
Data Mining and Knowledge Discovery (2022) 36:2006–2032
https://doi.org/10.1007/s10618-022-00858-9

SOKNL: A novel way of integrating K-nearest neighbours
with adaptive random forest regression for data streams

Yibin Sun1 · Bernhard Pfahringer1 · Heitor Murilo Gomes1,2 · Albert Bifet1

Received: 11 December 2021 / Accepted: 18 July 2022 / Published online: 13 August 2022
© The Author(s) 2022

Abstract
Most research in machine learning for data streams has focused on classification algo-
rithms, whereas regression methods have received a lot less attention. This paper
proposes Self-Optimising K-Nearest Leaves (SOKNL), a novel forest-based algo-
rithm for streaming regression problems. Specifically, the Adaptive Random Forest
Regression, a state-of-the-art online regression algorithm is extended like this: in each
leaf, a representative data point – also called centroid – is generated by compressing
the information from all instances in that leaf. During the prediction step, instead of
letting all trees in the forest participate, the distances between the input instance and
all centroids from relevant leaves are calculated, only k trees that possess the small-
est distances are utilised for the prediction. Furthermore, we simplify the algorithm
by introducing a mechanism for tuning the k values, which is dynamically and auto-
matically optimised based on historical information. This new algorithm produces
promising predictive results and achieves a superior ranking according to statistical
testing when compared with several standard stream regression methods over typical

Responsible editor: Albrecht Zimmermann.

Bernhard Pfahringer, Heitor Murilo Gomes and Albert Bifet have contributed equally to this work.

B Yibin Sun
ys388@students.waikato.ac.nz

Bernhard Pfahringer
bernhard@waikato.ac.nz

Heitor Murilo Gomes
heitor.gomes@waikato.ac.nz

Albert Bifet
abifet@waikato.ac.nz

1 AI Institute, University of Waikato, Hamilton, New Zealand

2 School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New
Zealand

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-022-00858-9&domain=pdf
http://orcid.org/0000-0002-8325-1889

SOKNL: A novel way of integrating K-nearest neighbours… 2007

benchmark datasets. This improvement incurs only a small increase in runtime and
memory consumption over the basic Adaptive Random Forest Regressor.

Keywords Data streams · Regression · KNN · ARF-Reg

1 Introduction

Vast amounts of data are generated nowadays continuously in real-time as data streams.
Streaming data assumes that data examples can only be inspected once, making it
unfeasible to iterate over a dataset repeatedly to obtain a better solution. Consequently,
most of the algorithms for conventional batch learning can not be applied to stream
learning directly.

Moreover, concept drift is another significant challenge in streaming tasks. The
basic assumption of concept drift is that data streams may evolve over time; in other
words, the distributional properties of the streaming instances vary in some unfore-
seeable ways. The concepts of concept drift for regression and classification problems
are only slightly different. Commonly, there are three aspects for identifying drifts
– from the feature space perspective, from the target value perspective, and from
the performance perspective. The largest difference is the estimation of the distribu-
tional properties of the target values. Instead of exploiting discrete statistic model like
Poisson’s distribution, regression problems use continuous model like Gaussian distri-
bution to determine the changes of the concept. Furthermore, regression tasks suspect
drifts when the metrics of performance likeMAE or RMSE increase. Elaborate review
and survey about concept drift are sufficient in literature (Lu et al. 2018), (Choudhary
et al. 2021). If concept drifts happened, the current models were no longer suitable
and accurate. Therefore, the capability of detecting and adapting to the changes in the
datasets is another characteristic that streaming algorithms must possess.

Regression learning is an important task of machine learning. However, regression
learning for streaming data is relatively under-represented in comparison to classifica-
tion algorithms. Nonetheless, some high-quality data stream regression algorithms are
available, two of which are relevant to this paper: k Nearest Neighbours (KNN) (Dhan-
abal andChandramathi 2011) andAdaptive RandomForest for Regression (ARF-Reg)
(Gomes et al. 2018).

The predictive performance of both algorithms is remarkable (as shown by previ-
ous studies (Gomes et al. 2018, 2020)), but they still have some shortcomings. KNN
requires many distance calculations during prediction, which can be slow and pro-
hibitive. On the other hand, due to the random nature of ARF-Reg, not every tree in
it may produce accurate predictions, which is adding unnecessary noise to the final
prediction when all those individual trees are aggregated.

The main contributions of this paper are the following:

• a novel approach to regression analysis for data streams by combining ARF-Reg
and KNN into the Self-Optimising k Nearest Leaves (SOKNL) algorithm;

123

2008 Y. Sun et al.

• through the combination of both algorithms, we improve the predictive perfor-
mance of ARF-Reg without adding too much extra pressure on computational
resources.

• a dynamical parameter-choosingmethodology enabling the algorithm to self-adapt
the value of k;

• an extensive empirical evaluation and a statistical test show how the new method
compares with other previous state-of-the-art online regression algorithms.

The rest of this paper is organised as follows. The Sect. 2 introduces the sliding
window KNN and other related work. In the following section, we proceed to explain
our approach. The third section depicts the experimental results and analyses. Finally,
we conclude the paper by summarising our contributions and presenting future work.

2 Related work

Traditionally, the regression version of the KNN algorithm has access to the whole
dataset. Consequently, it has enough information for finding the k instances with the
smallest distances from the incoming instance, i.e. the k nearest neighbours. The
predicted value is usually given by aggregating the target values of the k neighbours
using the mean, weighted mean, or other strategies.

However, in the stream setting, it is implausible to grant the access to the dataset as
a whole. Due to memory constraints, storing all the instances is infeasible. A sliding
window strategy can be used to circumvent this limitation. The sliding window only
contains a certain number of instances, andwhen a new instance arrives for training, the
oldest instance in the window is removed. At the prediction phase, only the k nearest
neighbours inside the window are utilised for providing the final result. By design,
KNNwith a sliding window automatically handles concept drifts, as it “forgets” older
instances when they drop out of the sliding window. However, there is a trade-off
regarding the window size: smaller windows respond faster to changes but may not
keep sufficient data for high-quality predictions and noise resistance.

Recently, SAM-kNN (Losing et al. 2018) was proposed to improve upon the per-
formance of streaming kNN for data stream classification in evolving scenarios.
SAM-kNN maintains two types of memories during execution, a short-term and a
long-term one. Instances from the short-termmemorywill be transferred into the long-
term one when the predictive error increases. When the long-term memory reaches
capacity, its instances will be compressed using kMeans++ (Arthur and Vassilvitskii
2006). Thus, SAM-kNN can keep track of both current and previous concepts in a
data stream, enabling drift adaptation.

Hoeffding Trees (Domingos and Hulten 2000) became a popular incremental deci-
sion tree algorithm due to its promise of convergence to the same structure of a batch
decision tree. Hoeffding trees are suitable for online classification as they update the
tree structure incrementally instead of processing a batch of instances. Hoeffding trees
are based on the idea of using the Hoeffding bound (Hoeffding 1994) to determine
when to split without seeing too many instances. Hoeffding trees continuously check
the split points for different features and their related statistics during the instances

123

SOKNL: A novel way of integrating K-nearest neighbours… 2009

streaming in. If the optimal splitting decision proves to exist (determined byHoeffding
bound), the splitting will be executed. These ideas inspired a lot of later incremen-
tal decision tree algorithms, including the Fast Incremental Model Trees with Drift
Detection (FIMT-DD) (Ikonomovska et al. 2011).

FIMT-DD is a variant of the Hoeffding tree algorithm for regression problems,
which also incorporates the capability to adapt to concept drifts. Resembling a regular
Hoeffding Tree, FIMT-DD starts from an empty node - which is called the root node -
that is trained along with instances arriving until it reaches the end of a grace period.
When this happens,merits for each feature of specific splitting valueswill be calculated
based on their variance. Whereafter, the tree will branch if the difference between
the best and the second-best merits surpasses the Hoeffding Bound, and then the
process iterates. If the variance dramatically increases, the drift detector will trigger
and implement adaptions.

