: Neural Networks: Tricks of
the Trade. Springer, p 561–580

Drake J, Hamerly G (2012) Accelerated k-means with adaptive distance bounds. In: NIPS Workshop on
Optimization for Machine Learning, pp 42–53

123

http://creativecommons.org/licenses/by/4.0/

108 M. Li et al.

ElkanC (2003)Using the triangle inequality to accelerate k-means. In: International Conference onMachine
Learning. AAAI Press, pp 147–153

Fahad A, Alshatri N, Tari Z et al (2014) A survey of clustering algorithms for big data: taxonomy and
empirical analysis. IEEE Trans Emerg Top Comput 2(3):267–279

Fang W, Lau KK, Lu M, et al (2008) Parallel data mining on graphics processors. Tech. Rep. HKUST-
CS08-07, Hong Kong Univ. Sci. and Technology, Hong Kong, China

Farivar R, Rebolledo D, Chan E, et al (2008) A parallel implementation of k-means clustering on GPUs.
In: International Conference on Parallel and Distributed Processing Techniques and Applications.
CSREA Press, pp 340–345

Hamerly G (2010)Making k-means even faster. In: SIAM International Conference onDataMining. SIAM,
pp 130–140

HamerlyG,Drake J (2015)Accelerating Lloyd’s algorithm for k-means clustering. In: Partitional Clustering
Algorithms. Springer, p 41–78

He G, Vialle S, Baboulin M (2022) Parallel and accurate k-means algorithm on CPU-GPU architectures for
spectral clustering. Concurr Comput: Pract Exp 34(14):e6621

Hong-Tao B, Li-li H, Dan-tong O, et al (2009) K-means on commodity GPUs with CUDA. In: WRI World
Congress on Computer Science and Information Engineering. IEEE Computer Society, pp 651–655

Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recogn Lett 31(8):651–666
Jian L,WangC, Liu Y et al (2013) Parallel datamining techniques on graphics processing unit with compute

unified device architecture (CUDA). J Supercomput 64(3):942–967
Kruliš M, Kratochvíl M (2020) Detailed analysis and optimization of CUDA k-means algorithm. In: 49th

International Conference on Parallel Processing-ICPP, pp 1–11
LangdonWB (2013) Large-scale bioinformatics dataminingwith parallel genetic programming on graphics

processing units. In: Massively Parallel Evolutionary Computation on GPGPUs. Springer, p 311–347
Lee CC, Chu KY (2012) CUDA-accelerated hierarchical k-means, unpublished manuscript
LiY, ZhaoK,ChuXet al (2013) Speeding up k-means algorithmbyGPUs. JComput Syst Sci 79(2):216–229
Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137
Lutz C, Breß S, Rabl T et al (2018) Efficient and scalable k-means on GPUs. Datenbank-Spektrum

18(3):157–169
Mittal S, Vetter JS (2015) A survey of CPU-GPU heterogeneous computing techniques. ACMComput Surv

(CSUR) 47(4):69
Mohebi A, Aghabozorgi S, Ying Wah T et al (2016) Iterative big data clustering algorithms: a review.

Software: Practice and Experience 46(1):107–129
NVIDIA (2021) CUDA C programming guide. https://docs.nvidia.com/cuda/cuda-c-programming-guide/
Owens JD, Luebke D, Govindaraju NK et al (2005) A survey of general-purpose computation on graphics

hardware. In: Conference of the European Association for Computer Graphics. Eurographics Associ-
ation, pp 21–51

Owens JD, Houston M, Luebke D et al (2008) GPU computing. Proc IEEE 96(5):879–899
Pennington J, Socher R, Manning CD (2021) Global vectors for word representation. https://nlp.stanford.

edu/projects/glove/
Phillips SJ (2002) Acceleration of k-means and related clustering algorithms. In: Workshop on Algorithm

Engineering and Experiments. Springer, pp 166–177
Sajana T, Rani CS, Narayana K (2016) A survey on clustering techniques for big data mining. Indian J Sci

Technol 9(3):1–12
Shirkhorshidi AS, Aghabozorgi S, Wah TY et al (2014) Big data clustering: a review. In: International

Conference on Computational Science and Its Applications. Springer, pp 707–720
Taylor C, GowanlockM (2021) Accelerating the yinyang k-means algorithm using the GPU. In: 2021 IEEE

37th International Conference on Data Engineering (ICDE), IEEE, pp 1835–1840
Upadhyaya SR (2013) Parallel approaches to machine learning - a comprehensive survey. J Parallel Distrib

Comput 73(3):284–292
Vassilvitskii S, Arthur D (2006) k-means++: The advantages of careful seeding. In: Annual ACM-SIAM

Symposium on Discrete Algorithms. SIAM, pp 1027–1035
Wu R, Zhang B, Hsu M (2009) Clustering billions of data points using GPUs. In: Combined Workshops on

Unconventional High Performance Computing Workshop Plus Memory Access Workshop, ACM, pp
1–6

Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678

123

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

Large scale K-means clustering 109

YangC, Li Y, Cheng F (2020)Accelerating k-means onGPUwith CUDAprogramming. In: IOPConference
Series: Materials Science and Engineering, IOP Publishing, p 012036

Zechner M, Granitzer M (2009) Accelerating k-means on the graphics processor via CUDA. In: First
International Conference on Intensive Applications and Services. IEEE Computer Society, pp 7–15

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Large scale K-means clustering using GPUs
	Abstract
	1 Introduction
	2 Related work
	2.1 GPGPU
	2.2 K-means clustering
	2.3 Triangle inequality accelerated K-means clustering
	2.4 GPU-based K-means implementations

	3 Proposed algorithm
	3.1 GPU-based triangle-inequality-accelerated k-means clustering
	3.2 Data representation on the GPU
	3.3 Data transmission
	3.4 Sufficient statistics
	3.5 Data point selection
	3.6 Center update
	3.7 Updating the bounds
	3.8 Inter-center distance computations

	4 Experimental results
	4.1 Experimental configuration
	4.2 Datasets
	4.3 Initialization
	4.4 Batch size
	4.5 Performance evaluation
	4.6 ASB k-means vs. RAPIDS k-means
	4.6.1 Results for synthetic datasets
	4.6.2 Results for the image datasets
	4.6.3 Results for the twitter datasets
	4.6.4 Execution time using different numbers of centers

	4.7 ASB k-means vs. Elkan k-means, Hamerly k-means, and Lloyd k-means
	4.7.1 Synthetic datasets
	4.7.2 The image datasets
	4.7.3 The twitter datasets

	4.8 GPU memory usage of different k-means algorithms

	5 Conclusions and future work
	References

