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Abstract
A large number of covariates can have a negative impact on the quality of causal
effect estimation since confounding adjustment becomes unreliable when the number
of covariates is large relative to the number of samples. Propensity score is a common
way to deal with a large covariate set, but the accuracy of propensity score estimation
(normally done by logistic regression) is also challenged by the large number of
covariates. In this paper, we prove that a large covariate set can be reduced to a lower
dimensional representation which captures the complete information for adjustment in
causal effect estimation. The theoretical result enables effective data-driven algorithms
for causal effect estimation. Supported by the result, we develop an algorithm that
employs a supervised kernel dimension reductionmethod to learn a lower dimensional
representation from the original covariate space, and then utilises nearest neighbour
matching in the reduced covariate space to impute the counterfactual outcomes to
avoid the large sized covariate set problem. The proposed algorithm is evaluated on
two semisynthetic and three real-world datasets and the results show the effectiveness
of the proposed algorithm.
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1 Introduction

Estimating the causal effect of an action (also known as exposure, intervention or
treatment in literature) on an outcome is a central problem in scientific discovery and
it is the essential task for decision making in many areas, such as medical treatments,
government policy marking, and economics (Rubin 1974; Pearl 2009; Imbens and
Rubin 2015).

A key to accurate causal effect estimation is confounding control as uncontrolled
confounding variables can introduce spurious association between the treatment and
the outcome, biasing the causal effect estimation. Properly designed and executed
randomisation in a randomised control trial (RCT) is the gold standard for confounding
control (Deaton and Cartwright 2018). However, it is often impossible or too costly to
conduct RCTs. As a result, it is desirable to estimate causal effects from observational
data, and data-driven causal effect estimation has attracted much attention in recent
years (Imbens and Rubin 2015; Xie and Cai 2019; Häggström 2018).

Controlling or adjusting for a deconfounding set (also known as adjustment set in
literature) is an effective way to eliminate confounding bias in causal effect estimation
using observational data (Pearl 2009; VanderWeele and Shpitser 2011; Shpitser et al.
2010). The size of the deconfounding set can significantly affect the performance of
a causal effect estimator (Abadie and Imbens 2006; Benkeser and Carone 2017), and
a small sized deconfounding set is preferred (De Luna and Waernbaum 2011; Witte
and Didelez 2019).

There are two general approaches for determining a proper deconfounding set, each
with its own limitations: (1) Including all covariates in the deconfounding set. This is
a straightforward approach, but a large sized deconfounding set leads to the reduction
of statistical gain (De Luna and Waernbaum 2011); (2) Selecting a subset of covariate
variables as a deconfounding set, based on a criterion, mostly, the back-door criterion
or its variations (Pearl 2009; Maathuis and Colombo 2015). However, the underlying
causal graphs required by these criteria are usually unknown. It is possible to learn
causal structures from data (Spirtes and Glymour 2000; Pearl 2009), but from data
alone we can only learn a Markov equivalence class of causal graphs (Maathuis and
Kalisch 2009;Maathuis and Colombo 2015), hence it is impossible to recover a unique
causal graph from the data except in some very special cases (e.g. a small number of
variables with sparse relationships among them).

Another line of research is focused on using dimension reduction techniques to
create a small set of variables in a new feature space for confounding adjustment. An
early and notable example is propensity score (Rubin 1974; Rosenbaum and Rubin
1983), which reduces a covariate set to a scalar, specifically, the probability of an
individual receiving the treatment given the covariates. However, propensity score
estimation also suffers from the problem of a large sized covariate set (Hahn 1998;
Van Der Laan and Starmans 2014; Luo and Zhu 2017). Recently, some advances have
been made along the direction of dimension reduction for causal effect estimation
(details in the Related work section). However, it is not clear whether or not dimension
reduction guarantees unbiased causal effect estimation.

In this paper, we prove that the deconfounding set obtained under Sufficient Dimen-
sion Reduction (SDR) is sufficient to control confounding bias, based on the causal
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graphical modelling theory. This result opens the door for developing newmethods for
causal effect estimation with a large number of covariates. We then propose a method,
CESD, the Causal Effect estimator by using Sufficient Dimension reduction. This
method utilises the kernel dimension reduction (Fukumizu et al. 2004) which satisfies
the SDR conditions to learn a deconfounding set from data. The advantage of kernel
dimension reduction is its ability to capture the conditional independence by using
covariance operators on the reproducing kernel Hilbert spaces (RKHS) (Aronszajn
1950; Hofmann and Schölkopf 2008). The main technical contributions of the work
are summarised as follows.

– We have developed a theorem to show that the deconfounding set obtained under
SDR is sufficient for controlling confounding bias in causal effect estimation based
on the theory of causal graphical modelling. To the best of our knowledge, this
is the first work that proves that the reduced covariate set by SDR is a proper
deconfounding set.

– With the support of the theorem,we develop a data-driven algorithm,CESD,which
learns a deconfounding set satisfying the conditional independence in RKHS and
utilises the nearest neighbour matching with the deconfounding set for average
causal effect estimation.

– The experimental results on two semisynthetic and three real-world datasets have
demonstrated the effectiveness ofCESD in causal effect estimation, comparedwith
the state-of-the-art methods. The experiments also investigate and demonstrate the
superiority of the deconfounding set found by CESD over those found by using
propensity score based methods.

2 Related work

Our work is closely related to representation learning for causal effect estimation,
which aims to transform the original covariate space into a new representation space.
The learned representation set or reduced set is used in various ways in causal effect
estimation, including for propensity score estimation, outcome regression and distri-
bution balancing. In the following, we review the related work based on their ways of
using a learned representation set.