The Adaptive Random Forest Regressor algorithm (ARF-Reg) (Gomes et al. 2018)
“ensembles” several FIMT-DDs to achieve higher predictive performance. In order to
introduce diversity into the ensemble, the trees are trained on disparate subsets of the
datasets as well as the feature space (Breiman 2001), which is usually named Random
Patches (Louppe and Geurts 2012). In addition, each training instance is trained for
multiple times based on a Poisson Distribution with the parameter λ = 6, which is an
essence of the Leveraging Bagging technique (Bifet et al. 2010). With these manners,
the ARF-Reg consists of multiple diverse yet powerful single trees that ensure the
outstanding outcomes in most cases and tasks. ARF-Reg uses the same strategies
to cope with concept drift as its classification counterpart, Adaptive Random Forest
(ARF) (Gomes et al. 2017). The concept drift conquering strategy in ARF contains
two levels – the Tree level and the Ensemble level. We provide detailed description in
Sect. 3.3.

Moreover, for the purpose of comparison, two more algorithms are included in
the experimental phase. The first one is On-line Regression/Model Tree with Options
(ORTO), which is a variant of FIMT-DD. ORTO (Ikonomovska et al. 2011) introduces
optional nodes instead of only having binary split children as FIMT-DD does. Exam-
ples will be passed down to every optional node and if there is any ambiguity of where
the best split should be, the algorithms will split on all the competitive nodes. The
second algorithm is Adaptive Model Rules (AMRules) (Almeida et al. 2013), which
starts with an empty rule set (RS) and a default rule. Each instance is checked if it is
covered by any rule in the RS. The Page-Hinckley based change detection mechanism
takes place after the rules testify the instance. If changes are identified, the rule will
be removed. If the instance is not covered by any existing rule, a default rule will
be expanded and appended into the RS. AMRules employs standard deviation reduc-
tion (SDR) (Ikonomovska et al. 2011) and the Hoeffding Bound (Hoeffding 1994) to
determine which split is the best choice for expansion. The expanding procedure is
also applied on a regular basis to update the existing rules. Any type of expansion will
only be considered after a certain number of examples are processed.

There are algorithms that extend KNN. One example is the Instance Based Clas-
sification and Regression on Data Streams (IBLStreams) (Shaker and Hüllermeier
2012). In IBLStreams, three aspects of the usefulness of the instances are considered:
Temporal Relevance, Spatial Relevance, and Consistency. To put it simply, Temporal

123

2010 Y. Sun et al.

Relevancemeans that newer instances contain more information than older ones; Spa-
tial Relevance means that instances in a sparse region are more relevant than those
in a dense region; Consistency means that an instance will be determined as useless
when its behaviour is evidently different from its neighbours. IBLStreams stores a
certain number of instances for predictions that is called a “case base”. When a new
instance arrives, the system will check if the instance is significantly distinguished
from the neighbours, and if true, the new instance is removed to guarantee the Consis-
tency. Otherwise, the neighbourhood of the new instance will be checked for density
and the new instances will be checked for redundancy. If the region is dense and the
instances are redundant, the oldest instance will be removed and the new instances will
be added to the case base. In this manner, Temporal Relevance and Spatial Relevance
are ensured. The prediction procedure is similar to the KNN algorithm within the case
base.

Weighting or eliminating the participants in an ensemble learner has also received
attention. In general, they are called Dynamic Ensemble Selection (DES) or Abstain-
ing Ensemble. Recently, (Krawczyk and Cano 2018) proposed an ensemble abstaining
strategy for improving classification predictive accuracy. In their proposal, the algo-
rithm, Online Ensemble of Abstaining Classifiers, is set with a dynamic threshold of
accuracy. All the predictive accuracy of the base learners is compared against this
threshold at the prediction step. If an individual learner is not more accurate than the
threshold, it will be forced to abstain from the followingmajority voting process. Arbi-
tratingDynamic Ensemble (ADE), presented in (Cerqueira et al. 2017) by Cerqueira et
al., utilises a meta-learning strategy. In ADE, a base-model layerM and a meta layer
Z are established at the same time.M is trained in a regular machine learning manner
and the Z is updated according to the predictive performance of the base-models.
An evaluation of the expertise of those learners in M is structured based on Z and
the final predictions will be a weighted vote. Boulegane et al. furthered the idea of
ADE in (Boulegane et al. 2019) by proposing Streaming Arbitrated Dynamic Ensem-
ble (Streaming-ADE). Streaming-ADE also maintains a two-layer system similar to
ADE. The major difference is that the Streaming-ADE also introduces an abstaining
course. Not confident enough models in M are not allowed to contribute to the final
predictions.

3 Self-optimising K nearest leaves

As mentioned in Sect. 2, both KNN and ARF-Reg have their own specific inherent
shortcomings.

Streaming versions of KNN rely only on a slidingwindowwhere older instances are
forgotten to limit memory usage. This strategy can be beneficial in situations where
older instances no longer represent the current concept (i.e. a drift has happened);
however, the older instances are relevant to building a more robust model in many
situations. Under the circumstances where the concept of the data streams has not
drifted, which means all observed data points are valuable for establishing learning
model, we may want to somehow store those information from older instances. One

123

SOKNL: A novel way of integrating K-nearest neighbours… 2011

of the core questions for streaming KNN is how to retain some of that older but still
relevant information.

ARF-Reg randomly trains and grows ensemble trees on different subspaces of
the datasets and features. Thus this approach relinquishes at random some bits of
informative data for each ensemble member to introduce diversity into the ensemble.
For instance, the artificial dataset “fried”, which is used in our experiments, contains
ten features, only five out of which are related to the target value. If some trees in ARF-
Reg are trained mainly on the irrelevant features, they can potentially yield inaccurate
single predictions, negatively impacting the aggregated ensemble prediction.

Consequently, the idea of kNearest Leaves (KNL) –which is the integration ofKNN
and ARF-Reg (see in Sect. 3.1)– emerged. The intuition is to overcome the transient
behaviour of KNN by using the trees in the ARF-Reg ensemble to keep information
for much longer, by maintaining a centroid for each leaf in each tree; and to improve
the ensemble prediction aggregation procedure using KNN over the centroids selected
by each tree at prediction phase. Using centroid to summarise information is common,
one of the most famous applications is the Clustering Feature Tree (CF-Tree) from
BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) (Zhang et al.
1996). In our approach, each leaf is mapped to a “data point” for later use of the KNN
procedure.

In general, there are two perspectives to comprehend the KNL algorithm. From the
standpoint of KNN, ARF-Reg is providing the leaves – which can also be regarded
as micro-clusters, condensed into one compact and robust representation: a centroid.
From the ARF-Reg perspective, the prediction is more robust by excluding leaves that
may be too dissimilar to the current prediction instance.

Figure 1 is a diagram visualising the idea of KNL.
Our approach has a virtue as a streaming algorithm, which is all the calculating,

learning, updating, and comparing can be accomplished by only using the statistics
storing in the system. As a consequence, the instances are not demanded to stay in the
trees or the forests. Therefore, it is not violating the only-one-see-instance setting for
data streams. For instances, the centroid in the leaf could be calculated by a counter
and an array of sum value of individual features of all instances that have been through
the leaves. Memory constraint is complied with via thus approach.

There is a potential downside to this combination, as KNL now adds one more
hyperparameter to the set of hyperparameters of ARF-Reg: the k value needed for
selecting the closest leaves. To simplify the application of KNL, we also introduce
a technique for automatically and dynamically selecting a good value for this “k”
hyperparameter. More details are given below in Sect. 3.2. This modified version of
KNL is called Self-Optimising k Nearest Leaves, abbreviated as SOKNL.

In the rest of this section, SOKNLwill be explainedmore specifically. In general, our
contributions can be separated into two segments: a) Integrating KNNwith ARF-Reg,
and b) the Self-Optimising Strategy. See the pseudo-code of SOKNL in Algorithm 1
for an intuitive understanding.

123

2012 Y. Sun et al.

Fig. 1 Diagram of K Nearest Leaves

3.1 Integrating K-nearest procedure with ARF-reg

As aforementioned in Sect. 2, the ARF-Reg is an ensemble of multiple tree learners.
Every tree will traverse an incoming instance into exactly one of its respective leaves.
Thus an ensemble of n trees will return n leaves for prediction.

3.1.1 Selection of K nearest leaves

Instead of aggregating the leaf predictions of all trees in the ensemble, SOKNL only
averages the target values of the k nearest leaves. Since ARF-Reg trees are growing
semi-randomly, some leaves will bemore informative than others, for a given instance.
SOKNL is able to select the most relevant leaves, thanks to the centroids stored within
each leaf.

