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Abstract
Real-world datasets are often characterised by outliers; data items that do not follow
the same structure as the rest of the data. These outliers might negatively influence
modelling of the data. In data analysis it is, therefore, important to consider methods
that are robust to outliers. In this paper we develop a robust regression method that
finds the largest subset of data items that can be approximated using a sparse linear
model to a given precision. We show that this can yield the best possible robustness
to outliers. However, this problem is NP-hard and to solve it we present an efficient
approximation algorithm, termed SLISE. Our method extends existing state-of-the-art
robust regression methods, especially in terms of speed on high-dimensional datasets.
We demonstrate our method by applying it to both synthetic and real-world regression
problems.
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1 Introduction

In practically all analyses of real-world data we encounter outliers, i.e., data items
that do not follow the same patterns as the majority of the data. Such items are prob-
lematic, since they may negatively influence modelling of the data. This is observed,
for instance, in ordinary least-squares (ols) regression where already a single outlier
may lead to arbitrarily large errors (Donoho and Huber 1983). It is, hence, important
to consider robust methods that effectively avoid the influence of outliers.

Robust regression methods can be used as almost drop-in replacements for linear
regression, which is still widely used because of the inherent interpretability and
simplicity. Linear regression is also often used as a part of other machine learning
or data mining algorithms, e.g., in explainable artificial intelligence (Ribeiro et al.
2016; Björklund et al. 2019). Furthermore, robust regression can be used to search for
outliers by investigating the data items that do not adhere to the robust model.

In this paper we present a sparse robust regression method, termed slise (Sparse
Linear Subset Explanations), that achieves the highest possible theoretical robustness
and outperforms many existing state-of-the-art robust regression methods in terms of
scalability on large datasets. Specifically, we consider finding the largest subset of
data items that can be represented by a linear model to a given accuracy.

To illustrate the need for robust regression methods, consider the dataset shown
in Fig. 1 containing a cluster of outliers in the top right corner. Here ordinary least-
squares linear (ols) regression clearly fails due to the influence of the outliers. In
contrast, our slise method yields high robustness by ignoring the outliers and finds a
linear model that approximates a (large) subset of the data items.

The two main goals of the slise algorithm can be stated in brief as follows. The
primary goal of the algorithm is to find a maximum subset of points that can be
modelled by a linear model to a given maximum error. This subset is visualised in
Fig. 1 by the shaded area around the orange slise line. The width of this “corridor”
shows the (adjustable) error tolerance. The secondary goal of slise is to minimise the
residuals of the items within the subset marked by the corridor.

Fig. 1 Outliers can cause ordinary least-squares regression to give unusable results (green dashed line).
Robust regressionmitigates the effect of the outliers. slise (orange solid line) accomplishes this by finding a
maximal subset of itemswhich can bemodelled by a linear model to a givenmaximum error. This maximum
error is illustrated as the lightly shaded “corridor” around the slise regression line (Color figure online)
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Robust regression via error tolerance 783

In the analysis of multidimensional datasets it is also important to consider the
interpretability of the model. slise incorporates lasso regularisation and can, hence,
yield sparse models, i.e., models where some of the coefficients are zero and have no
impact on the model, making interpreting the results easier (Ribeiro et al. 2016).

1.1 Related work

One of the reasons for the non-robustness of ols is the minimisation of the sum of
squared residuals in the loss function, meaning that outliers highly affect the final fit.
One remedy for this is to use a loss function without squaring, e.g., absolute deviation
(Giloni et al. 2006) or Huber-loss (Huber 1964). Although this is, in practice, often
more robust than ols, theoretically these loss functions are just as susceptible to
outliers as ols (Rousseeuw and Hubert 2011).

Linear regression can also be solved by finding a maximum likelihood estimate for
the parameters. The likelihood function can then be chosen such that the estimation
becomes robust. Early examples include S-Estimators (Rousseeuw and Yohai 1984)
and MM-Estimators (Yohai 1987). These have recently been further developed into,
e.g., mm- lasso (Smucler and Yohai 2017), mte- lasso (Qin et al. 2017), and smdm
(Koller and Stahel 2017).

Another approach to robustmodelling is to fit themodel only to non-outliers, instead
of considering the full dataset. However, in order to ignore the outliers, these must first
be found.One approach is to ignore afixed fraction of the items, typically up to half, and
simultaneously optimise for both the regression model and the subset of included data
items. This is the idea behind the Least Trimmed Squares (lts) algorithm (Rousseeuw
1984), which also has more recent improvements (Rousseeuw and Van Driessen 2000;
Alfons et al. 2013).

This can also be done by randomly selecting subsets until a subset of only non-
outliers is found. This subset can then be expanded to include all non-outliers, e.g.,
by fitting a linear model to the subset and selecting all data items with small-enough
errors. This iswhat the ransac algorithmdoes (Fischler andBolles 1981).ransac has
gained popularity in the field of computer vision with multiple recent improvements
(Barath and Matas 2018; Barath et al. 2020). However, these improvements operate
on different assumptions and data structures, since the task is to match pixels between
two images.

Anotherway of achieving robustness is to replace non-robust parts of the algorithms
with more robust parts, e.g., by replacing means with medians (Hubert and Debruyne
2009). This is the idea behind Quantile Regression (Koenker and Hallock 2001), for
which the most recent development is conquer (Fernandes et al. 2021).

Beside robustness, linear regression methods can have other characteristics, such as
sparsity. In this context, sparsity means that some of the coefficients are (deliberately)
zero. A commonway of achieving sparsity is through lasso regularisation (Tibshirani
1996), and this has also been added to various robust regression methods (Alfons et al.
2013; Smucler and Yohai 2017; Wang et al. 2007).

Of the robust regression methods, slise is most closely related to lts, or rather
to the sparse variant sparse- lts (Alfons et al. 2013). Both lts and slise fit linear
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784 A. Björklund et al.

models for a subset of the items. The difference is that lts requires the size of subset
to be fixed and specified a priori while slise defines the subset based on a maximum
tolerable error. This requires a new algorithm that actually scales better with regards to
the number of dimension (see Sect. 4.2) without sacrificing any theoretical robustness
(see Sect. 2.2). The slise algorithm uses graduated optimisation to find solutions,
which makes it both fast and robust against noise and outliers.

1.2 Contributions

We present a novel robust regression method, slise, by considering the problem of
finding the largest subset that can be approximated by a sparse linear model to a
given accuracy (Problem 1). We show that this can yield the best possible breakdown
value (Sect. 2.2), but that the problem isNP-hard (Theorem 2). We present an approx-
imative algorithm for solving it (Algorithm 1) and demonstrate that it also works
empirically using both synthetic and real-world datasets (Sects. 5–7). Compared to
other robust regression methods slise yields high robustness and good scalability to
high-dimensional datasets.

