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Abstract
Given the common problem of missing data in real-world applications from various
fields, such as remote sensing, ecology and meteorology, the interpolation of miss-
ing spatial and spatio-temporal data can be of tremendous value. Existing methods
for spatial interpolation, most notably Gaussian processes and spatial autoregressive
models, tend to suffer from (a) a trade-off between modelling local or global spatial
interaction, (b) the assumption there is only one possible path between two points, and
(c) the assumption of homogeneity of intermediate locations between points. Address-
ing these issues, we propose a value propagation-based spatial interpolation method
called VPint, inspired by Markov reward processes (MRPs), and introduce two vari-
ants thereof: (i) a static discount (SD-MRP) and (ii) a data-driven weight prediction
(WP-MRP) variant. Both these interpolation variants operate locally, while implicitly
accounting for global spatial relationships in the entire system through recursion. We
evaluated our proposed methods by comparing the mean absolute error, root mean
squared error, peak signal-to-noise ratio and structural similarity of interpolated grid
cells to those of 8 common baselines. Our analysis involved detailed experiments
on a synthetic and two real-world datasets, as well as experiments on convergence
and scalability. Empirical results demonstrate the competitive advantage of VPint on
randomly missing data, where it performed better than baselines in terms of mean
absolute error and structural similarity, as well as spatially clustered missing data,
where it performed best on 2 out of 3 datasets.
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1 Introduction

Under perfect lab conditions, a data scientist can train models, infer variables of
interest and discover new knowledge from neatly organised, consistent and complete
datasets. However, in real-world scenarios, one is rarely so lucky.Whether it is random
measurement noise, inconsistent annotation, missing data or another problem, real-
world data can be messy, and tricky to process in such a way that downstream models
and processes can use it effectively.

In this work, we aim to address the problem of missing data in the specific case
of spatial gridded data by proposing a computational method for spatial interpolation.
Prominent examples of such missing data in real-world scenarios include satellite
imagery in remote sensing data (due to orbits, swaths and cloud clover Carrasco et al.
2019),mapping of ecological fieldmeasurements and samples collected at a limited set
of locations (Fang et al. 2019), and local precipitation forecasting frommeteorological
measuring stations covering a limited set of locations (Tabios III and Salas 1985). As
such, spatial interpolation is a problem highly relevant to many fields, and a large body
of literature is dedicated to it in statistical domains (Heaton et al. 2019; Jiang 2018;
Montero et al. 2015). Data in spatial settings is particularly susceptible to missing
values, due to, among other reasons, (i) limited and/or variable spatial and temporal
resolutions, (ii) limited availability of measuring locations, (iii) measurements being
acquired at different times and different locations, and (iv) the characteristics of the
locations in question (e.g., cloud cover or inaccessible areas). As a simplified exam-
ple, consider the task of mapping the temperature at a certain time throughout the
Himalayas. Since resources are limited and parts of the terrain are inaccessible, it is
infeasible to collect measurements at every 100m2. This gives rise to the problem of
filling in the entire grid based on measurements from a limited number of locations.
In this case, we could also use additional information on the elevation of the terrain to
help inform our decisions – a location with a higher elevation than a reference value
will likely have a lower temperature, and vice versa.

Spatial interpolation methods, such as Kriging (also known as Gaussian processes)
(Jiang 2018; Cressie 2015), tend to be founded on an assumption of autocorrelation,
meaning that values are more strongly correlated with one another the closer their spa-
tial proximity is. Ourmethod is no exception in this regard. However, existingmethods
can be categorised into local methods and distance-based methods. Local methods,
such as spatial autoregressive models (Anselin 1988; Haining 1978) or convolutional
neural networks (Dong et al. 2015; Shi et al. 2016), rely on adding the information
of a strictly defined local neighbourhood around a target cell to enhance their predic-
tions. The downside of these methods is that potentially valuable information outside
the predefined neighbourhood is disregarded. Moreover, if local information is not
available, local methods may require imputation methods to perform their estima-
tions. Distance-based methods, on the other hand, most notably including various
Gaussian process-based approaches (Jiang 2018; Cressie 2015), can use any mea-
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Fig. 1 Local (left), distance-based (middle) and system-oriented (right) perspectives. In local and distance-
based perspectives, the predicted value of the green cell is determined by the yellow cells (equal weights if
local, unequalweights if distance-based). In the system-oriented perspective (used by our proposedmethod),
the green cell is predicted using the yellow neighbours, which were in turn affected by their own neighbours
(blue, yellow and green cells) (Color figure online)

surement available, but rely on a distance-based weighting to use this information
for their predictions. The downside of these methods is that, in most spatial settings,
paths cannot be assumed to be homogeneous, and thus distance alone may not be
sufficient to reliably predict values. For example, in the case of temperature measure-
ments in the Himalayas, the difference in elevation between pairs of locations may
vary despite the distance being the same. This problem is further exacerbated by the
two-dimensionality of spatial problems, allowing for the existence of multiple paths
between any two locations, some of which may be more important than others for the
propagation of values (for example, a longer path around a mountain as opposed to a
shorter path over it).

In this work, we propose a method that incorporates a system-oriented perspective,
illustrated in Fig. 1. In this perspective, we use a local neighbourhood to perform esti-
mations, but we rely on recursion to propagate known values through direct neighbours
over a network of (mostly indirectly) mutually interacting cells, iteratively updated
until an equilibrium is reached. At every recursive call, a weight is applied to the values
being propagated to represent spatial autocorrelation. This weight can furthermore be
assigned dynamically in a data-driven manner, based on the features of the underly-
ing spatial configuration. This allows for higher autocorrelation weights between, for
example, two neighbouring blocks of a city, and lower weights between an industri-
ous port and the open sea. The update rules for every cell were based on the Bellman
equation for Markov reward processes (Bellman 1957), canonically used to estimate
the value of a particular state (cell). With this perspective, we can address both the
limitations of local methods and distance-based methods.

Our main contributions in this work are as follows:

– We propose a novel method, VPint, for spatial interpolation, incorporating a
system-oriented perspective aimed at overcoming the limitations of existing local-
or distance-based methods.

– We introduce two variants of our value propagation interpolation algorithm, both
of which incorporate elements of Markov reward processes: SD-MRP, using a
static discount throughout the grid and requiring no additional data, andWP-MRP,
exploiting spatial features to predict neighbour-specific spatial weights.
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– We provide a vectorised implementation of our methods allowing for high degrees
of parallel processing to speed up the algorithm running time, which we make
publicly available.1

– We empirically evaluate our methods on synthetic data and 2 real-world datasets
and compare their performance against that of popular baselines from the Kriging,
machine learning and deep learning fields in terms of mean absolute error, root
mean squared error, peak signal-to-noise ratio and structural similarity. We also
conducted experiments testing convergence, scalability, and whether the proposed
method generalises to spatio-temporal data.

2 Related work

To date, various spatial interpolation methods, both local and distance-based, have
been proposed. We will discuss a selection of popular methods in this section.

Gaussian processes Given its widespread use, the first set of methods of note are
Gaussian processes (GP), also known as Krige (1951). GPs Cressie (2015); Schaben-
berger and Gotway (2017) are a set of interpolation techniques based on learning the
covariance of target values over distance using variogram (kernel) functions fitted to
the data. Popular variants of GPs are discussed in Jiang (2018) and include ordinary
Kriging (OK), universal Kriging (UK) and regression Kriging (Kriging after detrend-
ing). Contemporary contributions to GP methods include a scalable gradient-based
surrogate function method (Bouhlel and Martins 2019) and a neural network-based
method to overcomeGPs’ limitation of disregarding the characteristics of intermediate
locations in paths between pairs of locations (Sato et al. 2019). Although the assump-
tions made differ per variant, all GP-based methods are limited by their reliance on
pair-wise distance-based covariance models. Moreover, traditional GP methods tend
to scale poorly to larger datasets (O((nm)4)). An overview of modern GP methods
aimed at increasing the viability of GPs for large-scale datasets is given in Heaton
et al. (2019), including local approximate GPs Gramacy and Apley (2015), stochastic
partial differential equation approaches (Rue et al. 2017) and multi-resolution approx-
imations (Katzfuss 2017).

Gapfill Gapfill Gerber et al. (2018) is a local method utilising no explanatory vari-
ables that, unlike GPs, does not build an explicit statistical model. Instead, as a local
method, it relies on using subsets of the available data for its predictions. Although its
local perspective and cell-specific independent predictions allow gapfill to be highly
parallelised, its performance in terms of accuracy tends to fall short of GPs Heaton
et al. (2019), and its dependency on the presence of sufficient amounts of non-missing
values within its neighbourhood renders it infeasible for cases where missing values
are clustered together.

