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Abstract
The paper presents a computational approach to Availability of soccer players. Avail-
ability is defined as the probability that a pass reaches the target player without being
intercepted by opponents. Clearly, a computational model for this probability grounds
on models for ball dynamics, player movements, and technical skills of the pass giver.
Our approach aggregates these quantities for all possible passes to the target player
to compute a single Availability value. Empirically, our approach outperforms state-
of-the-art competitors using data from 58 professional soccer matches. Moreover, our
experiments indicate that the model can even outperform soccer coaches in assessing
the availability of soccer players from static images.

Keywords Sports analytics · Football · Elite sports · Tracking data · Graph
networks · MDNs · Ball dynamics · Movement models · Passing behavior

1 Introduction

Passes are the most frequent event in soccer (Pappalardo et al. 2019). By changing ball
possession from player to player, teams play the ball closer to the opponents’ goals
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and try to create chances for scoring. The quality of passing affects the team’s success
and represents an important category for evaluating collective and individual match
performances (Hughes and Franks 2005). It is easy to accept that simple indicators,
such as the number of completed passes, are not very meaningful when it comes to
assessing passing skills (Mackenzie and Cushion 2012). A simple pass backwards to a
non-marked teammate has to be assessed differently than a long through ball between
the defending lines, which may lead to a scoring opportunity. Therefore, research
suggests using more advanced metrics e.g. the risk of a pass in relation to its potential
effort (Goes et al. 2019; Power et al. 2017; Bransen et al. 2019b).

When coaches analyze match performance, they use – explicitly or implicitly – the
concept of Availability. For this paper, we want to define Availability as the proba-
bility of which a selected player can receive the ball from a teammate. Availability is
related to the risk of a pass and does not refer to a specific pass only, but asks for the
aggregated success probability of all (hypothetical) passes, which could be received in
a worthwhile zone. This concept is highly useful for understanding the performance
of the passing player as well as for the receiver. The passing player has to choose from
several target players (Steiner 2018), and has to adjust the kickingmovement precisely
with regard to the ball’s trajectory and speed. The Availability of the teammates is an
important factor for assessing both, the quality of the decision for a target player and
the motor-technical skills for passing. On the other hand, Availability is also important
for evaluating the tactical behavior of potential pass receivers. In elite soccer, players
have to move in an unpredictable and dynamic way to create free spaces in which they
can receive the ball (Bangsbo and Peitersen 2004). If players fail to create this space,
the tactical options in the attacking game are limited and the defending team can be
more successful (Fernández and Bornn 2018). Against this background, an objective
quantification of Availability would be very useful for match analysis in soccer.

This paper presents a probabilisticmachine-learning approach for computingAvail-
ability based on spatiotemporal tracking data. From a computational perspective,
quantifying Availability is a challenging problem, since there are many factors to
consider including that (i) players are constantly in motion and may receive the ball
at many different positions on the pitch, (ii) there are many possible trajectories of the
ball to the same position resulting in different transition times of the ball, (iii) oppo-
nents may intercept the ball, (iv) the technical skill levels of pass giver and the (v)
time for controlling the ball influence successful completion of the pass. Our approach
addresses all these aspects: For every moment t , we compute probabilities at which
player r can receive a pass at the position x , played with multiple speeds. After this,
we aggregate those probabilities for many x to an overall probability of a successful
pass, which we call Availability of r at the moment t . Figure 1 shows an example and
the corresponding availability of the receiver, which serves as a running example for
the rest of the paper.

The remainder is organized as follows. Section 2 reviews related work. We present
our Availability model including sub-models for interception, player skills and recep-
tion in Sect. 3, followed by the sub-models for ball and player movement in Sect. 4.
The experimental validation in Sect. 5 compares computed Availability scores with
observed receptions and interception of real passes in 58 matches of German Bun-
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Fig. 1 Running example: Scene from a Bundesliga match where the blue player with the black circle
denoting the ball passes to the blue player below the orange zone. Left: The receiving player will receive
the ball at the location marked with the light black circle. The orange zone marks the area in which the
player can receive the ball, where darker orange indicates higher success probability. The number denotes
the overall availability of the player. Note that the dark black circle indicating the position of the ball does
not align perfectly with the actual position of the ball. This is due to small errors in the provided positional
data. Right: The moment of the first touch of the receiving player. Incidentally, the receiver is not able to
control the ball and will loose the ball immediately. For better visibility, a larger version of this figure is
shown in Appendix C

desliga. Additionally, we compare computed Availabilities to human observer ratings.
Section 6 highlights different application areas and Sect. 7 concludes.

2 Related work

Data-driven analyses of sports and soccer in particular are manifold in the literature.
Existing approaches cover different aspects of the game including tactical constructs,
estimating outcome of matches or quantifying the probability of goal scoring, see
Goes et al. (2021) for an overview. For the purpose for this paper we aim to focus on
approaches dealing with passing and the movement of players in a narrow sense.

Estimating the likelihood of successful passes has been investigated in Spearman
et al. (2017) and Peralta Alguacil et al. (2020), where the authors propose a physics-
based approach to predict the time until a player can reach a certain position. The
time component can be computed by solving the player’s equation of motion. In Per-
alta Alguacil et al. (2020) for example, the model is based on Fujimura and Sugihara
(2005) for solving the equation of motion and augmented with an additional logistic
distribution model to define an overall reachability. The authors also employ a physics
based ball dynamicsmodel. Overall, the approach is similar to ours, thoughwe show in
our experiments that by using our fully learned player dynamics and ball dynamics, we
are able to better predict dynamics and, ultimately, the Availability of players. Alter-
native approaches for solving the equation of motion are provided in Taki et al. (1996)
and Brefeld et al. (2019). Note that Peralta Alguacil et al. (2020) also identify poten-
tial runs of attacking players that maximize a combination of pass probability, pitch
impact and pitch control. For an attacking player, based on the chosen combination,
an optimal position is computed and compared to the actual observed position.
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Other work on the analysis of passes in soccer include Power et al. (2017), who
compare the risk of a pass (probability of an intercepted pass) versus its reward, the
likelihood that the attacking team will take a shot at goal within 10 sec after the
pass. Goes et al. (2019) estimate the effectiveness of passes by measuring how much
defensive players have to move and how much their defensive organization reduces
following a pass, while Bransen et al. (2019a) use event data of passes and model the
reward by measuring the impact of these pass on the goal scoring probability.