A doubly robust estimator makes use of propensity score and outcome regression
to reduce possible misspecification of one model for causal effect estimation (Van
Der Laan and Rubin 2006; Funk and Westreich 2011). Sufficient dimension reduc-
tion methods have recently attracted attention in improving the performance of doubly
robust estimators (Liu andMa 2018;Ma and Zhu 2019; Ghosh andMa 2021). Liu et al.
adopted sufficient dimension reduction for predicting propensity scores (Liu and Ma
2018). Ma et al. utilised sparse sufficient dimension reduction to estimate propensity
scores and recover the outcomemodel (Ma andZhu 2019).Ghosh et al. considered effi-
cient semiparametric sufficient dimension reduction methods in all nuisance models,
and then combined these into classical imputation and inverse probability weighting
(IPW) estimators (Ghosh and Ma 2021). However, doubly robust estimators require
specific parameter assumptions for the propensity scoremodel and the outcomepredic-
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tion model. These models may be inconsistent with data and hence result in estimation
bias (Benkeser and Carone 2017). Furthermore, the convergence rate of the learning
of the propensity score model or the outcome prediction model can be slow (Allison
2008; Altman et al. 2004; Han and Wellner 2019).

The most relevant work to ours is the matching method developed by Luo and Zhu
(2020). The work considered sufficient dimension reduction for building models on
sub-datasets containing the treated samples and the control samples to construct two
low-dimensional representation sets as the balance representation for matching, but
not for identifying a deconfounding set. When the number of samples in a dataset is
small, dividing it into two sub-datasets will reduce the performance of the sufficient
dimension reduction method. Another piece of relevant work was done by Nabi et al.
(2017). The authors designed a semi-parametric causal sufficient dimension reduction
method to reduce the dimension of treatment variables. By contrast, our work reduces
the dimension of covariates.

Recently, a number of deep learning methods have been developed for causal effect
estimation fromobservational data (Shalit et al. 2017;Yao et al. 2018;Yoon et al. 2018;
Kallus 2020). With these methods, the learning of representation sets aims to balance
the distributions of the treated and control groups. The advantage of deep learning
methods is that they can capture complex nonlinear representations and handle high-
dimensional datasets with large sample size. However, massive parameter turning is
very difficult, and low interpretability limits their applications.

Additionally, many machine learning models have been designed for causal infer-
ence such as trees-based methods (Hill 2011; Athey and Imbens 2016; Künzel and
Sekhon2019), re-weightingmethods (RosenbaumandRubin 1983;Kuang et al. 2017),
sparse learning for selecting confounders (i.e. outcome-adaptive lasso Shortreed and
Ertefaie 2017 and group sparsity Greenewald et al. 2021). These methods select or
re-weight the original covariates, while our work aims to learn a representative set as
the deconfounding set from a set of pretreatment variables. There is also another line
of work on estimating bounds or unbiased causal effect in the presence of latent vari-
ables (Kallus et al. 2019; Yadlowsky et al. 2018; Cheng et al. 2020, 2022).When there
is strong domain knowledge about an instrumental variable, the causal effect can be
estimated from data with latent variable too (Martens and Pestman 2006; Hernán and
Robins 2006; Athey and Tibshirani 2019). Since instrumental variable based methods
do not rely on the unconfoundedness assumption, they are not directly related to our
work.

3 Notations, assumptions and problem setup

3.1 Notations and assumptions

We consider a binary treatment variable W (W = 1 for treated and 0 for control).
The potential outcomes Y (w) is relative to a specific treatment W = w (w ∈ {0, 1}).
For each sample (individual) i , there is a pair of potential outcomes, (Yi (0),Yi (1)).
Only one of the potential outcomes can be observed, and the other one is counterfac-
tual (Rubin 1974; Robins 1986). We use Yi ∈ R to denote the observed outcome of
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1178 D. Cheng et al.

sample i , and we have Yi = wi ∗ Yi (1) + (1 − wi ) ∗ Yi (0). We omit the subscript i
when the meaning is clear.

Let X ∈ R
p×1 be a set of p pretreatment variables. We make the pretreatment

assumption, i.e. each variable in X is measured before assigning the treatment W and
observing the response Y . This is a realistic assumption as it reflects how a sample is
obtained in many application areas such as economics and epidemiology (Hill 2011;
Imbens and Rubin 2015; Abadie and Imbens 2016). Given a dataset D containing n
samples of (X,Y ), the average causal effect (ACE) and average causal effect on the
treated samples (ACT) can be estimated as follows.

ACE = E[Y (1) − Y (0)]
=

∑

z

[E(Y | w,Z = z) − E(Y | w′,Z = z)]Pr(Z = z) (1)

ACT = E[Y (1) − Y (0) | w] =
∑

z

[E(Y | w,Z = z)]Pr(Z = z) (2)

wherew,w′ andE(·) refer toW = 1,W = 0 and the expectation function, respectively.
Z is a deconfounding set and iswhatwe focus on in this paper. To estimateACEorACT
from observational data, we need the following two assumptions which are commonly
used in causal inference literature (Imbens and Rubin 2015).

Assumption 1 (unconfoundedness) The potential outcomes are independent of
the treatment variable W given the set of pretreatment variables X. Formally,
(Y (0),Y (1)) ⊥⊥ W | X.
Assumption 2 (Overlap) Every sample has a nonzero probability to receive treatment
1 or 0 when conditioned on the pretreatment variables X, i.e. 0 < P(W = 1|X) < 1.