The abstraction of centroids in our method is simple. For all the instances in a
leaf, we take the mean values of each feature. For example, we average the values
of Feature 1 of all the instances in the leaf and put it at the Feature 1 position of the
centroid. With this method, all the information of the instances in a certain leaf is
compressed into a robust, space- and memory-efficient, and incrementally calculable
representative instance – the centroid.

123

SOKNL: A novel way of integrating K-nearest neighbours… 2013

Algorithm 1 Self-Optimising k Nearest Leaves
1: function Predict(instance)
2: ARF-specific updates
3: leaves ← {ti . f indLea f (x), ti ∈ trees}
4: leaves ← sort_by_centroid_dist(leaves, x)
5: p = aggregate_predictions(leaves)[1 : kbest]
6: return p
7: end function
8: function Train(instance)
9: ARF-specific updates
10: leaves ← {ti . f indLea f (x), ti ∈ trees}
11: for lea f ∈ leaves do
12: lea f .update_centroid(x)
13: end for
14: leaves ← sort_by_centroid_dist(leaves, x)
15: p ← 0
16: for i ∈ 1..kmax do
17: p ← aggregate(p, leaves[i].predict(x))
18: evaluators[i].update(x, p)
19: end for
20: kbest ← argmin

i
(evaluators[i].SSE)

21: end function

3.1.2 Measurement of the distance

The next question is how to measure the distance from an instance to a leaf (a cluster
of instances). In principle, there are at least two options available:

• Calculate all the distances from the incoming instance to the instances in the leaf,
and use the average as the measurement of the distance between an instance and
a leaf.

• Maintain a centroid in each leaf, which is an average of all features of all the leaf’s
instances. Thereupon, the distance from an instance to a leaf can be defined as the
distance to the leaf’s centroid.

Both options are feasible and have their own pros and cons. The former one keeps
more information which gives it more flexibility. It also needs muchmorememory and
runtime. Due to the data stream algorithms’ requirements for timeliness and memory
space utilisation, the latter option is more promising, and consequently suitable for
SOKNL.

Another notable point is, although SOKNL also requires distance calculation, it
limits the amount of the calculation to the ensemble number of the ARF-Reg which
is 100 in our experiments (it is already a quite large choice for ensemble number).
In the Sliding Window KNN case, the quantity of distance calculation equals to the
window length, which is typically several thousands or longer. Hence, in terms of time
for calculating distance, SOKNL manages to surpass the KNN algorithms.

123

2014 Y. Sun et al.

3.2 Self-optimising strategy

Choosing good k values for kNN requires specialised knowledge and sometimes
“luck”. Even for experts, there is no convenient way for finding the best k. More-
over, there may even not be a “global best” k due to concept drifts or other causes.
Therefore, a self-optimising regime is introduced into SOKNL to automatically deter-
mine the currently best-performing value for k.

Self-optimising, or self-tuning, is a popularway to reduce the labour of hyperparam-
eter tuning (Huang et al. 2021; Veloso et al. 2018; Luo 2016). Here, the self-optimising
mechanismmeasures performance using the Sum Squared Error (SSE). For every pos-
sible value of k, for k in 1..kmax , an evaluator keeps track of the SSE for this k value.
Updating all k evaluators can be done very efficiently: first, all leaves are sorted by
distance, and then the predictions for larger and larger values of k are incrementally
computed in one linear sweep over the sorted leaves, resulting in O(kmax ∗ log(kmax))

runtime. Even though the possibility of two k values maintaining exact same SSE is
extremely small, there is no guarantee for that not to happen, especially at the beginning
of the learning progress. We simply choose the smaller k value if it occurs.

3.3 Change adaptation

How our approach adapts to the drifts is straightforward. It relies on the built-in
adaption methodology in ARF-Reg as well as implicit adaptation of the centroids.

In ARF-Reg, the concept drift detection and adaptation exist in both trees and
ensembles. In every node of the tree learners, there is a Page-Hinckley (PH) test
(Mouss et al. 2004), which is an extension to the CUSUM test Page (1954). PH
maintains two variables in the system, a cumulative value mt and the minimum of
mt until the current moment Mt . mt is defined as the cumulation of the difference
between the current target value and the average value (x̄) of the whole time and an
indicative parameter α, which is responsible for controlling how much of the change
ought to be identified as a drift. Eqs. 1 and 2 denote mt and Mt respectively.

mt =
N∑

t=1

(xt − x̄ − α) (1)

Mt = min{mt , t = 1, 2, ..., N } (2)

Consequently, the PH test is at the moment of t is defined by Eq. 3:

PHt = mt − Mt (3)

If the PHt is larger than a threshold parameter λ that is specified by the users to
command the sensitivity of the test, a drift is confirmed. Then the associated node will
be removed and a new branch will be built.

ARF-Reg has anADaptiveWINdow (ADWIN) (Bifet andGavalda 2007) algorithm
as an external change detector at the ensemble level. The operation of the ADWIN
requires storing two windows that have window lengths ofWold andWnew. The mean

123

SOKNL: A novel way of integrating K-nearest neighbours… 2015

Table 1 Datasets Overview Datasets NFeatures NInstances Source

Ailerons 40 13750 Synthetic

Elevators 18 16599 Synthetic

Fried 10 40768 Synthetic

HyperA 10 500000 Synthetic

Abalone 8 4977 Real

Bike 12 17379 Real

House8L 8 22784 Real

MetroTraffic 7 48204 Real

values of each window, μold and μnew , are used to compare to the corresponding
Hoeffding Bound ε by Inequation 4.

| μold − μnew |≥ ε =
√

1

2m
· ln4 | W |

δ
(4)

where δ denotes a use-defined confidence level in the range of [0, 1], and m is the
harmonic mean of the sub-windows’ length as in Eq. 5.

m = 2
1

|Wold | + 1
|Wnew |

(5)

If Inequation 4 holds, a drift is detected and the old window is dropped.
In addition, SOKNL has another manner to adapt to the drifts. The centroids in

SOKNL are moving according to incoming instances. If instances on average shift,
the centroids will shift as well, thus implicitly providing a certain capability for drift
adaptation, on top of the explicit change detectors. Furthermore,when a leaf is split into
two new leaves, the old centroid is deleted, and two new centroids will be computed
from the newly arriving instances, yet again supporting adaptation to potential drifts
implicitly.

4 Experimental setting

In this section, information regarding our experiments is specified for reproducibility.

4.1 Datasets

Table 1 provides an overview of the involved datasets:
Most of them are standard benchmark datasets. For example, Abalone is from a

non-machine-learning research paper (Nash et al. 1994) and aims at predicting the
age of abalones based on some physical measurements. Another example, the Fried
(Friedman 1991) dataset, is a synthetic one, using this highly non-linear formula:

123

2016 Y. Sun et al.

y = 10sin(πx1x2)+20(x3−0.5)2+10x4+5x5+σ(0, 1). Notably, the Fried dataset
includes five more features that are not involved in the generation formula, which
means they are irrelevant to the ground truths. By introducing irrelevant features,
this dataset is able to further test the robustness of regressors. Moreover, the synthetic
dataset HyperA is another one that requires specific introduction. HyperA generates an
hyperplane in a d-dimensional space. The goal is to predict the distance from randonly
generated data points to the hyperplane. The more crucial characteristic of HyperA
dataset is, since it is artificial, it simulates drift detection every 125K instances, i.e.,
at the position of 125K , 250K and 375K instances, which makes it applicable for
assessing the drift detection ability of algorithms. It is worth mentioning that there
are no nominal attributes in these datasets, which makes the centroid calculation more
straightforward. However, it is easy to cope with nominal attributes by applying One-
Hot-Encoding method or other techniques. The effectiveness will be assessed with
following research.

4.2 Data pre-processing

Data pre-processing techniques are commonly used in regression tasks, one of which
is standardisation. Amongst the many approaches to standardisation, we use Z-scores
to transform the data to have zero mean and a variance of one. The z-score formula
is:

X ′ = (X − X)/σ (6)

where the X is the mean and the σ is the standard deviation of the original data, and
the X ′ is the transformed X value.

However, the problem is that the distributional properties are unknown in stream-
ing data. Hence, instead of using the “global” mean and standard deviation, only
dynamically updated online estimates of mean and standard deviation are used for
standardisation. Notably, categorical features would need to be transformed by one-
hot encoding or a similar technique.

The results with or without pre-processing are strongly similar towards one another.
Thus, due to the space constraint, only pre-processed results are exhibited in this paper.

