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Abstract
Complex systems, abstractly represented as networks, are ubiquitous in everyday life.
Analyzing and understanding these systems requires, among others, tools for commu-
nity detection. As no single best community detection algorithm can exist, robustness
across a wide variety of problem settings is desirable. In this work, we present Syn-
walk, a randomwalk-based community detectionmethod. Synwalk builds upon a solid
theoretical basis and detects communities by synthesizing the random walk induced
by the given network from a class of candidate random walks. We thoroughly validate
the effectiveness of our approach on synthetic and empirical networks, respectively,
and compare Synwalk’s performance with the performance of Infomap and Walktrap
(also random walk-based), Louvain (based on modularity maximization) and stochas-
tic block model inference. Our results indicate that Synwalk performs robustly on
networks with varying mixing parameters and degree distributions. We outperform
Infomap on networks with high mixing parameter, and Infomap and Walktrap on net-
works withmany small communities and low average degree. Our work has a potential
to inspire further development of community detection via synthesis of random walks
and we provide concrete ideas for future research.
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1 Introduction

Large-scale systems of various kinds including social, informational or biological sys-
tems are pervasive in human life. Prominent examples of such systems are online social
networks, the Internet, power grids or neural networks in the brain. Naturally, there
is a strong interest in analyzing and understanding these systems, e.g., to estimate the
effects of interventions on parts of the system, to alter or preserve their functionality, or
to predict their future evolution. Commonly, such systems are abstracted as networks,
where nodes represent the entities in the system, and links between nodes represent
the (form of) interaction between the entities.

There are three basic necessities for a feasible empirical research of large networks:
(i) identification of functional groups, frequently called communities (Girvan and
Newman 2002;Radicchi et al. 2004), (ii)models for the interactionwithin and between
these functional groups, (iii) visualization of large networks and their dynamics in
human graspable form.

Community detection (Girvan and Newman 2002; Fortunato 2010; Fortunato and
Hric 2016) is an established tool satisfying these three basic requirements, as the iden-
tification of functional groups in networks is often facilitated by implicitly or explicitly
assuming specific interaction models and further allows to visualize the network at a
more granular level. Consequently, researchers proposed numerous community detec-
tion algorithms in recent years (Girvan andNewman 2002; Clauset et al. 2004; Rosvall
and Bergstrom 2008; Rosvall et al. 2009; Pons and Latapy 2005; Blondel et al. 2008;
Raghavan et al. 2007; Reichardt and Bornholdt 2006; Peixoto 2014a).

This plethora of algorithms leaves us frequentlywonderingwhich is the “best” com-
munity detection algorithm for a given practical application? Typically, researchers
compare algorithms based on their ability to identify ground truth communities in arti-
ficially generated benchmark networks (Orman and Labatut 2009; Yang et al. 2016)
or ground truth extracted from node-metadata in empirical networks. However, Peel
et al. (2017) recently showed that such an evaluation is more delicate: they provide
a No Free Lunch theorem, stating that there can be no single best algorithm for all
possible detection scenarios, and furthermore, community evaluation on empirical
networks based on node meta-data is contestable in a general case. Hence, as dif-
ferent algorithms (potentially) uncover different structural aspects when applied to a
given network, the choice of method depends, among other criteria, on the type of
community one is looking for.

One prominent class of community detection methods characterizes communities
based on random walks on a network, with Infomap (Rosvall and Bergstrom 2008;
Rosvall et al. 2009) andWalktrap (Pons and Latapy 2005) being two popular represen-
tatives (see Sect. 2 for a compact description). Along the lines of the No Free Lunch
theorem, both methods have their strengths and their weaknesses. Whereas Infomap
accurately uncovers communities that are strongly connected internally (as character-
ized by the mixing parameter; see Sect. 3.1), it fails to do so for loosely connected
communities (cf. Yang et al. 2016, Sect. 5.2). On the other hand, while Walktrap
delivers reasonable results over a broader spectrum of the strength of the community
structures, we find that its performance strongly depends on the degree distribution
of the network. In addition, Walktrap requires a selection of a hyper-parameter that is
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Synwalk: community detection via randomwalk modelling 741

commonly chosen empirically. As one typically does not know about the community
structure of a network a priori, it is unclear for practitioners how to select among these
two random walk methods.

