
Data Mining and Knowledge Discovery (2022) 36:811–840
https://doi.org/10.1007/s10618-021-00818-9

Counterfactual inference with latent variable and its
application in mental health care

Guilherme F. Marchezini1 · Anisio M. Lacerda1 · Gisele L. Pappa1 ·
Wagner Meira Jr.1 · Debora Miranda1 ·Marco A. Romano-Silva1 ·
Danielle S. Costa1 · Leandro Malloy Diniz1

Received: 25 April 2021 / Accepted: 18 December 2021 / Published online: 31 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
This paper deals with the problem of modeling counterfactual reasoning in scenarios
where, apart from the observed endogenous variables, we have a latent variable that
affects the outcomes and, consequently, the results of counterfactuals queries. This is
a common setup in healthcare problems, including mental health. We propose a new
framework where the aforementioned problem is modeled as a multivariate regression
and the counterfactual model accounts for both observed and a latent variable, where
the latter represents what we call the patient individuality factor (ϕ). In mental health,
focusing on individuals is paramount, as past experiences can change how people
see or deal with situations, but individuality cannot be directly measured. To the
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best of our knowledge, this is the first counterfactual approach that considers both
observational and latent variables to provide deterministic answers to counterfactual
queries, such as: what if I change the social support of a patient, to what extent can I
change his/her anxiety? The framework combines concepts from deep representation
learning and causal inference to infer the value of ϕ and capture both non-linear
and multiplicative effects of causal variables. Experiments are performed with both
synthetic and real-world datasets, where we predict how changes in people’s actions
may lead to different outcomes in terms of symptoms of mental illness and quality
of life. Results show the model learns the individually factor with errors lower than
0.05 and answers counterfactual queries that are supported by the medical literature.
The model has the potential to recommend small changes in people’s lives that may
completely change their relationship with mental illness.

Keywords Counterfactual inference · Multivariate regression · Mental health

1 Introduction

What if? questions are a common follow-up of the decision making process in almost
all domains of knowledge. For example, a physician recommends treatment A to a
patient, but her health condition worsens and she dies. Then a typical question is:What
would have happened if treatment B had been followed? These types of questions may
be answeredwith counterfactual inference of hypothetical scenarios (Pearl et al. 2016).

In counterfactual inference, onemodels alternative scenarios that are fictional, once
it is not possible to change what has already happened. Let us take the patient who
received treatment A and the event outcome of her death (d), where our evidence is
E = d. Counterfactual inference can compute either a probability or a deterministic
value of a different outcome (evidence), e.g., the patient survives (E = s), counter to
the fact that she died—if a certain precondition in the given scenariowas different, e.g.,
she had received treatment B. In contrastwith traditionalmachine learning approaches,
counterfactual inference involves both observational data and assumptions about the
world, being a powerful framework for answering questions such as the one posed
above.

The structural causal model (SCM) framework is the standard approach for calcu-
lating the outcome of counterfactual queries (Pearl 2009). An SCM consists of two
sets of variables U and V , and a set of functions f that assigns each variable in V a
value according to the values of the other variables in the model. The variables in U
are called exogenous, in the sense that they are external to the model and we chose
not to explain how they are caused. The variables in V are endogenous and each of
them is a descendant of at least one exogenous variable. By knowing the values of the
exogenous variables, one can use the functions f to accurately determine the value
of every endogenous variable. The SCM is often associated with a graphical causal
model, which represents the causal relations of the endogenous variables and where
each exogenous variable is a root in the graph.

Counterfactual inference has been explored in healthcare applications in the past
(Pawlowski et al. 2020), especially in the problem of estimating the individual treat-
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ment effect (ITE) (Zhang and Bareinboim 2020; Shalit et al. 2017; Bica et al. 2020).
This scenario is equivalent to the one illustrated above, and, in this case, the observa-
tional data (endogenous variables) contains past actions (medications), their outcomes
(evidences), additional context information (records of patients), but no access to the
mechanisms that led to an action (why each medication was given to each patient).
Counterfactual inference is specially used to try to remove bias or other confound
factors from models. Usually, this is necessary as patients in worse health conditions
receive a different type of treatment than patients who are in a better health condition.
Counterfactual inference is then simulated using a less biased model.

In this paper, we deal with the problem of modeling counterfactual reasoning in
scenarios where, apart from the observed endogenous variables, we have a latent
variable that affects the outcomes and, consequently, the results of counterfactuals
queries (or simply conterfactuals). In this case, a single deterministic model can make
different predictions to input instances that are the same, because their prediction
values vary due to the latent variable. For example, in mental health, focusing on
individuals is essential, as past experiences may change how people see or deal with
situations (Friedman et al. 2014). However, one’s individuality cannot be directly
measured, as it is inherent to each person, and may be considered a latent variable in
many scenarios where individuality impacts outcomes, e.g., levels of stress in the case
of mental health or performance in the case of an online course.

The existence of latent variables is common in real-world observational studies
since we cannot directly measure variables such as personal preferences or most
genetic, psychological, and environmental factors. In studies with individuals, we
can use proxy variables to deal with model confounders (Montgomery et al. 2000;
Louizos et al. 2017). For example, when a patient receives treatment for a disease, we
may have a proxy variable, e.g., the results of an exam, to indicate how ill he already
was before receiving a specific type of treatment.

We evaluate the proposed counterfactual model by analyzing how the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is affecting peoples’
mental health. Our focus is not on treatment (and hence our observational data does
not have actions), but on how changing one’s behavior (which represents our observed
variables)may affect the quality of life -measured using theWorldHealthOrganization
Instrument to evaluate Quality of Life (WHOQOL-BREF)1 and symptoms related to
conditions such as anxiety and depression, measured by the Brief Symptoms Inventory
(BSI) instrument (Derogatis 1993) (our outcomes). The resulting model is able to
answer questions such as: “what if I increase the support from friends of a person, to
what extent can I improve his/her quality of life and decrease anxiety levels?”.

Both WHOQOL and BSI are commonly used instruments for assessing mental
health. They are built based on questionnaires, where patients answer a set of questions
related to their mental health and quality of life. One major difference of this setting,
when compared to other counterfactual scenarios, is that we assume there is a common
latent variable that affects both outcomes—WHOQOL and BSI—simultaneously (see
Fig. 2), and we name it the individuality factor of a patient. However, as previously
mentioned, the individuality factor cannot be directly measured.

1 https://www.who.int/tools/whoqol.
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Personalized mental health treatment has the potential to be more effective than
traditional clinical and statistical approaches,where the goal is often to identify alterna-
tives to treatments that explain the benefits and variance for the “majority of a clinical
group”, and are formally tested for “group effects” (Bzdok and Meyer-Lindenberg
2018). Further, one may also target adjustment to treatments by identifying both (i)
the most appropriate set of clinical interventions and/or (ii) their form of delivery
related to a particular individual. Finally, properly understanding causal effects of
treatments for individuals may enable more effective just-in-time adaptive interven-
tions, which tend to createmore engaging and adaptive treatments (Nahum-Shani et al.
2018).

In this setting, we propose a new framework that models our problem as a multi-
variate regression, where the counterfactual model considers we have both observed
variables and a latent variable ϕ, which represents the individuality factor. Note that ϕ
is not exogenous, as it is considered in the model, but it is not observed. Amultivariate
regression is used because, by definition, ϕ impacts more than one outcome variable
in the scenarios we are dealing with—in the case of mental health, WHOQOL and
BSI. To the best of our knowledge, this is the first counterfactual approach that con-
siders both observational and latent variables (see Table 1). The framework combines
concepts from deep representation learning and causal inference to infer the value of
ϕ and provide deterministic answers to counterfactual queries—in contrast to most
counterfactual models that return probabilistic answers. As we are dealing with indi-
viduals, deterministic methods are preferred over probabilistic. The proposed model
can go beyond the linear and additive effects and can also capture both non-linear
and multiplicative effects of causal variables. Therefore, we can use in the context of
mental health without assuming how they would manifest.