4.3 Algorithms

For comparison, experiments on the above datasets with some other algorithms are
conducted, including Traditional kNN; Self-Optimising kNN;1 FIMT-DD; ORTO;
AMRules; ARF-Reg; and k Nearest Leaves(KNL).2

Most of these algorithms have been introduced in Sect. 2, yet there are several
things to be specified here.

• Traditional KNN: The classic KNN with fixed k values of 1, 5, and 10.

1 A variant of kNN with the proposed self-optimising method.
2 The intermediate version of SOKNL without self-optimising.

123

SOKNL: A novel way of integrating K-nearest neighbours… 2017

• Self-Optimising k Nearest Neighbours(SOKNN): A variant of KNN with the
same auto-selecting k value method as used in SOKNL .

• FIMT-DD:The hyper-parameters of the FIMT-DD are as default in (Ikonomovska
et al. 2011).

• ORTO: Option trees using the default parameter setting in (Ikonomovska et al.
2011).

• AMRules: Adaptive Model Rules, also known as AMRules, is the first rule algo-
rithm in regression for data streams (Almeida et al. 2013). We use the same
algorithm setup as in that paper, except for the split confidence parameter δ, where
1E − 7 is used instead of 0.01.

• ARF-Reg: See details in Sect. 2 and the algorithm hyper-parameters are set as this:
a)Ensemble learner: FIMT-DD; b)Ensemble Size: 100; c)FeatureNumbers in
Subspace:60%;d)λ forPoissonDistribution:6 (for simulating the bootstrapping
procedure)

• KNearest Leaves: For comparison to SOKNL , a plain KNL with a fixed k value
is also in included. Values used for a k are 1, 5, and 10.We choose these k values as
they illustrate the improvements by increasing the number of neighbours. The dif-
ferences are more significant when k values are small. After 10, the improvements
start getting inconspicuous and the rise of computational cost seems unworthy.

In order tomake our experiments reproducible, the hyperparameters for the algorithms
are included here. Moreover, the hyperparameters for ARF-Reg are introduced partic-
ularly since our approach is based on the ARF-Reg and the basic hyperparameters are
the same. Notably, the ensemble numbers of ARF-Reg and SOKNL in our experiments
are arbitrarily fixed to 100. That is because the number could be too small, otherwise,
the centroid selecting procedure would be too limited to be effective. Also, large num-
bers could cause a dramatic increase in the computational resource requirements. We
made some attempts with some “appropriate” ensemble numbers and chose 100 as it
is the best in terms of balancing effectiveness and efficiency.

Implementations of the algorithms mentioned in this section, including the stan-
dardisation filter, can be found and utilised in the Massive Online Analysis (MOA)
(Bifet et al. 2010) – a well-known free open-source framework software for machine
learning and data stream mining.

4.4 Experimental evaluation

In this section, we briefly introduce the corresponding evaluation methods and metrics
used in our experiments.

4.4.1 Metrics

There are lots of ways to evaluate the basic performance of machine learning algo-
rithms. In this paper, the Root Mean Squarer Error (RMSE) is used for evaluating
the overall performance of the algorithms. In addition, for comparing ARF-Reg with
SOKNL, the Root Relative Squared Error (RRSE) is also presented. The formulas for

123

2018 Y. Sun et al.

RMSE and RRSE are :

RMSE =
√∑n

j=1

(
Pj − Tj

)2

n

RRSE =
√√√√

∑n
j=1

(
Pj − Tj

)2
∑n

j=1

(
Tj − T

)2

where Pj is the prediction; Tj is the target value; and T = 1
n

∑n
j=1 Tj is the mean of

all target values.
The main advantage of the RRSE is that it can convert the RMSE from different

datasets to a similar scale so that the “horizontal” comparisons become meaningful.
For error estimation, the lower the RMSE or RRSE, the better.

4.4.2 Processing time

Processing time is an important aspect that should be paid attention to in stream
mining. The streaming data may be so enormous that if the algorithms are not efficient
enough, the incoming rate will exceed the processing speed, violating the principle
of data stream mining. Therefore, we include a table showing the running time of all
algorithms in Sect. 5.

4.4.3 Coefficient of determination

Coefficient of Determination (Wright 1921), also known as R-squared or R2 in liter-
ature, is formulated as follow:

R2 = 1 −
∑n

i=1(f (xi) − yi)2∑n
i=1(yi − ȳ)2

(7)

where f (xi) is the prediction given xi , yi denotes the true value, and the ȳ represents
the mean of the true value.

The range ofR2 is from−∞ to 1.0, again allowing for comparison between different
algorithms over multiple datasets. The recently published (Chicco et al. 2021) presents
arguments in favour of R2 over the use of MSE, MAE, or similar.

4.4.4 Quade test

We also take a ranking methodology to evaluate the performance of our proposed
algorithm. The Quade test (Quade 1979), which is a weighted nonparametric testing
procedure, provides a manner for ranking multiple algorithms on multiple datasets.
Instead of generating the ranks under the assumption that every dataset deserves the
same significance (as in Friedman Aligned Ranks (Friedman 1937)), the Quade test
takes into consideration the “difficulties” of the datasets and then weighs the ranks
accordingly.

123

SOKNL: A novel way of integrating K-nearest neighbours… 2019

Assume there are i × j metric values (e.g. R2) to rank (i datasets and j algorithms),
the Quade test works like this:

1. Compute di , which is the difference between the best and worst case for each
dataset;

2. Rank di as Qi and assign Qi to the associated dataset, using averages for tie
situations;

3. Rank the performance of the algorithms for each dataset and denote them by r j
i ;

4. Calculate the weighted rankWi j
3 for every element in the table using the formula:

Wi j = Qi × r j
i .

5. Average the Wi j for each algorithm to gain the final rank.

Self-evidently, the lower the rank is, the better the algorithm is. (García et al. 2010)
provides more detail, explanation, and examples for the Quade test.

5 Experimental results and discussion

Tables and figures containing the outcomes from our experiments are presented in this
section.

Table 2 illustrates the RMSE results after standardising the data. The best results
for each dataset are displayed in bold font. We run each algorithm on each dataset ten
times to get fair results, during which the order of the examples inside of the datasets
is not modified or changed. The cells are in the form of Mean(Sd). Different random
seeds are set for non-deterministic algorithms (e.g. AMRules, ARF-Reg) in different
runs. We did not manually modify the order of the instances in the datasets during
each running. Similar to the RMSE illustration, the running time of the experiments
is shown in Table 3. To measure the experimental memory use, we include Table 4
which exhibits evaluations of RAM. RAM metric is simply the amount of memory
consumption for maintaining the predictive model during the whole experiment.

The most apparent conclusion from Table 2 is that SOKNL provides the best results
on five out of eight datasets in terms of RMSE. Furthermore, SOKNL takes the first
place in all the real datasets (Abalone, Bike, House8L, andMetroTraffic), whichmakes
more practical significance since the synthetic datasets, no matter how complicated
and randomised their forming formulae are, would still struggle in simulating the real-
world problems. Especially for the MetroTraffic dataset, which possesses information
regarding the traffic volume of a metro station in the US, all the algorithms have diffi-
culties in predicting accurately. There are three datasets in that SOKNL loses the first
place. In the cases of Ailerons and Elevators, SOKNL loses it to the family of KNN
algorithm. The reason, in our assumption, is that these two synthetic datasets are gen-
erated by some distance-relevant or distance-sensitive formulae. Therefore, the KNN
family is evidently more suitable for them while SOKNL drop certain information
after the micro-clustering procedure. Nevertheless, the gaps are tiny, thus acceptable,

3 There is a different way to calculate the weighted rank using this formula:W ′
i j = Qi ×[r ji − 1+ j

2], where
1+ j
2 is the average ranking within single dataset. This is called the average adjusting and does not impact

the final conclusion of the ranking procedure. The current approach is chosen to avoid negative ranks.