Other publications rate general game states according to different measures and can
also be used to rate the effectiveness of passes. Spearman (2018) develops a model
that combines scoring probabilities from a certain point on the pitch with a team’s
control at that point and the probability that the ball will reach the point. Fernández
et al. (2019) measure pitch control of teams and players and pitch value, which was
estimated to correlate with positions that defenders aim to occupy. Recently, many
publications use machine learning approaches to predict which player will receive the
next pass (Vercruyssen et al. 2016; Fournier-Viger et al. 2018; Hubácek et al. 2018;
Dauxais and Gautrais 2019; Li and Zhang 2019; Fernández et al. 2021). Although
these approaches aim to model tactical decisions of the passing player, the Availability
approach presented in this paper asks for the success probability of such a pass.

Estimating future positions of soccer players is another aspect that has been widely
investigated. A general problem when learning coordinated movements of several
agents, like players in a team, is that trajectories come as unordered sets of individuals.
When learning from several games incorporating different teams and players, a model
has to work without a natural ordering of the agents. Le et al. (2017b, a) learn future
positions of players by estimating the roles of players in a given episode and using the
role assignments to predict future movements using the then ordered set of players.
Other publications also use role assignments to predict future positions of players using
a variational recurrent neural networks (Zhan et al. 2019, 2018; Felsen et al. 2018).
Yeh et al. (2019), on the other hand, study graph representations to model interactions
of all agents including the ball. They leverage graph neural networks (GNN) which
are naturally suited to model coordinated behavior because of their invariance to
permutations in the input and propose a graph variational recurrent neural network to
predict future positions of soccer and basketball players. Hoshen (2017) and Kipf et al.
(2018) deploy graph-related attention mechanisms to learn trajectories for soccer and
basketball players, respectively. GNNs have been widely used to model structured
or relational data, Battaglia et al. (2018) provide an overview. In cases where data
is sequential in nature, graph recurrent neural nets (GRNN) have been widely used,
starting e.g. with Sanchez-Gonzalez et al. (2018) who mix graph representations with
recurrent layers, such as gaited recurrent units (GRUs, Cho et al. 2014).

Due to the complex nature of soccer players’ movements, one can expect the
distribution of future points of a player to be multi-modal, which a probabilistic
model that predicts future points should reflect. Thus, (conditional) variational mod-
els (CVM) with Gaussian emission functions are frequently deployed to account for
multi-modality in the data (Zhan et al. 2019, 2018; Yeh et al. 2019; Felsen et al. 2018).
However, Graves (2013) show that combining RNNs with mixture density networks
(MDNs, Bishop 1994), with a Gaussian mixture model (GMM) as output distribu-
tion yields accurate predictive results for spatiotemporal tasks. In fact, Rudolph et al.
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(2020) provide empirical evidence that combining GMM emission with recurrent
graph networks works on par with using more complex CVM models.

3 Modeling availability

3.1 Preliminaries

Our approach uses spatiotemporal data including xy positions of the players and xyz
position of the ball. Data is recorded at 25Hz by a semiautomatic optical tracking
system (TRACAB®, ChyronHego), which consists of up to 24 cameras around the
pitch. The system uses computer vision methods to detect objects in the video stream.
Tracking loss and identity swaps are eliminated manually after the matches. We make
also use of a manually logged ball status flag, which indicates whether the ball is in
play or not. The data is provided by German Professional Soccer League (Bundesliga)
for the purpose of this paper. Reliability and validity of the system for measuring
soccer specific movements is verified in Linke et al. (2020).

Computational analyzes that build upon tracking data, that is, sequences of player
positions, movement directions, require some kind of formal representation of that
data. To not clutter notation unnecessarily, we informally define the state of player i
at time T by S i

T . The state S i
T contains the player’s position in xy-coordinates and

velocity, as well as team and ball possession indicators. Superscript 0 is reserved
to index the state of the ball S0

T with its position, velocity, and additionally its z-
coordinate at time T . We sometimes aggregate states of all players and ball at time
T , denoted by S0:N

T , where usually N = 22, as well as time windows of interest by
S i
T1:T2 . For simplicity, we define S as the entire history of states of the game until the

current point in time.
The goal of this paper is to establish amodel for Availability. In other words, we aim

to devise a model that computes the likelihood that a pass, irrespectively of whether
it is a footed and headed pass, played from position b = [bx , by, bz] with initial
direction a = [ax , ay, az] and speed ‖a‖, can be reached by the intended receiver r
without being intercepted by any opposing player. However, there are many passes
with (slightly) different directions or velocities that may reach the target player. A
solution thus needs to aggregate likelihoods for all possible passes to receiver r and
aggregate them into an Availability value.

We assume that the passer chooses the best passing direction vector for passing to
r but may not be able to execute the pass optimally. That is, the actual ball trajectory
may differ from the intended one, as defined by the initial direction a′ = a + �a.
Instead of working directly with vectors a and residual �a, we will instead make use
of horizontal and vertical angles α and β, respectively, as well as ball speed v. The
re-parameterization is given by

a(α, β, v) = [cos(β) cos(α), cos(β) sin(α), sin(β)] · v

such that a′ = a(α + �α, β + �β, v + �v) with residual �a = [�α,�β,�v].
The re-parameterization allows to formulate non-optimal executions of passes in
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Fig. 2 Visualization of initial
ball direction in vector
representation a = [ax , ay , az ]
and re-parameterized angle
θ = (α, β, v)

terms of differences in horizontal angle �α, vertical angle �β, and the initial ball
speed �v. For ease of notation, we will often use tupled parameters θ = (α, β, v)

and �θ = (�α,�β,�v) and a(θ); Figure 2 provides a visualization. Using the
re-parameterization, the Availability model consists of two parts: (i) computing like-
lihoods pra(θ) of successful passes to target player r along vertices a(θ), and (ii)
aggregating these likelihoods into a single Availability value Ar (ψ) where ψ denotes
the skill of the pass giver to determine the expected deviation of the actual pass from
the intended one.