The initial version of the slise algorithm was presented in aconference paper
(Björklund et al. 2019). That paper has a greater focus on one specific use case for the
robust regression method, namely, explaining outcomes from black box supervised
learning models. (The word “Explanations” in the name of the slise algorithm stems
from this application.)When applied to the problemof explainingmodels, the idea is to
find a simple interpretable linear model that approximates a more complex supervised
learningmodel in the neighbourhood of a data item of interest. For this task slisemust
be able to find good solutions even for small error tolerances. The advantage of using
slise for explaining supervised learning models is that no resampling of datasets is
required and that the explanations (linear models) obey constraints imposed by the
data. In the present paper, however, we focus solely on robust regression.

Compared to Björklund et al. (2019), the discussion on the problem characteristics
and numeric approximation is substantially extended with additional proofs in Sects. 2
and 3. We also provide novel initialisation schemes for the slise algorithm in Sect. 4,
and evaluate their effect, and the effect of all the other parameters, on the stability and
performance of the algorithm in Sect. 6. We find that one of the new schemes is more
robust than the lasso initialisation used previously, and provide recommendations
for suitable default values for the other parameters. Furthermore, we perform a more
thorough empirical comparison to related methods in Sect. 7.

1.3 Organisation

In Sect. 2 we formalise our robust regression problem, and show its complexity and
breakdown value. We then discuss the practical numeric optimisation and its approx-
imation properties in Sect. 3. The algorithm, with different initialisation schemes and
asymptotic complexity, is presented in Sect. 4. The empirical evaluation, which con-
sists of the default parameter selection and the comparison to related methods, follows
in Sects. 5–7. We end with conclusions in Sect. 8.
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2 Problem definition

Let (X ,Y ), where X ∈ R
n×d and Y ∈ R

n , be a dataset consisting of n pairs
{(xi , yi )}ni=1 where we denote the i th d-dimensional item (row) in X by xi ∈ R

d

(the predictor) and similarly the i th element in Y by yi ∈ R (the response). We use
the shorthand [n] = {1, . . . , n}.

Our goal is to develop a linear regression method that is robust to outliers by finding
the largest subset of data items that can be described by a sparse linear model to a
given precision, as exemplified in the introduction.

We now state the main problem in this paper:

Problem 1 Given X ∈ R
n×d , Y ∈ R

n , the error tolerance ε ∈ R ≥ 0, and the
regularisation strength λ ∈ R ≥ 0; find the regression coefficients α ∈ R

d minimising
the (ε, λ)-loss function

Loss(ε, λ, X ,Y , α) =
∑n

i=1
H

(
ε2 − r2i

) (
r2i /n − ε2

)
+ λ‖α‖1, (1)

where the residual errors are given by ri = yi − αᵀxi , H(·) is the Heaviside step
function satisfying H(u) = 1 if u ≥ 0 and H(u) = 0 otherwise, and ‖α‖1 denotes
the L1-norm. In the remainder of the paper we will use the L1-norm given by ‖α‖1 =∑d

i=1 |αi |, even though the theoretical results would be valid for L2 or other norms
as well. The benefits of L1 or Lasso regularization include that it leads to sparse
solutions, which is beneficial for interpretability and explanations (Björklund et al.
2019). If necessary, the data matrix X can be augmented with a column of all ones to
accommodate the intercept term of the model.

Alternatively, the Lagrangian term λ‖α‖1 in Eq. (1) can be replaced by a constraint
‖α‖1 ≤ t for some t . Now we can rewrite Eq. (1) as

Loss(ε, λ, X ,Y , α) =
∑

i∈S
(
r2i /n − ε2

)
(2)

under the constraint ‖α‖1 ≤ t , and where

S = {i ∈ [n] | r2i ≤ ε2}. (3)

Here S is the subset of data items assumed to be non-outliers and the complement,
Sc = [n] \ S, is the subset of potential outliers. As can be seen in Eq. (2), we only
consider the non-outliers when fitting the linear model.

At the limit of ε → ∞ it follows that S = [n] and Problem 1 becomes equivalent
to lasso (Tibshirani 1996). When ε is small Problem 1 becomes a combinatorial
problem in disguise, where we try to find a maximal subset S, due to the subtraction
of ε2 in Eq. (2).

Theorem 1 Minimising the loss in Eq. (2)maximises the size of the subset S in Eq. (3).
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786 A. Björklund et al.

Proof The subset size term in Eq. (2) is −∑
i∈S ε2 = −|S|ε2, while for the residual

term it holds that
∑

i∈S r2i /n ≤ ε2. This means that any change in the subset size has
at least as large an impact on the loss as all the residuals combined, and for any α

and α∗ satisfying Loss(ε, λ, X ,Y , α) ≤ Loss(ε, λ, X ,Y , α∗), it then follows that
|S| ≥ |S∗|. 	


2.1 Complexity class

Due to the combinatorial nature, finding an exact solution to Problem 1 is difficult. By
showing that Problem 1 is a generalisation of a known NP-hard problem we can give
a lower bound for the complexity class.

Theorem 2 Problem 1 is NP-hard and hard to approximate.

Proof We prove the theorem by a reduction to the maximum satisfying linear
subsystem problem (Ausiello et al. 1999, Problem MP10), which is known to be
NP-hard . In maximum satisfying linear subsystem we are given the system
Xα = y, where X ∈ Z

n×m and y ∈ Z
n and we want to find α ∈ Q

m such that as
many equations as possible are satisfied. This is equivalent to Problem 1 with ε = 0
and λ = 0. Additionally, the problem is not approximable within nγ for some γ > 0,
according to Amaldi and Kann (1995). 	


2.2 Breakdown value

The robustness of robust regression methods is often measured using the breakdown
value (Donoho and Huber 1983; Rousseeuw and Hubert 2011), which is defined as
the theoretical minimum fraction of (adversarial) outliers that can cause an arbitrarily
large deviation in the model. This can, e.g., be measured with (Alfons et al. 2013):

vbreakdown = min{v : sup‖Xαv − Y‖ → ∞},

where v is the fraction of outliers andαv is the linearmodel that fits the dataset (Xv,Yv)

where v of the items have been replaced by items with arbitrary values (outliers).
Non-robust regression methods, such as ordinary least-squares, have a breakdown

value of 1/n (Hubert and Debruyne 2009), i.e., a single outlier is enough to cause a
breakdown. The practical upper limit for the breakdown value is 0.5, since any value
larger than that cannot be guaranteed, without prior information.

Theorem 3 The breakdown value of Problem 1 is 0.5.

Proof Following the definition, the breakdown value can be found as follows.We start
from an uncorrupted (i.e., no outliers) dataset (X0,Y0) with n items obeying a linear
model parametrised by α0 and where all data items are within the corridor defined by
ε. A fraction v of the data items are then changed into adversarial outliers, yielding
the corrupted dataset (Xv,Yv).

The subset given by Problem 1 on (X0,Y0) is S0 and |S0| = n. With a finite ε

the breakdown occurs when the subset Sv for (Xv,Yv) contains corrupted items. This
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requires |Sv| ≥ |S0|/2, since otherwise the uncorrupted subset is larger, |S0 \ Sv| >

|Sv|, and is selected. Thus, the breakdown value is v = |Sv|/n = (|S0|/2)/n = 0.5. 	