Belief propagation This family of methods, particularly loopy belief propagation
(Pearl 1982), has been used successfully for image denoising (Song et al. 2011),
image restoration (Zheng et al. 2020) and image completion tasks (Levin et al. 2003).
It generally considers graphical models (Lauritzen 1996), such as Markov random

1 https://github.com/ADA-research/VPint.
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fields, and gridded datasets can also be converted to this representation. The key idea
is to compute the marginal distributions of nodes in a network, based on the beliefs
(estimations) of the values of the child nodes connected to them. This is done through
a process of message passing, which iteratively propagates beliefs over the network.
Conceptually, this type of method is similar to our proposed method, although it does
not leverage the Bellman equation or data-driven spatial weights, and unlike belief
propagation, our method computes predicted values rather than distributions thereof.
While belief propagation can be considered to take the system-oriented perspective,
its exact form operating on junction trees scales poorly to larger graphs (O(M · N 3),
where M denotes the number of nodes and N is the number of discrete states per
node) (McAuley and Caetano 2010) and high precision continuous variables (Zheng
et al. 2012), rendering it computationally infeasible for most practical applications
of grid-based interpolation tasks. Similarly, the standard approximate loopy belief
propagation algorithm may have high errors compared to other methods (Satorras and
Welling 2021), or even oscillate rather than converge (Murphy et al. 2013).

Spatial regression Spatial autoregressive models (Anselin 1988) (SAR) have
remained relatively consistent, but have been expanded in some recent work (Yang and
Lee 2017; Fix et al. 2021). Moving average (MA) models are often used in the context
of time-series modelling (Durbin 1959), but can also be used for spatial regression
problems using the “MA by AR” approach (Haining 1978). Highly related to SAR
and MA models, autoregressive moving average (ARMA) models have seen recent
work of particular relevance to the COVID-19 pandemic, modelling a transmission
network of influenza (Qiu et al. 2021). Apart from SAR, MA, and ARMA models,
which include additional features for the spatial lag and/or residuals, there are also
approaches using an explicit spatial, temporal or spatio-temporal data representation,
such as the tensor decomposition-based work by Corizzo et al. (2021). This latter
work seems particularly relevant for spatial interpolation problems where collinearity
exists within the explanatory variables. Given that the explanatory variables are being
leveraged for their shared spatial structure with the target variable, collinearity in the
explanatory variables is a likely scenario. However, unlike our method, these types
of method are not interpolation methods, aiming instead at predicting target values
directly from the spatio-temporal features or a latent representation thereof. Other
recent work using spatial regression approaches include house price estimation using
geographically weighted regression (Soltani et al. 2021), varying coefficient spatio-
temporal regression (Lee et al. 2021), ambient black-carbon prediction (Awad et al.
2017) and an analysis of the spatial patterns of COVID-19 (Wu et al. 2021). The spa-
tial autoregressive regression models suffer from the limitations of a local perspective:
their use of a pre-defined local neighbourhood dismisses information outside of the
neighbourhood radius.

Neural networks and deep learning Deep learning techniques, and convolutional
neural networks (CNN) in particular, have been used to great effect in many computer
vision applications (Dong et al. 2015; Shi et al. 2016). These computer vision-based
interpolation CNNs could also be applied to general spatial interpolation. Moreover,
in their 2020 publication, Hashimoto and Suto formulated a CNN architecture for
the specific purpose of spatial interpolation (Hashimoto and Suto 2020). Apart from
CNNs, graph neural networks (GNNs) have also been applied recently to spatio-
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temporal interpolation by Wu et al. (2020), utilising fully connected networks with
distance-based weights determined using a random subgraph sampling strategy. Like
autoregressive models, CNNs have a local perspective and therefore, dismiss poten-
tially meaningful information outside their predefined neighbourhood. Conversely,
similar to GPs, GNNs suffer from the reliance on distance-based weights, dismissing
potential non-homogeneity of intermediate locations on paths between locations.

By adopting a system-oriented perspective, themethodwepropose in thiswork aims
to be situated between these two main categories of existing work (local and distance-
based).Moreover, likeGapfill, it offers a computational alternative to existingmethods
with an emphasis on explicit statistical spatial modelling.

3 Problem statement

Let us define a spatial gridG as an (n×m)matrix, where n corresponds to the number
of rows and m to the number of columns. At every cell c in G, where c = Gi, j , with
i and j corresponding to the row and column indices in G, respectively, there exists
a true value y∗

c that may be either known or unknown. If y∗
c is known, we set the cell

value yc = y∗
c . If it is not known, we mark this location as unknown: yc = ∅. The

(n × m) matrix Y contains yc for all c in G.
We further define a feature grid X as an (n × m × f ) tensor, where f denotes

the number of features per cell. Thus xc in X is a feature vector corresponding to
location c in G. We can now define a prediction model M(Y,X) that takes as input
the available data in Y, along with the corresponding feature vectors per location in
X, and returns a prediction matrix Ŷ. The objective of spatial interpolation is to find
a model M∗ that minimises the mean absolute error (MAE) for all locations c in G,
given the predictions in Ŷ. Concretely:

M∗ ∈ argmin
M

∑

c∈G
|ŷc − y∗

c | (1)

4 Methods

In this section, we will describe our proposed interpolation method in four steps.
The general procedure and main philosophy will first be illustrated, after which we
introduce some background for our update rules, and propose the two concrete variants
of our method that we implemented. Finally, wewill discuss our approach for ensuring
efficient computation allowed by parallel matrix operations.

4.1 General interpolation procedure

The core of our proposedmethod relies on iterative element-wise updates to an estima-
tion grid. We first instantiate Ŷ, with missing values given by Y being set to arbitrary
real values as initial predictions (the mean of known values in our experiments). Next,
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for every cell c ∈ G, if Yc is known, we use it as a static prediction. If it is not known,
we update its value using the estimated value of its neighbours {c′ : c′ ∈ NS(c)},
where NS(c) denotes the set of spatial neighbours to cell c. Thus, by iterating this
procedure, our algorithm recursively propagates known values throughout chains of
estimated values in Ŷ, through all possible paths in the system, anchored by known
values.

4.2 Background: update rule

Our update rule is based onMarkov reward processes (MRPs). MRPs (Bellman 1957)
aremodels of the formM = {S, T , R}, where S is a set of states {s1, s2, ..., s|S|},T is an
|S|×|S|matrix of transition probabilities T(s,s′) between all pairs of states s and s′, and
R is a set of rewards {rs1, rs2 , ..., rs|S| } associated with being in a state s. MRPs extend
Markov chains, which do not incorporate rewards R, and have been successfully used
to model the behaviour of a single variable over time (Sato and Trivedi 2007; Bianchi
and Presti 2016). In these temporal models, a state s represents a set of attribute
values at a particular time t in a sample trajectory over time. At every t a state s can
probabilistically transition from s to any of a set of successor states (given the current
state) S′|s = {s′|s1, s′|s2, ..., s′|s|S|} based on transition probabilities given by T(s,s′),
until an absorbing state is reached from which no further transitions are possible:
|S′|s| = 0. Since MRPs are Markovian, the transition probability to go from s to s′
are contingent solely on s, and are unaffected by the history of previous states in the
trajectory. If a reward rs is associated with the state s, this gives information about the
desirability of state s. However, aside from this immediate reward rs , intuitively the
expected future rewards E(s′) from all s′ ∈ S′|s should also be considered, as states
leading to successor states with high future rewards would be more desirable. This
leads to a notion of state values, where the rewards of all possible successor states s′
are used to recursively compute state values v(s) for all s ∈ S. This is typically done
by iterating the Bellman equation (Bellman 1957), where the immediate reward r(s,s′)
is added to the discounted (using the discount parameter γ ) average expected values
of the successor states:

s′ : v(s) = 1

|S′|s| ·
∑

s′∈S′|s
r(s) + γ · E(s′) (2)

We opted to use this equation as our interpolation update rule. In the case of inter-
polation, a location c (at a certain time) can be seen as a state s, with the set of spatial
neighbours NS(c) being analogous to the set of successor states S′|s in MRPs. The
state values v(s), then, would be the target variable ŷc to be estimated, with immediate
rewards given by known values and the discount γ representing spatial autocorrela-
tion. Using the Bellman equation as an update rule, we can define the set of spatial
neighbours NS(c) as the cells {c′ : c′ ∈ G} that share a border with c, such that our
spatial interpolation algorithm takes the form of:
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ŷc =
{
yc if yc known,

AS(c) otherwise
(3)

Here, AS(c) denotes an aggregation function over the spatial neighbourhood of c.
While in principle, it is possible to add any user-defined aggregation function, we
opted to stay close to the canonical Bellman equation, by taking the mean (spatial lag)
of NS(c):

AS(c) = 1

|NS(c)| ·
∑

c′∈NS(c)

γ · ŷc′ (4)

Using Eq. 4 also allows us to provide an efficient vectorised implementation of our
method. While the method runs for a set amount of iterations in principle, it can also
incorporate an early stopping criterion by introducing a variable δ, representing the
change of a configuration over iterations, and using ŷ(−1)

c to denote the predictions
from the previous iteration:

δ = 1

m · n ·
∑

c∈Y
|ŷc − ŷ(−1)

c | (5)

This then allows for the early stopping of the algorithm if δ drops belowa user-specified
threshold.