We perform experiments with synthetic datasets to validate our assumptions and
approach, and then used data obtained from amental health questionnaire answered by
153,514 subjects in the year 2020 to assess the environmental, physical, and psycho-
logical effects of the pandemics in their lives. For themental health scenario, wemodel
the causal variables relating patients and outcomes, enabling clinical interventions as
counterfactual queries. As evaluating counterfactual approaches is a challenge, we had
specialists to analyze the counterfactual queries, which demonstrated the effectiveness
of our proposed approach.

In summary, the main contributions of this paper are as follows:

– We define a new problem setting to compute counterfactual queries in multivariate
regression scenarios, where causal questions can be answered considering both
observational and latent data.

– We present a new deep neural network to compute counterfactual queries at pop-
ulational and individual levels.

– We empirically evaluate the framework in two types of data: (i) a set of synthetic
simulated datasets and (ii) a real-world dataset built over questionnaires about
mental health issues during the COVID-19 pandemic. The results were analyzed
by specialists and are supported by the medical literature.
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(a)
Regressor-centric
view

(b)
SCM C

(c)
Causal graph G for C

Fig. 1 A view frequently adopted in regular regression models (a) assumes variables are independently
manipulated inputs to a given fixed and deterministic regressor h. In the causal approach to counterfactual
inference taken in this work, we rather view variables as causally related to each other by a structural causal
model (SCM) C (b) with associated causal graph G (c)

2 Background

When dealing with causal inference, Pearl (2009) introduced a hierarchy of three
levels of problems of increasing power to answer causal questions: (i) association,
when association is used in the context of traditional machine learning and we ask
questions about the system as it currently is by ignoring causal relationships among
features; (ii) intervention, when we act on the system and change its distribution, i.e.
we are able to answer population related questions; and (iii) counterfactual, where we
can simulate a “parallel world”, i.e., we are able to consider alternative scenarios at
individual level. Note that while on the intervention level we can answer questions
regarding the system after intervention, on the counterfactual level we can change the
system before the intervention.

Conterfactual queries, according to Pearl’s hierarchy, can only be answered by a
structural causal model (Pearl 2009).

Definition 1 (Structural Causal Model (SCM)) A structural causal model C is a 4-
tuple 〈U,V,F , P(U)〉, where (i) U is a set {U1, . . . ,Ud} of background variables
(aka exogenous variables) that are determined by factors outside the model; (ii) V is
a set {V1, . . . , Vd} of endogenous variables, which are determined by other variables
in the model, i.e., by variables in U∪V; (iii) F is a set of functions { f1, . . . , fd} (aka
causal mechanisms) that represents structural assignments vi := fi (pai , ui ), where
pai is the set of parents of vi (its direct causes); and (iv) P(U) is a probability function
defined over the domain of U.

An SCM is often represented by the associated directed acyclic graph (DAG) G,
which is called the causal graph induced by C. The causal graph is obtained by
drawing a directed edge from causes to effects, i.e., from each node in pai to vi for
i ∈ {1, . . . , d}, see Fig. 1b, c for an example. Since we assume G is acyclic, every
SCM C implies a unique observational distribution PC(X), which factorises over G.
Note this satisfies the causal Markov assumption: each variable is independent of its
non-effects given its direct causes, i.e. PC(V) = ∏d

i=1 PC(vi |pai ).
A crucial difference from conventional Bayesian networks is that the conditional

factors above imply causal relationships rather than dependence assumptions. Hence,
the SCM framework also enables the prediction of the effects of interventions, which
refers to a situation where some variables are manipulated externally. An interven-
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tion that fixes the constant a to xi is denoted by do(xi := a) and called an atomic
intervention.

Questions related to interventions and counterfactual layers in the causal hierarchy
are defined and computed in terms of the do-operator. However, an important dif-
ference among them is that interventions operate at the population level—providing
aggregate statistics about the effects of actions, while counterfactuals are queries at
the unit level.2 Note that the structural assignments (causal mechanisms) are changed,
but the exogenous variables are the same for the unit. Following, we formally define
counterfactuals.

Definition 2 (Unit-level Counterfactuals (Pearl 2009)) Let C be a structural causal
model and CX;do(a) a modified version of C, with the equation(s) of X replaced by
X = a. Denote the solution for Y in the equations of CX;do(a) by symbol YCX;do(a)

(u).

The counterfactual Ya(u) is given by Yx (u)
Δ= YCX;do(a)

.

From this definition, we may effectively provide explanations of the data, given
that we are able to manipulate each variable and observe the outcome. The following
theorem formalizes the three-step procedure to compute deterministic counterfactual
queries:3

Theorem 1 (Counterfactual Computation (Pearl 2009))Given an SCMC and evidence
e, the counterfactual can be evaluated using the three following steps:

1. Abduction Use evidence E = e to determine the value of U.
2. Action Modify the SCM C, by removing the structural equations for the variables

in X and replacing them with the appropriate functions X = a, to obtain the
modified model CX;do(a).

3. Prediction Use the modified model CX;do(a), and the value of U to compute the
value of Y , the consequence of the counterfactual.

Lastly, as formalized in Definition 2, we are interested in deterministic counterfac-
tuals, which refer to hypothetical questions about a single unit of the population, e.g.,
a patient.

3 Related work

While causal inference concepts have evolved using statistical concepts and the
canonical Pearl’s definition, these techniques have been recently introduced to deep
learning (Schölkopf 2019). For instance, there are investigations in disentangled repre-
sentation (Locatello et al. 2019), causal reinforcement learning (Zhang andBareinboim
2020), recourse (Karimi et al. 2021), and model explanation methods (Le et al. 2020;
Miller 2020; Guidotti et al. 2018; Wachter et al. 2018).

In principle, causality for deep learning models may provide means to answer
interventional and counterfactual questions, although current methods on deep-based

2 In the causal inference literature, a unit stands for an observed datum, such as an individual patient, an
experimental subject, or an agricultural plot Pearl (2009).
3 We refer readers to Theorem 7.1.7 in Pearl (2009) for the probabilistic computation of counterfactuals.
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Table 1 Comparison of your work with other from the literature

Three levels of causation Tabular data Latent vars. Non-linear

Bica et al. (2020) �
Graham et al. (2019) �
Pawlowski et al. (2020) � �
Zhang and Bareinboim (2020) � �
Zhang et al. (2020) � �
Ours � � � �

counterfactuals are limited by modeling only cause-effect relationships (Singla et al.
2020), or by not providing computation of deterministic counterfactuals (Pawlowski
et al. 2020).

The most common approach to causal inference at the unit level refers to estimating
the individual treatment effect (ITE) (Zhang et al. 2020; Shalit et al. 2017). The
ITE estimation assumes observational data about the individual’s context, outcomes,
and binary interventions (aka treatments), which results in the observed outcome. A
common contribution of these approaches is the analysis of synthetic or semi-synthetic
data to validate theoretical analysis of generalization-error bounds. In contrast to these
methods,we assumeonly the individual’s context and outcomes are available and focus
on learning other latent features that affect the outcomes.