In Sect. 7.2 we empirically validate the breakdown value.

3 Numeric approximation

In order to solve the NP-hard Problem 1 efficiently in the general case, we relax
the problem by replacing the Heaviside function with a sigmoid function σ(u) =
1/(1+ e−u) and a continuous and differentiable rectifier function φ(u) ≈ min (0, u).
This allows us to compute the gradient and find α by minimising

β-Loss(ε, λ, X ,Y , α) =
∑n

i=1
σ

(
β(ε2 − r2i )

)
φ

(
r2i /n − ε2

)
+ λ‖α‖1, (4)

where the parameter β determines the steepness of the sigmoid and the rectifier func-
tion φ is parametrised by a small constant ω > 0 such that

φ(u) =
⎧
⎨

⎩

u, u ≤ −ω,

−(u2/ω + ω)/2, −ω < u < 0,
−ω/2, u ≥ 0.

It is easy to see that Eq. (4) is a smoothed variant of Eq. (1) and that the two become
equal when β → ∞ and ω → 0+.

3.1 Graduated optimisation

We perform the optimisation of Eq. (4) using graduated optimisation (Mobahi and
Fisher 2015). Graduated optimisation iteratively solves a difficult optimisation prob-
lem by progressively increasing the complexity. A natural parametrisation for the
complexity of our problem is via the β parameter, since β = 0 corresponds to a
convex optimisation problem equivalent to lasso and when β → ∞ the problem
becomes equivalent to Problem 1. This yields an iterative optimisation strategy.

At each step we use the previous optimal value of α as a starting point for min-
imisation of Eq. (4), and then increase the value of β. It is important that the optima
of consecutive α:s are “close enough”. This is why we derive an approximation ratio
between solutions with different values of β. We observe that our problem can be
rewritten as a maximisation of −β-Loss(ε, λ, X ,Y , α). The choice of β does not
affect the L1-norm and we omit it for simplicity (λ = 0).

Theorem 4 Given ε, β1, β2 ≥ 0, such that β1 ≤ β2, and the functions

f j (r) = −σ(β j (ε
2 − r2))φ(r2/n − ε2),
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and G j (α) = ∑n
i=1 f j (ri ) where ri = yi − αᵀxi and j ∈ {1, 2}. For α1 =

argmaxαG1(α) and α2 = argmaxαG2(α) the inequality

G2(α2) ≤ KG2(α1) (5)

always holds, where K = G1(α1)/ (G2(α1)minr f1(r)/ f2(r)) is the approximation
ratio.

Proof The functions f1 and f2 are both always non-zero and positive: the inequalities
σ(u) > 0 and φ(u) < 0 hold for all u ∈ R, thus f j (r) > 0. Now, by definition,
G1(α2) ≤ G1(α1). We denote r∗

i = yi − α
ᵀ
2 xi and k = minr f1(r)/ f2(r), which

allows us the rewrite and bound:

G1(α2) =
∑n

i=1
f1(r

∗
i ) =

∑n

i=1
f2(r

∗
i ) f1(r

∗
i )/ f2(r

∗
i ) ≥ kG2(α2).

Then G2(α2) ≤ G1(α2)/k ≤ G1(α1)/k ≤ G2(α1)G1(α1)/(kG2(α1)), and the
inequality from the theorem holds. 	


We use Theorem 4 in the graduated optimisation to choose the sequence of increas-
ing β values (β1, β2, . . . , βi > βi−1), so that the approximation ratio, defined as K ,
stays constant.

3.2 Stopping criterion

Iterating until β → ∞ is not possible in practice, so we need a stopping criterion for
the algorithm. The iterations should be stopped when σ(β(ε2 − r2)) ≈ H(ε2 − r2),
i.e., the stopping criterion is dependent on the shape of the sigmoid function. The
sigmoid shape is determined by both β and ε. However, ε is expected to change often,
depending on both the dataset and the task, so a stopping criterion independent of ε

would be preferable.

Observation 1 Setting βmax ∝ 1/ε2 makes the stopping criterion independent of ε.

Proof Assume that there exists a pair of values βc and εc. We say that a sigmoid
function parametrised by some βmax and ε has the same relative shape if and only if

σ(βmax(ε
2 − (pε)2)) = σ(βc(ε

2
c − (pεc)

2))

for every value of p ∈ R. Since the sigmoid function is strictly increasing, it can
trivially be removed from both sides of the equation and hence

σ(βmax(ε
2 − (pε)2)) = σ(βc(ε

2
c − (pεc)

2))

βmaxε
2(1 − p2) = βcε

2
c (1 − p2)

βmax = βcε
2
c/ε

2 = c/ε2,

(6)

where c = βcε
2
c is a constant. 	


We empirically determine a good default value for c in Sect. 6.5.
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3.3 Approximation ratio for the numeric approximation

By using the approximation ratio between two β-Losses (Theorem 4) we can derive a
new approximation ratio between the losses of Eqs. (4) and (1) (the problem definition
and the numeric approximation).

We set β2 → ∞ and ω → 0+ so that f2(r) = −H(ε2 − r2)φ(r2/n − ε2).
Additionally we introduce an ε∗ such that f ∗

2 (r) = −H((ε∗)2 − r2)φ(r2/n − (ε∗)2),
G∗

2(α) = ∑n
i=1 f ∗

2 (yi − αᵀxi ), andα∗
2 = argminαG

∗
2(α). This leads to a newapprox-

imation ratio Kε∗ derived in the following lemma.

Lemma 1 The approximation ratio between the losses parametrised by α1 and α∗
2 is

Kε∗ = G1(α1)/
(
G∗

2(α1)kε∗
)
where

kε∗ = σ(β1(ε
2 − (ε∗)2))φ((ε∗)2/n − ε2)/((ε∗)2/n − (ε∗)2).

Proof The proof is omitted since it exactly mirrors Theorem 4 with the observation
that kε∗ = minr f1(r)/ f ∗

2 (r) = minr≤ε∗ (− f1(r)/(r2/n − ε∗2)), which leads to
kε∗ = σ(β1(ε

2 − (ε∗)2))φ((ε∗)2/n − ε2)/((ε∗)2/n − (ε∗)2). 	

We call α∗

2 the matching solution, since it is the optimum for Eq. (1) closest to α1.
Note that α∗

2 has a different ε (namely ε∗) that we need to specify in order to fully
define the matching solution.

Lemma 2 For ε∗ minimising the approximation ratio Kε∗ , it holds

ε∗ = argmaxε∗

(
−

n∑

i=1

H((ε∗)2 − r2i )(r2i /n − (ε∗)2) σ (β1(ε
2 − (ε∗)2))φ((ε∗)2/n − ε2)

(ε∗)2/n − (ε∗)2

)
(7)

where ri = yi − α
ᵀ
1 xi .

Proof Let us denote

ε∗ = argminε∗Kε∗ = argminε∗G1(α1)/(G
∗
2(α1)kε∗) = argmaxε∗G∗

2(α1)kε∗ ,

from which Eq. (7) follows. 	