In the next section, we introduce models for ball dynamics that are used to predict
ball trajectories from initial ball directions a(θ). Together with a predictor of whether
a player can reach certain positions on the pitch in time, Section 3.3 derives a model to
estimate the probability that a pass along an initial direction can be successful. Finally,
Sect. 3.4 aggregates those values over a variety of initial directions into an availability
value. The previously mentioned player reachability model is slightly more involving
and introduced in Sect. 4.

3.2 Ball dynamics

Assume that the ball is played with initial movement vector a(α, β, v) and moves
along a straight line on the xy-plane. That is, we ignore curve balls for a moment.
Naturally, the velocity of the ball decreases over time due to air and ground friction
and so does its z-speed and position due to gravity and rotation. Physics implies that
the deceleration curve of the ball depends strongly on the initial movement vector
a(α, β, v), in particular on z-angle β and initial speed v. The reason behind this is
two-fold. First, the ball is either flying (air friction, quadratic in speed) or rolling
(mainly ground friction, approximately linear in speed). Secondly, depending on the
intended distance and speed of the ball, the ball is played with more or less (backward)
rotation, which changes its dynamics significantly. Note that rotation is not directly
observable in tracking data.

The same holds for the acceleration in z-direction. While gravity force is constant,
the observed acceleration varies significantly between passes, due to unobservable ball
rotation. It becomes obvious that an Availability model cannot be computed in absence
of ball movement. In fact, we capture ball dynamics with three distinct models that
are also listed in Table 1.
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Table 1 Models for Ball
Dynamics t(d; β, v) Time until ball reaches distance d

u(d; β, v) Speed of ball at distance d

p(z(t) |β, v) Distribution of height of ball at time t

• The first model is denoted by t(d;β, v) and estimates the time until the ball reaches
a certain distance d after it has been kicked with initial z-angle β and velocity v.
Function t is learned by a ridge regression with a polynomial kernel from historic
data where β and v are estimated for every pass by taking the difference of the
first two frames.

• The second model u(d;β, v) estimates ball velocity at a certain distance d with
initial angle β and velocity v. We learn function u using a ridge regression with a
polynomial kernel on historic data.

• The third model informs about the height z of the ball at a given distance. Ignoring
air friction and ball rotation, the ball’s z-coordinate dynamics would be determined
by

z(t) = 1/2gt2 + sin(β)vt + z0

where g ≈ −9.81 is the gravity force. However, the “observed gravitational force”,
or in other words the observed acceleration ĝ, deviates strongly from frictionless
acceleration g. In fact, as can be seen in Fig. 3, left, the observed acceleration ĝ
depends on the initial z-angle β. We therefore learn a probabilistic model of ”grav-
itation“ from historic ball data by assuming that ĝ follows a Gaussian distribution
when mean μ(β, v) and variance σ(β, v) are linear functions. We thus have

p(z(t) | β, v) = N
(
z(t) | 1

2
μ(β, v)t2 + sin(β)vt + z0,

1

2
σ(β, v)t2

)
. (1)

for z(t) >= 0 and p = 0 otherwise and learn by minimizing the negative log-
likelihood of the data.

Figure 3, right, shows sampled simulated ball trajectories for varying initial ball
speeds v and z-angles β. Each simulated ball trajectory corresponds to a specific
v, β pair and the height z at distance d is estimated by first computing time td =
t(d;β, v) until the ball reaches distance d using the first model and then computing
the distribution p(z(td) | β, v) using the third model and Eq. (1).

3.3 Quantifying the likelihood of passes

We begin the derivation of Availability by quantifying the likelihood that the intended
receiver r reaches the ball when it is played from position b with parameters θ =
(α, β, v) along the initial direction [cos(β) cos(α), cos(β) sin(α), sin(β)] with initial
speed v. We denote this likelihood by prA(θ,S).
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Fig. 3 Left: Sample ball trajectories from the data (data contains artifacts). Right: Sampled ball trajecto-
ries using learned models t(d; β, v) and p(z(t) | β, v) (cf. Table 1). Error bars show standard deviations
according to the distribution p(z(t))

To proceed, we first derive the probability that the receiver can reach the ball at any
point along the line given by θ , we then derive the probability that any defender can
intercept the ball before any of those points and in a last step aggregate those probabil-
ities into a single value. In the course of this section, we will make use of movement
models piR(m, t;S) that quantify the probability that player i reaches position m in
time t . We will introduce the model properly in Sect. 4 to not clutter this section
unnecessarily.

3.3.1 Low passes

Let us assume that β = 0 before we turn to the general case. We thus focus on low
passes starting at the current position of the ball with arbitrary angle α and velocity v

while β = 0. Let m be an arbitrary xy-position on the pitch.
Still assuming only straight passes, the probability pα(m | θ,S) that the ball passes

through position m is a point measure that is 1 only if there exists c > 0 : m =
b + c · a(α, 0, v),

pα(m | θ,S) =
{
1 : ∃c > 0 : m = b + c · a(α, 0, v)

0 : otherwise.

Furthermore, the probability piI (m; θ,S) that a low pass can be intercepted at position
m by player i , equals the likelihood that player i can reach position m before the ball
(which is currently at position b), that is

piI (m;α, 0, v,S) = piR (m, t(‖m − b‖; 0, v);S) ,

where t is the time-to-position function of the ball. Figure 4 shows a visualization.
Analogously, the likelihood that player i can intercept the pass anywhere on the passing
line before position m is given by

piC I (m; θ,S) = max
c∈[0,1] p

i
I (b + c(m − b); θ,S).
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Fig. 4 Running example: The blue player at the bottom has possession of the ball (large black circle). Left:
Reachability likelihoods prR(·, 1.1 sec;S)) of the ball receiver r (green shade) and of defenders (black
shades). The depicted reachability probabilities correspond to estimated times of arrival of the ball with
v = 25 m/s. That is, the ball reaches the receiver in 1.1 sec according to model t(d; β, v) (cmp. Table 1).
Right: Interception likelihoods prI (x, t(‖x − b‖; 0, v);S)) of receiver r (green) and defenders (black) with
v = 25 m/s

In other words, the player will attain the position where the interception probability is
highest. Figure 5, left, shows interception probabilities for the running example.