123

2020 Y. Sun et al.

Ta
bl
e
2

E
xp

er
im

en
ta
lR

oo
tM

ea
n
Sq

ua
re
d
E
rr
or

R
es
ul
ts

A
ba
lo
ne

A
ile

ro
ns

B
ik
e

E
le
va
to
rs

Fr
ie
d

H
ou

se
8L

H
yp

er
A

M
et
ro
T
ra
ffi
c

FI
M
T
D
D

3.
05

0.
08

9
11

3.
33

5.
64

E
-3

2.
99

37
96

5
4.
62

19
52

O
R
T
O

8.
40

0.
09

3
15

7.
81

1.
61

E
-2

14
.9
3

38
10

5
10

.9
9

19
82

K
N
N
1

2.
75

0.
07

1
12

3.
93

4.
47

E
-3

3.
71

46
40

0
4.
38

20
83

K
N
N
5

2.
35

0.
05

9
13

6.
61

4.
17

E
-3

2.
73

39
89

4
3.
14

19
49

K
N
N
10

2.
33

0.
06

0
13

7.
08

4.
33

E
-3

2.
68

39
88

1
3.
04

19
44

SO
K
N
N

2.
52

0.
06

0
12

3.
80

4.
16

E
-3

2.
72

40
38

4
3.
05

19
22

A
M
R
ul
es

2.
28

(0
.2
3)

0.
33

3
(2
E
-6

)
22

4.
66

(2
5)

4.
83

E
-3

(2
E
-3

)
2.
48

(0
)

40
70

5
(9
7)

2.
06

(0
.0
1)

32
59

(2
98

5)

A
R
F-
R
eg

2.
45

(0
.0
2)

0.
07

4
(6
E
-4

)
10

4.
92

(1
.7
0)

5.
09

E
-3

(1
E
-4

)
2.
93

(0
.0
4)

36
11

8
(3
64

)
4.
70

(0
.0
1)

16
91

(2
)

K
N
L
1

3.
39

(0
.0
1)

0.
10

2
(3
E
-3

)
13

9.
49

(4
.3
2)

6.
07

E
-3

(8
E
-5

)
2.
98

(0
.0
7)

39
25

6
(7
60

)
3.
89

(0
.0
2)

22
49

(2
1)

K
N
L
5

2.
73

(0
.0
8)

0.
09

6
(1
E
-3

)
12

0.
67

(2
.6
2)

5.
94

E
-3

(9
E
-5

)
2.
39

(0
.0
6)

35
21

9
(5
44

)
3.
04

(0
.0
3)

18
27

(8
)

K
N
L
10

2.
56

(0
.0
4)

0.
09

4
(1
E
-3

)
11

6.
41

(2
.4
5)

5.
88

E
-3

(1
E
-4

)
2.
29

(0
.0
6)

35
62

9
(4
23

)
2.
91

(0
.0
3)

17
81

(3
)

SO
K
N
L

2.
22

(0
.0
3)

0.
06

5
(1
E
-3

)
96

.6
9

(2
.7
4)

4.
30

E
-3

(2
E
-4

)
2.
23

(0
.0
5)

35
13

5
(2
98

)
2.
97

(0
.0
3)

15
57

(5
)

123

SOKNL: A novel way of integrating K-nearest neighbours… 2021

Ta
bl
e
3

E
xp

er
im

en
ta
lR

un
ni
ng

T
im

e
(S
ec
on

ds
)

A
ba
lo
ne

A
ile

ro
ns

B
ik
e

E
le
va
to
rs

Fr
ie
d

H
ou

se
8L

H
yp

er
A

M
et
ro
T
ra
ffi
c

FI
M
T
D
D

0.
12

(0
.0
3)

1.
27

(0
.0
4)

0.
42

(0
.0
7)

0.
54

(0
.0
5)

0.
52

(0
.0
6)

0.
31

(0
.0
4)

7.
02

(0
.1
5)

0.
65

(0
.0
6)

O
R
T
O

0.
27

(0
.0
5)

1.
53

(0
.0
6)

0.
39

(0
.0
8)

1.
99

(0
.0
8)

1.
20

(0
.0
6)

0.
28

(0
.0
5)

9.
26

(0
.4
7)

0.
49

(0
.0
8)

K
N
N
1

0.
44

(0
.0
7)

6.
49

(0
.0
7)

2.
76

(0
.0
7)

3.
66

(0
.1
3)

4.
72

(0
.0
7)

10
.3
7

(2
.0
6)

56
.6
4

(0
.4
0)

5.
08

(0
.3
1)

K
N
N
5

0.
49

(0
.0
9)

7.
14

(0
.0
8)

2.
94

(0
.1
0)

4.
08

(0
.0
6)

5.
53

(0
.1
5)

10
.5
0

(2
.1
2)

66
.8
7

(0
.5
1)

5.
54

(0
.1
2)

K
N
N
10

0.
49

(0
.0
7)

7.
50

(0
.0
8)

3.
09

(0
.0
9)

4.
24

(0
.1
0)

5.
84

(0
.0
8)

10
.7
5

(2
.0
2)

70
.3
9

(0
.4
8)

5.
84

(0
.0
9)

SO
K
N
N

1.
52

(0
.0
6)

13
.0
2

(0
.2
4)

6.
47

(0
.4
7)

8.
15

(0
.1
1)

13
.8
3

(0
.5
3)

6.
98

(0
.3
3)

16
7.
05

(1
.3
6)

13
.2
0

(0
.6
4)

A
M
R
ul
es

0.
50

(0
.1
4)

1.
64

(0
.5
3)

1.
16

(0
.1
7)

1.
41

(0
.6
4)

2.
15

(0
.3
6)

1.
41

(0
.3
3)

16
.6
8

(0
.9
3)

20
22

(0
.6
4)

A
R
F-
R
eg

6.
72

(0
.6
9)

82
.8
8

(5
.1
4)

30
.2
3

(1
.8
7)

20
.5
8

(1
.1
9)

28
.5
6

(2
.5
5)

25
.9
3

(3
.1
9)

53
7.
50

(4
4)

59
.3
7

(2
.6
0)

K
N
L
1

6.
33

(0
.7
1)

84
.1
1

(6
.5
2)

32
.3
5

(1
.2
5)

21
.0
4

(1
.1
2)

27
.8
8

(1
.8
3)

25
.6
3

(1
.5
7)

73
8.
29

(2
8)

58
.5
0

(2
.1
9)

K
N
L
5

6.
42

(0
.4
5)

84
.2
0

(8
.5
9)

32
.1
3

(1
.3
2)

20
.8
6

(1
.2
0)

27
.8
2

(2
.0
8)

25
.6
2

(2
.2
6)

73
9.
41

(3
5)

58
.6
2

(2
.7
6)

K
N
L
10

6.
46

(0
.7
0)

83
.9
8

(5
.5
3)

32
.2
7

(1
.6
0)

20
.9
5

(0
.7
9)

28
.1
3

(1
.2
8)

25
.7
1

(2
.6
7)

74
1.
50

(2
9)

59
.0
1

(2
.1
2)

SO
K
N
L

7.
65

(0
.5
2)

90
.2
1

(3
.9
3)

36
.2
6

(2
.0
2)

24
.6
4

(1
.1
9)

36
.8
5

(1
.5
7)

30
.7
9

(2
.1
2)

84
5.
25

(2
8)

71
.4
9

(3
.0
3)

123

2022 Y. Sun et al.

in those cases. The most strange dataset is the HyperA where AMRules are better than
SOKNL by almost 30%. Combining the information from Fig. 7, the RMSE is always
better for AMRules than SOKNL before and after concept drifts. We currently do not
have an explanation for this phenomenon. However, results from a single dataset can
not shake the status of SOKNL on an overall view.

In terms of running time, as shown in Table 3, KNL and SOKNL are taking longer
than ARF, which is expected, given the additional processing of leaf information in
KNL and SOKNL. The results indicate that the additional time required by SOKNL
is worthwhile considering the consequent improvement in prediction performance.

SOKNL is taking almost the same amount of memory as the fixed k values KNL as
showing in Table 4, which means that the Self-optimising procedure is not occupying
too much memory. For most datasets, the SOKNL maintains similar order of magni-
tude. Furthermore, the model only grows to about 1 Gigabytes with the largest dataset
(HyperA). It proves that the memory utilisation of SOKNL is evidently acceptable for
dealing with data streams.

Table 5 is a combined result illustration for both R2 metric and the Quade test.
Except for the last column, all the cells contain two numbers formed as R2(Wi j) (see
in Sect. 4.4.4). The last column exhibits the final ranks for all algorithms. The best
result in each column is emphasised in bold font.