Due to the non-continuity of the Heaviside function, the maximum can be found at

ε∗ = r j for some j ∈ [n]. We can further assume, without loss of generality, that the
residuals are sorted so that r21 ≤ r22 ≤ · · · ≤ r2n , which means that

∑n
i=1 H(r2j −r2i ) =

j . With a large enough n, so that 1/n ≈ 0, Eq. (7) can be simplified to

ε∗ ≈ argmaxr j j · σ(β1(ε
2 − r2j )). (8)

Now, if the data is subsampled to a constant size, then Eq. (4) has a constant
approximation ratio for the matching solution.

Theorem 5 The matching solution α∗
2 satisfies the inequality G∗

2(α
∗
2) ≤ Kε∗G∗

2(α1)

where Kε∗ = O(log n) is the approximation ratio.

123



790 A. Björklund et al.

Proof Since ε∗ = r j for some j ∈ [n], it follows that Kε∗ ≤ Krt for all t ∈ [n], where
the definition of Krt = G1(α1)/(G

rt
2 (α1)krt ) follows Theorem 1 (with rt instead of

ε∗). Hence,

1/Krt = Grt
2 (α1)krt /G1(α1) ≤ (

G∗
2(α1)kε∗

)
/G1(α1) = 1/Kε∗ ,

and we can derive, by rearranging the terms in the inequality,

krt ≤ G∗
2(α1)kε∗/Grt

2 (α1).

Assuming that the residuals are sorted so that r21 ≤ r22 ≤ · · · ≤ r2n , then

Grt
2 (α1) = −

n∑

i=1

H(r2t − r2i )(r2i /n − r2t ) ≥ −t(r2t /n − r2t ),

and further following the definition in Theorem 1

krt = σ(β1(ε
2 − r2t ))φ(r2t /n − ε2)/(r2t /n − r2t ),

which, by rearranging, lets us derive

−σ(β1(ε
2 − r2t ))φ(r2t /n − ε2) = krt · (−(r2t /n − r2t ))

≤ G∗
2(α1)kε∗/Grt

2 (α1) · (−(r2t /n − r2t ))

≤ G∗
2(α1)kε∗/(−t(r2t /n − r2t )) · (−(r2t /n − r2t ))

= G∗
2(α1)kε∗/t .

Inserting this into G1 yields

G1(α1) = −
∑n

i=1
σ(β1(ε

2 − r2i ))φ(r2i /n − ε2)

≤
∑n

i=1
G∗

2(α1)kε∗/i

≤ G∗
2(α1)kε∗(log n + 1),

and when combined with Kε∗ from Theorem 1 we have

Kε∗ = G1(α1)/(G
∗
2(α1)kε∗) ≤ G∗

2(α1)kε∗(log n + 1)/(G∗
2(α1)kε∗) = log n + 1,

which completes the proof. 	


4 The SLISE algorithm

In this section we describe an approximate numeric algorithm, slise, for solving
Problem 1. We start by introducing the algorithm, and then continue by discussing
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different initialisation schemes. Finally we demonstrate the asymptotic complexity of
the slise algorithm.

The slise algorithm (Algorithm 1) takes as input the data and the optimisation
parameters. The algorithm starts by selecting initial values for the linear model α and
the sigmoid steepness β (line 3). There are several potential initialisation schemes,
and we will present and discuss four alternatives later in this section (see Sect. 4.1 and
Algorithm 3).

1 Parameters: (1) dataset X ∈ R
n×d , Y ∈ R

n ,
(2) error tolerance ε,
(3) regularisation coefficient λ,
(4) maximum sigmoid steepness βmax,
(5) approximation ratio K ,
(6) additional parameters to the initialisation function …

2 Function SLISE(X, Y , ε, λ, βmax, K , …)
3 α, β ← Initialise(X, Y , ε, K , …)
4 while β < βmax do
5 α ← OWL-QN(β-Loss, X , Y , ε, λ, α)
6 β ← β ′ such that ApproximationRatio(X, Y , ε, β, β ′, α) = K

7 α ← OWL-QN(β-Loss, X , Y , ε, λ, α)
8 Result: α

Algorithm 1: The slise algorithm. The β-Loss is given by Eq. (4).

The main part of slise consists of graduated optimisation (lines 4–7), that optimise
the values forα andβ. This is done by alternating between optimisingα, and increasing
β until we reach βmax. At each iteration, we need to find the α that minimises the β-
Loss in Eq. (4), using the current value of β (line 5). This optimisation is done with
owl- qn (Schmidt et al. 2009) which is a quasi-Newton optimisation method with
built-in L1-regularisation. We then increase β (line 6) such that the approximation
ratio between consecutive steps, as defined in Theorem 4, equals K .

The pseudocode for the approximation ratio calculation is provided in Algorithm 2.
In Eq. (4) we use the rectifying φ function to ensure negativity. This function requires a
constantω and its value can be chosen to be smaller thanmachine epsilon.Hence, in the
approximation ratio calculation (line 4), φ(u) is numerically equivalent to min(0, u).
As a minor computational side-effect of this, we have to make sure not to divide by
zero if all φ(ri ) = 0 (lines 8–11).

4.1 Initialisation schemes

In Algorithm 3 we introduce four alternative initialisation schemes, and later in
Sect. 6.3 we empirically compare the proposed approaches.

The first initialisation scheme (lines 2–5) is to use the non-robust counterpart to
slise, i.e., lasso-regression, by setting β = 0. Since lasso is a convex problem, the
initial α does not matter, and here we use ordinary least squares regression to obtain
the initial α.
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1 Parameters: (1) dataset X ∈ R
n×d , Y ∈ R

n ,
(2) error tolerance ε,
(3) sigmoid steepnesses β1, β2,
(4) linear model α

2 Function ApproximationRatio(X, Y , ε, β1, β2, α)
3 f ← function(r , β) : −σ(β(ε2 − r2))

4 φ ← function(r) : min(0, r2/n − ε2)

5 k ← Minimise( f (r , β1)/ f (r , β2)) by adjusting r
6 for i = 1, . . . , n do
7 ri ← yi − αᵀxi
8 if

∑n
i=1 φ(ri ) �= 0 then

9 K ← ∑n
i=1 f (ri , β1)φ(ri )/

(
k · ∑n

i=1 f (ri , β2)φ(ri )
)

10 else
11 K ← ∑n

i=1 f (ri , β1)/
(
k · ∑n

i=1 f (ri , β2)
)

12 Result: K

Algorithm 2: Approximation ratio calculation.

With β > 0 the problem is no longer convex and the choice of initial α becomes
important. The next two initialisation schemes (lines 6–9 and lines 10–13) offer two
different alternatives. In the first scheme the initial α (line 7) is given by non-sparse
ols, while in the second scheme α (line 11) is a super-sparse constant vector of only
zeros. In both cases the approximation ratio (Algorithm 2) is used to select an initial
value for β.