It is worth noting that causal inference techniques have been also applied to sequen-
tial data. For instance, Zhang and Bareinboim (2020) consider the dynamic treatment
regime, which consists of a sequence of decision rules to determine the most appro-
priate treatment for patients. They propose a reinforcement learning setting of optimal
dynamic treatment regimes provided by the causal diagramof the underlying, unknown
environment. Bica et al. (2020) also propose a factor model to predict the treatment
effects over time. As we use data from a questionnaire, we do not assume a temporal
relation among variables. Additionally, we assume clinical interventions, i.e., inten-
tional action designed to result in an outcome, in the patient’s variables to compute
counterfactuals, rather than on possible medical treatments for a given disease.

In the context of mental health, Paredes et al. (2014) dealt with personalized clini-
cal interventions. They focused on stress treatment, andmade recommendations based
solely on observational data. As a result, they were unable to consider causal inter-
ventions. We propose to model the causal variables relating patients and outcomes,
enabling interventions as counterfactual queries. Additionally, rather than focusing
on a specific illness (i.e., stress), our framework is general and enables personalized
interventions in both mental health and other well-being dimensions.

The closest work to ours is Pawlowski et al. (2020), which proposes a model for
counterfactual inference in high-dimensional data. Their approach focuses on proba-
bilistic counterfactuals (in contrast to ours that focus on deterministic counterfactuals)
and high-dimensional data (i.e. images). Similar to ours, they present counterfactual
results for individual patients considering brain image data. Here we analyze hypo-
thetical clinical interventions on mental health tabular data.
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An important aspect of counterfactual inference is the ability to consider questions
at the unit level. Hence, it is important to account for the specific characteristics
of individuals, which may be observed or latent. The existence of latent variables is
common in real-world observational studies sincewe cannotmeasure variables such as
personal preferences or most genetic, psychological, and environmental factors. These
variables can direct affect the inference of causal relationships from observational data
due to confounding. A confounder is a variable which affects both the intervention
and the outcome. When a confounder is hidden or unmeasured, we cannot estimate
the effect of the intervention on the outcome (Pearl 2009). For example, the socio-
economic status of a patient may affect both his access tomedication (intervention) but
also his general health (outcome). In this case, socio-economic status is a confounder
between medication and health outcomes.

Most works deal with confounders by using proxy variables, e.g., in the case above,
one can use the zip code as a proxy to socio-economic status, since they are correlated
(Miao et al. 2018; Montgomery et al. 2000; Wooldridge 2009). One of the exceptions
to this approach is thework of Louizos et al. (2017), where the authors use a variational
autoencoder to simultaneously discover the hidden confounders and infer how they
affect treatment and outcome.

However, note that proxy variables are used to obtain the maximum possible avail-
able information to predict an outcome. In this paper, we focus on counterfactual
analysis and queries. We use past information and the outcome to infer latent infor-
mation.

Furthermore, our latent variable can affect more than one outcome, as the individ-
uality factor transverses many aspects of an individual. As far as we know, we are
the first work proposing to model latent variables that affect multiple outcomes. As
noted in Bzdok and Meyer-Lindenberg (2018), several psychopathological symptoms
in psychiatric patients are shared among psychiatric disorders, rather than being unique
to them. As we model the presence of these latent variables, we are able to answer
questions on the third level of the hierarchy of causation—structural counterfactual.

Table 1 summarizes how previously works fulfill the requirements of our frame-
work. Within the domain of health, there is one work that can reach the three levels of
hierarchy, as we can in this work. However, other papers in the literature are able to
“simulate” the counterfactual level, as the SCM is implicit to the problem.We say they
“simulate” it because they assume they already know all data necessary to perform
the inference, which is a non-realistic scenario (e.g., Bica et al. (2020), Graham et al.
(2019)).

4 Computing structural counterfactuals

In this section, we introduce a new framework that combines concepts of deep learning
representation and structural causal models to (i) infer associations among dependent
and independent variables (level 1 of causal hierarchy); (ii) find values for the latent
individuality factor; (iii) enable interventions in the population level (level 2 of causal
hierarchy); and (iv) compute unit-level counterfactuals (level 3 of causal hierarchy).
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Fig. 2 Causal DAG with
multiple outcome yk , features x ,
and latent individuality factor ϕ.
Calculated values appear in
black boxes, observed variables
in black circles, and unobserved
variables in white

(a) Counterfactual network model
training.

(b) Counterfactual model prediction.

Fig. 3 An illustration of the proposed counterfactual model, highlighting the factual (i.e. v = 〈x, ε, y〉) and
counterfactual inputs (i.e. xCF ) to compute the factual (i.e. y) and counterfactual outcome (i.e. yCF )

4.1 Problem setting

We define our problem as computing deterministic structural counterfactuals in mul-
tivariate regression scenarios. We work with observation data, where we have the
response vectors (the observed effects) yi = (yi1, . . . , yik) ∈ R

k , and the predictor
vectors (the causes) xi = (xi1, . . . , xid) ∈ R

d . A crucial property of our model is that
it assumes the presence of an individuality factor that affects the response vectors and
which is both latent and immutable.Wemodel the individuality factor of each instance
as latent vectors (non-observed causes) ϕi = (ϕi1, . . . ,ϕil) ∈ R

l . The DAG G of the
resulting SCM is presented in Fig. 2. From the graph, we can learn the causal mech-
anisms to estimate the impact of populational and counterfactual interventions (Pearl
2009). Following the convention of Buesing et al. (2018), calculated values are shown
in black boxes, observed variables in black circles, and unobserved variables in white.

The counterfactual queries are defined at the unit level, where the causal mecha-
nisms are changed, while the exogenous and latent variables are kept the same for the
observed instance. Assuming a structural causal model C that factorizes as a DAG,
we specify the causal mechanisms F using a deep neural network. We also assume
the full specification of F and F−1, such that F(F−1(x)) = x. Hence, one can
determine the distinct values of individuality factors that give rise to a particular real-
ization of the endogenous variables, {Xi = xFi }Ni=1, as F−1(xF ). To compute the
counterfactual queries, we assume a set of actions, A, in a world C, which yields to an
updated world model CA with structural equations FA = {Fi }i �=I ∪ {Xi := ai }i∈I . As
a consequence, we can compute any structural counterfactual queries xSCM , which
automatically accounts for inter-variable causal dependencies, for an instance xFA as
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xSCF = F(F−1(xF )), read as: “given the model C and having observed xF , what is
the value of the endogenous variables if the set of actions A is performed?”.

Summarizing, we make the following assumptions:

(i) There are no other causes of Y except the latent individuality factor ϕ, i.e., we
assume determinism: a set of functions fy exists such that Y = fy(X ,ϕ).

(ii) X and U are independent: X ⊥⊥ ϕ.
(iii) ϕ variables are unchanged by hypothetical counterfactual interventions, i.e. they

are immutable regardless of being latent.

4.2 Our framework

The computation of our counterfactual framework is divided into three phases: (i)
from the observational data, we apply a causal graph discovery algorithm to generate
the causal graph, which will determine which predictor variables have a causal effect
on the response variables; (ii) we run a base model h that works as an interpolator,
and learns associations between the predictor and response variables with an error
close to 0; (iii) we propose the individuality factor discovery counterfactual network,
ICoNet , which finds the latent individuality factors ϕ shared by the output variables.
It does that by using the residuals of the base model together with the predictor and
response variables. Having the values of ϕ, we can perform counterfactual predictions
by making interventions to the variables of interest.