Putting everything together yields the probability that a low pass to player r , starting
at position b along trajectory a(α, β = 0, v) = a(θ) and ending in position m, is
successful is given by (i) the probability that position m lies on the trajectory of the
ball, (ii) the probability that player r can intercept the ball exactly at position m, and
(iii) the probability that no opponent o will intercept the ball before it reaches position
m,

prs (m;α, β = 0, v,S) = pα(m | θ,S)︸ ︷︷ ︸
ball passes
through m

· prI (m; θ,S)︸ ︷︷ ︸
target player r

reaches ball in m

∏
o

(
1 − poC I (m; θ,S)

)
︸ ︷︷ ︸

no opponent
intercepts

. (2)

Figure 5, right, shows examples of those probabilities. The likelihood that a low pass
along direction a(θ) is successful can be written as

prA(θ,S) = max
m∈{b+c·a(θ);c>0}

prs (m; θ,S) (3)

3.3.2 Generalization to all passes

We now extend the concept to all passes by including high passes for which β > 0.
High passes are slightly more involving since the ball may be too far up to be reachable
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Fig. 5 Running example: Blue player at bottom has possession of the ball (large black circle). Left: Cumu-
lative interception likelihoods poC I (x; θ) with θ = (α, 0, 25 m/s). Right: Success likelihood prs (x, θ) with
θ = (α, 0, 25 m/s)

for a player. We thus make use of the ball model p(z | d;β, v) in Eq. (1) that estimates
the density of the height z of the ball at a given distance d and velocity v.

The idea is to incorporate the notion of z-reachability into the interception proba-
bility pI . Let pz(z < h | d;β, v) be the cumulative distribution that the ball is lower
than height h at distance d when a pass was played with initial parameters β and v.
Furthermore, let hiI be the maximum height at which a ball can be intercepted by
player i .1 It follows that the interception probability of the i-th player can be written
as a product of the xy-reachability given by the movement model of player i and the
z-reachability, given by

piI (m; θ,S) = piR (m; t(‖m − b‖;β, v),S) · pz(z < hiI | ‖m − b‖;β, v).

So far, the probability of a successful pass along a does not take into account whether
the receiver can control the ball. Consider a pass over 10 m that is played with 30 m/s
and reaches the receiver at a height of 1.5 m. This pass is reachable but certainly not
controllable. Therefore we introduce a control-likelihood

pC (x;β, v) = f (u(‖x − b‖;β, v)) · pz (z < hC | ‖x − b‖;β, v)

that is a function of the predicted speed of the ball u when it reaches the receiver
and the likelihood that the ball is below hC = 0.5 m. Putting everything together, the
likelihood that a pass with initial parameters θ can be successfully received by player
r at position m is

1 For simplicity, we use hiI = 1.9m for all players in this paper, however, individual values can be used to
distinguish e.g., short vs large players, athletic and jumping skills, etc.
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prs (m; θ,S) = pα(m | θ,S) · pC (m;β, v) · prI (m; θ,S)
∏
o

(
1 − poC I (m; θ,S)

)
.

(4)

3.4 Full availability

The previous sections showed how to compute likelihoods of successful passes along
vectors a(θ). However, while a player may intend to hit the ball with certain initial
parameters θ = (α, β, v), there will generally be a (possibly slight) deviation �θ =
(�α,�β,�v) from the intended pass trajectory, determined by the individual skill
and circumstances such as pressure on the ball carrier or running speed. We will now
present our model Ar (ψ) that determines the overall likelihood of a successful pass
to r using uncertainty parameters ψ = (σα, σβ, σv) which can be understood as skill
parameters. We assume that deviations are drawn from a normal distribution with
mean 0 and diagonal covariance matrix

(�α,�β,�v) ∼ N (0, diag(σα, σβ, σv))

It follows that the expected success for intended initial pass parameters θ is

pr�(θ,S) =
∫

�θ

pra(θ + �θ,S)N (�θ | 0, diag(ψ))d�θ

= E[pra(θ + �θ,S) | �θ ∼ N (�θ | 0, diag(ψ))]
= E�θ [pra(θ + �θ,S)].

Using the expected success we compute the final availability score as

Ar (ψ,S) = max
θ

pr�(θ;S).

In other words, the passer chooses the best intended option to pass to player r .

4 Modelling players

We now present the player reachability model piR(m, t;S) that determines the likeli-
hood that player i can reach position m in time t . The idea is to derive the reachability
model from an underlying motion or movement model that estimates the future den-
sity of the position of a player, conditioned on the game state S. Several different
movement models have been proposed in the literature, for example using simplified
physics (Taki et al. 1996; Fujimura and Sugihara 2005) or frequency statistics (Brefeld
et al. 2019).

However, as we will show below, the reachability model piR(m, t;S) estimates
reachability basedon a cumulative distribution function ofmoving to positionm in time
t . Computing cumulative distribution functions can be computationally very expensive
if one has to rely on sampling in order to approximate the true cumulative distribution
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Fig. 6 Left: GRNN model. Right: One layer of GRNN

function (CDF). We thus follow a different approach and represent piM (m | t,S) as
a graph recurrent mixture density network (GRMDN) for which the desired function
can be computed in closed form given the parameters of the distribution. GRMDNs
are build on two blocks, graph recurrent neural networks (GRNNs, Yeh et al. 2019;
Battaglia et al. 2018)which allowus tomodel interactions between players and ball and
mixture density networks (MDNs,Bishop 1994) that representmovement distributions
of players as Gaussian mixtures.

4.1 Player and ball interactions

We use GRNNs to model the interactions between players and ball using a fully
connected graph structure. Players and ball correspond to nodes in that graph and
edges represent their relations. This part of the model is depicted in Fig. 6, left, and
consists of several layers. One layer or block GR of the model is shown in Fig. 6,
right. To describe such a layer, or block, of the graph network, recall that state S i

T
contains the position and speed of player/ball i at time T , as well as team and ball
possession indicators.