The unconfoundedness assumption means that there is “no hidden confounder” in
the system. The unconfoundedness assumption is not testable since the counterfactual
outcomes are unobserved (Imbens and Rubin 2015). To avoid missing potential con-
founders, in data collection, people attempt to collect all possibly relevant information.
Consequently, the set of variables X may contain irrelevant variables with respect to
the causal effect estimation of W on Y . It is desirable to find a precise deconfounding
set Z from X to accurately estimate the causal effect of W on Y . In this paper, we
propose that X can be decomposed into a set of confounding variables Z and a set of
variablesQwhich is not directly related to the treatmentW (refer to Fig. 1 and details
in Sect. 4). Furthermore, as we will discuss the case with Q is more general than the
case withoutQ since the latter case means that all collected variables are confounders
and this is almost impossible to achieve in practice. The purpose of this paper is to
find a deconfounding set Z such that (Y (0),Y (1)) ⊥⊥ W | Z holds, i.e. the spurious
association between W and Y is blocked by the set Z. In this paper, we use a causal
graphical model to represent the underlying data generation mechanism.

A directed acyclic graph (DAG) G is a graph that includes directed edges and does
not contain directed cycles. In a DAG G, a path is a sequence of consecutive edges. A
directed edge “→” denotes a cause-effect relationship, e.g. Xi → X j indicates that Xi
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is a direct cause (or parent) of X j , and equivalently X j is a direct effect (or child) of Xi .
A node Xi is a collider if there are two (or more) edges pointing to it, i.e. → Xi ←.
A DAG is computable with the joint data distribution when three key assumptions
are satisfied, i.e. causal Markov condition, causal sufficiency and faithfulness (Pearl
2009; Spirtes and Glymour 2000). Causal Markov condition requires that any node
in G is independent of all its non-descendants conditioning on the set of its parent
nodes. Causal sufficiency states that all common causes of any pair are represented
in G, and faithfulness requires that the independencies entailed in G with the causal
Markov condition are satisfied in the data, and vice versa. The independencies between
variables in a DAG G can be read off the DAG based on d-separation, as defined below.

Definition 1 (d-separation; Pearl 2009) A path π in a DAG G is said to be d-separated
(or blocked) by a set of nodes Z if and only if (1) π contains a chain Xi → Xk → X j

or a fork Xi ← Xk → X j such that the middle node Xk is in Z, or (2) π contains a
collider Xk such that Xk is not in Z and no descendant of Xk is in Z.

When a DAG G is given, the back-door criterion can be used to determine if Z ⊆ X
is sufficient for identifying the unbiased causal effects of W on Y .

Definition 2 (Back-door criterion; Pearl 2009) For an ordered pair of variables
(W ,Y ), a set of variables Z is said to satisfy the back-door criterion in a given DAG
G if

1. Z does not contain a descendant node of W ;
2. Z blocks every back-door path between W and Y (i.e. each path between W and Y

that contains an arrow into W ).

If we can find a set of variables Z which satisfies the back-door criterion, then Z is
a proper deconfounding set or adjustment set, and ACE (or ACT) can be unbiasedly
estimated from data by adjusting for Z as shown in Eq.(1) (or Eq.(2)). In order to
describe how to identify a deconfounding set Z, we need to use a manipulated DAG.

Definition 3 (Manipulated DAG GW ; Pearl 2009) Given a DAG G, GW denotes a
manipulated DAG of G where all outgoing edges from W are removed from G.

Based on the definition, we have the following corollary.

Corollary 1 In a manipulated DAG GW , if a set Z blocks all back-door paths from W
to Y , then W ⊥⊥ Y | Z.
Proof In the manipulated DAG GW , the outgoing edges from W have been removed
and only all back-door paths between W and Y are retained. Hence, if a set Z blocks
all back-door paths between W and Y , then W ⊥⊥ Y | Z in GW . 	


3.2 Problem setup

We aim at searching for a deconfounding set Z which is a low-dimensional repre-
sentation of the pretreatment variables X. The problem definition is given as follows.
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Fig. 1 A graphical
representation of sufficient
dimension reduction,
W ⊥⊥ Q | Z holds (Fukumizu
et al. 2004), where X is
decomposed into (Z,Q)

Problem 1 Given a dataset D generated from an underlying DAG G that contains the
treatment variableW , the outcomevariableY , and all the pretreatment variablesX. The
goal of the work is to determine a deconfounding set from the original covariate space
X by learning a low-dimensional representation set Z from X such that W ⊥⊥ Y | Z in
the manipulated DAG GW .

When the deconfounding setZ is found, the causal effect ofW onY can be estimated
unbiasedly by adjusting for Z as in Eq.(1) (or Eq.(2)).

4 Theory and algorithm

In this section, we first prove that the reduced covariates set Z by sufficient dimension
reduction (SDR) is sufficient to remove confounding bias in causal effect estimation.
Then we present the CESD algorithm.

4.1 Sufficient condition for identifying a deconfounding set

Let us consider the treatment assignment as a binary classification problem, i.e. the
probability density function of W given X is PW |X(w|x). We assume that there exists
a projection � ∈ R

p×r , where r < p, such that

W ⊥⊥ X | �TX (3)

where �TX is the orthogonal projection of X onto the column subspace of �, and
the column subspace of � refers to the dimension reduction space (DRS) (Cook
1996, 2009). Hence, it is to search for the subspace � given an i .i .d. sample
{(x1, y1), . . . , (xn, yn)} from PX and PY |X as discussed by the literature (Cook 1996;
Fukumizu et al. 2004). There is not an additional assumption in the causal inference
part. The primary interest is the central DRS since it has a well-known invariant
property (Cook 1996, 2009).

Definition 4 (Central DRS; Cook 1996) The column space of � is a central DRS if
the column space of � is a DRS with the smallest possible dimension r .