The main rationale of the proposed method is that the residuals of the interpolator,
detailed in Sect. 4.2.2, correspond to the effects of the latent variables that directly
affect Y F . Hence, we propose a deep neural network that learns the values of these
latent variables by using both the predictors, response variables, and residuals, as
detailed in Sect. 4.2.3.

4.2.1 Causal graph discovery

The causal relations among predictor and response variables are not artifacts that can
be directly read from data alone and need to be inferred. But to compute counterfactual
queries, we need to explicitly state the causal relations among the variables. However,
the real causal graph is unknown in most practical applications, and learning directed
acyclic graphs from observational data is an NP-hard problem (Chickering 1996;
Chickering et al. 2004).

The field of causal discovery is concerned with the problem of inference of causal
relations (Eberhardt 2017; Zheng et al. 2018). Causal discovery algorithms have
been successfully applied in practical health-related problems. For instance, Shen
et al. (2020) considered data about Alzheimer’s disease and focused on investigating
whether causal discovery frameworks were able to discover known causal relation-
ships from observational clinical data. They found that causal discovery frameworks
should be used with longitudinal data providing full prior knowledge available. We
refer the readers to Tennant et al. (2019), which survey the use of causal DAGs applied
to health care.
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Herewe use the frameworkNOTEARS (Zheng et al. 2018) to find the causal graph,
which formulates the graph discovery learning problem as a continuous constrained
optimization task, leveraging an algebraic characterization of DAGs. More formally,
NO TEARS solves the following continuous optimization problem:

min
G∈Rd×d

1
2N ||X − XGT ||22 + λ||G||1

s.t. h(G) = 0,

where X is the input data, the function h(·) : Rd×d → R is continuous, such that
h(G) = 0 iff the graph is acyclic, and G = (g1, . . . , gd)′ is the weighted adjacency
matrix.

4.2.2 Base model

Acrucial component of our framework is that we assume a basemodel, or interpolator,
which is an estimator that achieves almost zero training error. We could have used any
interpolator, but we opt for a multilayer perceptron (MLP) network trained with the
L1 norm as the loss function and the ADAM optimizer.

We adopted such strategy because, although modern deep learning models involve
several parameters, deep neural networks are frequently observed to generalize well in
practice (Zhang et al. 2016). The conventional wisdom is that interpolation (vanishing
training error) leads to overfitting or poor generalization. However, it has been recently
shown that these concepts are in general distinct, and interpolation does not contradict
generalization (Belkin et al. 2019).

In particular, Belkin et al. (2019) discuss the shape of risk curves in scenarios of
modern high-complexity learners, such as Deep Neural Networks. Assuming n as a
fixed training sample size, they show that risk curves represented as a function of some
(approximate) measure of its complexity N (e.g. the number of features) can display
what they call double descent. By increasing N (i.e. complexity), the risk initially
decreases, attains a minimum, and then increases until N equals n. This is the state
of the model that we are interested in, where the training data are fitted perfectly (i.e.,
overfitted). According to Belkin et al. (2019), increasing N even further leads to risk
decreasing a second and final time, creating a peak at N = n. In our work, we aimed
to train our network to stabilize on this peak.

This double descent behaviour is clearly related to one of the important tenets of
the machine learning field, the bias-variance trade-off, which implies that a model
should balance underfitting and overfitting. The model needs to be complex enough
to express underlying structure in data and simple enough to avoid fitting spurious
correlations (i.e. noise). However, in modern literature, very complex models such
as neural networks are trained to exactly fit (i.e., interpolate) the data. In a classical
view, these models are overfitted, and yet they often reach high accuracy on test
data, which is our case. Belkin et al. (2019) showed that this apparent contradiction
can be explained by assuming the double descent for learning curves of machine
learning models. Actually, the double descent phenomenon has been studied before.
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For instance, in Vallet et al. (1989), the authors empirically demonstrated double
descent for classifiers through minimum norm linear regression.

The double descent behavior is an essential and strong assumption for the concep-
tion of our model. We exploit the interpolation property of neural networks to isolate
the individuality factorϕ shared by our outcomevariables. Sincewe can achieve almost
zero error in training, the residual error can be attributed to the latent individuality of
each unit.

Hypothetically, assume our model is represented by y = f (x) + ε, where f (x) =
μ(x) + Φ(x). μ(x) is the part of the model that is common to everyone, for example,
the effect a treatment has on patients in general.Φ(x) is what we call the individuality
factor, which changes the effect of the medicine in a specific patient. When we overfit
the model, we have y with an almost 0 error. Our current model does not separated
μ(x) + Φ(x), and this is certainly a very interesting direction for future work.

Note that we train a different base model for each target variable in our multivariate
regression setting. Hence, for each of our k target variables, we compute the training
error εk = yk − ŷk, where ŷk stands for the prediction of the base model.

4.2.3 Individuality factor discover counterfactual network

We propose a new network architecture to compute structural counterfactual queries
based on the individuality factor, named Individuality factor discover Counterfactual
Network (ICoNet). Figure 3a depicts the main components of the architecture. The
network receives as input a vector v, which includes (i) the independent variables x,
(ii) the dependent variables y, and (iii) the error ε = y − ŷ, where ŷ refers to base
model prediction. ICoNet is trained to learn the output y using the L1-distance as
the loss function. We model the network architecture in a way that we create two
bottlenecks. The first forces an intermediate layer to learn the variables independent
from X that are necessary to correctly predict Y . This variable, in our case, is the
individuality factor ϕ—represented by a single neuron shown by a full brown square
in Fig. 3a. We can learn ϕ when we give the observed variables X as input to a merger
layer that comes right after the end of the first bottleneck, which has a single neuron.
The merger layer is followed by a sequence of feed-forward layers, which will form
a second bottleneck.

It is important to note that this architecture is capable of predicting ϕ at the end
of the first bottleneck because we deal with a multivariate regression problem (we
predict more than one output) and map it to a single neuron. This same architecture
will not work in cases of simple multivariate regression (where a single y needs to be
predicted) or when the number of neurons at the end of the bottleneck is greater than
the number of variables y to be predicted. If that is the case, the network will simply
learn to predict y.

The first bottleneck has three layers with Relu activation, with 40, 20, and 5 units
followed by one linear unit.We use the Relu as wemay deal with negative inputs. They
are followed by the merge layer with 100 units, which concatenates the final unit with
the X input. The second bottleneck has 4 layers with Relu activation and 500, 500,
250, and 50 units, respectively. The output is a sigmoid layer with two neurons (one for
each output), as the datasets have their outputs normalized in [0, 1]. The network was
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trained with ADAM. The number of neurons in each layer and the number of layers
were determined in preliminary experiments, where we tested the bottleneck concept
while prioritizing speed of convergence. As the main objective was to reach the double
descent property, and the proposed configuration led to that, further experiments on
different architectures and hyperparameters were left for future work.
Model training Formally, we define the counterfactual neural network as the solution
of an optimization problem considering the t-tuple 〈A,B,V,Δ〉 where:
1. A is a class of functions from R

d+2k to Rd+1.
2. B is a class of functions from R

d+1 to Rd+2k .
3. V input vector comprises the following three vectors: (i) X: a set of n training

vectors in R
d ; (ii) Y: the corresponding set of n target vectors in R

k ; and (iii) E:
the set of n base model errors in Rk .

4. Δ is a dissimilarity or distortion function defined over Rd+2k .