This raises an interesting question: can we combine the strengths of both methods
to arrive at a community detection method that is more robust across a wider range
of problem settings? In this paper, we tackle this question by presenting Synwalk—a
community detection method where we model community properties by designing a
synthetic randomwalk model. Specifically, Synwalk assumes a class of randomwalks
with independent and identically distributed (i.i.d.) movements within and between
candidate communities. It then simultaneously optimizes the distribution parameters of
these i.i.d. movements (closed-form solution) and the candidate community structure
(combinatorial optimization) such that the thus synthesized random walk resembles
the random walk induced by the network under consideration. Due to the structure of
the i.i.d. movements and the aim to synthesize an existing random walk, Synwalk thus
shares ideas from both Infomap and stochastic blockmodelling (Sect. 4.2).We discuss
the properties of the resulting Synwalk objective in Sect. 4.1 and thoroughly investigate
and compare the behavior of Synwalk to Infomap and Walktrap, the Louvain method,
and stochastic block model inference on generated benchmark graphs in Sect. 5.2.
Furthermore, we illustrate the applicability of our method on empirical undirected
networks with non-overlapping communities (Sect. 5.3).

In this work we present a novel instance of community detection via random walk
modelling, which adapts the concept of (stochastic) block modelling to random walk-
based community detection. At the same time, Synwalk combines the strengths of the
popular random walk-based community detection algorithms Infomap and Walktrap,
achieving more robust results across a range of generated and empirical networks
without the need for hyper-parameter optimization. We believe that our method and
results can initiate future theoretical and practical work to fully unlock the potential
of synthetic random walk models for community detection by, e.g., (i) designing
objective functions that enable robust detection of communities on specific classes of
networks, (ii) designing random walk models tailored for detecting specific types of
communities, or (iii) employing different notions of graph-induced random walks to
discover different aspects/communities of a network.

2 Related work

Different approaches to community detection have been inspired by different def-
initions of communities (see Fortunato and Hric 2016 for an excellent survey).
Accordingly, Rosvall et al. (2019) argue that different approaches to community detec-
tion can be categorized into four big groups, i.e., cut-based community detection,
clustering, stochastic block modelling, and community detection based on network
flows or random walks. We will now briefly summarize the concepts and approaches
relevant for this work.

In a classical view, communities are densely connected subnetworks of a network
that are well separated, which resonates with cut- or clustering-based community
detection. This view takes the internal and external node degrees w.r.t. an assumed
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community structure into account. Popular metrics for measuring the existence and
strength of a community structure are the mixing parameter (Lancichinetti et al. 2008;
Lancichinetti and Fortunato 2009a) and the modularity (Newman and Girvan 2004;
Newman 2006). The mixing parameter μ of a node is the ratio between the number of
links to nodes outside of its community and the total number of its links. The related
quantitymodularity compares the density of linkswithin communities to links between
communities and is used as an objective function for community detection (Clauset
et al. 2004; Blondel et al. 2008).

While wewill use themixing parameter andmodularity in setting up and evaluating
our experiments in Sects. 5.2 and 5.3 , the method we propose falls into the category of
random walk-based community detection methods. Random walks provide a simple
proxy for diffusion processes describing the dynamics of a network. Here, the notion
of a community is related to the average time a random walker spends within a certain
subgroup of nodes of a network, and community detection becomes equivalent to
finding an appropriate state space partition of the corresponding random walk.

This connectionwas utilized byPiccardi (2011),whoproposedfinding a community
structure such that in the next time step the random walker stays within its current
candidate community with high probability. The similar notion of Markov stability
discussed by Lambiotte et al. (2014) has connections to modularity maximization
and Infomap’s map equation. Other approaches to the aggregation of random walks
include non-negative matrix factorization of the random walk’s transition probability
matrix to obtain a low-rank representation (Ghasemi et al. 2020), spectral aggregation
techniques (Zhang and Wang 2020), or information-theoretic approaches to Markov
chain aggregation, cf. Amjad et al. (2020), Faccin et al. (2020) and Deng et al. (2011).
All these approaches can, under appropriate circumstances and settings, be utilized to
partition a network into overlapping or non-overlapping communities.

Hurley and Duriakova (2015, 2016) proposed an information-theoretic method for
community detection that combines a random walk-based approach with (classic)
block modelling. More specifically, the authors aim to find a candidate clustering of
the network under investigation such that the random walk induced on this clustering
is similar to an arbitrarily chosen target random walk, where similarity is measured by
the Kullback–Leibler divergence and optimized using a Hartigan-style optimization
procedure.

Similarly to Faccin et al. (2020) and Piccardi (2011)), the method proposed in Hur-
ley and Duriakova (2015, 2016)) is predominantly based on modelling random walks
on clusters. In contrast, Synwalk is based on the random walk induced by the network
under investigation, i.e., a random walk on the network’s nodes.