In this work, we aim to find the central DRS � which is the minimum and unique
dimension-reduction subspace (Cook 1996). Identifying a projection � which makes
Eq.(3) hold is equivalent to searching for a projection� whichmakesW and (I−�T )X
conditionally independent given �TX. That is, X can be decomposed into (Z =
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�TX,Q = (I − �T )X), in which Z is associated with W , and Q is independent
of W given Z, i.e. W ⊥⊥ Q | Z (See Fig. 1). Instead of using SDR to decompose X
into Z and Q, one may learn a lower dimensional subspace of the original space X.
However, this is not preferable for the following reasons. Firstly, directly learning a
lower dimensional space ofXwould not provide uswith the decomposition ofX intoZ
andQ, and hence does not give a clear causal structure based explanation as SDR does.
Secondly, the irrelevant information for causal effect estimation (i.e. the information
contained in Q) will be in the learned lower dimensional space and such irrelevant
information may reduce the quality of causal effect estimation in the subsequent step.

Now we show in the following theorem that finding a deconfounding set from X
can be converted to the problem of learning the reduced covariate set Z by SDR.

Theorem 1 Let G be the underlying causal DAG that contains the treatment variable
W, the outcome variable Y , and all the pretreatment variables X. If there exists a
central DRS (the column space of �) such that W ⊥⊥ Q | Z, where Z = �TX and
Q = (I − �T )X, then Z is a proper deconfounding set for estimating the average
causal effect of W on Y unbiasedly.

Proof Under the pretreatment assumption, there is no descendant node of W in X.
Under the unconfoundedness assumption, there are no hidden confounders between
W and Y . In the manipulated DAG GW , there are only back-door paths between W
and Y . Hence, all back-door paths between W and Y are blocked by the set of X, i.e.
W ⊥⊥ Y | X holds in GW .

We now prove that if the column space of � is a central DRS, then Z is sufficient
to block all back-door paths between W and Y . We have Z = �TX and Z satisfies
W ⊥⊥ Q | Z by the property of SDR since the column space of � is a central DRS.
We have W ⊥⊥ Y | X in GW and X = (Z,Q); then, W ⊥⊥ Y | (Z,Q) holds in GW .
Because W ⊥⊥ Q | Z is satisfied based on the property of SDR, then W ⊥⊥ (Y ,Q) | Z
holds in GW by the contraction property of conditional independence. According to
the decomposition property of conditional independence, W ⊥⊥ (Y ,Q)|Z is sufficient
to infer W ⊥⊥ Y | Z in GW . As there are only back-door paths between W and Y in
GW , Z is sufficient to block all such paths since W ⊥⊥ Y | Z holds in GW . Therefore,
Z is a proper deconfounding set. 	


Theorem1 shows that the reduced covariates setZ bySDR is sufficient for removing
confoundingbiaswhen estimating the causal effects ofW onY fromdata. Furthermore,
Theorem 1 guarantees the soundness of any SDRmethod for estimating causal effects
from data. We provide two causal DAG in Fig. 2 to interpret the causal relationships
between the ordered pair (W ,Y ) and the decomposed sets (Z,Q). In the next section,
wewill propose a data-drivenmethod based onTheorem1 for estimating causal effects
from data.

4.2 Deconfounding set identification using SDR

In this section,we use a kernel-basedSDRmethod to identify a deconfounding set from
data. We utilise the cross-covariance operators on reproducing kernel Hilbert space
(RKHS) (Aronszajn 1950) H to establish an objective function for dimensionality
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Fig. 2 There are two possible causal DAGs to interpret the causal relationships between the ordered pair
(W , Y ) and the decomposed sets (Z,Q). Under the pretreatment assumption, variables inZ are direct cause
of bothW and Y , andQ contains variables which are direct causes (left DAG) (or direct effect (right DAG))
of Z and possibly direct causes of Y

reduction. By default, we use the Gaussian kernel, i.e. k(xi , x j ) = exp(−‖xi−x j‖2
2δ2

),
where δ is the kernel width.

Given two RKHS, (H1, k1) and (H2, k2), which are over the measured spaces
(�1,B1) and (�2,B2), with the positive kernels k1, k2 and they are measurable. For
the pair of W and X on �1 × �2, the cross-covariance operator from H1 to H2 is
defined by the relation:

< g, �WX f >H2= EXW [ f (X)g(W )] − EX[ f (X)]EW [g(W )] (4)

for all f ∈ H1 and g ∈ H2. Hence, the conditional covariance operator �WW |Z on
H1 can be defined as follows.

�WW |Z := �WW − �WZ�−1
ZZ�ZW (5)

Theorem 7 in (Fukumizu et al. 2004) shows that �WW |Z ≥ �WW |X for any Z,
and �WW |X − �WW |Z = 0 ⇔ W ⊥⊥ Q | Z. That is, minimising �̂WW |Z is the most
informative direction for searching for the optimal Z. Hence, searching for a set of
reduced covariates Z such that W ⊥⊥ Q | Z holds is equivalent to optimising the
minimised conditional covariance operator �̂WW |Z. The determinant of �̂WW |Z can
be written as follows.

det �̂WW |Z = det �̂[WZ][WZ]
det �̂ZZ

(6)

where �̂[WZ][WZ] =
(

�̂WW �̂WZ

�̂ZW �̂ZZ

)
=

(
(K̂W + εIn)2 K̂W K̂Z

K̂Z K̂W (K̂Z + εIn)2

)
, and ε is a

positive regularization parameter. K̂W and K̂Z are the centralized Gram matrices
defined as follows.