The final scheme (lines 14–27) is inspired by the initialisation used in fast-
lts (Rousseeuw and Van Driessen 2000) and ransac (Fischler and Bolles 1981),
which are related robust regression methods. The idea is to generate uinit initial candi-
dates, and heuristically select the best one. The candidates are generated by drawing
random subsets (XS , YS) of size d + 1, i.e., XS ∈ R

d×d+1 and YS ∈ R
d , and fitting

linear models to them (using ols, lines 20–22). Note that the probability that at least
one of the subsets is free from outliers is given by p = 1− (1− (1−o)d)u , where o is
the fraction of outliers, d is the number of dimensions, and u is the number of candi-
dates. If d is large, then u would also have to be large to compensate. To alleviate this
potential issue we use pca to temporarily reduce the number of dimensions when d is
larger than a threshold tpca (lines 17–19). Finally, the best candidate α is the one that
minimises the β-Loss and β is updated to match the currently best α (line 23–26).

4.2 Asymptotic complexity

The evaluation of the loss function (and its gradient) has a time complexity ofO(nd),
due to the multiplication between the linear model α and the data-matrix X . The
approximation ratio calculation also has a complexity of O(nd) for the same reason.
This means that the complexity of the initialisation is dominated by the complexity of
ols, which is O(min(nd2, d3)).

The optimisation consists of owl- qn and graduated optimisation. owl- qn is a
variant of lbfgs and has a time complexity ofO(md) (Schmidt et al. 2009), where m
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1 Parameters: (1) dataset X ∈ R
n×d , Y ∈ R

n ,
(2) error tolerance ε,
(3) target approximation ratio K ,
(4) number of candidates uinit ,
(5) treshold for using pca tpca

2 Function InitialiseLasso(X, Y)
3 α ← OrdinaryLeastSquares(X , Y)
4 β ← 0
5 Result: α, β

6 Function InitialiseOLS(X, Y , ε, K)
7 α ← OrdinaryLeastSquares(X , Y)
8 β ← β ′ such that ApproximationRatio(X, Y , ε, 0, β ′, α) = K
9 Result: α, β

10 Function InitialiseZeros(X, Y , ε, K)
11 α ← 0
12 β ← β ′ such that ApproximationRatio(X, Y , ε, 0, β ′, α) = K
13 Result: α, β

14 Function InitialiseCandidates(X, Y , ε, K , uinit , tpca)
15 α, β, l ← 0, 0, 0
16 for i = 1, . . . , uinit do
17 if d > tpca then
18 XS , YS ← RandomSubset(X, Y , size = tpca)
19 α′ ← InversePCA(OrdinaryLeastSquares(PCA(XS), YS))

20 else
21 XS , YS ← RandomSubset(X, Y , size = d)
22 α′ ← OrdinaryLeastSquares(XS, YS)

23 if β-Loss(X, Y , ε, 0, α′) < l then
24 α ← α′
25 β ← β ′ such that ApproximationRatio(X, Y , ε, 0, β ′, α)=K
26 l ← β-Loss(X, Y , ε, 0, α)

27 Result: α, β

Algorithm 3: Schemes for initialising α and β.

is the size of the “memory” for approximating the inverseHessian. Additionally,owl-
qn requires the loss value and gradient to be calculated every iteration. In practice,
the number of iterations can be limited by a constant upper bound (see Sect. 6.4).
The graduated optimisation only adds the approximation ratio calculation, the cost of
which is negligible.

The total asymptotic time complexity of slise is a combination of the initialisation
and the optimisation complexities:O(min(nd2, d3)+ndp), where p is an upper bound
for the total number of optimisation iterations. However, in most cases p � d and
the ols term becomes vanishingly small (see Sect. 7.1) and in cases where d > p the
exact ols solution can be replaced by an optimisation, e.g., using lbfgs (O(ndimax)),
since the initialisation does not have to be exact. In this case the complexity of slise
becomesO(ndp), or ratherO(nd) since p is constant. Also note that any given dataset
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might require fewer iterations than p, but that is linked to the difficulty of finding the
largest linear subset, rather than the size of the dataset.

The memory complexity of slise is at least O(nd), i.e., the memory required to
store the dataset itself. The loss function adds O(max(n, d)), the approximation ratio
O(n), and owl- qn O(md). This makes the total asymptotic memory complexity of
slise O(nd).

5 Experimental setup

We divide the empirical evaluation into three sections. In this section we describe
the datasets and environment used for the experiments. In Sect. 6, we empirically
determine suitable default values for the parameters of slise, and which initialisation
method to recommend. Later, in Sect. 7 we compare slise to competing methods by
demonstrating that (i) slise scales better on high-dimensional datasets than competing
methods, (ii) slise is very robust to noise, and (iii) the solutions found using slise are
optimal.

The experiments were run using R (Microsoft and R Core Team 2019, v. 3.5) on
a high-performance computer cluster (FGCI 2021), using 4 cores from an Intel Xeon
E5-2680 at 2.4 GHz, and reserving 16 GB of RAM. Our implementation of the slise
algorithm, the code to run all the experiments, and the data processing are released as
open source (Björklund et al. 2021).

5.1 Datasets

For the empirical evaluationwe use both real and synthetic datasets. An overview of all
the datasets is shown in Table 1. The real datasets are three regression datasets from the
UCI Machine Learning Repository (Dua and Graff 2019), namely student (Cortez
and Silva 2008), air quality (De Vito et al. 2008), and superconductivity (Hami-
dieh 2018).

As additional real datasets we use some classification datasets for which we create
regression tasks with the help of complex classifiers. The datasets and classifier pairs
are handwritten digits (Cohen et al. 2017,emnist)with a convolutional neural network,
movie reviews (Maas et al. 2011, imdb) with a support vectormachine, and particle jets
(HIP CMS Experiment 2019, physics) with a neural network. The predictions from
the classifiers are probabilities, which we turn into real values using the logit function:
y′
i = log(y/(1 − y)). emnist has ten classes (digits), which yields ten different
regression tasks. Whenever one of these tasks are used, we randomly subsample the
dataset such that 50% of the items are of the “correct” digit and 50% are from all the
other digits. This creates datasets with lots of potential outliers.

Synthetic datasets are generated as follows. The data matrix X ∈ R
n×d is created

by sampling from ten normal distribution with randomised means and variances (μ ∼
N (0, 2) and σ 2 ∼ U (0, 1)). The response vector Y ∈ R

n is created by yi = ak0 +
aᵀ
k xi + e, where e is normal noise with zero mean and unit variance, and ak ∈ R

d+1

is one of seven linear models with the coefficients drawn from a uniform distribution
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Table 1 The datasets used in the experiments. The synthetic dataset can be generated to any desired size

Dataset Items Variables References

student 1044 40 Cortez and Silva (2008)

air quality 6941 11 De Vito et al. (2008)

superconductivity 21,263 81 Hamidieh (2018)

imdb 25,000 1000 Maas et al. (2011)

physics 260,000 4 HIP CMS Experiment (2019)

emnist 40,000 672 Cohen et al. (2017)

synthetic n d Björklund et al. (2021)

between −1 and 1. Each of the seven models ak is used to create 10% of the Y -values,
except one that creates 40% of the Y -values. The code for creating the synthetic
datasets is available in the repository (Björklund et al. 2021) for full reproducibility.