One could also consider generalising this approach to spatio-temporal interpolation
problems. In that case, the algorithm cannot solely rely on Eq. 3. Whereas two spatial
dimensions share the same scale, and can thus both use the same weight γ as a spatial
discount, a temporal dimension may behave very differently. As a result, to generalise
to a spatio-temporal domain, we need to introduce an additional parameter τ for
discounts representing temporal autocorrelation. This also leads to the set of temporal
neighbours NT (c), which represent the same location at different time steps. Thus,
the spatio-temporal update rule becomes:

Ŷc =
{
Yc ifYc known

AS(c) + AT (c) otherwise,
(6)

where AT (c) will generally use the temporal lag aggregation function:

AT (c) = 1

|NT (c)| ·
∑

c′
t∈NT (c)

τ · Ŷc′
t

(7)

4.3 Variants

We propose two variants of our value propagation interpolation method. The first, SD-
MRP (static discount-MRP), uses a single spatial weight parameter γ for the entire
dataset, which can be tuned using random search on subsampled data from known
values. The second variant, WP-MRP (weight prediction-MRP) exploits spatial data
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(a)

(b)

(c)

Fig. 2 Comparison of the interpolation procedures of SD-MRP (a) and WP-MRP (c) for the example in b.
The values in each cell represent temperature measurements, and the colour of a cell indicates the elevation
of a location, where darker colours represent higher elevation. We wish to interpolate these values, such
that all ‘?’ are filled with estimated values instead, based on the known values 20 and 5. In SD-MRP, a static
discount of γ = 0.75 was used, meaning values only decrease over distance, but do merge with one another.
Meanwhile, for WP-MRP, the information on elevation was used to inform the interpolation, where in this
case, the weight was chosen to be inversely proportional to the difference in features (higher elevation led
to weights lower than 1 and vice versa) (Color figure online)

as explanatory variables to inform its prediction of neighbour-specific weights. Unlike
SD-MRP, WP-MRP would therefore not assume isotropy (the same spatial effects in
all directions), although it would necessitate the use of Eq. 4 as an aggregation func-
tion. The two variants applied to the example of Fig. 2b, visualising the interpolation
problem of temperature measurements in the Himalayas, are shown in Fig. 2.

4.3.1 Basic static discounts: SD-MRP

Themost basic variant of our proposedmethod stays closest to the canonical formof the
Bellman equation inEq. 3. It uses a single discount parameter γ , ranging between 0 and
1, to represent spatial autocorrelation. This means that, for SD-MRP, values can only
decrease over subsequent recursive calls, making known values reminiscent of a light
source in the fog, radiating values around itself and merging with other light sources,
but decaying over distance. In the example of spatial interpolation of temperatures, it
would propagate the known temperature values over the grid, at an intensity decreasing
with every recursive call, like a heat source dissipating over distance. This can be seen
in Fig. 2a. The advantage of this method is that it does not require additional features to
be applied to a dataset, nor does it require a prediction model to be explicitly trained. It
will also regress to the initialisation value (such as 0, or the mean value) over distance,
which can be a desirable property as uncertainty increases, but can also be considered a
downside as it does not provide much additional information. Its main hyperparameter
γ also requires tuning, which can be done automatically by subsampling known values
and performing interpolation using randomly searched γ settings. Furthermore, the
spatial characteristics of the grid are not taken into account, and isotropy is assumed.
SD-MRP has a time complexity of O(4 · |Y| · k), if k is the number of times Eq. 3 is
iterated (every c ∈ Y can have at most 4 neighbours).
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4.3.2 WP-MRP

In an ideal case, rather than using a single static weight γ , we would use a method
allowing us to use location-specific weights γc′,c. For example, when spatially inter-
polating temperatures in the Himalayas, knowing the difference in elevation between
two neighbouring locations would enable us to know whether one value is likely to
be the same, lower, or higher than the other, as illustrated in Fig. 2c. To this end, we
created the weight prediction variant WP-MRP, in which we use the spatial feature
vectors xc ∈ X and xc′ ∈ X as inputs to a weight prediction model Mw. This model
predicts an individual weight of the location pair (c, c′) as γc′,c = Mw(xc′ , xc) from
spatial data describing the locations (such as houses, shops and land use).Mw could
consist of any machine learning model, ensemble or pipeline, but could also leverage
functions directly operating on the feature space such as distancemeasures and inverse
similarity metrics. Mapping features to a dense data manifold of lower dimensionality
could also be considered.

In the case of machine learning models and pipelines, in order to train the model,
we use the available cells with known true values inY to supervise the training. For all
pairs of neighbours {(c, c′) : c, c′ ∈ Y ∧ yc �= ∅ ∧ yc′ �= ∅}, we would compute the

true weight using the fraction γ ∗
c′,c = y∗

c
y∗
c′
, resulting in a ground truth vector�∗ that can

be used as the targets for the training of a regression model. The method for matching
the elements of �∗ to predictive features is a design choice: the location features xc′
and xc of every location pair (c′, c) would need to be combined, and this could be
done in any manner the situation calls for, such as adding the vectors or computing a
distance metric. In our experiments we opted to simply concatenate xc′ and xc. Thus,
with �∗ and xc′ , xc for all (c′, c) pairs, we can train a regression modelM∗

w(x), such
that, if YN := {(c′, c) : (c′, c ∈ Y) ∧ (c′ ∈ N (c))}:

M∗
w ∈ argmin

Mw

1

|�∗| ·
∑

(c′,c)∈YN

|Mw(xc′ , xc) − γ ∗
c′,c| (8)

Here we propose to train Mw on �∗ using any regression (machine learning)
algorithm. The full pipeline of WP-MRP using machine learning weight prediction is
outlined inAlgorithm 1 (which assumes available functions formodel fitting). Lines 1-
7 generate the elements of the true weight vector �∗, and line 8 fits a weight prediction
model to the weights found in line 4. Lines 9-22 show the iterative updates of cells in
Y, and lines 23-27 create and return the predictions in the form of a grid Ŷ. The time
complexity to runWP-MRP is the same as that of SD-MRP, but with the added cost of
the model used for Mw (which can be chosen freely): O(4|Y| · k) + OMw

, if OMw

is the time complexity of making predictions withMw.

4.4 Vector-based update rule for parallel computation

For the efficient processing of the main iterative loop of lines of our algorithms as
in lines 9-22 Algorithm 1, we reformulated our update function as a series of matrix
operations, allowing updates to be carried out in a highly parallelised manner through
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Algorithm 1: VPint (WP-MRP)
Input: Target matrix Y , feature matrix X, maximum MRP iterations max_i ter
Result: Interpolated matrix Ŷ

1: for all c ∈ Ytrain do
2: for all c′ ∈ NS(c) do
3: if yc �= ∅ and yc′ �= ∅ then

4: γ ∗
c′,c = y∗

c
y∗
c′

{NS(c) denotes neighbours of c}

5: end if
6: end for
7: end for
8: Mw := f i t_model(X, �∗);
9: i ter := 0;
10: while i ter < max_i ter do
11: for all c ∈ Y do
12: if yc = ∅ then
13: ŷc := 0;
14: for all c′ ∈ NS(c) do
15: ŷc := ŷc + Mw(xc′ , xc) · ŷc′ ; {NS(c) denotes neighbours of c}
16: end for
17: else
18: ŷc := yc;
19: end if
20: end for
21: i ter := i ter + 1;
22: end while
23: Ŷ := Y;
24: for all c ∈ Y do
25: Ŷc := ŷc;
26: end for
27: return Ŷ;

vectorisation. This approach does, however, necessitate the use of weighted averaged
(spatial lag) as an aggregation function. We will illustrate the procedure on the sim-
pler case (spatial MRP), but the approach can be generalised to spatio-temporal MRP
as well. The main idea of this approach is to shuffle neighbouring values around in
matrices and tensors Tyi , where the subscript y indicates this tensor contains values,
and i indicates the stage of operations the data is currently in, with the accompany-
ing neighbour weights in Tγi , where γ indicates this tensor contains weights. These
operations are performed in order to compute weighted sums of neighbouring values
for all cells in the grid as a matrix dot product in Eq. 11.