K̂W = (In − 1

n
1n1Tn )GW (In − 1

n
1n1Tn ) (7)

K̂Z = (In − 1

n
1n1Tn )GZ(In − 1

n
1n1Tn ) (8)

where (GW )i, j = k(wi , w j ), (GZ)i, j = k(Zi ,Z j ) and 1n = (1, . . . , 1)T is a vector
with all elements equal to 1.
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To solve Eq.(6), gradient descent with line search can be used. The matrix of
parameters is updated iteratively by

� t+1 = � t − β
∂ log det �̂WW |Z

∂�
= � t − βTr [�̂−1

WW |Z
∂�̂WW |Z

∂�
] (9)

where the trace norm in Eq.(9) can be rewritten as 2εTr [�̂−1
WW |Z K̂W (K̂Z +

εIn)−1 ∂ K̂Z
∂�

(K̂Z + εIn)−2 K̂Z K̂W ], and β is optimised through golden section
search (Fukumizu et al. 2004). All of these matrices in Eq. (9) can be obtained directly
based on Eqs. (7) and Eq.(8). Therefore, the problem of identifying a deconfounding
set Z can be achieved by optimising Eq.(6).

4.3 NNM using the discovered deconfounding set

Given the learned deconfounding set Z by SDR, we can employ the commonly used
estimators, such as Nearest Neighbour Matching (NNM) (Abadie and Imbens 2006;
Rubin 1973), Inverse Probability Weighting (IPW) (Hernán and Robins 2020) para-
metric g-computation (Robins 1986) and doubly robust estimators (Ghosh and Ma
2021; Liu andMa 2018) to achieve unbiased causal effect estimation. In this work, we
choose NNM because of its simplicity. Our focus here is to show unbiased estimations
can be achieved with the covariate set derived by using SDR, without involving a more
complicated causal effect estimator. Moreover, NNM is non-parametric and does not
require any parametric assumptions needed by some other methods such as IPW and
doubly robust estimator.

In the following, we show the steps of employing NNM to infer the counterfactual
outcome, denoted as Y ∗

i (wi ) after obtaining the deconfounding set Z. With NNM, the
unobserved or counterfactual outcome of an individual i is imputed by the observed
outcome of an individual j who has similar covariates (Z values) in the opposite treated
group. The Mahalanobis distance is used to measure the distance of each pair (zi , z j )
over the space of the deconfounding set Z as follows.

Dist(zi , z j ) = {(zi − z j )
T �̂−1

z (zi − z j )} 1
2 (10)

where zi and z j are the value vectors of the deconfounding set Z of the i-th and j-th
individuals. The strategy of NNM can be formalized as follows.

Y ∗
i (wi ) = Yk(1 − wi ); k = argmin

j∈D(1−wi )

Dist(zi , z j ) (11)

where D(1−wi ) is the dataset with the treatment of 1 − wi .
The complete procedure of CESD is listed in Algorithm 1. The first line calculates

K̂W and K̂Z, where the kernel width δ is set to 5 for CESD. Line 2 is to calculate
det �̂WW |Z. Lines 3 to 6 aim to obtain the central DRS � by optimising Eq.(6). Line
7 is to obtain the deconfounding set Z. Line 8 calculates the Mahalanobis distance of
each pair of individuals over the space ofZ. Line 9 imputes the counterfactual outcome
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Algorithm 1 Causal Effect estimator by using SDR (CESD)
Input: Dataset D with W , Y and pretreatment variables X. The parameters ε, δ, the maximum number of
iterations I te and the dimension of the reduced covariates r .
Output: Causal effect of W on Y

1: Compute Eq.(7) and Eq.(8)
2: Calculate det �̂WW |Z by Eq.(6)
3: t = 1
4: while t ≤ I te or | �t+1 − �t |≥ ε do

5: �t+1 = �t − βTr [�̂−1
WW |Z

∂�̂WW |Z
∂� ]

6: end while
7: Compute Z = �TX
8: Compute Dist(zi , z j ) over Z for all pairs of records in D.
9: Impute Y ∗

i (wi ) via Eq.(11) for all records.
10: Calculate the causal effect of W on Y .
11: return causal effect

Y ∗
i (wi ) for each factual outcome. Line 10 calculates the causal effects by Eq.(1) or

Eq.(2) according to the different requirements.

Theorem 2 (Soundness of the CESD algorithm) Let G be the underlying causal DAG
that contains the treatment variable W, the outcome variable Y , and the set of all
pretreatment variables X. CESD can estimate the causal effect of W on Y unbiasedly.

Proof The column space of � is optimal by minimising Eq.(6) because �WW |Z ≥
�WW |X for any Z, and �WW |X − �WW |Z = 0 ⇔ W ⊥⊥ Q | Z. In other words,
Z = �TX contains the same information as X relative to (W ,Y ) for causal effect
estimation. By Theorem 1, Z is a proper deconfounding set. Therefore, the causal
effect of W on Y is unbiasedly estimated by CESD. 	


Complexity analysis: Three parts contribute to the time complexity of CESD. The
calculation of det �̂WW |Z involves matrix multiplication, which has a time complexity
of O(np2). Solving Eq.(6) requires a linear search with time complexity O(np). The
calculation of NNM has a time complexity ofO(nr2). Therefore, the time complexity
of CESD is O(np2) since r < p.

5 Experiments

Evaluating causal effect estimators is very challenging since we rarely have the ground
truth of causal effects on real-world datasets. We chose five datasets for the evaluation.
The two semi-synthetic real-world datasets, IHDP (Hill 2011) andTwins (Louizos et al.
2017) are commonly used in literature for evaluating causal effect estimators (Hill
2011; Yao et al. 2018; Yoon et al. 2018). With IHDP and Twins, the ground truth
causal effects are known and hence biases (errors) can be calculated. The other three
real-world datasets, Job training (Jobs) (LaLonde 1986), Cattaneo2 (Ghosh and Ma
2021) and RHC (Connors et al. 1996a) are well studied in literature (Imai and Ratkovic
2014; Liu and Ma 2018; Loh and Vansteelandt 2021). The empirical causal effect on
Job training and Cattaneo2 are available in the literature (Imai and Ratkovic 2014; Liu
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andMa 2018). The estimated conclusion of RHC is available in the literature (Connors
et al. 1996a; Loh andVansteelandt 2021), i.e. applying RHC leads to a highermortality
180 days than not applying RHC.