5.2 Pre-processing

slise uses lasso regularisation both for introducing sparsity and regularisation. Since
the lasso penalty sums the absolute values of the coefficients, it is important that
the variables have roughly the same magnitude (Tibshirani 1996). Normalising the
variables also makes it easier to compare the relative importance of values when
interpreting the results. Thus, the variables in all datasets, except imdb and emnist,
have been centred around (subtracted) the median and scaled (divided) by the mad
(median absolute deviation) since this is a more robust form of normalisation than
using means and standard deviations (Rousseeuw and Hubert 2011). Furthermore, we
add an intercept column to the datasets after the normalisation. For all datasets we
also normalise the target (Y ) in the same way, to make the ε:s comparable.

In the student dataset we remove the grades for the first and second period, since
these are very correlated with the target (the grades for the third period), as noted by
Cortez and Silva (2008).

For the emnist dataset the targets (Y ) are robustly scaled as described above,
whereas the pixel values of the input images are just linearly scaled from [0, 255] to
[−1, 1]. Some of the pixels have the same value in all of the images (i.e., the corners),
which is problematic for some of the comparison methods (in Sect. 7), so these are
removed and the images are flattened to vectors of length 672.

The text data in the imdb dataset is transformed into real-valued vectors by using
a bag-of-words model, after case normalisation, removal of stop words, removal of
punctuation, and stemming. The obtained word frequencies are divided by the most
frequentword in each review to adjust for different review lengths, yielding real-valued
vectors of length 1000.
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Table 2 In the experiments we use the following default values for the parameters of slise, if nothing else
is mentioned

Parameter Default value Description

ε �⇒ |S|/n = 0.3 Error tolerance

λ 10−4 · nε2 Regularisation coefficient

βmax 20/ε2 Stopping parameter

K 1.15 Approximation ratio

imax 300 Maximum number of owl- qn iterations

Initialisation candidates Initialisation scheme

uinit 500 Number of candidates

tpca 10 Threshold for using pca

6 Parameter experiments

The slise algorithm presented in Sect. 4 has multiple parameters that must be set. In
addition, we also presented four different initialisation schemes. In this section we find
good default values for the parameters, and determine which initialisation scheme to
recommend.

The two most important parameters for slise are the error tolerance ε and the
sparsity coefficient λ. These depend on both the use case and the dataset. Therefore,
they should be manually adjusted whenever slise is used. The default values for the
other parameters, and which initialisation scheme to recommend, are selected based
on empirical evidence. Specifically, we base the selection on the value of the loss
function and the running time.

All experiments are run ten times per dataset (with different random seeds) in order
to better capture the variance (this means that emnist is run a hundred times, due to
the ten different tasks/digits). Furthermore, any dataset with n > 10,000 is randomly
subsampled to n = 10,000. If nothing else is mentioned, the values in Table 2 are
used as default values for the parameters in the experiments.

6.1 Error tolerance

The role of the error tolerance is to enable detection and ignoring of outliers.Depending
on the dataset or task there might be some obvious limits for the error which should
be used when available. The question is hence how to select the value for ε without
this knowledge?

The value of ε directly affects the size of the subset that fits the resulting model.
Ideally, we want a value of ε such that the subset contains a large amount of non-
outliers and no outliers. In order to better understand how to set the value for ε we
consider, in Fig. 2, how ε corresponds to subset sizes for the datasets.

To be able to guarantee the maximum possible robustness we could proceed as
Rousseeuw (1984) and select the ε:s that correspond to subset sizes of 50%. However,
since none of the datasets considered here contain thatmanyoutliers another possibility
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Fig. 2 Measuring how the ε value affects the subset size. Small values result in (too) small subsets, while
large values have a diminishing return (due to the natural sparseness at the edges of the distributions and to
outliers)

Table 3 Selection of ε based on the resulting subset size

Dataset ε for subset size
75% 50% 30%

student 0.90 0.45 0.18

air quality 0.24 0.12 0.07

superconductivity 0.70 0.30 0.14

imdb 0.29 0.11 0.05

physics 0.35 0.21 0.09

emnist 0.28 0.13 0.05

synthetic 0.92 0.36 0.11

is to be less strict and choose subset sizes of, e.g., 75% (Alfons et al. 2013). However,
decreasing ε makes the task more difficult and we want to test parameters under
adverse conditions. Hence, in this paper we use 30% for all datasets. Furthermore, in
the previous paper on slise (Björklund et al. 2019) the main use case is explaining
outcomes from black box models, where smaller values of ε might be preferable. The
corresponding ε values for all datasets can be seen in Table 3.

Another way to investigate the choice of ε is to plot the distribution of errors relative
to the size of ε. When ε is small only the peak fits within [−ε, ε] and when ε is large
parts of the tails are included. It is natural for distributions to have tails, and not all
items in the tails are outliers, but this could nonetheless be used as another criterion
for selecting ε, which can be seen in Fig. 3.

6.2 Regularisation

The regularisation coefficient λ is dependent on the use case and dataset. With lasso-
type methods it is common to scale the regularisation by the number of items n (or
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Fig. 3 The distributions of errors relative to ε can give information on the the effect of ε. When ε becomes
large some of the tails of the error distributions fit inside [−ε, ε]. This is a sign that ε might be too large.
For example, ε > 0.8 with the physics dataset include tails within the interval (selected subset)

by dividing the rest of the loss by n). For slise the size of the subset |S| would be
a better choice but that is not known in advance. Furthermore, the rest of the loss
function is proportional to ε2, so selecting λ ∝ nε2 makes the transition between
dataset sizes and parameter values easier. For the purpose of the experiments, we only
use a minimal regularisation by setting λ = 10−4 · nε2, since we are not looking for
a specific sparsity.

6.3 Initialisation

In Sect. 4 we present four different schemes for selecting the initial values for the
linear model α and sigmoid steepness β. Figure 4 shows the results from comparing
the four initialisation schemes. No particular method stands out, which indicates that
the combination of graduated optimisation and owl- qn yields good performance
overall. Furthermore, there are no major differences in running time, according to
Table 4. However, slise can only be guaranteed to find a local optimum (in contrast
to finding the global optimum), so we need to consider possible failure modes.

Both lasso and ols are non-robust so even a single outlier can lead to arbitrarily
large deviations (Donoho and Huber 1983). This means that the starting points might
be heavily influenced by outliers. Starting from a vector of zeros is good for sparsity,
but with a large enough λ it becomes a local optimum. It is, however, easy to detect
when the optimisation has failed to escape this kind of local optimum, by checking if
‖α‖1 ≈ 0.