Concretely, let Ŷ denote a matrix of size (n × m) containing predicted values ŷc
at every cell where the true value is not known, and yc otherwise. We first turn this
matrix into a three-dimensional tensor Ty0 of size (n × m × d), where d denotes the
maximum number of neighbours max(|NS(c)|) for any cell c ∈ G (in practice, this
will generally be 4 as a cell can share at most 4 edges in a grid). For all c, the entries
along the d-axis of Ty0 will contain the values of the neighbours of c. Concretely:

Ty0
c,d j

= ŷc′ : c′ ∈ NS(c) (9)
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If |NS(c)| < d, the remaining values of the third dimension of Ty0
c are set to 0. We

similarly construct a tensor Tγ0 of size (h × w × d), of which the entries match those
of Ty0 . However, the values of this tensor contain weights γc′,c from neighbour c′ to
cell c, rather than the values:

Tγ0
c,d j

= 0c′,c : c′ ∈ NS(c) (10)

Next, we systematically stack all columns of Ty0 and Tγ0 as additional rows, resulting
in the new matrices Ty1 and Tγ1 of size (h ·w×d). Now every row represents a single
location c in a single dimension, although the information on the original columns of
Y is kept through the order of the rows. The columns ofTy1 now show the values of the
neighbouring values for a row’s location’s neighbours NS(c), and the columns of Tγ1

contain the corresponding weights. We now perform an MRP update by computing
the dot product of Ty1 and the transpose of (Tγ1), and placing its diagonal values into
a new vector Ty2 of size (h · w):

Ty2 = diag(Ty1 · (Tγ1)ᵀ) (11)

Since this vector has the same order as the rows ofTy1 , we can reshape this vector into
a matrix Ty3 of size (h ×w), corresponding to the shape of Ŷ. We now create another
(h × w) matrix Tn , where Tn

c = |NS(c)|, allowing us to divide Ty3/Tn element-wise,
resulting in an updated prediction matrix Ŷ:

Ŷ = Ty3

Tn
(12)

Finally, since this operation needlessly updated known values, we substitute original
known values in Ŷ: Ŷc = Yc for all c : Yc �= ∅.

Using this vectorised approach, we found that the complexity of our algorithms in
terms of wall-clock time improved by a factor between 10 and 100. In order to adapt
this approach to spatio-temporal MRP interpolation, which adds an extra dimension
for time, Y is of size (h × w × t), Ty0 and Tγ0 are of size (h × w × t × d), and d
becomes equal to 6, as any cell can now have up to 6 neighbours. Since all neighbours
are already included in the fourth dimension, there is no reason to keep the spatial
and temporal dimensions separate. Thus, we can still generate the 2D matrices Ty1

and Tγ1 , as we simply add another dimension to the stacking operation (resulting in
h · w · t rows instead of h · w). As a result, with these exceptions, the pipeline can
remain the same as it was for the spatial case.

5 Experiments

In this section, we will share the details of our experiments. We will first introduce
the research questions we were interested in, after which we will list the baselines we
compared our method to and the datasets used in our experiments.

123



VPint: value propagation-based spatio-temporal interpolation 1659

5.1 Research questions

We were interested in answering the following research questions with our experi-
ments:

– R1: How does VPint compare to baseline methods in terms of mean absolute error,
root mean squared error, peak signal-to-noise ratio and structural similarity?

– R2: Does VPint converge to stable prediction values?
– R3: Can VPint be generalised to spatio-temporal problems?
– R4: CanWP-MRP leverage spatial features to perform better than SD-MRP, given
sufficiently informative features?

– R5: How do VPint and baseline methods scale as the size of the dataset increases?

In addition to these main research questions, we were also interested in whether
different patterns of missing data would give different results.

5.2 Baselines

Our selection of baselineswas aimed at including competitive interpolation and regres-
sion methods used for spatial and geo-spatial modelling in practice. The selection we
made consists of:

– Ordinary Kriging (OK), using an implementation by the Python library PyKrige
(Murphy 2020). Like our proposed methods, ordinary Kriging predicts values
using weighted sums:

ŷc =
∑

c′∈NS(c)

γc′,c · yc′ (13)

Here γc′,c is the distance-based weight between known cell c′ and unknown cell
c. However, OK uses yc′ instead of ŷc′ , NS(c) will contain more cells than only
direct neighbours, and weights are determined using a distance-based variogram
model.

– Universal Kriging (UK), also using PyKrige’s implementation. UK is highly sim-
ilar to OK, but it compensates for the possible existence of a trend in the data. For
both OK and UK, while more advanced methods exist, such as local approximate
Gaussian processes (Gramacy and Apley 2015), as these are aimed at improving
the scalability of Kriging rather than its accuracy, we consider OK and UK to be
suitable representative methods for this class of algorithm.

– Loopy belief propagation, using a Python implementation for denoising images
(Grampurohit 2021), which can be applied to interpolation problems by treating
missing values as noise (generated from a uniform distribution centred around the
mean of the known values, with a range based on their standard deviation). In a
basic form, belief propagation is centred around the equation:

L(ŷc) = �c′∈NS(c)λ(ŷc′) (14)

Here, L(ŷc) refers to the likelihood of y∗
c being equal to ŷc, and λ(ŷc′) is the

likelihood of the neighbouring values (children) c′ ∈ NS(c). To ultimately produce
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a single predicted value, the most likely value can be used:

ŷc ∈ argmax L(ŷc) (15)

– Non-spatial regression, using auto-sklearn (Feurer et al. 2019) to select the best
performing regression model (or ensemble) and hyperparameter settings out of a
large collection of algorithms, including linear regression, support vector regres-
sion, gradient boosted methods and others.2 We denote this model, which will
typically be an ensemble of multiple powerful machine learning models, as F .
The resulting general form of the predictions from non-spatial regression is:

ŷc = F(xc) (16)

We allowed auto-sklearn 150 seconds per run to find the best performing ensemble.
– Spatial autoregressive (SAR), moving average (MA) and autoregressive moving
average (ARMA) models, using auto-sklearn to find the best performing regres-
sion model. Canonically, these models are ordinary least squares (OLS)-based
linear regression methods, with extra spatial (SAR) or error (MA) terms (both in
the case of ARMA). However, since we use auto-sklearn, though OLS is also a
possible model, the final model will generally have a different formula, such as
the potentially non-linear support vector regression models. For SAR, the spatial
term is based on a spatial weight matrix WM and a vector y containing all the
known values of the grid, corresponding to the rows ofWM. The general form of
SAR is:

ŷc = F(xc,WM, y) (17)

For MA models, we used the “MA by AR” approach (Haining 1978). Its formula,
using the prediction error vector instead of SAR’s y, is:

ŷc = F(xc,WM, ) (18)

Following the “MA by AR” approach, before we can use Eq. 18, we first needed
to determine using:

εc = yc − Fs(xc) (19)

Here, Fs represents a separate non-spatial regression model, as in Eq. 16, to com-
pute prediction errors on all known values. These errors can then be used by Eq. 18
by putting the values of εc for all c into a single vector . For ARMA, we again use
the “MA by AR” approach for the MA component. As ARMA is a combination
of SAR and MA, its formula is:

ŷc = F(xc,WM, y, ), (20)

where is obtained using Eq. 19.

2 Auto-sklearn is an automated machine learning (AutoML) package that allows automatic algorithm
selection, hyperparameter optimisation and feature preprocessing ensuring that a high-performing pipeline
is selected on given dataset.
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– Convolutional neural networks (CNN), optimised using automated neural archi-
tecture search (NAS). The CNN regression predicted ŷc from xc and xc′ for all
c′ ∈ NS(c), where NS(c) is determined by the convolutional filters of the network,
similar to CNN approaches used in computer vision (Dong et al. 2015; Shi et al.
2016). We used NAS implemented by auto-keras (Jin et al. 2019) for all training
sets (50 trials, 1000 epochs). Although the model architectures for CNNs can be
quite complex, on an abstract level these networks are still regression models of
the same form as Eq. 16.