Another recent method proposed by Peixoto and Rosvall (2017) detects communi-
ties on possibly dynamic networks by combining elements from Markov aggregation
and stochastic block model inference. Specifically, they try to co-cluster the states
and preceding trajectories (”memories”) of multiple realizations of a random walk
with the aim of minimizing its description length. Similarly to our approach, this
work assumes a synthetic random walk model. However, whereas they try to infer its
parameters (i.e., its transition probabilities) jointly with the optimal (co-)clustering
in a Bayesian approach, our method makes explicit assumptions about the synthetic
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random walk’s parameters and tries to find the optimal clustering by comparing the
synthetic to a graph-induced random walk.

We close this section by reviewing two prominent examples for randomwalk-based
community detection methods, Infomap (Rosvall and Bergstrom 2008; Rosvall et al.
2009) and Walktrap (Pons and Latapy 2005), against which we will compare our
approach experimentally.

Assuming a certain clustering (i.e., a candidate community structure), Infomap
encodes the movements of a random walker on a network with a two-level codebook
scheme. Each cluster has its own codebook with codewords for each member node,
plus a dedicated exit codeword. Additionally, there is a global index codebook with
codewords for each cluster. Now, for every move of the random walker, Infomap
records the codeword of the next node from the codebook of its containing cluster.
Moreover, whenever the random walker changes clusters, Infomap records the exit
codeword of the old cluster’s codebook and the codeword of the new cluster from the
index codebook before it records the new node. By minimizing the average descrip-
tion length of realizations of such a random walk, Infomap obtains a clustering that
compactly describes the network dynamics and hence should fit the true community
structure well. Notably, it is not necessary to actually simulate random walks, as the
movements of the randomwalker are characterized by the network topology, allowing
to compute the average description length via themap equation (Rosvall andBergstrom
2008; Rosvall et al. 2009).

Walktrap formulates a random walk-based distance measure between clusters.
Given a fixed number of steps, a random walker starting at a certain node will visit a
neighboring node with a given probability. These probabilities hold information about
how well two nodes are connected. Now, assuming two nodes are within the same
community (i.e., well-connected), their probabilities to reach any other node within
the network for a given number of steps should be similar. This observation yields a
distance measure based on a weighted mean squared difference of such probabilities.
Walktrap greedily merges nodes/clusters based on the described distance to arrive at
a suitable clustering (Pons and Latapy 2005).

While Infomap andWalktrap predict clusterings by analyzing these random walks,
our method predicts clusterings by synthesizing the network-induced random walk
from a restricted class of candidate randomwalks. Searching for a proper randomwalk
within this classmakes ourmethod robust across different network types. Additionally,
being able to design the candidate class opens up possibilities for exploring alternative
designs in future research.

3 Preliminaries

3.1 Networks and clusterings

Let G := (X , E,W ) be a weighted network with nodes X = {1, . . . , N }, links
E ⊆ X 2 and weight matrix W . The weight matrix is given by W := [wα→β ]α,β∈X
where wα→β ≥ 0 denotes the weight of the link (α, β) ∈ E starting at node α and
pointing at node β. (We useGreek letters to indicate nodes.) For an undirected network
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we set (α, β) = (β, α) and require that either (α, β) ∈ E or (β, α) ∈ E to avoid the
double counting of edges. A set C ⊆ X is a clique if it is a complete subnetwork of
G, i.e., for any two distinct nodes α, β ∈ C there exists a connecting link (α, β) ∈ E .

For an undirected network, the degree kα of node α is the number of links connected
to it.Wedenote the average degree of the network as k. The network densityρ is defined
as

ρ = 2 · |E |
|X |(|X | − 1)

= k

|X | − 1
. (1)

Consider a clustering Y of X into a set of K nonempty elements Yi , i.e.,
Y := {Yi |i ∈ KY } where KY = {1, . . . , K } denotes the index set of Y . We index the
elements of such a clustering by Roman letters and refer to them as clusters or com-
munities. If the clusters are disjoint we call them non-overlapping and the clustering
a partition. A partition induces a mapping function m: X → KY , mapping each node
of G to the index of its containing cluster, i.e., m(α) = i iff α ∈ Yi . For the remainder
of this paper we assume all clusterings to be partitions.