Another problem with using a fixed starting point (which is what the lasso, ols,
and zeros initialisation schemes do) is that if the starting point is bad, then there
is no way to detect and recover from it. This can be seen in Fig. 5, where the fixed
starting α:s are all very close to a cluster of outliers, which creates a local optimum that
the optimisation cannot escape. The candidates initialisation is designed to detect
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Fig. 4 Losses for the different initialisation methods. Lower is better

Table 4 Median times (for the whole algorithm) when trying different initialisation methods. Lower values
are better

Dataset Median time [s]
lasso ols zeros candidates

student 1.5 1.6 1.4 1.9

air quality 10.9 10.6 10.7 11.8

superconductivity 39.7 30.0 35.8 35.4

imdb 350.8 372.5 345.0 325.4

physics 15.1 15.4 14.3 15.9

emnist 323.7 304.1 257.7 312.4

synthetic 4.3 3.9 3.9 4.4

and discard these bad local optima early, by selecting a candidate based on the best
β-Loss.

The candidates initialisation scheme is non-deterministic, and requires the num-
ber of candidates uinit as a parameter. A larger number increases the likelihood that
a good candidate is found, but also increases the running time. However, the results
from Fig. 6 show that the number of candidates only has a small impact, and also that
the time differences are negligible. fast- lts (Rousseeuw and Van Driessen 2000)
has a similar notion of candidates, and by default they use uinit = 500, which seems
to be a reasonable choice also in this case.

With uinit = 500 fixed, we can find a value for the threshold tpca for using pca , that
is independent of any dataset. The formula for the probability of at least one candidate
having no outliers is p = 1 − (1 − (1 − o)d)u , where o is the fraction of outliers,
d = tpca, and u = uinit = 500. A larger threshold leads to less information lost in
the pca while a smaller value increases p. The curves for different tpca can be seen in
Fig. 7. If tpca = 10 then p = 0.38 when o = 0.5, which should be sufficient in most
scenarios, since including one outlier does not automatically lead to an inescapable
and bad local optimum.

Based on the results in Fig. 4, Table 4, and Fig. 5, we choose candidates as
the recommended initialisation scheme. It is the only stochastic initialisation scheme,
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Fig. 5 Example showing when some of the initialisation schemes fail. The data is constructed such that
the starting α:s from lasso, ols, and zeros all pass by a cluster of outliers. These outliers create a local
optimum which only the candidates initialisation scheme is able to avoid. slise is used with ε = 0.2 and
λ = 0.01

Fig. 6 Losses and running times for different number of initial candidates in the initialisation. For a given
dataset, the losses and running times are for all practical purposes equal for different number of initial
candidates. The results from multiple runs are aggregated using the mean. Lower is better for both time and
loss

whichmeans that it does not have a fixed (potentially bad) starting point. Alternatively,
the failure mode of zeros is easy to detect, and the initialisation is fast, so it is our
second choice if a deterministic algorithm is desired.

6.4 Iterations

slise incorporates two iterative optimisationmethods, owl- qn and graduated optimi-
sation. Increasing the number of iterations leads to better results for both methods, but
beyond a point there are clear diminishing returns. The number of iterations in gradu-
ated optimisation is determined by the target approximation ratio K (where K > 1).
A larger value results in fewer iterations. However, we require the steps to be small
enough that consecutive iterations have similar optima.
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Fig. 7 The probability of finding at least one subset without outliers for different fractions of outliers and
different dimensions for the pca threshold. This can be calculated with the formula p = 1−(1−(1−o)d )u .
Both higher probabilities and more dimensions are better

The number of iterations in owl- qn can be controlled by several different conver-
gence criteria, but the simplest one is to simply limit the number of iterations imax.
This has the advantage of ensuring an upper bound on the number of iterations in
the worst-case scenario. Additionally, since owl- qn is run multiple times on similar
problems there will be a lot of wasted resources if it is forced to fully converge each
graduated optimisation iteration.

As can be seen in Fig. 8, K and imax complements each other, in that a decrease
in K can be compensated for by a decrease in imax while preserving time and loss
values. The choice of values for these parameters can have a massive impact on the
running time, while the impact on the loss at times is minimal. Based on the results,
the combination of K = 1.15 and imax = 300 is a good default trade-off between
time and loss. Furthermore, the last optimisation of owl- qn is not an intermediate
step and is, therefore, allowed extra time to converge, by multiplying imax with four
(imax = 1200 when β = βmax).

6.5 Stopping parameter

It is sufficient that the stopping parameter βmax is large enough to make the sigmoid
function essentially equivalent to a Heaviside function. As shown in Sect. 3.2, in
order to make the shape of the sigmoid only depend on βmax it has to be defined as
βmax = c/ε2. The results in Fig. 9 show that c = 20 is sufficiently large, and any
larger value merely increases the running time.

7 Robust regression experiments

In this section we compare slise to five robust regression methods: sparse- lts
(Alfons et al. 2013), smdm (Koller and Stahel 2017), conquer (Fernandes et al.
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Fig. 8 Losses and running times for different values of the two parameters that control the number of
iterations. The results from multiple runs are aggregated using the mean. Lower values are better for both
time and losses

Fig. 9 Losses and running times for various values for the βmax parameter. Lower values are better

2021), mte- lasso (Qin et al. 2017), and ransac (Fischler and Bolles 1981). lasso
(Tibshirani 1996) is also included as a non-robust baseline. To make the comparison
maximally useful we compare against implementations found in established software
libraries. See Table 5 for an overview of all methods.

All algorithms have been used with default settings, with the exception of sparse-
lts, which has been used with a subset size of n/2 for maximal robustness, and
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Table 5 Properties of the regression methods compared in the experiments

Algorithm Robust Sparse References Software

slise Yes Yes The method presented in this paper slise (R)

sparse- lts Yes Yes Alfons et al. (2013) robustHD (R)

smdm Yes No Koller and Stahel (2017) robustbase (R)

conquer Maybe No Fernandes et al. (2021) conquer (R)

mte- lasso Maybe Yes Qin et al. (2017) MTE (R)

ransac Maybe No Fischler and Bolles (1981) scikit-learn (Python)

lasso No Yes Tibshirani (1996) glmnet (R)

Fig. 10 Running times in seconds. Left: Varying the number of samples nwith a fixed number of dimensions
d = 100. Right: Varying the number of dimensions d with a fixed number of samples n = 10,000. The
cut-off time is shown using a dashed horizontal line at t = 1000 s. Lower is better

ransac, where we use 20,000 trials and the same error threshold as for slise. In the
case of slise, the parameter values are the same as above and can be found in Table 2.

7.1 Scalability

First, we investigate the scalability of the methods. Many of the methods have the
same asymptotic time complexity, O(nd2), but almost all are iterative methods and
the number of iterations are not accounted for in the complexity. We empirically
determine the running time on the synthetic datasets with (i) a fixed number of
dimensions (d = 100) with an increasing number of items, and (ii) a fixed number of
items (n = 10,000) with an increasing number of variables. The results are aggregated
from ten different runs. We also limit the calculations to 1000 s. The results are shown
in Fig. 10.