For any A ∈ A and B ∈ B, the counterfactual network transforms an input v ∈ R
d+2k

into an output vector A ◦ B(v). The model training refers to find A ∈ A and B ∈ B
that minimize the overall distortion function:

min
A,B

n∑

i=1

E(vi , xi , yi ) = min
A,B

n∑

i=1

Δ(A · p[B(vi ), xi ], yi ) (1)

Counterfactual prediction After the model is trained, it can be used to perform coun-
terfactual predictions. Figure 3b illustrates this process, where the counterfactual
prediction depends on the factual instances and previously learned counterfactual
network parameters. The network receives as input the same factual inputs x, targets
y, and errors ε. Additionally, the model is given the hypothetical or counterfactual
values of instance features, i.e., xCF , to the merge layer. Given the previous inputs,
the structural model (i.e., ICoNet) can learn the target counterfactuals yCF .

5 Experimental analysis

This section shows experimental results in 53 synthetic datasets and a case study on
mental health during the COVID pandemic. In all experiments, datasets were divided
into training (70%) and test (30%) sets. As our main objective is not to make factual
predictions, we did not perform any cross-validation. Experiments were run on one
GPU (GEFORCE 1060 6GB), and the framework was implemented in Python 3.6.12
and Keras 2.4.3. The code and more implementation details are available online.4

Note that we did not find a suitable baseline from the related work, as they would
require a complete remodeling to be adapted to this problem. The methods proposed
by Bica et al. (2020), Zhang and Bareinboim (2020), and Zhang et al. (2020) focus on
ITE, and consider the bias between the patient situation, the treatment and the result.
They were modeled to query counterfactual in the treatment variable, not in the input
variables as we do. Pawlowski et al. (2020) focused in probabilistic counterfactual and

4 https://github.com/marchezinixd/ICoNet.
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(a) β = 0. (b) α = 0.

(c) α = β.

Fig. 4 Comparison of train and test normalized association errors for different combinations of α and β

explicitly assumed the correctness of the model only in high dimensional data, and we
work with tabular data. Finally, the method proposed by (Pearl 2009) can solve linear
problems with additive noise, which is a characteristics of three of our 53 synthetic
datasets.

The base models follow the same architecture for the synthetic and real data except
for the last unit, which has a linear activation function for the synthetic data and
a sigmoid for the case study, as the values of y are normalized in [0,1]. The base
network for the synthetic data was an MLP with 5 tanh layers of 50 units, trained for
250 epochs with a 0.001 learning rate, the Adam optimizer and mini-batches of size
128. Since we are searching for a double descent, we did not use the validation step for
the early stopping. The counterfactual network, ICoNet, was trained for 500 epochs,
a learning rate of 0.001 and mini-batches of size 128.

5.1 Experiments with synthetic data

In this first experiment, we generate synthetic data for both X and Y = {y1, y2} and
the individuality factor ϕ, which is latent in our real-world dataset. The idea of this
experiment is to show the proposed model can generate the individuality factor and
then answer counterfactual queries. It also shows the model deals in different ways
with linear and non-linear problems.

The synthetic data was generated using a function borrowed from the experimental
setup followed by Stegle et al. (2010). We generated 53 simulated datasets using the
model Y = (X + βX3)eαE + (1 − α)E , where the random variable X was sampled
from a normal distribution with mean 0 and variance 1.
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Fig. 5 Double descent behavior of the base model in the test loss

We consider E as our individuality factor ϕ, since it is independent of X and affects
Y . This is an interesting model to use because the parameter α controls the type
of effect the observed individuality factor ϕ has on Y , interpolating between purely
additive noise (α = 0) and pure multiplicative noise (α = 1). The coefficient β, in
turn, determines the non-linearity of the true causal model, with β = 0 corresponding
to the linear case.

The 53 independent datasets were generated considering different values of α and
β. Each dataset has N = 10,000 samples, and were generated following three different
scenarios. In the first, β = 0 and α ranges from 0 to 1 with a step of 0.1. In the second,
α = 0 and β ranges from -1 to 1 in steps of 0.1. In the last, α = β as values range
from -1 to 1, with steps of 0.1. In all cases, an equal number of instances was assigned
values of E equals 1, 2, and 3. The two values of Y were generated using the same
equation, but with different values for X .

Recall that the first step of the proposedmethod is the causal graph discovery, which
here is unnecessary as we have a single variable that we know affects y. The next step
is to train the base model, which will generate an error close to 0. Following we run
ICoNEt to find the individuality factor.

Figure 5 shows that, when running the proposed method in the synthetic dataset (a
similar behavior is found for the real-world mental health dataset), both training and
test error decrease as a function of model complexity, measured in terms of epochs,
and consequently, parameter convergence. This behavior follows a double descent
curve, which is a mark of overparameterized interpolator models and the assumption
we rely on for the base model to work.

Following, Fig. 4 shows the values of normalized mean absolute error (MAE)
(MAE/standard deviation) of y1 and y2 for the factual prediction of ICoNet, consid-
ering the three scenarios used to generate the synthetic datasets. In Fig. 4, observe
that the training error is really low for the three scenarios, but the test error differs
significantly. In Fig. 4a the test error starts high when α is low and decreases as α

increases and the individuality factor adds a multiplicative effect in Y . In Fig. 4b, as β

gets closer to 0 (the linear case) the error increases, meaning that the model is learning
to generalize better for non-linear cases. In Fig. 4c we observe that the test error was
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(a) (y1) β = 0. (b) (y2) β = 0.

(c) (y1) α = 0. (d) (y2) α = 0.

y1) α = β.(e) ( (f) (y2) α = β.

Fig. 6 Comparison of normalized counterfactual errors for simulated data with different combinations of
α and β: the left column shows the values for y1 and the right column for y2

kept bellow 0.4 in almost all series, we can see a little peak when β gets closer to 0, but
the measure is lower than 0.3, which is considered a low value. In sum, these results
show that the model have good results with non-linear and multiplicative cases that
usually are the characteristics of real-world models.

Next, we run ICoNet to evaluate the counterfactual queries. They were generated
for all samples in the training set for both Y1 and Y2 with the formula Xcf = X + q,
where q values ranged from -0.5 to 0.5 in 0.1 steps. As this is a simulated dataset, we
can verify the counterfactual value of Y cf as the value of the individuality factor—here
represented by E—is known.

Figure 6 shows the values of MAE/std for the 10 counterfactual queries created
using 10 different values for X . Overall, note that the values of the measure are low
for all cases, being always below 0.3. Looking at the results for both Y1 and Y2 in
Fig. 6a, b for different values of α, note that as the individuality factor increases its
multiplicative effect on y, the models learn better and have a lower counterfactual
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error, converging to a value of ≈ 0.005 even when using extreme values of X for the
counterfactual queries.

In Fig. 6c, d, when α = 0.0, we have a different pattern: negative values of β show
a higher error and variance among the curves, meaning that this type of function was
harder for the algorithm to learn. The lowest values of error are obtained when β is
in the interval ranging from 0.1 to 0.7, and here we also observe a lower variance
between the values of the counterfactual query, but the differences of errors are still
big when the counterfactual queries reach the extreme values.

Finally, Fig. 6e, f show the cases where the counterfactual queries reached their
largest errors overall, getting near to 0.35 standard deviations. In these plots, the
lowest values of MAE/std happened when α = β = 0.2 for Y1 and Y2, i.e., when we
had a situation close to linear function with an additive individuality factor. We can
also note that although the error is a little higher when both α and β are 1—meaning
a complete multiplicative and non-linear scenario—the highest error we obtained was
lower than 0.25, which is small.