5.3 Datasets

Our main experiments involved a synthetic spatial dataset as well as two real-world
datasets (GDP and COVID-19 trajectories), with an additional synthetic spatio-
temporal dataset used to address R3. The implementation of our data generation
algorithms used to create the experimental synthetic datasets is included in our public
code repository; likewise, the real-world datasets are available for public use at their
respective sources, allowing others to reproduce our results.

5.3.1 Synthetic data

Spatial targets For this synthetic dataset, based on a parameterised mean μ and stan-
dard deviation σ , the interpolation gridY of user-specified size (n×m) (set to n = 50
and m = 50 in our experiments) was generated, where each cell c was assigned a
base value ybc by sampling from the normal distributionN (μ, σ ). Next, to assign true
values y∗ affected by spatial interaction, we updated every cell c as a weighted average
(based on a spatial autocorrelation parameter as) of its own value and the mean of its
neighbouring values:

y∗
c = (1 − as) · ybc + as · 1

|NS(c)| ·
∑

c∈NS(c)

ybc (21)

Spatio-temporal targetsTo address R3, we also generated synthetic spatio-temporal
data. For this type of data we introduced additional parameters for the number of
timesteps d and the temporal autocorrelation coefficient at . We then built a three-
dimensional tensor Y of size (n × m × d) by using Eq. 21 at every time step. Since,
at this point, the temporal layers of Y are still fully independent, we use the temporal
neighbourhood function NT (c) to perform a final update on the cells of Y ensuring
temporal interaction:

y∗
c = (1 − at ) · ybc + at · 1

|NT (c)| ·
∑

c∈NT (c)

ybc (22)

Synthetic features For our synthetic data, we created a feature vector x =
(xbc1, x

b
c2 , ..., xc|xb |) for every location c ∈ Y. Every base feature xbci ∈ xbc was gen-

erated using a uniform distribution U(min,max) with user-specified min and max
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values. These features were then updated in a similar manner to the cell values y, using
a parameter called the feature correlation coefficient f :

xck = (1 − f ) · xbck + f · y∗
c (23)

A feature correlation coefficient f of 0 would result in fully random features, whereas
a coefficient of 1 would result in features identical to the targets.

5.3.2 Real-world data

In the case of real-world data, the variables being measured, such as GDP or COVID-
19 incidence, are generally not gridded in nature. As a result, to generate these datasets,
data needs to be aggregated, e.g., by taking the mean (estimated) GDP per capita for
residents in the area covered by a grid cell, or the sum of COVID-19 incidence at that
location. The granularity of these datasets thus introduces a trade-off: a high granularity
increases the computational cost and may result in relatively sparse datasets (as was
the case in our COVID-19 dataset), but does provide a high level of detail. Meanwhile,
a low granularity may result in data too low-grained to draw meaningful conclusions
from, or cells that simply all regress to a global mean due to the erasure of local spatial
patterns, but will be faster to compute and likely results in a higher density dataset.
There is no minimal or maximum granularity cutoff point at which an interpolation
method becomes infeasible. However, when gauging how applicable an interpolation
method is to a users’ gridded dataset, this trade-off merits consideration.

Gross domestic product (GDP) targets For GDP data, we used a gridded spatial
dataset containing worldwide GDP estimates sourced from World Bank (DECRG
2010) at a resolution of 1km × 1km. We specifically looked at the city of Taipei in
Taiwan and its surroundings, including both heavily populated urban areas expected
to have high GDP values, and surrounding sparsely populated mountainous areas with
low GDP values. The resulting grid had a size of 51 × 51 pixels.

Aggregated COVID-19 trajectory targets This dataset consisted of trajectories of
confirmed COVID-19 patients prior to their diagnosis in South Korea (DACON 2020).
Although this data was spatio-temporal in principle, we opted to aggregate over time
both due to the relative sparsity of the data (as it was gathered at the start of the COVID-
19 pandemic), and to alleviate potential privacy-related concerns in this relatively
sensitive dataset. Thus, every c ∈ G had a value corresponding to the total number
of visits by people infected with COVID-19 over the entire time period. The city of
interest in this dataset wasDaegu, whichwas themain hotspot of the epidemic in South
Korea at the time the data was collected. A visualisation of this data can be found in
Fig. 3b. Since the target data did not come in gridded form, we set the resolution of
this dataset to 35 × 51 pixels, putting it at a similar scale to the GDP dataset used for
Taipei.

Map-based features To generate features for GDP and COVID-19 trajectories in
South Korea and Taiwan, we aggregated a selection of vector and point map data
sourced from OpenStreetMap (OpenStreetMap 2019). For all c ∈ G, every element in
xc represented the count of all objects in the map data corresponding to a certain type,
such as apartments, houses and shops. There are various design choices available for
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Fig. 3 Visualisation of the GDP data in Taipei (a) and the COVID-19 dataset in Daegu (b). Due to the
heavily localised large infection clusters, for the visualisation in (b) we limited the data to a range of [0, 10]
(all values > 10 were set to 10) for greater visibility (the experiments used the raw values instead) (Color
figure online)

preprocessing this type of data, such as dealing with objects without an annotated type
(drop or replace), feature selection (none, manually created high-level taxonomy, or
keeping the most frequent types) and feature normalisation (none, unit length scaling,
mean normalisation or Z-score normalisation). In accordance with the design philoso-
phy of programming by optimisation (PbO) (Hoos 2012), we did not commit to any of
these choices, and instead used a commonly used Bayesian optimisation-based auto-
mated algorithm configurator, version 0.12.0 of SMAC3 (Hutter et al. 2011), to select
the best possible feature construction pipeline per method (time budget 24 hours per
algorithm per dataset).

5.4 Experimental setup

The following section will explain the procedures and experimental conditions neces-
sary to carry out our experiments.

5.4.1 Missing data procedures

In order to evaluate our methods, we required data that was fully available to compute
error metrics, while also having access to grids with missing data. To this end, we
introduced two methods for ‘hiding’ known values, resulting in different patterns of
missing data.

Random missing values This missing value approach was straightforward. Given
a proportion of known values p, for all other cells there is a probability of being
randomly obscured if a number z = U(0, 1) sampled from a uniform distribution
between 0 and 1 is smaller than p. That is, for every cell c ∈ G:

yc =
{
y∗
c if z < p,

∅ otherwise
(24)
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Algorithm 2: Spatially clustered missing values
Input: Location grid G, true grid Y∗ = (n,m), number of points k, number of walks w, number of

steps per walk r
Result: Interpolation grid with missing values Y

1: Y := zeros(n,m)

2: num_points := 0
3: while num_points < k do
4: i := U(0, n)

5: j := U(0,m)

6: c := Gi, j
7: num_walks := 0
8: while num_walks < w do
9: num_steps := 0
10: while num_steps < r do
11: Yc := ∅

12: c := random_selection(N (c))
13: num_steps := num_steps + 1
14: end while
15: num_walks := num_walks + 1
16: end while
17: num_points := num_points + 1
18: end while

In our experiments, p was set to 0.8.
Spatially clustered hidden valuesMuch like the spatial data itself, the missing data

points in a grid may not be independent, and instead subject to spatial autocorrelation
themselves. For example, some locationsmay havemissing data due to natural barriers
making measurements difficult, or due to local phenomena such as clouds obscuring
parts of the measurements. In this missing value approach, we were inspired by optical
satellite data, where clouds are the biggest source of missing data in the field. This
approach is also why algorithms like Gapfill (Gerber et al. 2018) could not be con-
sidered for our experiments, as it requires a part of the data in a neighbourhood to
be available. Our method for creating clusters of missing data was based on random
walks. Given a number of points k, a number of walks w and the number of steps
per walk r , the algorithm creating artificial clusters is outlined in Algorithm 2. When
applied to spatio-temporal data, the spatially missing data was applied independently
to every time step.

5.4.2 Experimental setup

Thegeneral formof our experimentswas to run10 algorithms (SD-MRP,WP-MRPand
8 baselines) 30 times for two types of missing data (random and spatially clustered) on
every dataset (3 in total, with 1 additional dataset for spatio-temporal data), including
both synthetic data and real-world datasets and addressingR1andR3.Theperformance
of the methods was compared according to their ranks based on the Wilcoxon signed-
rank test (Wilcoxon 1992), which is similar to a t-test but does not assume normality.