To evaluate the performance of CESD, we compare it against eight state-of-
the-art causal effect estimators, including two methods developed in statistics area
which reduce the dimension of covariate set through transformation, PSM (propensity
score matching with logistic regression; Rubin 1973) and CBPS (covariate balancing
propensity score; Imai and Ratkovic 2014); MDM (the classical matching method
based Mahalanobis Distance in the original covariate set space; Rubin 1979); PAW
(the set of causes of W with PSM) and PAY (the set of causes of Y with PSM), which
are the two recent methods using causal structure learning in combination with tra-
ditional propensity score for reducing the dimensionality of covariate sets; and two
machine learning based methods which use SDR, Shrinkage (Inverse probability
weighting estimator based on SDR for average causal effect estimation; Ghosh and
Ma 2021) and MSDR (matching using SDR; Luo and Zhu 2020). Additionally, we
use CausalForest, Random forest regression for estimating causal effect (Wager and
Athey 2018), benchmark the performance of the proposed method, since it is a recent
method and regarded as one of the most accurate methods for causal effect estimation.

Implementation. We implement CESD by using the R packages KDRcpp1 (for
the kernel dimension reduction part of CESD) andMatching (Ho and Imai 2007) (for
NNM), respectively. MDM is implemented by the function Match in the R package
Matching. PSM is programmed by the functions glm and Match in the R packages
stats (Team RC 2017) and Matching, respectively. The implementation of CBPS is
based on the functions CBPS and Match in the R packages CBPS and Matching,
respectively. PAW and PAY are implemented by the functions pcSelect and Match in
theR packages pcalg andMatching, respectively. CausalForest is implemented by the
functions rpart and estimate.causalTree in theR packages rpart and grf, respectively.
The implementation of Shrinkage is based on the function semipar_imputation in the
R package SDRcausal2. MSDR is implemented by the functions dr andMatch in the
R packages dr and Matching, respectively.

Parameter settings The parameter f amily is set to binomial for the function
glm. The parameter estimand in the function Match is set as AT T for Jobs, and is
set as AT E for the other four datasets. For the function CBPS, AT T is set to 1 for
Jobs, and 0 for the other four datasets. For CausalForest, we set the number of trees
to 200 and the default values are used for the parameters. For Shrinkage, MSDR, and
CESD, the dimension of the reduced covariate set r is set to 2. For CESD, following
the literature (Fukumizu et al. 2004), the parameters ε, δ and I te are set as 0.0001, 5
and 20 respectively.

Evaluation metrics. We evaluate the performance of all algorithms using standard
deviation (SD), the root-mean-square error (RMSE) and the estimation bias (%) (rela-
tive error) when the ground truth is available.We use the empirically estimated interval
to evaluate the performance of all algorithms when the ground truth is not available.

1 https://github.com/aschmu/KDRcpp.
2 https://www.stat4reg.se/software/sdrcausal.
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Table 1 Experimental results on
IHDP

Methods ACE SD RMSE Bias (%)

MDM 3.9394 1.8085 0.4187 9.61%

PSM 3.9406 2.3966 0.4175 9.58%

CBPS 4.0732 2.5376 0.2849 6.54%

PAW 3.0977 1.4850 1.2604 28.92%

PAY 2.6755 1.7595 1.6826 38.61%

CausalForest 3.5021 8.2676 0.8561 19.64%

Shrinkage 4.8637 0.3049 0.5056 11.60%

MSDR 4.9508 1.7604 0.5927 13.60%

CESD 3.9563 1.7958 0.4018 9.22%

We also visualise the estimated causal effects of all algorithms and their confidence
intervals with a confidence level of 95% on all datasets.

5.1 Experiments on the two semisynthetic real-world datasets

5.1.1 IHDP

The IHDP dataset is an observational dataset from a randomised trial based on the
Infant Health and Development Programme (IHDP), which investigated the effects
of intensive high-quality care on low-birth-weight and premature infants (Hill 2011).
The indicator variable, representing with/without intensive high-quality care, is used
as a treatment variable. IHDP consists of 747 samples with 24 pretreatment variables,
among which 608 are control units (samples) and 139 are treated units. The simulated
outcomes are generated by using setting “A” in the R package npci3, and the ground
truth of the causal effect, i.e. 4.36 is obtained by the noiseless outcome according to
the same procedures suggested by Hill (2011).

The experimental results of all estimators are listed in Table 1 and display the
estimated causal effects and their confidence intervals with a confidence level of 95%
in Fig. 3. From Table 1, estimates from CESD, CBPS, PSM, andMDM are lower than
10% in their biases and this is a very good performance in causal effect estimation.
This shows that CESD is at least competitive with other state-of-the-art methods
and demonstrates that the reduced set Z preserves all deconfounding information for
causal effect estimation. By considering the confidence intervals, it is difficult to see
the relative performance in the table, and hence we do visualisation.

According to the visualization of the results in Fig. 3, these algorithms can be
divided into two groups: Group I includes methods whose estimates are close to the
ground truth, i.e. MDM, PSM, CBPS, Shrinkage, MSDR, and CESD; the remaining
methods (including PAW, PAY, and CausalForest) are in Group II. The methods in
Group I have better performance than those in Group II. The performance of CESD
is competitive with the methods in Group I and better than the methods in Group II.