The ranking results for individual datasets are the same as RMSE. Nonetheless,
comparison on various datasets is possible due to the R2 metric. It is a simple conclu-
sion that SOKNL achieves an R2 score higher than 0.5 in almost all cases while other
algorithms are struggling. Moreover, the best rank lies in the SOKNL, which indi-
cates that SOKNL’s competitiveness is eye-catching and evident even amongst these
state-of-art online regression algorithms. One of the advantages of Quade test is that
it provides the capability of ranking the datasets in terms of “difficulty”. As a conse-
quence, algorithms that gain better results on difficult tasks receive better total ranks.
In Table 5, SOKNL achieves a very good ranking in the difficult datasets such as Fired
and Abalone. In other words, SOKNL has more ability to conquer “hard” problems.
The p − value from this Quade test is 3.771e−5. Therefore, the H0 is rejected.

Figure 2 and Fig. 3 demonstrate the RRSE of all KNN and KNL related algorithms.
The error bars in Fig. 3 indicate standard deviations, as (SO)KNL is randomisable.

These two figures illustrate the comparisons inside the KNN and KNL families.
SOKNL almost always outperformsKNLwith fixed k values. This is a clear indication
that the proposed self-optimising procedure works well most of the time. In terms of
the SOKNN, which mimics the parameter self-tuning mechanism of SOKNL , the
self-optimisation seems not to be working so well since only in two out of eight
cases it outperforms the fixed-value KNN results. Our assumption is that for KNN,
the historical information has not much influence on the latter predictions since KNN
only considers the distances. On the other hand, due to its robustness, SOKNL not
only considers the distances between instances but also is affected by the integrated
decision trees.

Figure 4 reveals the relation of the results between ARF-Reg and the proposed
SOKNL. The result values are computed by dividing the SOKNL values by the ARF-
Reg values. For instance, the error ratio is RMSESOKNL

RMSEARF-Reg
. Hence, the error ratio being

123

SOKNL: A novel way of integrating K-nearest neighbours… 2023

Ta
bl
e
4

E
xp
er
im

en
ta
lM

em
or
y
U
se

E
st
im

at
io
n
(G

B
s)

A
ba
lo
ne

A
ile

ro
ns

B
ik
e

E
le
va
to
rs

Fr
ie
d

H
ou

se
8L

H
yp

er
A

M
et
ro
T
ra
ffi
c

FI
M
T
D
D

3.
2E

-0
3

2.
2E

-0
6

5.
8E

-0
3

2.
7E

-0
6

5.
9E

-0
3

2.
6E

-0
6

9.
5E

-0
3

2.
2E

-0
6

2.
3E

-0
2

2.
7E

-0
6

1.
1E

-0
2

2.
5E

-0
6

6.
7E

-0
2

2.
7E

-0
6

8.
1E

-0
3

2.
6E

-0
6

O
R
T
O

9.
8E

-0
4

2.
6E

-0
6

5.
8E

-0
3

2.
2E

-0
6

2.
2E

-0
3

2.
6E

-0
6

9.
3E

-0
3

2.
5E

-0
6

3.
8E

-0
3

2.
6E

-0
6

3.
3E

-0
4

2.
1E

-0
6

1.
2E

-0
3

2.
6E

-0
6

8.
4E

-0
4

2.
7E

-0
6

K
N
N
1

1.
1E

-0
3

1.
2E

-1
9

3.
5E

-0
3

1.
4E

-1
9

1.
5E

-0
3

1.
4E

-1
9

1.
9E

-0
3

2.
1E

-1
9

1.
2E

-0
3

1.
0E

-1
9

1.
1E

-0
3

1.
4E

-1
9

1.
2E

-0
3

1.
1E

-1
9

1.
0E

-0
3

0.
0E

+
00

K
N
N
5

1.
1E

-0
3

1.
0E

-1
9

3.
5E

-0
3

0.
0E

+
00

1.
5E

-0
3

1.
2E

-1
9

1.
9E

-0
3

1.
8E

-1
9

1.
2E

-0
3

1.
1E

-1
9

1.
1E

-0
3

1.
1E

-1
9

1.
2E

-0
3

1.
5E

-1
9

1.
0E

-0
3

6.
9E

-2
0

K
N
N
10

1.
1E

-0
3

1.
1E

-1
9

3.
5E

-0
3

1.
8E

-1
9

1.
5E

-0
3

1.
4E

-1
9

1.
9E

-0
3

0.
0E

+
00

1.
2E

-0
3

9.
1E

-2
0

1.
1E

-0
3

1.
1E

-1
9

1.
2E

-0
3

9.
1E

-2
0

1.
0E

-0
3

9.
1E

-2
0

SO
K
N
N

1.
2E

-0
3

1.
0E

-1
9

3.
6E

-0
3

2.
7E

-1
9

1.
5E

-0
3

1.
5E

-1
9

1.
9E

-0
3

1.
0E

-1
9

1.
3E

-0
3

1.
5E

-1
9

1.
2E

-0
3

6.
9E

-2
0

1.
3E

-0
3

6.
9E

-2
0

1.
1E

-0
3

1.
1E

-1
9

A
M
R
ul
es

8.
0E

-0
4

7.
2E

-2
0

1.
1E

-0
3

1.
3E

-0
7

1.
4E

-0
3

2.
0E

-0
7

1.
1E

-0
3

0.
0E

+
00

2.
3E

-0
3

1.
4E

-1
9

9.
8E

-0
4

1.
3E

-0
7

2.
5E

-0
3

1.
3E

-0
7

1.
5E

-0
3

1.
4E

-0
4

A
R
F-
R
eg

5.
4E

-0
2

3.
0E

-0
3

7.
7E

-0
2

3.
3E

-0
3

1.
8E

-0
1

1.
0E

-0
2

1.
2E

-0
1

4.
2E

-0
3

1.
6E

+
00

4.
4E

-0
2

6.
7E

-0
1

3.
5E

-0
2

8.
9E

-0
1

1.
0E

+
00

1.
1E

-0
2

9.
6E

-0
4

K
N
L
1

4.
1E

-0
2

4.
1E

-0
3

8.
9E

-0
2

2.
1E

-0
3

1.
8E

-0
1

1.
1E

-0
2

1.
2E

+
00

5.
1E

-0
3

1.
5E

+
00

2.
1E

-0
2

7.
6E

-0
1

4.
5E

-0
2

1.
4E

+
00

1.
8E

-0
1

1.
5E

-0
2

1.
3E

-0
3

K
N
L
5

4.
1E

-0
2

4.
1E

-0
3

8.
9E

-0
2

2.
1E

-0
3

1.
8E

-0
1

1.
1E

-0
2

1.
2E

+
00

5.
1E

-0
3

1.
5E

+
00

2.
1E

-0
2

7.
6E

-0
1

4.
5E

-0
2

1.
4E

+
00

1.
8E

-0
1

1.
5E

-0
2

1.
3E

-0
3

K
N
L
10

4.
1E

-0
2

4.
1E

-0
3

8.
9E

-0
2

2.
1E

-0
3

1.
8E

-0
1

1.
1E

-0
2

1.
2E

+
00

5.
1E

-0
3

1.
5E

+
00

2.
1E

-0
2

7.
6E

-0
1

4.
5E

-0
2

1.
4E

+
00

1.
8E

-0
1

1.
5E

-0
2

1.
3E

-0
3

SO
K
N
L

4.
1E

-0
2

4.
1E

-0
3

8.
9E

-0
2

2.
1E

-0
3

1.
8E

-0
1

1.
1E

-0
2

1.
2E

+
00

5.
1E

-0
3

1.
5E

+
00

2.
1E

-0
2

7.
6E

-0
1

4.
5E

-0
2

1.
4E

+
00

1.
8E

-0
1

1.
5E

-0
2

1.
3E

-0
3

123

2024 Y. Sun et al.

Ta
bl
e
5

C
oe
ffi
ci
en
to

f
D
et
er
m
in
at
io
n
an
d
th
e
Q
ua
de

Te
st
R
es
ul
ts

A
ba
lo
ne

A
ile

ro
ns

B
ik
e

E
le
va
to
rs

Fr
ie
d

H
ou

se
8L

H
yp

er
A

M
et
ro
T
ra
ffi
c

R
an
ks

Q
i
fo
r
Q
ua
de

6
7

2
5

8
1

3.
5

3.
5

FI
M
T
D
D

0.
16

(6
0)

0.
38

(4
9)

0.
61

(6
)

0.
29

(4
0)

0.
64

(8
0)

0.
48

(5
)

0.
62

(3
5)

0.
03

(2
8)

8.
42

O
R
T
O

−5
.3
8

(7
2)