For spatial synthetic data we set the size of the grid to n = 100 and m = 100, and
for the spatio-temporal synthetic data used to address R3, we set the size to n = 50,
m = 50 and the number of timesteps d = 5. Tracking δ allowed us to visualise the
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convergence of our method (R2), using different settings for f in Eq. 23 allowed us to
gauge the effectiveness ofWP-MRP relative toSD-MRPas a functionof the correlation
between the features and true values of locations (R4), and varying n and m allowed
us to see how well all methods scaled to larger datasets (R5). Thus, in addition to the
general performance results, we used the synthetic data to run additional experiments
to address research questions 2 through 5. Conversely, we used the real-world datasets
to gauge how well the performance on synthetic data, and the analysis thereof, would
generalise to real-world cases. For the scalability analysiswe set n = m, with n ranging
from 20 to 200 in steps of 20. The spatially clustered missing data was generated using
k = 5 centre points, r = n+m

2 steps per walk, and w = r
2 walks.

For every combination of a dataset with a type of missing data, all algorithms were
run 30 times, and used automated algorithm configuration (for the feature prepro-
cessing pipeline explained in Sect. 5), automated machine learning (methods using
auto-sklearn, automating the selection ofmachine learning algorithms and their hyper-
parameters, as explained in Sect. 5), NAS (in the case of CNN, automating the neural
network architecture explained in Sect. 5) and random search (in the case of SD-MRP’s
γ , explained in Sect. 4).

All experiments were run on a computing cluster consisting of 26 homogeneous
nodes containing 94 GBs of memory and using Intel Xeon E5-2683 v4 CPUs running
at 2.10GHz.

6 Results

In this section, we will report on the results of our experiments. We first explain the
performance metrics used, after which we will cover detailed results for all individual
datasets (synthetic spatial data, GDP and COVID-19). These results were computed
as the mean of 30 runs per algorithm and dataset for every performance metric. After
covering the dataset-specific performance metrics, we investigate other properties of
VPint: qualitative visual plausibility, the convergence of Eq. 3, the degree to which it
can be generalised to spatio-temporal problems, the required feature correlation for
WP-MRP to perform better than SD-MRP, and the scaling of different methods to
larger datasets. Finally, we will provide a high-level summary our findings.

6.1 Performancemetrics

Since multiple properties can be desirable in an interpolation method, we evaluated
our method based on 4 performance metrics. The first of these was the mean absolute
error (MAE):

MAE(Ŷ,Y∗) = 1

|Y| ·
∑

c∈Y
|ŷc − y∗

c | (25)

MAE is the main error metric reflecting the accuracy of the predictions obtain from
the methods we studied, with all errors weighted equally. We also added root mean
squared error (RMSE), which penalises extreme errors relatively more severely:
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RMSE(Ŷ,Y∗) =
√

1

|Y| ·
∑

c∈Y
(ŷc − y∗

c )
2 (26)

In addition to MAE and RMSE as basic error metrics, we also included two metrics
common in the computer vision and image processing fields. The first of these is peak
signal-to-noise ratio (PSNR):

PSN R(Ŷ,Y∗) = 20 · log10
max(Y∗)
RMSE

(27)

PSNR is highly related to the root mean squared error (RMSE) metric, and in fact
contains it as a component. It computes the logarithm of the RMSE scaled by the
maximal (true) value max(Y∗); as such, it is expected to show similar patterns to
RMSE. The main motivation for using PSNR is that it scales values by the maximal
(true) value max(Y∗); therefore, PSNR results will have a similar range for the GDP
dataset (where errors of over 30 000 were common) and the COVID-19 dataset (where
errors were typically under 10). Finally, we looked at the structural similarity index
(SSIM):

SSI M(Ŷ,Y∗) = (2 · μŶ · μY∗) · (2 · σŶY∗ + c2)

(μ2
Ŷ

+ μ2
Y∗ + c1) · (σ 2

Ŷ
+ σ 2

Y∗ + c2)
(28)

SSIM aims to quantify the similarity of two images in a manner consistent with human
perception, emphasising spatial structure over absolute errors.

6.2 Empirical performance (R1)

The results presented in this subsection are dedicated to answering R1.We ran detailed
experiments on the synthetic spatial dataset as well as the real-world GDP per capita
and COVID-19 datasets.

Synthetic spatial data
The results for synthetic spatial data are shown in Table 1. On this data, a fairly

consistent pattern can be observed for all performance metrics: on randomly missing
data WP-MRP performs best, whereas ARMA performs best on spatially clustered
hidden data. It is not surprising that ARMA, aswell as other regression-basedmethods,
suffer less frommissing data being clustered together since they are based onpredicting
values directly from features. It is more surprising that WP-MRP shows very extreme
values for this type of missing data. Since SD-MRP does not suffer from the same
problem, it seems that the problem lies in theweight predictionmodelMw, rather than
being inherent to VPint. One possible cause for the behaviour on spatially clustered
missing data may be that a mispredicted (high) weight will get disproportionately
amplified with subsequent recursive calls where the target value is supposed to go
up. Although these types of runs only seemed to happen on the synthetic and GDP
datasets, it is a downside of WP-MRP, and one could consider constraining weights,
or applying normalisation techniques, to alleviate the issue. Apart from these cases,
there was no big difference between the results of randomly missing and spatially
clustered missing data.
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Table 1 Results for all algorithms on synthetic spatial datain terms of the average MAE, RMSE, PSNR
and SSIM over 30 runs, for randomly hidden and spatially clustered hidden values

Algorithm MAE RMSE PSNR SSIM

Random Clustered Random Clustered Random Clustered Random Clustered

Ordinary Kriging 2.392 2.59 9.004 10.446 0.386 0.379 0.06 −0.009

Universal Kriging 2.381 2.476 9.053 9.609 0.386 0.383 0.062 0.008

Belief propagation 19.981 20.028 408.996 410.901 0.220 0.220 0.000 0.000

Non-spatial
regression

2.459 2.418 9.507 9.228 0.384 0.385 0.051 0.088

SAR 2.006 2.333 6.61 8.784 0.399 0.387 0.397 0.156

MA 2.462 2.459 9.549 9.523 0.383 0.383 0.084 0.036

ARMA 1.969 2.297 6.357 8.423 0.401 0.389 0.398 0.16

CNN 341.277 47.391 1.263×103 35.520 0.02 0.288 0.002 −0.0

SD-MRP 3.28 4.71 19.363 42.023 0.37 0.339 0.341 0.156

WP-MRP 1.949 2.248×1010 6.244 1.503×1029 0.402 −0.272 0.402 0.064

Allmethodswere ranked based on the number of othermethods they significantly outperformed, established
using a Wilcoxon signed-rank test (α = 0.05). The method significantly outperforming the most other
methods (ties allowed) has been marked bold in every column

Table 2 Results for all algorithms on GDP data in terms of the average MAE, RMSE, PSNR and SSIM
over 30 runs, for randomly hidden and spatially clustered hidden values

Algorithm MAE RMSE PSNR SSIM

Random Clustered Random Clustered Random Clustered Random Clustered

Ordinary Kriging 3.863 9.375 8.995 31.48 −0.514 −0.558 0.122 0.0

Universal Kriging 3.944 9.822 9.395 37.977 −0.516 −0.568 0.121 0.0

Belief propagation 4.009 4.048 19.026 21.308 −0.445 −0.437 0.045 0.068

Non-spatial
regression

8.259 9.022 27.973 32.89 −0.563 −0.563 0.007 0.011

SAR 6.688 7.39 20.76 28.583 −0.55 −0.551 0.055 0.051

MA 8.376 8.491 27.213 32.943 −0.562 −0.559 0.008 0.019

ARMA 6.836 6.664 21.208 24.934 −0.55 −0.538 0.049 0.048

CNN 5.604 8.131 30.985 45.152 −0.568 −0.569 0.002 −0.001

SD-MRP 3.833 5.496 11.924 21.121 −0.524 −0.53 0.155 0.122

WP-MRP 3.48 1.435×1047 9.13 2.311×1095 −0.514 −0.945 0.189 0.14

Allmethodswere ranked based on the number of othermethods they significantly outperformed, established
using a Wilcoxon signed-rank test (α = 0.05). The method significantly outperforming the most other
methods (ties allowed) has been marked bold in every column

GDPper capitaThe results forGDPdata are shown in Table 2. In terms ofMAEand
SSIM, WP-MRP was the best performing method among all methods for randomly
missing data. For spatially clustered missing data, while belief propagation performed
better than SD-MRP and WP-MRP suffered from extreme values hampering its per-
formance, both VPint variants still performed well in terms of SSIM. In terms of
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Table 3 Results for all algorithms on COVID-19 trajectory data in terms of the average MAE, RMSE,
PSNR and SSIM over 30 runs, for randomly hidden and spatially clustered hidden values