3 https://github.com/vdorie/npci.
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Fig. 3 Estimated causal effects on the IHDP dataset w.r.t. a 95% confidence interval. The red line represents
the ground truth ACE

5.1.2 Twins

The Twins dataset is collected from twin births in the USA between 1989 and 1991,
with infants having birth weights less than 2,000g (Almond and Chay 2005). We
remove samples with missing values from the original dataset and have 4,821 twin
pairs left with 40 covariates. The weight of an infant is considered the treatment
variable:W=1 for a babywho is heavier in the twin pair;W=0 otherwise. Themortality
after one year is the outcome. The ground truth causal effect is -0.025. To simulate a
randomised experiment, we follow Louizos et al.’s suggestion (Louizos et al. 2017)
to randomly select one of the two twins as the observed infant and hide the other by
applying the setting: Wi |xi ∼ Bern(sigmoid(βT x + ε)), where x denotes the set of
40 covariates, and βT ∼ U((−0.1, 0.1)40×1) and ε ∼ N (0, 0.1).

The experimental results of all methods are presented in Table 2 and visualised
in Fig. 4. From Table 2, we observe that estimates from PAY, CBPS, PSM, CESD
and MSDR are lower than 10% in their biases and this is a very good performance
in causal effect estimation. This again shows that CESD is at least competitive with
other state-of-the-art methods and demonstrates that the reduced set Z preserves all
deconfounding information for causal effect estimation. By considering the confidence
intervals, it is difficult to see the relative performance in the table, and hence we do
visualisation.

In Fig. 4, the performance of the estimators can be divided into Group I, including
PSM, CBPS, PAY, MSDR, and CESD, whose results are close to the true ACE, and
Group II, including the remainingmethods. Themethods inGroup I have better perfor-
mance than those in Group II. The results show SDRworks for finding deconfounding
sets.
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Table 2 Experimental results on
Twins

Methods ACE SD RMSE Bias (%)

MDM –0.0160 0.0110 0.0089 35.83%

PSM –0.0267 0.0121 0.0018 7.08%

CBPS –0.0266 0.0121 0.0017 6.90%

PAW –0.0301 0.0118 0.0052 21.03%

PAY –0.0240 0.0106 0.0009 3.77%

CausalForest –0.0174 0.0122 0.0075 30.14%

Shrinkage –0.0178 0.0563 0.0070 28.42 %

MSDR –0.0225 0.0117 0.0024 9.70%

CESD –0.0268 0.0113 0.0019 7.63%

Fig. 4 Estimated causal effects on the Twins dataset w.r.t. a 95% confidence interval. The red line represent
the group truth ACE

5.2 Evaluation with three real-world datasets

5.2.1 Jobs

The Job training dataset (or Jobs) is a widely used benchmark dataset in causal infer-
ence, which consists of the original LaLonde dataset (297 treated samples and 425
control samples) (LaLonde 1986) and the Panel Study of Income Dynamics (PSID)
observational group (2,490 control samples) (Imai and Ratkovic 2014). There are
9 covariates, including age, schooling in years, indicators for black, marital status,
school degree, previous earnings in 1974 and 1975, and whether the 1974 earnings
variable is missing. The job training status, i.e. with/without job training, is defined
as the treatment variableW . The earnings in 1978 are defined as the outcome variable
Y . Because the dataset contains records of people taking part in the training only, as
in LaLonde (1986), we estimate the ACT using CESD and all comparing methods
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Table 3 Experimental results on
Jobs

Methods ACT SD RMSE Bias (%)

Ground truth 886 448 N/A N/A

MDM –593.84 612.19 292.16 167.02%

PSM –516.62 608.63 1402.22 158.26%

CBPS 423.30 1,295.20 462.70 52.00%

PAW –867.37 626.66 1753.37 197.90%

PAY –671.33 598.24 1557.34 175.77%

CausalForest –5755.78 2989.81 6641.78 749.64%

Shrinkage –45.33 –344.55 931.33 105.12%

MSDR –122.68 755.70 1008.68 113.85%

CESD 756.00 540.13 129.61 14.63%

Fig. 5 Estimated causal effects on the Jobs dataset. The two dotted lines denote the empirical estimated
interval with a 95% confidence interval

against the ground truth ACT, which is $886 with a standard error of $448 (Imai and
Ratkovic 2014).

We summarise the results of all methods in Table 3 and visualise them in Fig. 5.
From Table 3, with the Jobs dataset, CESD and CBPS achieve very good performance
in terms of the biases in causal effect estimations. Note that the ground truth is an
estimate and biases may not be reliable. The confidence interval is a more reliable
indicator. We use the visualisation for further analysis.

In Fig. 5, we see that CBPS and CESD are in Group I, where the methods’ estimates
fall within the empirical estimation interval, and other methods, in Group II, are not in
the interval. CESD achieves competitive results with CBPS. This further shows that
SDR works for deconfounding bias.
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Table 4 Experimental results on
Cattaneo2 and RHC

Methods Cattaneo2 RHC
belowruleskip ACE SD ACE SD

MDM –159.26 25.61 0.0491 0.0243

PSM –188.47 33.23 0.0199 0.0384

CBPS –189.16 32.60 0.0209 0.0422

PAW –152.99 31.75 0.0209 0.0306

PAY –157.15 20.92 0.0319 0.0205

CausalForest –260.11 59.30 0.0256 0.0345

Shrinkage –285.36 19.31 –0.0215 0.6224

MSDR –181.80 23.94 0.0387 0.0234

CESD –221.47 28.60 0.0196 0.0207

5.2.2 Cattaneo2

The Cattaneo 2 (Cattaneo 2010) is usually used to study the ACE of maternal smoking
status during pregnancy (W ) on a baby’s birth weight (in grams)4. Cattaneo2 consists
of the birth weights of 4,642 singleton births in Pennsylvania, USA (Almond and
Chay 2005; Cattaneo 2010). Cattaneo2 contains 864 smoking mothers (W=1) and
3,778 nonsmoking mothers (W=0). The dataset contains several covariates: mother’s
age, mother’s marital status, an indicator for the previous infant where the newborn
died, mother’s race, mother’s education, father’s education, number of prenatal care
visits, months since last birth, an indicator of firstborn infant and indicator of alcohol
consumption during pregnancy. The authors (Almond and Chay 2005) found a strong
negative effect of maternal smoking on the weights of babies, that is, about 200g to
250g lighter for a baby with a mother smoking during pregnancy by statistical analysis
on all covariates.