For an undirected, unweighted network and a candidate clustering Y , the mixing
parameter of nodeα is defined as (Lancichinetti et al. 2008;Lancichinetti andFortunato
2009a)

μ(α) = kextα

kα

(2)

where kextα is the number of links between α and nodes outside of its community
Ym(α). A cluster Yi is a strong community (Radicchi et al. 2004) if for all of its
nodes μ(α) < 0.5, but communities can be defined in a weak sense also for larger
values (Lancichinetti and Fortunato 2009a). Similarly, for an undirected, unweighted
network and a candidate clustering Y , we can define the modularity of the clustering
as (Newman and Girvan 2004; Newman 2006)

Q =
∑

i∈KY

|Ei |
|E | −

⎛

⎝ 1

2|E |
∑

α∈Yi

kα

⎞

⎠
2

(3)

where |Ei | denotes then number of internal edges in cluster Yi . Brandes et al. (2008)
showed that the modularity ranges from −1/2 to 1, with small values indicating weak
community structures of the candidate clustering Y .

3.2 Randomwalks

We consider random walks {Xt }t∈N on the network G, i.e., {Xt } is a first-order
Markov chain on X . We assume that its stationary transition probability matrix
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P := [pα→β ]α,β∈X is derived from the network’s weight matrix W via

pα→β = wα→β∑
β ′ wα→β ′

. (4)

While there are other notions of random walks on networks, cf. Lambiotte et al.
(2014) and Masuda et al. (2017) for an overview, we selected this formulation due its
simplicity and connection tomodularitymaximization and Infomap’smapequation, cf.
the discussion around equations (6) and (34) inLambiotte et al. (2014).We furthermore
initialize the random walk with an invariant state distribution p := [pα]α∈X that
satisfies

pβ =
∑

α

pα pα→β. (5)

We assume that the network is strongly connected, thus p is unique and positive.
Setting Yt := m(Xt ) defines a stationary process {Yt } on the clusters. Specifically,

the marginal and joint probabilities describing {Yt } are obtained as

pi := P(Yt = i) =
∑

α∈i
pα, i ∈ KY (6a)

and

pi, j := P(Yt+1 = j,Yt = i) =
∑

α∈i

∑

β∈ j

pα pα→β, i, j ∈ KY . (6b)

We further abbreviate p¬i := 1 − pi = P(Yt �= i) for the marginal complement,
pi,¬ j := pi − pi, j = P(Yt+1 �= j,Yt = i) for the joint complement, and pi→ j :=
P(Yt+1 = j |Yt = i), respectively pi �→ j := 1 − pi→ j = P(Yt+1 �= j |Yt = i) for the
conditional and its complement.

3.3 Information theory

We make use of the following quantities from information theory that are well-
described by Cover and Thomas (2006, Chapter 2). Let Y , Z denote random variables
(RV), then we call H(Z) the entropy of Z , H(Y |Z) the conditional entropy of Y given
Z and I (Y ; Z) the mutual information between Y and Z . Furthermore, let p and q
denote discrete probability distributions over the same alphabet. Then we call D(p‖q)

the Kullback–Leibler divergence between p and q. If p, q are Bernoulli distributions
i.e., p = [p1, 1− p1] and q = [q1, 1−q1], then we abbreviate D(p1‖q1) := D(p‖q).
Furthermore, let P := [pα→β ]α,β∈Z and Q := [qα→β ]α,β∈Z be transition probabil-
ity matrices of equal size. The Kullback–Leibler divergence rate D(·‖·) between two
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stationary Markov chains governed by P and Q is

D(P‖Q) :=
∑

α∈Z

∑

β∈Z
pα pα→β log

pα→β

qα→β

(7)

given that the Markov chains are irreducible (Rached et al. 2004, Th. 1).

4 Community detection via randomwalkmodelling

We now introduce the Synwalk objective, derive some of its properties, and discuss
its relations to Infomap, stochastic block modelling, and model reduction techniques
for random walks. For the sake of readability we defer proofs to Appendix A.

4.1 Derivation and properties of the Synwalk objective

Assume a network G = (X , E,W ) with an inherent community structure Y true. Con-
sider further a random walker moving on G governed by the transition probability
matrix P , which is derived from the weight matrixW . We refer to this random walker
as the network-induced randomwalker, as its movements depend on the topology of G
(i.e., implicitly its community structure). In the next step we design a synthetic random
walker, governed by some transition probability matrix QY which, in contrast to P ,
explicitly depends on some candidate partition Y . In essence, our approach then aims
to find a partition Y such that the synthetic random walker behaves (stochastically) as
similarly to the network-induced walker as possible. Intuitively, the resulting partition
will resemble the intrinsic partition Y true very closely. We formalize this concept in
the following.