Algorithm MAE RMSE PSNR SSIM

Random Clustered Random Clustered Random Clustered Random Clustered

Ordinary Kriging 0.067 0.072 1.176 1.368 0.481 0.555 0.343 0.292

Universal Kriging 0.115 2.36 3.03 2936.144 0.466 0.51 0.452 0.273

Belief propagation 0.470 0.209 13.271 1.335 0.479 0.533 0.320 0.574

Non-spatial
regression

0.058 0.055 1.211 0.569 0.478 0.579 0.558 0.498

SAR 0.067 0.07 1.058 1.06 0.49 0.545 0.403 0.382

MA 0.069 0.064 1.169 0.936 0.48 0.571 0.388 0.346

ARMA 0.07 0.066 1.178 1.316 0.481 0.544 0.401 0.449

CNN 0.235 883.369 7.479 6.192×103 0.407 0.182 0.796 0.005

SD-MRP 0.036 0.038 1.175 1.258 0.481 0.552 0.941 0.939

WP-MRP 0.244 0.24 8.327 7.956 0.4 0.448 0.785 0.776

Allmethodswere ranked based on the number of othermethods they significantly outperformed, established
using a Wilcoxon signed-rank test (α = 0.05). The method significantly outperforming the most other
methods (ties allowed) has been marked bold in every column

RMSE and PSNR, belief propagation performed best in most cases, though SD-MRP
performed best together with belief propagation for spatially clustered missing data,
and WP-MRP, OK and UK performed better in terms of RMSE on randomly hidden
data. Also, worth noting is that the performance of all methods was rather poor, with
all methods achieving high error rates and low similarity scores. This may imply that
it is hard to predict GDP based on spatial patterns alone (OK, UK, SD-MRP), while
the map-based features were also not informative enough to make any worthwhile
predictions (all other methods).

COVID-19 trajectories The results for COVID-19 trajectories are shown in Table
3. On this dataset, SD-MRP is performing best out of all methods in terms of MAE
and SSIM, though none of the methods was clearly better in terms of RMSE and
PSNR than the others in terms of statistical significance. It is, however, unfortunate
to see WP-MRP as one of the two only methods performing significantly worse than
all others on this dataset in these metrics, despite a high SSIM compared to baseline
methods. Since othermethods using feature data (apart fromCNN) perform better than
Kriging, it seems unlikely that the map-derived features are the cause of WP-MRP
not performing well on this dataset. Instead, it appears that they are more effective for
directly predicting the COVID-19 incidence at a particular location, rather than the
relationship between neighbouring locations. This may be caused by the COVID-19
grid being relatively sparse; propagating values from 0 is difficult to do with a spatial
weight alone. Thus, for sparse grids withmostly 0 values, SD-MRPwith its decay over
distance may be more appropriate, whereas WP-MRP, which can increase or decrease
values based on the weights that follow from feature data, may be more appropriate
in cases where all cells contain values in a non-zero range.
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6.3 Other properties (R2-R5)

We now present the results of the experiments addressing the remaining research
questions, R2–R5, exploring various properties of our proposed method.

Visual plausibility An example of hidden synthetic data (n = m = 50) is shown
in Fig. 4, with a visual comparison between its reconstruction by the different meth-
ods. The reconstructed images caution against relying too much on mean absolute
error, as all methods (apart from belief propagation and CNN) were able to reach
a similar mean absolute error as WP-MRP or better (around 2.2 for random, 0.9
for clustered). However, our methods (and WP-MRP in particular) appear to capture
the spatial characteristics of the original image, captured by the structural similar-
ity index (SSI M = 0.34 for random, SSI M = 0.69 for spatially clustered), better
than OK (which seemingly simply predicts the average value, SSI M = 0.04 for
random, SSI M = 0.65 for spatially clustered). Compared to non-spatial regression,
our method delivers less noisy interpolations, while also blurring less than ARMA.
The results for belief propagation and CNN catch particular attention, as in these cases
belief propagation vastly underestimated the values,whereasCNNoverestimated them
orders of magnitude higher than other methods. The latter implies that there may be a
large risk of overfitting for the neural networks, due to the models being too complex
for the limited amount of training data available.

Algorithm convergence (R2)
An example of the convergence ofWP-MRP over iterations can be seen in Fig. 5. As

the figure shows, as the algorithm iterates Eq. 3, it converges to a stable configuration
which we use for our predictions. Moreover, the variability of this convergence was
fairly low, indicating that the running time of the algorithm will be relatively stable
regardless of the situation. This example considered the convergence of WP-MRP on
randomly hidden synthetic spatial data, but similar behaviour could be observed for
SD-MRP, and on different datasets with spatially clustered hidden data. This includes
the convergence of WP-MRP on spatially clustered hidden data for synthetic spatial
data, where Table 1 earlier indicated that WP-MRP did not perform well.

Generalising to spatio-temporal problems (R3)
AddressingR3, to gaugewhether ourmethod could also be applied to 3-dimensional

spatio-temporal problems, we ran an additional set of experiments on synthetic spatio-
temporal data. The results of this experiment are shown in Table 4. Unfortunately, it
appears that our proposed method does not (yet) generalise well to 3-dimensional
problems, as both VPint variants were the worst performing out of all methods. How-
ever, other modifications adapting VPint to the spatio-temporal domain may be more
successful. Interestingly, on this synthetic dataset, ARMA performed best across the
board – one might have expected a more inherently spatio-temporal method, like
Kriging, would have performed better. Given this, it may be the case that the spatio-
temporal version of VPint performs badly not due to an inherent problem with the
method, but rather a lack of exploitable patterns in the temporal dimension of the
data. Whereas Kriging methods will tend to give lower weights to non-informative
variables, in its current form, our method weights all dimensions equally, meaning that
a non-informative dimension would harm the performance of our method rather than
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Fig. 4 Example of synthetically generated spatial data (a), with random (b) and spatially clustered (c)
missing data, where white pixels represent missing values in the data. Reconstructed images by SD-MRP
(d, e), WP-MRP (f, g), ordinary Kriging (h, i), non-spatial regression (j, k), SAR (l, m), ARMA (n, o),
belief propagation (p, q) and CNN (r, s) are shown in the lower rows of the figure. The results for universal
Kriging and MA were highly similar to those of ordinary Kriging and ARMA, respectively, and are not
shown here (Color figure online)
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Fig. 5 Convergence ofWP-MRP over 100 runs on randomly hidden synthetic spatial data. The y-axis shows
δ, or the amount of change from the configuration from one iteration to the next as a proportion of the mean
value of the prediction grid. All individual runs were plotted in grey, with the mean δ values plotted in red.
The algorithm showed stable convergence with low variability over 50 iterations (Color figure online)

helping it. In the synthetic data we used in our experiments, independent spatial data
was generated for all time steps individually, after which temporal autocorrelation was
simulated using Eq. 22. As every time step had two essentially independent neigh-
bours, the autocorrelation between the two may have cancelled out one another on
some cells, leading to a diminished performance. As a result, the model may perform
better on real-world spatio-temporal data under favourable conditions. However, as
this is outside the scope of this work focused on spatial interpolation, further research
would be necessary to establish exactly what those favourable conditions would be.

Performance ofWP-MRP compared to SD-MRP as a function of feature correlation
(R4) To address R4, we ran an additional experiment on synthetic data with settings of
the feature correlation coefficient f in Eq. 23 ranging between 0.05 and 1.0 in steps
of 0.05. Figure 6 compares the performance of the two methods based on MAE as a
function of feature correlations. The figure shows the error distribution acquired from
30 runs. As expected, Fig. 6 shows that WP-MRP performs better than SD-MRP for
high values of f , and conversely, SD-MRP appears more successful for low feature-
target correlations. However, there appear to be diminishing returns for higher f after
0.4, and already at a correlation of 0.1WP-MRPperformed better than SD-MRPon the
synthetic data. In conclusion for R4, this experiment shows that WP-MRP leverages
spatial features to perform better than SD-MRP in situations where the features are
sufficiently informative.