All results on this dataset are shown in Table 4 and displayed in Fig. 6. From
Table 4, the range of the estimated causal effects of smoking on a baby’s birth weight is
-285.36g to -152g. The estimated ACE by CESD is -221.47g, which is consistent with
the original study (Almond and Chay 2005). In Fig. 6, we see that only the estimated
ACE byCESD falls within the empirically estimated interval (-250g, -200g). It further
shows that CESD can be used in real applications.

5.2.3 Right heart catheterization

Right heart catheterization (RHC) is a real-world dataset obtained from an obser-
vational study regarding a diagnostic procedure for the management of critically ill
patients (Connors and Speroff 1996). The RHC dataset can be downloaded from the
R package Hmisc5. RHC contains information on hospitalised adult patients from
five medical centres in the USA. These hospitalised adult patients participated in the
Study to Understand Prognoses and Preferences for Outcomes and Risks of Treat-

4 http://www.stata-press.com/data/r13/cattaneo2.dta.
5 https://CRAN.R-project.org/package=Hmisc.
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Fig. 6 Estimated causal effects on the Cattaneo2 dataset w.r.t. a 95% confidence interval. The two dotted
lines represent the empirical estimated interval (–250g, –200g)

ments (SUPPORT). TreatmentW indicates whether a patient received an RHC within
24 hours of admission. The outcome Y is whether a patient died at any time up to 180
days after admission. The original RHC dataset has 5,735 samples with 73 covariates.
We preprocess the original data, as suggested by Loh et al. (Loh and Vansteelandt
2021), and the final dataset contains 2,707 samples with 72 covariates.

The experimental results on this dataset are represented in Table 4 and visualised
in Fig. 7. In the experimental results, we can see that the CESD results are consistent
with those of PSM, CBPS, PAW, PAY, and CausalForest. The estimated causal effects
by the methods indicate that applying RHC leads to higher mortality within 180 days
than not applying RHC. The conclusion is consistent with the literature (Connors and
Speroff 1996; Loh and Vansteelandt 2021).

Overall, CESD performs consistently better than the classic MDM, SDR-based
methods (Shrinkage and MSDR), and the tree-based method causal forest. This is
because CESD has identified the deconfounding set Z for causal effect adjustment,
while the other four methods (classic MDR, Shrinkage, MSDR and CausalForest) do
not have a precise adjustment set for deconfounding. Note that propensity score based
methods, such as PSM, PAW and PAY, perform inconsistently, sometimes better and
sometimes worse than CESD. The propensity score is theoretically sound for adjust-
ment (Imbens and Rubin 2015; Rosenbaum and Rubin 1983; Rubin 2007), but when
the data and the parameters specified for the propensity score estimation model are
not consistent, a poor performance will be obtained. CBPS is an exception among the
propensity score based methods, since it mitigates the effect of the potentially mis-
specified parameters of the propensity score estimation model by selecting parameter
values thatmaximise the resulting covariate balance and thus improve the robustness of
propensity score matching. The competitiveness of CESD to CBPS shows the promise
of SDR in causal effect estimation.We note that CESDhas a lower variance thanCBPS
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Fig. 7 Estimated causal effects on the RHC dataset w.r.t. a 95% confidence interval

with all the datasets, and this is because CBPS includes irrelevant information from
variables that do not contribute to confounding control.

In summary, basedonall experimental resultswith thefivedatasets,we can conclude
that CESD achieves estimates that are close to true or empirically estimated causal
effect values in all datasets and is consistently in the high performing group across
all the datasets, and CESD is the only method that is in the high-performing group
across all five datasets. The closest high-performing method is CBPS from a widely
used R package CBPS for causal effect estimation. All these results demonstrate the
robustness of CESD.

5.3 The quality of matching

To investigate further into the reasons for better performance of CESD compared with
the other methods, we look into the matching process for the Cattaneo2 dataset, which
is crucial for causal effect estimation methods that are based on propensity score such
as, PSM, PAW, PAY, and CBPS. These methods all reduce the covariate set to a one-
dimension propensity score for matching. We show the distributions of the estimated
propensity scores in the treated and control groups in Fig. 8 (left four subfigures). We
see the obvious mismatch of propensity score distributions in the two groups, which
leads to the loss of power in matching and results in a large variance in the estimated
causal effects (Stuart 2010). When the covariate set is reduced to two dimensions by
kernel dimension reduction in CESD, we can see that the distributions of each reduced
dimension in the treated and control groups (the curves in the right panel in Fig. 8)
largely overlap. The overlap improves matching in causal effect estimation and this
provides an explanation for the good performance of CESD.
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Fig. 8 The distributions of propensity scores (left four) and reduced covariate dimensions, grouped by the
treatment variable W (red for the control group and green-blue for the treated group) on the Cattaneo2
dataset

6 Conclusion

We have proposed a novel solution for average causal effect estimation through suf-
ficient dimension reduction. In theory, we have proven the soundness of the solution
where the reduced low-dimensional covariates are sufficient to remove confounding
bias based on the theory of causal graphical modelling, under the assumptions of pre-
treatment variables and unconfoundedness. We have developed CESD, a data-driven
algorithm based on kernel dimension reduction, to estimate causal effects from obser-
vational data. Experimental results on two semisynthetic and three real-world datasets
demonstrate that CESD performs consistently well in comparison with the state-of-
the-art methods. This suggests that CESD is a high performing and consistent method,
and is potentially useful in various applications for average causal effect estimation.
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