The transition probability matrix that governs the synthetic random walker has a
particular structure that depends on a candidate partition Y . Specifically, suppose that
at a given time step the synthetic random walker is at node α in cluster Yi ∈ Y . We
decide whether to leave or to stay in the current cluster Yi in the next time step based
on a cluster-specific Bernoulli distribution [si , 1 − si ]. In case of a cluster change,
we choose a new cluster Y j �= Yi according to a distribution over clusters [ui ]i∈KY .
Finally, we choose the next node β lying in the new cluster Y j by a cluster-specific

distribution over nodes [r j
β ]β∈Y j (note that Y j = Yi if we stay in the current cluster).

This particular structure yields the transition probability matrix QY = [qα→β ]α,β∈X
where

qα→β =
{
rm(β)
β · (1 − sm(α)), m(α) = m(β),

rm(β)
β · sm(α) · um(β)

1−um (α)
, otherwise.

(8)

Note that when switching clusters we have to normalize the distribution over clusters
by 1 − um(α) = ∑

k �=m(α) uk since we exclude the current cluster m(α) as a choice.
The aim is now to find a candidate partition Y and corresponding parameters of (8)

that maximize the similarity between the synthetic and the network-induced random
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walk.We quantify this similarity via the Kullback–Leibler divergence rate D(P‖QY ),
i.e., the lower D(P‖QY ), the more similar are P and QY , and the more likely it is
that the synthetic random walker produces realizations of random walks that are also
typical for the network-induced random walker (Kesidis and Walrand 1993). Hence,
the optimal partition Y∗ satisfies

Y∗ ∈ argminY

[
min

{[r iα]α∈Yi , si , ui }i∈KY
D(P‖QY )

]
. (9)

The cluster-specific distributions over nodes and the cluster-specific Bernoulli dis-
tributions minimizing (9) can be shown to be

r i,∗α = pα

pi
= P(Xt = α,Yt = i) (10)

s∗
i = pi �→i = P(Yt+1 �= i |Yt = i). (11)

Regarding the distribution over clusters [ui ]i∈KY there exists no closed-form solution
to the best of our knowledge. Nevertheless, by choosing

ui = pi = P(Yt = i) (12)

as a sub-optimal solution we can relax the original optimization problem in (9) to
arrive at (see Proposition 1 in Appendix A.1)

Y∗ ∈ argmaxY
∑

i∈KY
pi D(pi→i‖pi ). (13)

We hence define the Synwalk objective as follows.

Definition 1 The Synwalk objective for a given partition Y is

J (Y) : =
∑

i∈KY
pi,i log

pi→i

pi
+ pi,¬i log

pi �→i

p¬i
=

∑

i∈KY
pi D(pi→i‖pi ) (14)

As we show in Proposition 2 in Appendix A.2, J (Y) is bounded via

0 ≤ J (Y) ≤ I (Yt ; Yt−1) ≤ I (Xt ; Xt−1). (15)

Note that for a given candidate clusteringY all probabilities in (14) can be computed
from the fixed transition probabilities and the invariant state distribution induced by a
network’s weight matrix according to Sect. 3.2. Hence, optimizing the Synwalk objec-
tive is a combinatorial problem over all possible clusterings of a given network. It is a
common problem that the number of possible clusterings grows super-exponentially in
the number of nodes and thus, an exact solution is intractable. We therefore employ a
suitable search algorithm to find a near optimal clustering w.r.t. the Synwalk objective.
See Sect. 5.1 and Appendix B for further details.
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The following observation supports the rationale behind Synwalk’s aptness as
a community detection method. Consider an unweighted network of disconnected
cliques. As we show in Appendix A.3, the Synwalk objective achieves its global
maximum for a community structure identical to the clique structure of this network.
Although isolated cliques are an unrealistic scenario for community detection, they
carry the intuition of the concept of a community, i.e., strong internal and weak exter-
nal connections. Synwalk’s optimal behaviour in this idealized edge case theoretically
grounds our strong experimental results in Sect. 5.2. For additional insights based on
theoretical considerations and synthetic toy data we refer the reader to Toth (2020,
Sections 3.2 & 5.1).