The �-th block of the graph network takes as input the statesS i
T for all 0 ≤ i ≤ 22 as

well as the outputs of layer �−1 given by feature vectors hi�−1,T . Since the graph is fully
connected, every player/ball i is connected to any other players/ball j via typed edges
etype� (i, j) with t ype ∈ {PP, BP, PB} representing directed edges either between
two players (PP), between ball and player (BP), or between player and ball (PB).
Edge features φ

t ype
e are computed via attention functions α

t ype
� (·; θ�), depending again

on the edge t ype and per-node-functions fv , which are fully connected subnets, such
that

etype� (i, j) = φ
t ype
e

(
S i
T ,S j

T , h j
�−1,T ; θ�

)
= α

t ype
� (S i

T − S j
T ; θ�)

	 fv(h
i
�−1,T )

oi� = φo ({e(i, j) : j ∈ {0, ..., N }) =
∑
j

e�(i, j).
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Fig. 7 Left: GRMDNmodel. Right: Visualization of reachability likelihood piR(m, t;S) and its derivation

from piM (m |m′,S, t). Cutoff value cco = 0.05 is visualized with dotted lines

The intermediate representations oi� are fed into standard gaited recurrent units (GRU,
Cho et al. 2014) tomodel time-dependent behavior and compute the output of the layer
as hi�,T = GRU(hi�,T−1, o

i
�,T ). To sum up, the layer of the GRNN shown in Fig. 6,

right, is denoted by

h0:22�,T = GR
(
h0:22�−1,T , h0:22�,T−1,S0:22

T

)
.

The full GRNN, displayed in Fig. 6, left, concatenates L such layers and is given by
the following equations,

h0:22T =
(
h0:221,T , ..., h0:22L,T

)
= GRNN

(
h0:220,T , h0:22T−1,S0:22

T

)
,

where the inputs hi0,T of the first layer are computed by a single layer fully connected

network φv(S i
T ). The inputs S i

T to the network are detailed in Appendix B.

4.2 Movementmodel

The distribution of future positions m that can be attained in time t are represented as
a mixture model with k Gaussian mixtures,

piM (m | t,S) =
K∑

k=1

π i
(
k | t,S i

)
N

(
m | μi

k

(
t,S i

)
, σ i

k

(
t,S i

)
· I

)
(5)

and is realized by amixture density network (MDN, Bishop 1994). TheMDN takes the
viT outputs of the GRNN for player i and the time horizon t as the input to a single layer
fully connected subnet fMDN . Categorical mixture distribution π i is computed from
the outputs of fMDN with a standard softmax. Gaussian means μi

k(t,S i ) ∈ R
2 and

variances σ i
k (t,S i ) ∈ R

2 are predicted using linear and exponential, resp., activation
functions, where I is the diagonal identity matrix. Figure 7, left, shows an overview.
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The two described building blocks GRNN and MDN form a joint graph recurrent
mixture density network and are trained simultaneously.

4.3 Player reachability

Having computed the movement model piM (m | t,S), we are now ready to derive the
reachability distribution piR(m, t; ,S). While the movement model describes where
the average player will be in time t , the reachability model estimates which positions
can be reached in time t . Reachability is modeled using the movement model by
defining a (pseudo) cumulative distribution function of positions and using a cd f
cutoff parameter that defines which positions are reachable with probability 1. All
positions that lie outside that cd f cutoff are reachable with probability below one.
Figure 7, right, shows a visualization of that approach in 2D.

Let the expected position of player i , exactly t seconds into the future, given by

μm = EpiM (m | t,S)[m].

We define the (pseudo) cumulative distribution function at position m as the cd f of
the one-dimensional distribution defined on the line that goes through the mean μm

and m.

cdfiM (m | t, s:T ) = 1

Z

∫ 1

c=−∞
piM (μm + c(m − μm) | t,S)dc

where Z is the partition function given by

with Z =
∫ ∞

c=−∞
piM (μm + c(m − μm) | t,S)dc

Based on the cd f , we assume that player i can reach position m in time t with proba-
bility 1 if its cdfiM (m | t,S) is between cutoff-values cco and 1 − cco. Otherwise, the
reachability likelihood is scaled with 1/cco to guarantee a smooth reachability surface,
as shown below and in Fig. 7, right,

piR(x, t; s:T ) =

⎧⎪⎨
⎪⎩
1, if cdfiM (x | t, s:T ) ∈ [cco, 1 − cco]
cdfiM (x | t, s:T )/cco, if cdfiM (x | t, s:T ) < cco(
1 − cdfiM (x | ts:T )

)
/cco, if cdfiM (x | t, s:T ) > 1 − cco.

The cutoff parameter is tuned on data in order to maximize observed reachability of
pass receivers and minimize reachability of defenders that did not intercept the ball.
That is, we define a binary classification problem such that for each observed pass in
the data we create one positive example (pass receiver intercepts the ball at position
m) and one negative example for each defender that did not intercept the ball along
the ball trajectory.
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5 Experimental evaluation

We evaluate our model on passes extracted from 58 Bundesliga games from the
2017/18 season. The data comes in form of tracking and event logs. The tracking
data is sampled at 25 fps and contains positions of all players and the ball at each
frame/timestamp. Pass information is extracted from corresponding event data. This
comprises the passing player, the time of the pass, the target position of the pass as
well as the receiving player. However, the receiving player could be an opponent who
intercepts the pass. In this case, data does not contain ground-truth about the intended
receiver. We overcome this problem by identifying the most likely team mate accord-
ing to the initial direction of the ball at the time of the pass as described in Appendix A.
The entire data consists of 38,851 passes with 33,561 successful and 5290 intercepted
passes. This sums up to an average success rate of 0.86.

Model selection is conducted via a five-fold cross-validation on 54 games.We report
average results on an independent test set consisting of the remaining 4 games. The
optimized architecture of the GRNN consists of twoGR layers where both layers have
a GRU width of 1024 and the attention function αX

l as well as function fv possess a
single hidden layerwith 256units. Input functionsφv have a single hidden layerwith 64
units. TheMDN consists of a Gaussian mixture with k = 20 components and function
fMDN has a single hidden layer with 256 hidden units. The cutoff parameter of the
player reachability model is set to cco = 0.005 and the uncertainty or skill parameters
ψ = (σα, σβ, σv) are set to (3◦, 6◦, 2m/s). The ball dynamics model t(d, β, v) uses
a polynomial kernel of degree 7 and the speed model u(d, β, v) a kernel of degree 2.

Baseline Approach We compare our approach to Peralta Alguacil et al. (2020)
that grounds on the movement model by Fujimura and Sugihara (2005) and the work
by Spearman et al. (2017) and considers players as physical objects whose dynamics
are described by an equation of motion with internal and external forces. We also use
the proposed logistic distribution to estimate final player movement probabilities. Our
approach thereby differs from Peralta Alguacil et al. (2020) in that our model learns
the movement distributions from observed player data only instead of a using a solely
physics-based model based on approximated properties of soccer players. We also
test against the ball dynamics model as described in the appendix in Peralta Alguacil
et al. (2020) which again is a model that describes the ball movement based on its
approximated physical properties. In contrast, ourmodel learns the ball dynamics from
observed ball trajectory data. All parameters of the baseline are set according to the
values proposed by the authors in Peralta Alguacil et al. (2020).