The results in Figs. 4 and 6 show that even in situations where the test error was
high the model was still able to make good counterfactual predictions. For example,
when α = 0.3 and β = 0.0 we had a high test error in the factual prediction, with
0.58 standard deviations, but a low counterfactual query prediction with all standard
deviation errors lower than 0.15. Also, when querying counterfactual forα = β = 0.7,
where we obtained a low test error and a counterfactual error above 0.2. These results
show that there is not a necessary relation between the ability to generalize results and
to answer good counterfactual questions correctly.

The results also show that when bigger changes are applied to the factual value, the
counterfactual error tends to increase. This may be related to the standard problems in
machine learning, such as model effectiveness or lack of representative training data.
But it may also be related to the fact that the bottleneck can create non-continuous
representations, which could lead to small changes in the factual values to cause very
different impacts in the predictions. This is a well-known problem for auto-encoders,
which share similarities with the proposed approach.

5.2 Mental health case study

This section applies the proposed framework to all three levels of Pearl’s hierarchy of
causal knowledge: (i) association, showing that, given the observed datawe can predict
a value close to the real one; (ii) intervention, measuring the impact of intervening in
the whole population and seeing the statistic impact; (iii) individual counterfactual,
by taking a sample of random people and seeing what would have happened if they
had different preconditions. While in the first step we can quantitatively measure the
correctness of the results, the second and third steps can only by evaluated qualitatively
(Pearl 2009), as they are based in counterfactual outputs. Therefore, these results were
validated by psychologists and psychiatrists.

The problem we deal with is related to two well-known instruments for measuring
symptoms of mental health diseases and quality of life: the Brief Symptom Inven-
tory (BSI) and WHOQOL-BREF (World Health Organization Instrument to evaluate
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Table 2 Number of input and output variables and MAE measured for association relations with BSI and
WHOQOL

BSI WHOQOL Train Test
#X1 y1 #X2 y2 y1 y2 y1 y2

8 Somat. 9 Env 0.0179 0.0079 0.0439 0.0081

8 12 Phys 0.0007 0.0007 0.0165 0.0217

8 10 Psych 0.0004 0.0005 0.0070 0.0094

Quality of Life: Brief Version), respectively. The scores related to these measures are
generated based on a linear combination of answers provided by people in question-
naires.

BSI is an instrument designed to identify psychological symptoms in nine dimen-
sions, including depression, anxiety, and somatization. There is a BSI score for each
of these dimensions, accounting for the answers to specific questions. Here we focus
on BSI-somatization. Somatization is the development and persistence of symptoms
unexplained by medical causes, and it is well-known that somatization is the result
of both depression and anxiety (Harding et al. 2015). The second score, WHOQOL-
BREF, measures people’s quality of life considering four domains: physical health,
psychological, social relationships and environment. Its questions can also be mapped
to the domains they are measuring. We work with all domains except social relation-
ships, as it includes only three questions.

The counterfactual of these can only be done by finding each subject’s individuality,
since there are known latent variables that could not bemeasured, like genetics and life
experiences (Friedman et al. 2014). It is known that the individuality affects both BSI
and WHOQOL, which make these scores a perfect fit for the causal model proposed
here.

There is plenty of evidence showing association between somatization and behavior
symptoms (Wiborg et al. 2013;Hamdanet al. 2019).Besides evidence, there is a need to
have causal models to understand more closely the alignment between the underlying
biology and behavior, and how the change in scenario would impact on the outcome.
Strategies such as the counterfactual might help in understanding the effects of these
changes. It seems important not only to understand behavior but psychopathology.

The dataset was built from the Psychological Covid impact study, and involved a
sample of 79 out of more than 100 questions answered online by 153,514 individuals
from May-2020 to July-2020. It contains answers to all questions, which use the
5-points Likert scale from 0 (not at all) to 4 (extremely).

Because the scores we want to predict and generate counterfactuals are linear com-
binations of questions answered in the questionnaire, a regressor can easily predict
the perfect score. This scenario is not appropriate to test the proposed framework,
and hence we performed a data preparation step. First, as we have the mapping from
questions to domains for both instruments, we calculate the correlation between the
values of the calculated scores and the questions. We select the two questions most
correlated to the score and disregard the others. These two variables are later merged
with a set of other questions extracted from the causal graph, since we heavily rely on
the correctness of the causality between the answers and scores.
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Methodology The first step in our methodology is the inference of the causal graph
usingNOTEARS. For the BSI-Somatization score, the causal graphwas inferred using
all questions classified in the anxiety, depression and somatization categories. This
choice was based on the causal graph produced by the authors in Grill et al. (2014).
We used as input to our model the variables with a direct cause in the questions
of somatization with weight greater than 0.05, where the weight corresponds to the
strength of a causal relation. The 6 variables identified were merged with the two most
correlated to the index, and the base model has an 8-variable input.

For WHOQOL we did not have any references to filter out variables, and hence
we have used the answers to all questions to build the causal graph. For both the
environmental WHOQOL (Env) and the Physical WHOQOL (Phys), the process
was the same followed for BSI. The only difference was the cut-off value, which was
0.1 to Phys, as we observed the weight values were much higher for this graph. For
WHOQOL Psychological (Psych), after building the causal graph we realized there
was one variable that was caused by all others in the graph. Instead of adding all
the cause variables to the graph, we opt to include a third variable that was directly
associated with the score. The number of input variables used by each model is shown
in Table 2, and their detailed description is given in Appendix A.1.

Association results Table 2 also shows the training and test MAEs for the base model
using different combinations ofBSI (y1) and three variations ofWHOQOL (y2). Recall
ourmodel outputs two variables. The results show a test BSIMAE error between 0.007
and 0.0439, which is a low error considering that the values range from 0 to 1. QoL
Phys obtained the highest test error among the QoL indices—0.0217—and Env the
lowest. These results show the base model has the ability to learn associations and
correctly fit the function for the factual prediction task.

Individual-level counterfactual resultsWe now turn to the results for counterfactuals.
In psychiatry, there is a constant pursue for understanding what actions would have
created a better life style for a single individual. The experiments in this section shed
light into that. We show that outcomes of the scores can be different given the same
input, as different people will not react in the same manner to similar situations. This
is why it is so important to have a deterministic individuality factor for each of the
data samples, capable of generating a more personalized counterfactual query. While
factual prediction methods learn a consistent output prediction for the same input,
this is not necessarily true in counter-factual models. In this sense, an appropriate
counterfactual should be capable of both predicting different outputs (considering the
individuality as the latent variable) for the same input and having a different impact
when counterfactualy changing the values of input variables.

It is important to mention that, although both BSI and WHOQOL are influenced
by the individuality of a person, studies investigating the association between BSI
subscales and the WHOQOL domain scores generally find significant low to high
negative correlations (Fellinger et al. 2005; Marques et al. 2017; Vertommen et al.
2018). One study found that BSI GSI (global score), depression, and anxiety showed
the strongest correlations with psychological QOL, while BSI somatization was most
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Table 3 Individual-level counterfactual analysis

ID Score Feature F Value F Score CF Value CF Score

1 BSI_Psy BSI_45 0 0.0712 4 0.0713

2 0 0.0355 4 0.0712

1 Psychological WHOQOL_19 3 0.6291 5 0.7355

2 3 0.7294 5 0.7838

3 Physical WHOQOL_2 3 0.7399 5 0.7903

4 3 0.6716 5 0.6996

5 Environment WHOQOL_5 4 0.7418 2 0.7218

6 4 0.8246 2 0.8044

7 4 0.7971 2 0.7785

8 4 0.7137 2 0.6921

strongly correlated with physical QOL, but correlations were weakened by controlling
for factors such as participants’ demographics (Vertommen et al. 2018). It is important
to emphasize that psychological distress and quality of life are complex constructs
building on human health and well-being, but are not the same (Evans et al. 2007;
Friedman and Kern 2014). Note these studies look at correlation, and there is not a
systematic work on causation. Hence, there is no evidence of a strong causal relation
between BSI features and WHOQOL scores nor between WHOQOL features and
BSI scores. For this reason, we only analyze the interventional impact between BSI
features and BSI score and WHOQOL features and WHOQOL score. This lack of
causal relation is in accordance with the proposed causal model in Fig. 2, where the
outcomes do not have a causal edge between them, and the only expected information
that they share is the individuality. Recall that a higher BSI score indicates a worse
case of somatization, while a higher WHOQOL score indicates better health in the
analyzed dimension.