Scaling to larger datasets (R5) Addressing R5, we ran a scalability analysis by
running every algorithm once on synthetic data for grid sizes ranging from 20 to 200
(height and width) in steps of 20. The results of these experiments, based on the total
running time of methods (including training, if any, but excluding NAS, SMAC and
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Fig. 6 SD-MRP and WP-MRP performance on synthetic data for various settings of f . All datapoints
were computed using the median and standard deviation of 30 runs per setting (SD-MRP is unaffected by
features, and therefore constant). The extreme error bars at f = 0.55 and f = 0.95 also show the effect of
WP-MRP producing extreme values (Color figure online)

Table 4 Results for all algorithms on synthetic spatio-temporal data in terms of the average MAE, RMSE,
PSNR and SSIM over 30 runs, for randomly hidden and spatially clustered hidden values

Algorithm MAE RMSE PSNR SSIM

Random Clustered Random Clustered Random Clustered Random Clustered

Ordinary Kriging 2.741 3.12 12.025 15.714 0.373 0.362 0.001 0.011

Universal Kriging 2.67 3.118 11.465 15.824 0.375 0.361 0.008 0.002

Belief propagation 3.994 4.012 408.672 412.397 0.220 0.220 0.000 0.000

Non-spatial regression 2.516 2.538 9.871 10.039 0.382 0.381 0.001 0.001

SAR 2.635 2.451 11.369 9.588 0.376 0.383 0.046 0.069

MA 2.466 2.524 9.663 10.025 0.383 0.381 0.001 0.001

ARMA 2.021 2.257 6.668 8.292 0.399 0.389 0.412 0.193

CNN 3.245 4.293 16.646 204.488 0.364 0.344 0.0 0.0

SD-MRP 15.931 14.648 269.688 241.627 0.239 0.249 0.042 0.038

WP-MRP 7.332 8.296 81.403 117.111 0.29 0.275 0.046 0.047

Allmethodswere ranked based on the number of othermethods they significantly outperformed, established
using a Wilcoxon signed-rank test (α = 0.05). The method significantly outperforming the most other
methods (ties allowed) has been marked bold in every column

other algorithm configuration as they are optional) can be seen in Fig. 7a (random) and
b (spatially clustered). The figures show that SD-MRP, while faster than CNNs, does
not scale well to larger datasets, and that WP-MRP scales similarly compared to non-
spatial regression, SAR, MA and ARMA. This tells us that the iterative MRP-derived
update rule likely does not account for a large portion of the running time; instead, it
appears that the auto-sklearn training procedure, much like in the case of non-spatial
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(a) Random missing data (b) Spatially clustered missing
data

Fig. 7 Running time in seconds of the full pipeline of different methods as a function of grid size on
synthetic spatial data. The results for universal Kriging and CNN were cut off early due to hitting time-out
thresholds. Meanwhile, although the running time of ordinary Kriging was not too different from other
methods, its memory usage became prohibitively large and exceeded its allotted resources (13GB) (Color
figure online)

regression and SAR,MA andARMA is themain bottleneck forWP-MRP. The reason,
then, for SD-MRP to scale poorly, would be the random search-based subsampling
procedure used to find an optimal static discount γ explained in Sect. 5.

We can also see in both figures that universal Kriging scales very poorly to larger
datasets; in fact, its runs timed out after grids of the size 100 × 100. While CNN
was slightly less affected than UK by the increasing size, its running times were
still exceedingly high, and likewise hit a time-out threshold after 100 × 100 grids.
Similarly, while the running times of ordinary Kriging were similar to those of other
methods, its memory usage became prohibitively large by exceeding its allotted 13GB
at 120 × 120 grids. Thus, this experiment showed another weakness of GPs, namely
their high memory usage, which is also detrimental to their scalability. Newer GP
methods, like local approximation GPs (Gramacy and Apley 2015), may scale better
in terms of running time and memory usage by using local approximations, although
this may come at the expense of a decreased ability to capture global information.

In conclusion for R5, our methods scale better than Kriging to larger datasets, on
par with non-spatial regression, SAR, MA, and ARMA, though SD-MRP did take
longer than these methods on randomly missing data. Generally, our methods use
substantially less memory than ordinary Kriging and universal Kriging.

6.4 High-level summary

Tables 1, 2, 3 show the competitive advantage of the VPint variants, in terms of MAE
andSSIM.For randomlymissingdata, the twoVPint variants together performedbetter
in terms of MAE than baseline methods on all 3 spatial datasets, although individually
both methods only performed better than all baselines on 2 out of 3 datasets.WP-MRP
performed better than all other methods on synthetic and GDP data, though SD-MRP
also performed better than baselinemethods on theGDPdata, and SD-MRPperformed
better than all other methods on the COVID-19 dataset. In terms of SSIM, the two
VPint variants togetherwere again the best performingmethods on all 3 datasets,where
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WP-MRP again performed best on the synthetic (though tied with SAR and ARMA,
with SD-MRP following one ranking lower) and GDP datasets, and SD-MRP also
performed better than the baseline methods on GDP data. SD-MRP performed better
on the COVID-19 dataset, where WP-MRP was the third best performing method
after CNNs. In terms of RMSE, the results were less consistent, with no method
clearly outperforming the others across all datasets, and as expected, the rankings for
PSNR and RMSE were almost always the same. This difference implies that, while
the VPint variants will often perform better on average, when they do fail to produce
good results, the errors will be more extreme than those of baseline methods. This
was seen especially clearly in runs where WP-MRP obtained error values orders of
magnitude higher than all other methods.

On spatially clusteredmissing data, in terms ofMAE, SD-MRP still performed best
on the COVID-19 dataset, but was outperformed by belief propagation on GDP data
and by ARMA on synthetic data. WP-MRP also failed to significantly outperform
baseline methods on any of the datasets for this type of missing data. However, in
terms of SSIM, both VPint variants performed significantly better than all baselines
on GDP and COVID-19 data, and SD-MRP tied with SAR and ARMA for synthetic
data. Since it seems that SD-MRP preserves the spatial structure of spatially clustered
hidden data better than baseline methods on all 3 datasets, and WP-MRP did so on
2 out of 3 datasets, we conclude that VPint would be a better option for this type of
missing data if the spatial structure of the interpolations is important. Interestingly,
SSIM is higher for all methods for spatially clustered data; this is likely caused by this
type of missing data being considered a substantial structural element, thus affecting
SSIM less than random missing data.

Regarding our additional experiments,we found that the convergence ofVPint tends
to progress smoothly and has very little variance between runs (as seen in Fig. 5). Table
4 shows that, in its current form, our method does not yet generalise well from the
spatial case to the spatio-temporal case. Figure 6 shows that WP-MRP will perform
better than SD-MRP starting from a feature correlation coefficient f of around 0.1
for synthetic data, implying that a high correlation between features and targets is not
required for the feature data to have added value to the method. Finally, Fig. 7 showed
favourable scalability of our proposed method, particularly compared to Kriging.

7 Conclusion and future work

In this work we proposed VPint, a value propagation-based method for spatial inter-
polation, establishing a system-oriented perspective. To this end, we introduced two
variants of our interpolation method (SD-MRP and WP-MRP), the latter of which
exploits spatial features describing the characteristics of the grid. In our experiments,
VPint was found to perform significantly better than baseline methods in terms of
mean absolute error and structural similarity on randomly missing data in 3 datasets,
and 2 out of 3 datasets for spatially clustered missing data. Overall, whether VPint is
the appropriate choice of algorithm appears to depend on the type of data in question,
and the goals of the user. In the common case where a low error rate is the objective,
particularly in a way that preserves the spatial structure of a grid, VPint (and especially
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WP-MRP) will generally be the best option for randomly missing values. On spatially
clustered missing data, SD-MRP is usually a better option, though other methods are
more competitive on this type of missing data. Despite these advantages offered by
VPint, if the user is looking for a method that does not suffer from outliers of partic-
ularly bad predictions, and is willing to accept higher average errors as a result, other
methods may be a better option.

In future work, it would be interesting to focus on exploring the performance of our
methods on other real-world datasets, particularly when using other sets of features
not derived frommap data. Furthermore, we see value in further analysis of the spatio-
temporal variant of VPint, focussed on the circumstances under which it will perform
well. Alternatively, a different approach to spatio-temporal interpolation could be a
temporally layered version of WP-MRP, using a representation similar to the tensor-
based approach adopted by Corizzo et al. (2021). Such an approach would eliminate
the need for explicit feature data, and would instead use known values at different
time steps as features to derive spatial weights. This type of approach may well be
worth exploring. Finally, applying this method to specific fields frequently suffering
from missing data, such as cloud cover in remote sensing data, may contribute greatly
to those fields. The need for cloud removal techniques, given that about 70% of Earth
is covered by clouds at any time, is great; existing techniques are limited and often
either difficult to apply for non-experts in deep learning, or fail to produce actionable
new information (such as simply predicting a mean, or replacing cloudy pixels). A
data-driven, universally and easily applicable method able to fill in cloud cover (or
gaps caused by faulty sensors), informed by the highly correlated features of previous
imagery at the same place, could increase the availability of data and therefore the
efficacy of the many high-impact methods dependent thereon to a large extent.
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