4.2 Relation to Infomap and (stochastic) blockmodelling

The design of our random walk model was inspired by Infomap’s coding scheme.
Recall Infomap’s two-level codebook structure described in Sect. 2, i.e., the cluster
codebooks with node and exit codewords, and the global index codebook. The distri-
butions assembling the dynamics of our synthetic random walker in (8) correspond to
these codebooks: (i) the cluster-specific distributions over nodes [r iα]α∈Yi correspond
to the cluster codebooks, (ii) the cluster-specificBernoulli distributions {si }i∈KY deter-
mining a cluster change correspond to the exit codewords, and (iii) the distribution
over clusters [ui ]i∈KY corresponds to the index codebook.

Thus, while Infomap takes an analytic approach to community detection by apply-
ing the minimum description length principle with a specific codebook structure,
Synwalk takes a synthetic approach by trying to mimic the network-induced random
walk with our synthetic random walk model.

The definition of QY in (8) and of the optimization problem (9) are reminiscent of
stochastic blockmodelling underKullback–Leibler divergence. Themain difference is
that in stochastic block modelling, one tries to infer model parameters—e.g., commu-
nity structure, inter- and intra-community edge probabilities—such that the likelihood
of a given graph is maximized. In other words, block modelling infers the parameters
of a random graph model, i.e., a generative model from which graphs can be drawn,
such that the likelihood of the graph under consideration is maximized. An essential
point for stochastic block models is that these models have limited degrees of free-
dom, and that a good fit between the model and the graph is achieved by selecting an
appropriate candidate clustering for the former. In contrast, Synwalk first transforms
the graph under consideration to a randomwalk model, characterized by the transition
probability matrix P . Then, the aim of Synwalk is to infer the parameters—i.e., the
community structure and parameters of QY—of another random walk model such
that the resulting random walk is “close” to the original one in a well-defined sense.
Furthermore, it is essential that QY has less degrees of freedom than P; while, for N
nodes and K candidate clusters, P has N (N − 1) degrees of freedom, the degrees of
freedom of QY are limited to K + (K − 1)+ (N − K ) = N + K − 1. Thus, Synwalk
can adequately be interpreted as an approach to “random walk modelling”.

Finally, Hurley and Duriakova (2015, 2016) proposed a method that combines
random walks on networks with (generalized) block modelling. While they consider
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the network-induced random walk on clusters rather than on nodes, they also use
the Kullback–Leibler divergence to measure the similarity with a target random walk
and, thus, the fitness of the candidate clustering. For a specific target random walk
it can be shown that their approach becomes equivalent to the goal of maximizing
I (Yt ; Yt−1) (Hurley and Duriakova 2015, Sec. III.A). The same cost function was also
proposed by Deng et al. (2011) for Markov chain aggregation, where it was shown
that the bipartition of states is related to spectral partition via the Fiedler vector. It is
also a special case of the cost function I (Yt ; Yt+T ) proposed by Faccin et al. (2020),
who showed that maximizing this quantity for T = 1 and a random walk on an
unweighted and undirected network is equivalent to maximizing the likelihood of a
degree-corrected stochastic blockmodel. By assuming a less restrictive structure of the
distribution over clusters in (8) the optimization problem in (9) becomes equivalent to
maximizing I (Yt ; Yt−1) over the possible clusterings (see Appendix A.2 for a concrete
derivation). Thus, we can achieve this cost function by designing a suitable synthetic
random walk model.

5 Experimental evaluation

In the following experimentswe compare Synwalk to fourwell established community
detectionmethods, namely, Infomap (Rosvall andBergstrom2008;Rosvall et al. 2009)
and Walktrap (Pons and Latapy 2005) (both random walk-based), Louvain (Blondel
et al. 2008) (based on modularity maximization), and stochastic block model (SBM)
inference (Peixoto 2014a). The source code for reproducing these experiments can be
found at https://github.com/synwalk/synwalk-analysis.

5.1 Implementations

To find a near optimal clustering w.r.t. our Synwalk objective we reuse Infomap’s
stochastic and recursive search algorithm (Rosvall andBergstrom2010,Appendix S1).
See Appendix B for additional information about our implementation. The resulting
framework used in the course of this work can be found at https://github.com/synwalk/
synwalk.