Table 3 shows examples of predictions for factuals (F) and counterfactuals (CF) of
users who have given the same answers to the questionnaire (i.e., have the same input
variables) but to which the counterfactual network has predicted different values for
BSI and WHOQOL scores. In the table, the IDs refer to individuals in the database,
the score indicates the value that will be predicted by the counterfactual network, the
feature is the answer from the questionnaire which has its value being analyzed, “F”
stands for the factual value and “CF” to the counterfactual values.

Notice that individuals with IDs 1 and 2 in Table 3 have the same input values when
the network predicts values for BSI Somatization and WHOQOL Psychological, but
the method predicted their score for BSI as 0.0712 for ID 1 and 0.0355 for ID 2 and
WHOQOL Psychological being 0.6333 and 0.7294, respectively. These values show
that individual 2 has a better psychological quality of life and, while they both have
a low somatization, the score for individual 1 is a little higher. Two counterfactual
questions were asked: the first is what the BSI score would have been if they were in a
situation where their BSI 45 (“spells of terror”) answer would have been 4. The result
shows that while the BSI of individual 2 increased to 0.0712 the BSI of individual 1
had almost no change, rising to 0.0713. When analyzing the WHOQOL we see that
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the score of individual 2 had a small alteration (0.06) when asking what would had
happened if (s)he was in a situation where hi(e)s “self satisfaction” (WHOQOL 19)
would have been 5. For individual 1 the score increase in 0.10. This shows that not
only the algorithm is capable of predicting different values from same input variables,
as it is also capable of finding complex individuality impact in the counterfactual,
where both BSI and WHOQOL change in different ways.

Regarding individuals with IDs 3 and 4, they have the same input values when
the network predicts values for BSI Somatization and WHOQOL Physical, but the
method predicted their score for WHOQOL Physical as 0.7399 and 0.6716 respec-
tively. The data also shows that when predicting the counterfactual for a scenario
where WHOQOL 2 (Health) would have value 5, individual 3 would have have a new
Phys. WHOQOL of 0.7903, while individual 4 would have it as 0.6996.

The table also shows comparisons between individuals of ID 5, 6, 7, and 8 when
predicting BSI Somatization and WHOQOL Environment. Note that the four of them
had the same input and were predicted with different outputs for the two scores. This is
an interesting case, because when predicting the counterfactual of WHOQOL 5 (“life
enjoyment”) equals to 2, we can see that they all varied around their factual predicted
value, but the variance was approximately the same—0.02 for all of them.

The results showed that the deterministic factual prediction can predict different out-
puts from the same factual inputs, and also provides different counterfactual impacts
when applied similar changes. These results are expected: Friedman et al. (2014)
exemplify this by using the serotonin levels in the nervous system, which have genetic
basis but are also alterable by life circumstances. Serotonin levels also affect person-
ality, i.e., neuroticism and conscientiousness and help regulate core bodily functions
necessary for good health, i.e., appetite and sleep. The results in McCaffery et al.
(2006) show that the covariation of depressive symptoms and coronary artery disease
may be due to a common vulnerability, indicating that different people could have
individuality’s that make them respond differently to similar situations.

The individual counterfactual analysis brings insights to professionals of what
can be done to help a specific patient. The ability of understanding what could be
changed for these individuals can develop strategies to improve treatment and anteci-
pate actions. If the specialist knows an individual will have its BSI lowered the most
by increasing a specific indicator, it could work on that indicator, e.g, sleep or social
support.

Population counterfactual results In these experimentswe look at the impact of actions
in the whole population. In other words, after changing the values of the variables of
interest for each individual, as previously reported, we calculate the percentage of
people that had their BSI and WHOQOL scores increased, lowered, or maintained.

To analyze the impact of interventions in the whole population we tested extreme
situations: the counterfactual query considering the value of the feature of interest
being the minimum and the maximum value. People whose original responses in
the questionnaire were equal to the extreme value analyzed were removed from this
analysis as they would not reflect changes in the scores. We consider scores change if
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Fig. 7 Heatmaps showing populational changes when counterfactualy changing values of variables. First
and third columns show the percentage of the population that has the value of the score (indicated in
the caption) decreased when the variable in the line receives minimum and maximum values, respectively.
Second and fourth columns show the same percentage of the population that have their score values increased
with these changes

their values increase or decrease in at least 0.01 (1%).5 The results are summarized in
Fig. 7 and a detailed version can be found in Table 6,Appendix 1. In the heatmaps in the
figure, each line corresponds to a variable (a question in the questionnaire, also detailed
described in Appendix A.2). They have the original value of their answers changed
to the minimum (0) and maximum (4) value. The first and third columns of each map
show the percentage of the population that have their score value (indicated in the
caption) decreased when the variable in the line received the minimum and maximum
values, respectively. The second and fourth columns show the same percentage of the
population that have their score values increased with these same changes: when the
variable in the line received the minimum and maximum values.

We first look at the results of BSI when counterfactual queries are executed consid-
ering the three different WHOQOL categories (first column in Fig. 7). Note that the
impact of the results vary significantly from one model to the other. These variations
are expected because, although the BSI score comes from the same function, each
model captures different causal relations when combined with WHOQOL, which will
lead the model to learn distinct individuality factors.

5 Other variations were also tested. Values over 5% include almost all individuals of the population, while
lower values were more difficult to be justified since they could simply be capturing the model’s prediction
variation.
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There is plenty of evidence showing association between somatization and behavior
symptoms (Wiborg et al. 2013; Hamdan et al. 2019). A first observation that can be
easily validated by a specialist is the impact of “suicidal thoughts” (BSI 9) in Fig. 7a,
which increases the value of BSI for 78% of the population when it receives the
higher possible score. Wiborg et al. (2013) showed that suicidality seems to be a
substantial problem in primary care patients with somatoform disorders. They also
argued that the perception of these dysfunctional illness may have a vital role in
the understanding and management of active suicidal ideation. Hamdan et al. (2019)
observed that the additional factors that bring the highest risk for suicide ideation
for those who bereaved are symptomatology, post-traumatic stress disorder (PTSD),
somatization, lower perceived social support, and secular religious orientation.

Similarly, in this same model the somatization score increased in more than 80% of
the populationwhen setting themaxcounterfactual value for “spells of terror” (BSI 45).
This result can be seen as an interpretation of the work of Carmassi et al. (2020), which
shows that physical symptoms are a common manifestation of potentially treatable
psychiatric disorders. They also gathered results from other works that show that up
to 50% of patients with somatic symptoms have sufficient criteria for a diagnosis of
anxiety and mood disorder (DellOsso et al. 2009). This is in accordance with our
results, where approximately 50% of the population was affected by a change to the
maximum value in the answers for the question related to “feeling restless” (BSI 49)
and approximately 37% was affected when increasing the value of “Scared for no
reason” (BSI 12), which are symptoms of anxiety.