We observe that slise performs comparable to the other robust regression methods
when the number of items increases (the left plot of Fig. 10). However, when the
number of variables increases (the right plot of Fig. 10) slise is faster than most
robust regression methods. The only exception is conquer which is almost as fast as
lasso.
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Fig. 11 Running times on real datasets. Lower is better

The scalability experiment only tests running times on one, synthetic , dataset.
To get a broader perspective we also evaluate the running times on the real datasets.
The results in Fig. 11 show that slise is comparable or only a couple of seconds
slower than most methods on the small datasets. However, on the larger datasets,
superconductivity, imdb, and emnist, slise is much faster than the other robust
methods, except for conquer. On the larger datasets slise is actually faster than
Fig. 10 would suggest, which demonstrates how the difficulty of any given dataset or
task affects the running time.

7.2 Robustness

Next, we empirically compare the methods’ robustness to outliers. To do this we
corrupt datasets by replacing a fraction of the items with outliers. We utilise two types
of outliers commonly found in literature (Rousseeuw and van Zomeren 1990; Alfons
et al. 2013): vertical outliers and leverage points. The dataset we use is a variant of
the synthetic dataset, where the Y values are from only one model (so that we can
be sure that there are no inherent outliers).

All methods are trained on datasets corrupted by outliers and evaluated on the
uncorrupted datasets. If a method is robust to a certain fraction of noise then the
residuals for the uncorrupted data will be small. The results are shown in Fig. 12. The
breakdown value is the point where the curves start trending upwards, and at high
outlier fractions all methods are expected to break down.
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Fig. 12 Robustness to outliers. The x-axis shows the fraction of outliers and the y-axis the mean absolute
error on the clean dataset. Consistently small residuals as the number of outliers increases indicate a robust
method

Vertical outliers are outliers where the target value is different from the rest.We cre-
ate a vertical outlier by taking a non-outlier item i and replace yi with y′

i ∼ N (10, 1).
As we can see in the left plot of Fig. 12, slise and sparse- lts are the most robust
ones. However, vertical outliers are generally considered to be an easier type of outliers
(Alfons et al. 2013).

Leverage points are outliers where the variable values are unusual. Here we create
a leverage point by taking a non-outlier item i and replace xi with x ′

i ∼ N (10, 1).
When the fraction of leverage points is high, most of the correlation between the pre-
dictors and target is broken, so regression methods tend to converge towards constant
predictions, rather than breaking down. Nonetheless, in the right plot of Fig. 12 we
can see that lasso and mte- lasso break down immediately, while conquer and
ransac follow soon thereafter. The absolute errors on the clean data from smdm,
slise, and sparse- lts stay low for larger fraction of outliers indicating that they are
more robust towards leverage points.

Since the robustness experiment is performed on a rather strict dataset we also
consider the robustness to outliers on the real datasets. In Fig. 13 we can see how
adding vertical outliers affects the behaviour of the regressionmethods on real datasets.
ransac fares well on the low-dimensional datasets, physics and air quality, but
fails on evenmoderately sized datasets. This is because the chance of randomly finding
a set of non-outliers shrinks exponentially with the number of dimensions (Fischler
and Bolles 1981), so even the high number of trials (20,000) is not enough. On the
contrary, slise consistently achieves a breakdown value of at least 0.5.

7.3 No outliers

Robust regression methods should also work in situations where there are no outliers.
To evaluate this we perform 10-fold cross validation on the real datasets (with no added
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Fig. 13 Robustness to outliers on real datasets. The x-axis shows the fraction of outliers and the y-axis
the mean absolute error on the clean dataset. Some methods were not evaluated for the imdb and emnist
datasets, due to their time requirements. Lower error is better

outliers). As a baseline we include a dummy model that always predicts the mean y-
value from the training data. In Fig. 14 we see that most robust regression methods
(including slise) perform about as well as the non-robust lasso, clearly better than
the mean model, the exception being ransac on high-dimensional datasets.

7.4 Optimality

Finally, we demonstrate that the solution found by slise optimises the loss of Eq. (1).
The slise algorithm is designed to find the largest subset such that the residuals
are upper-bounded by ε. To investigate if the model found using slise is optimal,
we determine regression models (i.e., obtain the coefficient vectors α) using each
algorithm. We then calculate the value of the loss-function in Eq. (1) for every model
with varying values of ε.

The results are shown in Fig. 15. All loss-values have been normalised with respect
to the absolute median for each value of ε and dataset. slise consistently reaches the
smallest loss in the region around ε used for training, as expected. For superconduc-
tivity and emnist the loss curves for sparse- lts is very close to the curves for slise,
but slise and sparse- lts should actually give equally good, or even identical, results
if the error tolerance ε in slise happens to match the subset size h in sparse- lts.
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Fig. 14 Cross validation (10-fold) on the real datasets with no added outliers. sparse- lts, slise, and
ransac use subset sizes/error tolerances corresponding to 50% of the data. All values have been divided by
the corresponding mean absolute error for the reference (mean) model. Some methods were not evaluated
for the imdb and emnist datasets, due to their time requirements. Lower error is better

Fig. 15 Finding the best solution to Problem 1. The loss-values are normalised by dividing by the absolute
median loss per dataset and ε value. The ε used for training slise and ransac is marked with a vertical
line. Some methods were not evaluated for the imdb and emnist datasets, due to their time requirements.
Lower values are better

8 Conclusions

This paper refines the slise algorithm for robust regression. slise introduces a novel
way of detecting and discarding outliers; find a subset of non-outliers where the error
is less than an adjustable error tolerance (ε), for fitting the regression model. This
flexible subset size (based on ε) is in contrast to other methods (primarily the lts
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family) where the subset size is fixed. Additionally, slise yields sparse solutions
through built-in regularisation.

Although finding an exact solution to the problem definition (Problem 1) is NP-
hard (see Sect. 2.1), the combination of graduated optimisation with a quasi-Newton
optimiser (owl- qn ) yields an effective approximation (see Sects. 3 and 7). Adding
a stochastic initialisation further mitigates the risk of unfortunate starting conditions
(see Sect. 6.3).

When comparing to other robust regressionmethods, slise is able to achieve robust-
ness levels that are among the best possible, which we show both theoretically (see
Sect. 2.2) and empirically (see Sect. 7.2). Furthermore, slise scales better to high-
dimensional data than many alternative methods (see Sects. 4.2 and 7.1).

Future work could investigate how the choice of λ affects the sparsity, especially
during the graduated optimisation. Another direction would be to try changing the
balance between maximising the subset and minimising the residuals, or to introduce
different weights for the data items.

In an earlier paper (Björklund et al. 2019) we show how slise can be used to
explain outcomes from black box models in a way that respects constraints in the data.
Along this line we could further investigate the utility of selecting the data used for
the explanations in order to answer specific questions in an interactive manner. This
would give better insight into the learned models and their behaviour.

The explanations given by slise are local, i.e. for specific outcomes, and an interest-
ing followupwould be to combine these local explanations into one global explanation.
Furthermore, slise is a robust regression method and, therefore, quite generic, which
means that it can readily be integrated into, or combined with, other explanation meth-
ods.

Our implementation of the slise algorithm is released under an open source license.
It is available in both Python (Björklund 2021) and R (Björklund et al. 2021), which
also includes the code for running all the experiments.
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