0.
33

(5
6)

0.
24

(2
2)

−4
.7
7

(6
0)

−7
.9
3

(9
6)

0.
48

(6
)

−1
.1
6

(4
2)

0.
01

(3
1.
5)

10
.7
1

K
N
N
1

0.
32

(5
4)

0.
61

(3
5)

0.
53

(1
4)

0.
56

(2
5)

0.
45

(8
8)

0.
23

(1
2)

0.
66

(3
1.
5)

−0
.1
0

(3
5)

8.
18

K
N
N
5

0.
50

(2
4)

0.
73

(7
)

0.
43

(1
6)

0.
61

(1
0)

0.
70

(5
6)

0.
44

(8
)

0.
82

(2
4.
5)

0.
04

(2
4.
5)

4.
72

K
N
N
10

0.
51

(1
8)

0.
72

(2
1)

0.
43

(1
8)

0.
58

(2
0)

0.
71

(4
0)

0.
43

(9
)

0.
83

(1
7.
5)

0.
04

(2
1)

4.
57

SO
K
N
N

0.
43

(3
6)

0.
72

(1
4)

0.
53

(1
2)

0.
6

(5
)

0.
70

(4
8)

0.
42

(1
0)

0.
83

(2
1)

0.
06

(3
.5
)

4.
54

A
M
R
ul
es

0.
53

(1
2)

−7
.6
4

(8
4)

−0
.5
3

(2
4)

0.
48

(3
0)

0.
75

(3
2)

0.
41

(1
1)

0.
92

(3
.5
)

−1
.6
9

(5
6)

6.
63

A
R
F−

R
eg

0.
46

(3
0)

0.
57

(4
2)

0.
67

(4
)

0.
43

(3
5)

0.
66

(6
4)

0.
53

(4
)

0.
61

(3
8.
5)

0.
28

(7
)

6.
24

K
N
L
1

−0
.0
4

(6
6)

0.
19

(7
7)

0.
41

(2
0)

0.
18

(5
5)

0.
64

(7
2)

0.
45

(7
)

0.
73

(2
8)

−0
.2
8

(3
8.
5)

10
.1
0

K
N
L
5

0.
33

(4
8)

0.
28

(7
0)

0.
56

(1
0)

0.
22

(5
0)

0.
77

(2
4)

0.
56

(2
)

0.
83

(1
4)

0.
15

(1
4)

6.
44

K
N
L
10

0.
41

(4
2)

0.
31

(6
3)

0.
59

(8
)

0.
23

(4
5)

0.
79

(1
6)

0.
55

(3
)

0.
85

(7
)

0.
20

(1
0.
5)

5.
40

SO
K
N
L

0.
55

(6
)

0.
67

(2
8)

0.
72

(2
)

0.
59

(1
5)

0.
80

(8
)

0.
56

(1
)

0.
84

(1
0.
5)

0.
39

(3
.5
)

2.
06

123

SOKNL: A novel way of integrating K-nearest neighbours… 2025

Fig. 2 KNN Related Root Relative Squared Error

Fig. 3 KNL Related Root Relative Squared Error

smaller than 1 implies that SOKNL out-performs ARF-Reg. Time ratio, by the same
logic, is TimeSOKNL

TimeARF-Reg
.

Comparing SOKNL to ARF-Reg shows a very clear picture: SOKNL outperforms
ARF-Reg on all eight datasets but is also consistently slower. The additional computa-
tion is bounded, though, always less than a factor of two. The maximum performance
improvement, on the other hand, can be up to a reduction in error by 50%, as seen
in Fig. 4. One of our goals is achieved based on these results. Since SOKNL is an
extension of the ARF-Reg, SOKNL is supposed to be better than ARF-Reg in most
cases to make our modifications meaningful.

123

2026 Y. Sun et al.

Fig. 4 SOKNL versus ARF-Reg

Figs 5 and 6 are the actual k values as chosen by the self-selecting mechanism over
time. Since the amount of the instances in the datasets are practically large and in all
cases the k values are having the tendency to converge to a practically small value, we
use logarithmic scale on x-axis instead of an ordinary one to amplify the beginning
portion. Moreover, since in almost all cases, the k values converge to a value around
10, we provide a red dashed horizontal line at y = 10 in each sub-figure for clearness.

In Fig. 5 it can be seen that after some fluctuation at the beginning, the k values
converge to either one specific number or vary on a small subset of possible val-
ues. Interestingly, most values converge around 10, which motivated the experiments
with fixed k in KNL. We can observe a very apparent unstable period of the k val-
ues in SOKNL algorithm, which we call a “learning period”. These periods, in our
eight experiments, end at around 10 instances, which is quite fast to “find a good” k
value. Uniting with the performance of our algorithm, it is safe to say that the Self-
Optimising procedure in SOKNL is working functionally. Figure 6 depicts a more
erratic behaviour. It is evident that in each experiment’s early stage, the k value has an
increasing tendency. This stage ends around the 1000th instance, and then the value
promptly converges in a way similar to SOKNL above. The strange stage coincides
with the “window growing period” in KNN. In our assumption, the reason for this
situation may be that while the window length increases, the prior errors of the new
possible k value are voided. With the growth of the window, new evaluations of the
new k numbers are added. However, when the sample quantity is small, there is a high
possibility that the RMSE is tiny as well, which can result in a good change that newly
added k values are selected. For instance, when the window length grows to 100 at
a certain moment, the RMSE for k = 100 in the system is 0 since it is impossible
to find 100 nearest neighbours in the window before that moment. Apparently, 0 is
the smallest value the RMSE could get to. Thus, our self-optimising procedure tends

123

SOKNL: A novel way of integrating K-nearest neighbours… 2027

Fig. 5 K Values for SOKNL

123

2028 Y. Sun et al.

Fig. 6 K Values for SOKNN

123

SOKNL: A novel way of integrating K-nearest neighbours… 2029

Fig. 7 RMSE Over Time on HyperA Dataset

to select the newly added possible k value. Whereas, if we look carefully into those
figures, there are some fine structures in them, which indicates that not always the new
values are selected. Therefore, it is normal and reasonable for our algorithm to behave
in such way when applying to a sliding window approach. Admittedly, some amend-
ing measures, such as ignore a first period of the newly added k values to avoid the
unstable phase, can be implemented, but our original intention of including SOKNN
is to provide comparison to SOKNL. On account of this reason, we choose to present
the authentic figures of this version of SOKNN.

Figure 7 illustrates the RMSE results over time (instances) for four algorithms:
regular ARF-Reg (Red), ARF-Reg without Drift Detection (Green), SOKNL (Purple),
and the AMRules (Blue). The associated dataset is HyperA. We include the AMRules
algorithm because it achieves the best result on HyperA amongst all algorithms we
experimented. Moreover, for the purpose of comparison, similar procedure has been
conducted with the Fried dataset, whose results are exhibited in Fig. 8.

What demonstrates in Fig. 7 is the SOKNL’s capability of detecting concept drifts.
As aforementioned in Sect. 4.1, the HyperA dataset is structured with drifts at the
position of 125K , 250K , and 375K instances. To show to results with clarity, the
windowing RMSE is chosen, which is the RMSE for the recent certain number of pre-
dictions (we choose 1000 for the diagram). Also, the first 100 instances are ignored to
skip the initial learning course where the information is insufficient hence the RSME
tends to be meaninglessly high. In the figure, it is very distinct that the RMSEs of
all four approaches have a growing tendency at the drift points. That is because the
old models are not suitable for the new concept of the dataset. After the dramatic
increases of RMSE at the drifting points, regular ARF, SOKNL, and AMRules are

123

2030 Y. Sun et al.

Fig. 8 RMSE Over Time on Fried Dataset

able to promptly diminish the performance back to the excellent level while the ARF-
Reg without Drift Detection (which is the regular ARF-Reg with all drift detection
methods disabled) struggling. It is worthy to point out that, although the ARF-Reg and
SOKNL behave a little worse than AMRules in terms of RMSE, their speed of detect-
ing and adapting to the drifts stays at the same level, sometimes even outperforming
the AMRules. Whereupon, the capability of drift detection and adaptation of SOKNL
are proven and evidenced. The SOKNL and the regular ARF-Reg act in a similar way
due to their resembling internal drift detection method. Note that Fig. 8 is for com-
parison to Fig. 7. We can see in Fig. 8 that when the datasets have no drift, although
the RMSEs fluctuate over time, there are no sudden growths in the diagram, which
means all the trained models are capable of producing reasonable predictions. This
fact testifies that in Fig. 7, the drift detection and adaptation procedures in SOKNL
(and other algorithms) are appropriately contributing. What’s more, the reason that
the regular ARF-Reg line (red) in Fig. 8 is almost invisible is when no drift is hap-
pening, the ARF-Reg and ARF-Reg without drift detection (green) are supposed to
have identical behaviours. Ergo, the green line and the red line in Fig. 8 are overlap-
ping for nearly the whole time. In summary, SOKNL is capable of producing more
accurate predictions compared to its original – ARF-Reg – and other online regression
algorithms, with only limited more consumption on computing resources. SOKNL
also maintains the capability of detecting and adapting to concept drifts. Furthermore,
the Self-Optimising procedure for SOKNL is considerably effective in selecting more
promising k values for the proposed algorithm.