The results in Fig. 7b, in contrast, where BSI was combined with the physical
WHOQOL, show little populational impact. This can be a reflex of the variables used
to predict BSI, since we cannot guarantee the independence of these features and,
most importantly, good predictors are not necessarily good causes. Conversely, when
dealing with BSI and WHOQOL environment (Fig. 7c), we observe that all variables
significantly impacted somatization, with populational changes varying from 32% to
62% when both reducing or increasing the values of scores of different variables.
In these results, “suicidal thoughts” had again the largest impact in the population
somatization.

Observe that, counter-intuitively, we have a significant increase/decrease inBSI val-
ues when changing variables to their min/max value (e.g., “suicidal thoughts” with the
minimum value decreases somatization for 45% of the population (which is expected),
but increases for 35%; similarly, decreasing the values for variables “nervousness”,
“scared for no reason”, “feeling tense” and “spells of terror” had the BSI values
increased for roughly 20% of the population. In this respect, there are some studies
linking the changes in somatization to different expressions and suppression of anger
feelings for men and women, respectively Liu et al. (2011). The study also showed
the link between childhood trauma and adult somatic symptoms was mediated by
insecure attachment. However, the mechanism which links this insecure attachment
with somatization is still poorly understood. Koh et al. (2005) andWatson (1989) also
showed that proneness to experiencing negative emotions and suppression of negative
emotions are associated with somatoform disorders.

Turning now to the results of WHOQOL, we explore the results of WHOQOL psy-
chological, shown in Fig. 7d. The results for the physical and environment WHOQOL
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can be found in Appendix 1. For Psych WHOQOL, note that reducing the values of
all variables had a big impact on quality of life for the whole population. These results
are consistent with the ones reported in Killgore et al. (2020), where the authors found
that average resilience was lower than published norms during the pandemics, but was
greater among those who tended to get outside more often, exercise more, perceive
more social support from family, friends and significant others, sleep better, and pray
more often. The significant impact of sleep it is also a result that is found in the liter-
ature, where Jin et al. (2014) found that better sleep status was related to lower social
stress, better management of stress and good social support. At the same time, when
increasing the values of the variables to the maximum value, all variables increased
their values for WHOQOL.

6 Conclusions and future work

This work introduced a new framework for counterfactual inference, where we model
a multivariate regression problem that considers both observed variables and a latent
variableϕ,which represents the individuality factor. The individuality factor is inherent
to a unit in our data, and needs to be learned.

The framework is capable of supporting the three levels of the SCM hierarchy of
causal knowledge, being able to make associations, interventions and counterfactual.
The framework has three main components, being our main contribution the ICoNet, a
network that is trained to learn the individuality factor and can later be used to answer
counterfactual queries.

Results in synthetic data show the network learns the individuality factor with very
small error, and effectively uses the learned individuality to make counterfactuals.
When using the mental health dataset, the counterfactual found by the model were
all validated by specialists, which analyzed both intuitive as well as counter-intuitive
findings, and corroborated the usefulness of the approach for clinical interventions on
patient level.

The proposed framework can be applied to other health scenarios where the disease
is influenced by individual characteristics, including different types of cancer and
treatment, or how a person’s anatomy changes if they have a different trait (e.g., as
done by Pawlowski et al. (2020) for the brain). But health is not the only scenario
where counterfactual queries may be useful.

In any application domain where the answer to what-if questions can help inter-
ventions and change behaviors or other unmeasurable variables are strong candidates.
Having available data we can, for example, estimate the performance of students in
online courses based on their grades and system interactions, and plan interventions
to improve overall performance. In robotics, we can improve the robustness of a robot
control system by training it using counterfactuals (Smith and Ramamoorthy 2020),
to name a few other potential application scenarios.

Finally, while we have worked so far with simple counterfactual queries, which
focused in changing a single variable, in the future the use of recourse (Karimi et al.
2021) can allow us to verify combinations of variables changes. Another possible
improvement is to create a continuous bottleneck for the individuality extraction,
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as we cannot currently guarantee that small individuality changes will not have big
impacts in the model.
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A Appendix

A.1WHOQOL and BSI elements

Tables 4 and 5 present the questions considered to describe the individuals WHO-
QOL (WH Organization 1996) and BSI (Derogatis 1993), respectively.

Additional results

Population counterfactual resultsApart from the results of psychological WHOQOL,
discussed in Sect. 5, we have also analyzed the results of physical and environment

Table 4 WHOQOL questions considered by the model. All questions are answered following a range from
1 to 5, and scores in positive direction, i.e., higher scores denote higher quality of life

ID WHOQOL question

1 How would you rate your quality of life?

2 How satisfied are you with your health?

5 How much do you enjoy life?

6 To what extent do you feel your life to be meaningful?

7 How well are you able to concentrate?

9 How healthy is your physical environment?

10 Do you have enough energy for everyday life?

11 Are you able to accept your bodily appearance?

12 Have you enough money to meet your needs?

14 To what extent do you have the opportunity for leisure activities?

15 How well are you able to get around?

16 How satisfied are you with your sleep?

17 How satisfied are you with your ability to perform your daily living activities?

18 How satisfied are you with your capacity for work?

19 How satisfied are you with yourself?

20 How satisfied are you with your personal relationships?

22 How satisfied are you with the support you get from your friends?

23 How satisfied are you with the conditions of your living place?

24 How satisfied are you with your access to health services?

25 How satisfied are you with your transport?

26 How often do you have negative feelings such as blue mood, despair, anxiety, depression?
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Table 5 BSI topics considered
by the model. All questions are
answered following a 5-point
scale of distress, ranging from
“not-at-all” to “extremely”

ID BSI factor

1 Nervousness or shakiness

9 Thoughts of ending your life

12 Suddenly scared for no reason

23 Nausea or upset stomach

37 Feeling weak in parts of your body

38 Feeling tense or keyed up

45 Spells of terror or panic

49 Feeling so restless you could not sit still

Fig. 8 Heatmaps showing populational changes when counterfactualy changing values of variables. First
and third columns show the percentage of the population that has the value of the score (indicated in
the caption) decreased when the variable in the line receives minimum and maximum values, respectively.
Second and fourth columns show the same percentage of the population that have their score values increased
with these changes

WHOQOL. In contrast with the results of psychological WHOQOL, for physical
WHOQOL (Fig. 8a) all results are intuitive and reported in the literature, except from
“life meaning” (WHOQOL 6) and “Negative feelings Frequency“ (WHOQOL 26),
where reducing the sense of life meaning improves quality of life for 37% of the
population. These findings go into the direction of the affirmations of Friedman and
Kern (2014), who said that currently strong empirical support is lacking for sense of
meaning as a vital factor in future health. However, the authors list it as a promising
direction, especially because there is considerable evidence that persistent striving for
meaningful accomplishment is indeed a key pathway to health and longevity.

ForWHOQOL environment, “Health satisfaction” (WHOQOL 2), “having amean-
ingful life” (WHOQOL 6) and “Friend’s support” (WHOQOL 22) are known features
related with well-being and longevity. The changes of these scores to minimum val-
ues impacted many people (see Fig. 8b). Friedman and Kern (2014) support this by
showing results that link longevity with close relationships, having mastery over one’s
environment, experiencing spirituality, engaging in life, and shows that maintaining
positive relationships with others improve well-being and general health.

Table 6 shows the values of the counterfactuals when considering the whole popu-
lation that were summarized in the heatmaps previously shown in this paper.
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