Movement Models We begin the empirical evaluation by comparing our player
reachability model with the motion model of the baseline. To do so, we compare the
likelihoods that the true receiver of a pass can actually reach the observed receiving
position. We take both, successful and unsuccessful, passes into account, such that
the true receiver could be an intercepting opponent player. Thus, we compute inter-
ception probabilities for all opponents and report the maximum over all opponents.
Thus, an accurate model assigns higher probabilities to the true receiver and lower
probabilities to non-intercepting opponents. Table 2 shows the results. Our approach
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Table 2 Average interception likelihoods of observed receivers and uninvolved opponents on observed
passes

True receiver Uninvolved opponents AUC

Our approach 0.850 0.202 0.913

Peralta Alguacil et al. (2020) 0.772 0.100 0.892

Table 3 Comparison of ball dynamics of our approach and the baseline approach to observed passes

Observed passes Our approach Peralta Alguacil et al.

Duration of pass (sec) 1.128±0.024 1.135±0.026 0.947±0.018

Max height of pass (m) 0.52±0.05 0.51±0.06 0.36±0.04

distinguishes by much higher average likelihoods for true receivers but also assigns
higher likelihoods to uninvolved defenders who did not intercept the ball.

The table also shows AUC values for both methods where we compare the ability to
predict whether a pass is going to be successful or not. We therefore compute the pass
success probability prs (m) in Eq. (4) at the observed reception positionm and, instead
of using a ball model, compute the cumulative interception probabilities poC I (m) along
the observed ball trajectory. The computed success probabilities are compared to
the observed outcomes of the pass (success or interception) to give the AUC of the
prediction. The resulting AUCs support the previous outcome, our reachability model
is in fact more accurate in predicting whether a player can reach a certain position in
time.

Ball DynamicsWe now compare our ball dynamics model to observed passes and
the baseline model to instantiate whether our models predict realistic passes. Table 3
shows experimental results that compare our models for ball dynamics to the baseline.
The evaluation is performed on all observed passes in our data.We testmodel t(d;β, v)

that predicts the time it takes a ball to reach a certain distance d given the initial z-
angle β and speed v. β and v are estimated over the first 5 frames of observed ball
trajectories and the error is computed between observed and predicted time at the
observed ball reception positions. The first row in Table 3 shows that our model is
better in predicting the expected time the ball needs to cover a certain distance than
the baseline. The second row shows results for predicting the maximum height of a
pass given β and v where we took the mean of distribution p(z(t) | β, v) in Table 1.
Again, our model outperforms the baseline.

Successful Passes Next, we compare predictions about whether a pass will be
successful or not. For every pass, the first four frames are used to estimate the initial
direction and speed of the ball. On the basis of these estimates, the models then predict
the ball trajectory. In addition to the full baseline (Peralta Alguacil et al. 2020), we
also compare against a hybrid model that uses the physics-based reachability model
from Peralta Alguacil et al. (2020) but our ball model. We evaluate the three models
by comparing their predictions with the true outcome. Again, we use AUC to measure
predictive performance. Table 4 shows the results.
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Table 4 Predicting the outcome of a pass

AUC Avg. success prob.
of successful pass

Avg. success prob.
unsuccessful pass

Our Model 0.886 0.830 0.181

Hybrid 0.879 0.862 0.297

Peralta Alguacil et al. 0.879 0.846 0.267

Our model outperforms both baselines in terms of AUC. However, in contrast to
Table 3, which shows that ball dynamics of the baseline are clearly inferior to our
proposed approach, this result does not imply inferior performance when predicting
outcomes of passes. Note that the baseline performs, with a predictive accuracy of
about 0.880, significantly better in our experimental setup than in Spearman et al.
(2017) who report an accuracy of 0.819. Naturally, this effect may come (in parts)
from using different data. For example, our Bundesliga data has an average rate of
successful passes of 0.86 while Spearman et al. (2017) reports only 0.789.

Receiving Position The pass reception probability prs (m; θ) describes the like-
lihood that a pass to receiver r can be successfully completed at position m. We
empirically quantify the estimate by comparing the true positions of passer and receiver
to the predicted success rate at those positions. Again, we consider successful as well
as intercepted passes. Consider the example in Fig. 1 which serves as our running
example in the paper. The black circle in the left part shows the actual pass reception
position of the pass and its corresponding color-coded pass reception likelihood while
the right figure shows the instance of the first touch of the receiver. Our evaluation
on all available pass data shows that for successful passes, the average success likeli-
hood and standard deviation of the end position is 0.789±0.328 whereas the average
likelihood of bad passes is 0.169±0.269. In other words, the model is able to predict
reliably, whether passes to certain positions can be successful. This is also highlighted
by a corresponding AUC value of 0.913.

Availability After having shed light on different aspects of the proposed approach,
we now turn to evaluate the main contribution of the paper, the predicted Availability
scores Ar (ψ). For every pass in the data, we compare the (expected) availability of
the (intended) receiver to the true outcome of the pass. In our evaluation, the average
Availability score and standard deviation of successful and unsuccessful passes are
0.884±0.23 and 0.572±0.24, respectively. Moreover, measuring AUC onAvailability
and true outcome yields a score of 0.870. This allows to draw the conclusion that the
computed Availability scores correlate highly with success of passes. Note that the
overall success rate of observed passes of 0.86 is almost matched by an average
predicted Availability of 0.84.

Figure 8, left, shows average success rates and Availability scores for different pass
origins,2 while the right part of the figure shows those quantities w.r.t. pass distance.