For Walktrap and Louvain we use the implementations provided by igraph (Csardi
and Nepusz 2006). Note that for Walktrap we assume a default value of T = 4 where
T is the hyper-parameter describing the random walk length used to compute the
node and cluster distances. We use GraphTool (Peixoto 2014b) for inferring a degree-
corrected SBM for a given network. Hereafter we will refer to the SBM inference
method simply as GraphTool. Unless otherwise noted, we use default parameters of
these implementations. We use the same setup in both our experiments with LFR
benchmark graphs and with empirical networks.
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Table 1 Parameter setup for generating the LFR benchmark networks

Parameter Description Parameter set A Parameter set B

Nmax
c Maximum community size 0.2 · N 0.1 · N

Nmin
c Minimum community size 0.25 · Nmax

c 10

kmax Maximum node degree 0.95 · Nmax
c 0.95 · Nmax

c

k Average node degree {15, 25, 50} 20

β Community size distribution exponent 1.0 1.0

γ Degree distribution exponent 2.0 2.0

5.2 Experiments on the LFR benchmark

To validate and compare the results of community detection methods it is common
practice to evaluate their performance on benchmark networks (Yang et al. 2016;
Fortunato and Hric 2016; Newman and Girvan 2004; Lancichinetti and Fortunato
2009b; Orman and Labatut 2009) where the ground truth community structure is
known. The prevalent benchmark in more recent studies (Yang et al. 2016; Orman
and Labatut 2009) is the LFR benchmark (Lancichinetti et al. 2008; Lancichinetti and
Fortunato 2009a) and hence, we adopt it in our experiments. We generate the LFR
benchmark networks with parameters as given in Table 1.

We employ the adjusted mutual information (AMI, Vinh et al. 2010) as a perfor-
mancemeasurewhen comparing the partitions found bydifferent community detection
algorithms with the ground truth community structure. AMI values close to 1 indicate
high similarity between the found partition and the ground truth, whereas a values
around 0 reflect low similarity. Let Y true denote the ground truth clustering and Y any
predicted clustering, then the AMI is defined as

I ad j (Y true,Y) = I (Y true;Y) − E{I (Y true;Y)}
1
2 [H(Y true) + H(Y)] − E{I (Y true;Y)} , (16)

where E{·} denotes the expectation operator with respect to a chosen permutation
model. We normalize the AMI by the arithmetic mean as in (16).

5.2.1 AMI as a function of the mixing parameter

In this experimentwe use parameter set A (see Table 1) to generate the LFRbenchmark
networks. We fix the network size and average degree of the generated LFR networks
while varying theirmixing parameterμbetween 0.2 and 0.8. Experimentswith varying
network sizes are shown in Appendix C.

The results for the AMI as a function of the mixing parameter are shown in Fig. 1.
As can be seen, Infomap correctly identifies the communities for sufficiently small
values of μ and transitions to vanishing AMI around μ ≈ 0.5. This behavior reflects
the definition of communities in a strong and weak sense as proposed by Radicchi
et al. (2004) and was also observed by Yang et al. (2016). We explain this behaviour
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1 Comparison of Infomap, Synwalk, Walktrap, Louvain and GraphTool on LFR benchmark networks
with given average degree and network size. The lines and shaded areas show the mean and standard
deviation of AMI as a function of the mixing parameter, obtained from 100 different network realizations.
Synwalk outperforms Infomap for sufficiently high mixing parameter and network density. Performance
of Synwalk and Walktrap increases with higher average degrees while holding the network density fixed
(Color figure online)

by looking at Infomap’s coding scheme. If μ > 0.5, then the random walker will
have a higher probability of exiting a community than staying within it. Hence, for the
ground truth community structure, the coding overhead due to sending exit codewords
will dominate, and clusterings resulting in more efficient encodings can be found, e.g.,
by putting all nodes into a single common cluster. Indeed, we observed exactly this
behavior for Infomap in our experiments.

Unlike Infomap, Synwalk does not penalize frequent transitions between commu-
nities, although our random walk model resembles Infomap’s coding scheme (cp.
Sect. 4.2). Thus, the performance transitions of Synwalk, similarly to Walktrap, occur
at increasing values of μ for increasing network densities (Fig. 1, columns from top
to bottom and rows from right to left). Intriguingly, for roughly the same network
density the transition phases shift to higher values of the mixing parameter as the
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average degree increases (cp. Appendix C). Hence, neither the mixing parameter nor
the network density sufficiently characterizes the AMI performance of Synwalk and
Walktrap. We analyze this phenomenon further in Sect. 5.2.2. In contrast, our experi-
ments show that even as we vary the average degree, Infomap’s performance mainly
depends on the mixing parameter of the networks.

Overall, Synwalk outperforms Infomap in terms of AMI on sufficiently dense net-
works or networks with mixing parameters μ � 0.5. We perform approximately on
par with Walktrap, where we see slightly better performance on networks with lower
density (Fig. 1, top row) and a slight disadvantage on networks with higher density
(Fig. 1, bottom row).