123

SOKNL: A novel way of integrating K-nearest neighbours… 2031

6 Conclusions

This paper proposed a novel algorithm for data stream regression called SOKNL,
which is a combination of k Nearest Neighbours and the Adaptive Random Forest. It
integrates the merits of both KNN and ARF-Reg into one system, resulting in robust
regression performance. Empirical results show that this approach can achieve more
accurate predictions for a limited amount of additional computational resources.

Alongwith the newmethod, a hyperparameter self-tuning technique based on ongo-
ing performance evaluation is implemented to make the algorithm more user-friendly
as well as more robust to concept drift. The results prove that in many circumstances
the self-selecting approach is capable of selecting well-performing k values.

Although the current self-optimisingmechanism is effectivelyworking for SOKNL,
the outcomes of SOKNN are relatively unsatisfactory. One of the future works is
the development of a different self-optimising approach for KNN. Other interesting
directions include investigating similar KNN integration into other stream learners and
explore how the density (measured by standard deviation)would affect the information
gaining.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Almeida E, Ferreira C, Gama J (2013) Adaptive model rules from data streams. In: Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, pp 480–492. Springer

Arthur D, Vassilvitskii S (2006) k-means++: The advantages of careful seeding. Technical report, Stanford
Bifet A, Gavalda R (2007) Learning from time-changing data with adaptive windowing. In: Proceedings of

the 2007 SIAM International Conference on Data Mining, pp 443–448. SIAM
Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) MOA: massive online analysis. J Mach Learn Res

11:1601–1604
Bifet A, Holmes G, Pfahringer B (2010) Leveraging bagging for evolving data streams. In: Joint European

Conference on Machine Learning and Knowledge Discovery in Databases, pp 135–150. Springer
Boulegane D, Bifet A, Madhusudan G (2019) Arbitrated dynamic ensemble with abstaining for time-series

forecasting on data streams. In: 2019 IEEE International Conference on Big Data (Big Data), pp
1040–1045. IEEE

Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Cerqueira V, Torgo L, Pinto F, Soares C (2017) Arbitrated ensemble for time series forecasting. In: Joint

European Conference on Machine Learning and Knowledge Discovery in Databases, pp 478–494.
Springer

Chicco D, Warrens MJ, Jurman G (2021) The coefficient of determination r-squared is more informative
than smape, mae, mape, mse and rmse in regression analysis evaluation. PeerJ Comput Sci 7:e623

123

http://creativecommons.org/licenses/by/4.0/

2032 Y. Sun et al.

Choudhary A, Jha P, Tiwari A, Bharill N (2021) A brief survey on concept drifted data stream regression.
In: Tiwari A, Ahuja K, Yadav A, Bansal JC, Deep K, Nagar AK (eds) Soft Computing for Problem
Solving. Singapore, Springer Singapore, pp 733–744

Dhanabal S, Chandramathi S (2011) A review of various k-nearest neighbor query processing techniques.
International Journal of Computer Applications

Domingos P, Hulten G (2000)Mining high-speed data streams. In: Proceedings of the Sixth ACMSIGKDD
International Conference on Knowledge Discovery and Data Mining, pp 71–80

Friedman JH (1991) Multivariate adaptive regression splines. The Annals of Statistics, pp 1–67
Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of

variance. J Am Stat Assoc 32(200):675–701
García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons

in the design of experiments in computational intelligence and data mining: Experimental analysis of
power. Inf Sci 180(10):2044–2064

Gomes HM, Bifet A, Read J, Barddal JP, Enembreck F, Pfahringer B, Holmes G, Abdessalem T (2017)
Adaptive random forests for evolving data stream classification. Mach Learn 106(9–10):1469–1495

Gomes HM, Barddal JP, Ferreira LEB, Bifet A (2018) Adaptive random forests for data stream regression.
In: ESANN

Gomes HM,Montiel J, Mastelini SM, Pfahringer B, Bifet A (2020) On ensemble techniques for data stream
regression. In: IJCNN. IEEE

Hoeffding W (1994) Probability inequalities for sums of bounded random variables. In: The Collected
Works of Wassily Hoeffding, pp 409–426. Springer

Hoeffding W (1994) Probability inequalities for sums of bounded random variables. In: The Collected
Works of Wassily Hoeffding, pp 409–426. Springer

Huang J, Rojas J, ZimmerM,WuH, Guan Y,Weng P (2021) Hyperparameter auto-tuning in self-supervised
robotic learning. IEEE Robot Autom Lett 6(2):3537–3544

Ikonomovska E, Gama J, Džeroski S (2011) Learning model trees from evolving data streams. Data Min
Knowl Disc 23(1):128–168

Ikonomovska E, Gama J, Zenko B, Dzeroski S (2011) Speeding-up hoeffding-based regression trees with
options. In: ICML

Krawczyk B, Cano A (2018) Online ensemble learning with abstaining classifiers for drifting and noisy
data streams. Appl Soft Comput 68:677–692

Losing V, Hammer B, Wersing H (2018) Tackling heterogeneous concept drift with the self-adjusting
memory (sam). Knowl Inf Syst 54(1):171–201

Louppe G, Geurts P (2012) Ensembles on random patches. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases pp 346–361. Springer

Lu J, Liu A, Dong F, Gu F, Gama J, Zhang G (2018) Learning under concept drift: A review. IEEE TKDE
LuoG (2016)A reviewof automatic selectionmethods formachine learning algorithms and hyper-parameter

values. Network Modeling Analysis in Health Informatics and Bioinformatics 5(1):1–16
Mouss H, Mouss D, Mouss N, Sefouhi L (2004) Test of page-hinckley, an approach for fault detection in an

agro-alimentary production system. In: 2004 5th Asian Control Conference (IEEE Cat. No. 04EX904)
2: 815–818. IEEE

NashWJ, Sellers TL, Talbot SR, Cawthorn AJ, FordWB (1994) The population biology of abalone (haliotis
species) in tasmania. i. blacklip abalone (h. rubra) from the north coast and islands of bass strait. Sea
Fisheries Division, Technical Report, 48:p411

Page ES (1954) Continuous inspection schemes. Biometrika 41(1/2):100–115
Quade D (1979) Using weighted rankings in the analysis of complete blocks with additive block effects. J

Am Stat Assoc 74(367):680–683
Shaker A, Hüllermeier E (2012) Iblstreams: A system for instance-based classification and regression on

data streams. Evol Syst 3(4):235–249
Veloso B, Gama J, Malheiro B (2018) Self hyper-parameter tuning for data streams. In: International

Conference on Discovery Science, pp 241–255. Springer
Wright S (1921) Correlation and causation
Zhang T, Ramakrishnan R, Livny M (1996) Birch: An efficient data clustering method for very large

databases. ACM SIGMOD Rec 25(2):103–114

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	SOKNL: A novel way of integrating K-nearest neighbours with adaptive random forest regression for data streams
	Abstract
	1 Introduction
	2 Related work
	3 Self-optimising K nearest leaves
	3.1 Integrating K-nearest procedure with ARF-reg
	3.1.1 Selection of K nearest leaves
	3.1.2 Measurement of the distance

	3.2 Self-optimising strategy
	3.3 Change adaptation

	4 Experimental setting
	4.1 Datasets
	4.2 Data pre-processing
	4.3 Algorithms
	4.4 Experimental evaluation
	4.4.1 Metrics
	4.4.2 Processing time
	4.4.3 Coefficient of determination
	4.4.4 Quade test

	5 Experimental results and discussion
	6 Conclusions
	References