2 The x-axis of the figure is identical to the x-coordinate of the position of the pass giver at the time of
the pass. The attacking team plays always from left to right so that 0 is identical to the own goal while 100
corresponds to the opponent’s goal.
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Fig. 8 Evaluation of passes. Left: origin of the pass in meters from goal line. Right: distance of pass in
meters

Both figures show that average success rates andAvailabilities line up nicely. However,
a limitation of our model can also be clearly identified in the left part of the figure:
since we do not incorporate the notion of “pressure” on the pass giver into the model,
areas closer to the own goal have higher success rates than the estimated ones. On the
other hand, the true success rates are smaller than the predictions in areas closer to
the opponent’s goal. We credit this finding to the expected pressure on pass giver at
the time of a pass. The closer the passer is to the opponent’s goal, the more pressure
is issued by the opponents and the player has to act in smaller spaces and in shorter
time windows to play a pass.

Note that the pressure argument does not translate to the pass distance as Fig. 8,
right, demonstrates. A reason for this can be observed in Fig. 9, left. The figure shows
the mean success rates for bins of Availability scores. An optimal scoring function
would yield the diagonal green line where Availability scores and average success
rates would perfectly align. However, as observed in Fig. 9, left, this holds only for
Availability scores above 0.5. The observed success rates for smaller values exceed the
expectations significantly. An in-depth analysis of the results shows that this is mainly
due to imperfections in the recorded data (cf., Linke et al. 2020) for a quantitative
evaluation of tracking data) and the small number of passes with low Availability, as
shown in red in the figure. As an example, consider Fig. 10, left, where the recorded
ball position (thick black circle) suggests that the ball is located at the player’s heels.
However, in reality, the ball is positioned half a meter to the left. The computed
Availability uses the recorded position to come to the conclusion that the player at the
bottom of the image can only receive a high pass to the left of him with probability
0.26. However, the real ball reception is at the light circle, following a low pass. In the
right part of the figure, the recorded ball position is slightly below the player’s position,
whereas the real ball position is about a meter above the recorded position. Because of
that, computed success probabilities prs (x, θ) are non-zero mainly below the receiver
(to the right in playing direction) because according to the data the ball was one meter
below the real position. The actual ball reception position is unreachable according to
the data.

Availability over Time We now investigate how Availability changes over time
prior to a pass. We differentiate between good and bad passes and measure relative
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Fig. 9 Left: Success rate vs. predicted Availability. Right: Availabilities over time before a pass

Fig. 10 Pass situations where real ball position and recorded data position differ significantly. Thick black
circle indicates recorded ball position, light black circle indicates ball reception position. Orange shades
indicate computed potential receiving positions. Left: The recorded ball position suggests that the ball is
at the positions of the player’s heels. In reality, the ball is half a meter to the left. Computed availability
indicates that according to recorded position the player at the bottom of the image can only receive a high
pass to the left of him with probability 0.26. However, the real ball reception is at the light circle, following
a low pass. Right: Recorded ball position is slightly below the player’s position. Real ball position is about a
meter above the recorded position. For better visibility, a larger version of this figure is shown inAppendix C

Availabilities by subtracting the score at the time of the pass from the respective score s
seconds before the pass. Figure 9, right, shows the resulting relative Availabilities over
time. For all passes, relative Availabilities decline rapidly before the actual pass. This
is explained by passing players turning their bodies into the direction of the pass before
the pass is being played, which in turn means that opponents read their intentions from
their posture and try to close the passing window. This effect is stronger for bad passes,
which partly explains why they are unsuccessful.

Comparison to Expert Ratings To evaluate validity against an external criterion,
we compare computed Availability scores to those estimated by human observers.
Four soccer coaches rated the availability of players in 60 situations. We included
situations only, in which the ball possessing player had full ball control (ball flat,
orientation to opponent’s goal, at least one second ball possession, low pressure).
To consider different types of tactical constellations, we distributed the 60 situations
evenly on build-ups, transitions, and situations in the box. The coaches are presented
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Table 5 Correlations between
experts and our method

Obs1 Obs2 Obs3 Obs4 Model

Obs1 1.000 0.806 0.740 0.800 0.769

Obs2 0.806 1.000 0.813 0.842 0.708

Obs3 0.740 0.813 1.000 0.840 0.638

Obs4 0.800 0.842 0.840 1.000 0.701

Model 0.769 0.708 0.638 0.701 1.000

Table 6 Average rating of
successful (+1) and
unsuccessful (−1) passes

Obs1 Obs2 Obs3 Obs4 Model #

+1 −0.25 0.25 0.12 0.12 0.12 8

−1 1.33 1.46 1.24 1.32 1.77 48

AUC 0.826 0.814 0.729 0.787 0.889

an image from the video and rated the Availability of every team mate of the ball
possessing player in that situation with a score in the set {−2,−1, 0, 1, 2}, where −2
corresponds to lowest Availability and +2 to highest.

To provide a common understanding of the ratings, the experts were instructed
before the experiment. In short, for a rating of +2, a player should be able to receive
the ball safely if the passing player does not make a terrible mistake. A rating of +1
represents a situation in which a player has a good chance to receive the ball, but there
is maybe a small interception chance for an opponent. A rating of 0 indicates a 50:50
chance to get the ball, and so on. The experts were encouraged to rate the situations
based on their personal understanding of soccer. Since Availability is a probability
and naturally ranges between zero and one, we binned the scores evenly in intervals of
length 0.2 so that an Availability within [0, 0.2) corresponds to a rating of−2, interval
[0.2, 0.4) is mapped to −1, and so on.

Table 5 shows correlations between the expert ratings and the binned Availabilities.
The table shows a strong positive correlation between the coaches and our computa-
tional model. Differences between the observers indicate that it may not be possible
to entirely objectify Availability. This is quite typical for non-trivial tactical concepts
and has also been reported for other metrics (Link et al. 2016). However, correlations
between experts are generally higher than the ones between expert and model with
Obs1 being the only exception. Though the finally outcomes are comparable, this
result suggests that our model rates Availabilities slightly different than the experts.

Interestingly, Table 6 shows that our algorithm in fact rates Availabilities slightly
better than the experts. The table summarizes average completion rates of passes as an
indicator. That is, we compare average ratings of successful and non-successful passes
as follows. A mean of 0.12 for non-successful passes is comparable to the rating of
the experts. For successful passes, however, an average rating of 1.77 is significantly
higher than those of the experts. This result also becomes obvious when comparing
AUCs, where our algorithm significantly outperforms all experts.
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6 Scenarios for application

From the perspective of performance analysis, our model presents a set of inter-
esting applications. As an example, coaches and other experts can use Availability to
characterize the passing tactics of players, that is, does a player only try easy passes or
is the proportion of difficult passes noticeably high? Themodel can also be used to rate
the actual passing ability of players. While coaches have a very good understanding of
their players’ passing capabilities, by seeing them in training and matches on a daily
basis, quantifying those abilities is still a hard task. While average passing statistics
are readily available in a wide variety of sources3 the raw pass count and average
success rates to not show the full picture. E.g. attacking players generally have a lower
pass percentage than defensive players, simply because they operate in tighter spaces
and have fewer, if any, available passing options. Therefore, it should prove beneficial
to compare a player’s observed success rates to the expected one in order to more
objectively quantify a player’s passing ability.

Figure 11 and Table 7 show preliminary results for both use cases. In Fig. 11, we
compare pass selections of defenders, midfielders, and forwards of Bayern Munich.
The results show that the position in which a player generally operates has a significant
influence on the kinds of passes a player attempts. Defenders take fewer risks when
passing, for one because the outcome of an unsuccessful pass could more likely result
in a scoring chance by the opponent but also because they have more available pass-
ing options. On the other hand, forwards take more risks, either because the potential
reward is higher, or because simple passes are not possible due to high pressure of
defenders. Table 7 shows the top 10 ranked players in our data w.r.t. their expected ver-
sus observed pass percentage. We would like to note that our evaluation data consists
of only 58 games and several players did not have enough passes in the data to validate
reliable analyses. We only considered players with at least 350 passes which left us
with 65 players from FC Bayern Munich, Hamburger SV, TSG 1899 Hoffenheim, FC
Schalke 04, and SG Eintracht Frankfurt. Still, the top 10 exhibits an impressive over-
representation of Bayern Munich players. Sebastian Rudy, Joshua Kimmich, Arturo
Vidal, DavidAlaba, Corentin Tolisso, andNiklas Süle all played forBayern that season
with only 2 Schalke players (Daniel Caligiuri, Benjamin Stambouli) and 2 Hamburg
players (Kyriakos Papadopoulus, Gotoku Sakai) in the list.

7 Conclusion

Wepresented and evaluated a data-driven approach to estimatingAvailability of soccer
players. The investigated model leverages graph recurrent neural networks to predict
whether players can intercept the ball in a given time to compute the probability of a
successful pass along a ball trajectory. By computing all possible ball trajectories using
trained models for ball dynamics, we showed how to aggregate those potential passes
into a single value that represents the overall Availability of a player. Experimental

3 e.g. Opta Sports data via e.g. https://www.whoscored.com/Regions/81/Tournaments/3/Seasons/7405/
Stages/16427/PlayerStatistics/Germany-Bundesliga-2017-2018
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Table 7 Player Analysis

Player Availability Success Count Difference

S. Rudy 0.898 0.944 412 0.046

K. Papadopoulos 0.889 0.935 367 0.046

J. Kimmich 0.907 0.945 855 0.038

A. Vidal 0.912 0.946 405 0.034

D. Caligiuri 0.861 0.894 500 0.033

D. Alaba 0.921 0.950 515 0.029

C. Tolisso 0.921 0.950 458 0.029

G. Sakai 0.874 0.902 540 0.028

N. Süle 0.937 0.965 510 0.028

B. Stambouli 0.888 0.916 392 0.028

evaluation showed that this overall model outperforms the state-of-the-art approach on
58 professional soccer matches. Additionally, our experiments indicate that the model
can even outperform soccer coaches in assessing the Availability of soccer players.
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Appendix A Intended receiver model

The presented model allows to estimate the probability that a player can successfully
receive a pass. To learn a general model that can deal properly with intercepted passes,
we need to know the intended receiver of an intercepted pass. This information is usu-
ally not contained in commercial data and manual annotation tedious and expensive.
We thus propose a way to estimate the intended receiver from data. Note that this
model is not part of the presented model in the main part so that training and applica-
tion of this approach needs to be done before training the model in Sect. 4. By doing
so, the model in Sect. 4 can take the provided labels into account.

A bad pass may have two possible outcomes: It is either intercepted by an opposing
player or the ball goes out of bounds. To be able to observe the initial trajectory of the
ball, which is vital for predicting the receiver, we only consider passes where the ball
travels at least 0.24 sec (6 frames) before it is either intercepted or goes out of bounds.
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Fig. 12 Model for predicting
intended receivers

Our approach is to learn from data of successful passes, where the intended receiver
is also the observed receiver, and simply use that model to predict intended receivers
of unsuccessful passes.

Let tp be the recorded time of a successful pass and ytp the true receiver of that pass.
The pass is turned into a training example by computing the initial direction of the
pass on the first 6 frames and using the positions and trajectories of players and ball
in the subsequent frame as the input. The output is simply the true receiving player,
e.g., by a one-hot encoding.

Figure 12 shows an overview of the model. Let φI (v
k
T , vbT ) be a score function of

outputs hkT of potential receiver k and passer hbT of the GRNN model as described in
Sect. 4. The model minimizes the cross-entropy loss between real labels and scores
and thus outputs a softmax distribution over all possible receiving players.

Appendix B Input to GRNN

In our approach, a player is represented by the (x, y) coordinates of her position on the
pitch and her speed in x and y direction given by sx and sy , respectively. Additional
indicator variables and flags inform the model about

• the x-direction of the opponent’s goal (ρd ∈ {−1,+1})
• whether the player’s team has ball possession (ρt ∈ {0, 1})
• whether player has ball possession (ρbp ∈ {0, 1}) and
• whether player is a goal keeper (ρgk ∈ {0, 1})

The representation for the i-th player at time T is thus given as a feature vector

S i
T = (xi , yi , six , s

i
y, ρ

i
d , ρ

i
t , ρ

i
bp, ρ

i
gk)

	

where we omitted the time index T for readability. The input to the GRNN is now
given by the set of feature vectors of all players and the ball, where the latter is the
same as for players but all flags and indicators are set to zero, i.e.,

Sball
T = (xi , yi , six , s

i
y, 0, 0, 0, 0)

	.
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Fig. 13 Top: Figure 1 (left part). Bottom: Figure 1 (right part)

Appendix C Figure 13 and 14

For better visibility, we show larger sized versions of Figures 1 and 10 here.
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Fig. 14 Top: Figure 10 (left part). Bottom: Figure 10 (right part)
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