Considering the methods not based on random walks, we see that GraphTool does
not perform well w.r.t. the AMI metric. We observed that GraphTool detects many
small communities, apparently capturing a different aspect of the network structure.
We think that inferring a hierarchical SBM may lead to better AMI values when
looking at a clustering on a suitable hierarchy level (e.g. by choosing the clustering
with the highest modularity score, similar to Walktrap).

Finally, Louvain (modularity maximization) yields the highest AMI values on net-
works with lower densities. For denser networks the performance of Synwalk and
Walktrap comes close to or even slightly better than that of Louvain (cp. Fig. 1d, g,
h).

We want to point out that the comparison between the different methods, more
gravely between the randomwalk-based and non-randomwalk-basedmethods, should
not solely be based on the AMI values achieved on this benchmark. For example,
although GraphTool does not achieve good AMI performance on this benchmark, it
certainly yields interesting results when applied to empirical networks (cf. Sect. 5.3).
These results however will differ in their characteristics from methods based on other
paradigms.

5.2.2 Classification analysis using node statistics

As we have seen in Sect. 5.2.1, the AMI performance of Synwalk and Walktrap on
LFR networks transitions smoothly for varying values of the mixing parameter. To get
deeper insights into the behavioral differences between Synwalk and Walktrap1 we
analyze the different qualities of their predictions in these transition phases.

For this purpose we analyze networks with varying network sizes and average
degrees that are generated with parameter set A (see Table 1) while trying to keep the
network density and the AMI (by appropriately setting the mixing parameter) constant
(cp. main diagonal in Fig. 1). We align any predicted partitions to their respective
ground truth partitions using a greedy matching algorithm as described in Appendix
D. We then consider the nodes in the intersection of the ground truth communities
with their aligned counterparts as correctly classified nodes, whereas the residual set
of nodes form the group of misclassified nodes.

Given this distinction, we can compare the degree distributions of correctly clas-
sified and misclassified nodes. In addition to the node degree kα , we consider the

1 Due to the absence of a smooth transition phase for Infomap we do not analyze its behavior in this section.
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normalized local degree (NLD) k̂α , which we define as the ratio between the node
degree and the maximum number of possible links in its containing cluster:

k̂α = kα( |Ym(α)|
2

) for |Ym(α)| ≥ 2. (17)

Note that in general the NLD of a node will be different when computed w.r.t. its
ground truth community or its predicted community.

Thedegree andNLDdistributions are visualized inFigs. 2 and 3.Although inFigs. 1
and 10 inAppendixCwe see an apparently strong dependence of theAMIperformance
on the average degree for Synwalk andWalktrap, for Synwalk a significant dependence
is not visible in the class distributions (Fig. 2, top row). Nevertheless, the distributions
of the NLDs w.r.t. the ground truth communities (Fig. 2, middle row) reveal that
misclassified nodes are more likely to exhibit a low NLD than correctly classified
ones.

In contrast, although the latter observation holds for Walktrap as well (Fig. 3,
middle row), the node degrees of its misclassified nodes appear to be smaller than
those of correctly classified nodes (Fig. 3, top row). This behavior appears plausible
when considering themechanics ofWalktrap: nodes are grouped based on cluster/node
distances that are computed by considering random walks of a specified length T (in
our setup T = 4). For low values of T , low-degree nodes are rarely visited, resulting in
frequent ties in distance calculations, whereas in the limit of T → ∞ the distances are
determined by the proportionality of the stationary distribution to the node degrees.
Hence, it is necessary to make a trade-off regarding the random walk length T , which
is typically chosen heuristically.

These differing properties of Synwalk and Walktrap manifest in contrasting
detection behaviors on the LFR networks (cf. Fig. 4). Synwalk identifies smaller
communities with greater accuracy than larger ones (dependence on the normalized
local degree), i.e., themajority ofmisclassified nodes occur in the largest communities.
While Walktrap follows this trend, misclassified nodes occur in smaller communities
with increasing frequency (stronger dependence on node degree).

Another interesting difference appears when inspecting to which clusters misclassi-
fied nodes are assigned. Synwalk tends to place misclassified nodes in additional (i.e.,
clusters with no matching ground truth community), small clusters. Such behavior is
indicated by the NLD distributions w.r.t. predicted communities as well, where mis-
classified nodes exhibit a significantly higher NLD than correctly classified ones (cp.
Fig. 2, bottom row). This results in detected ground truth communities being ”pure”,
i.e., they do not contain nodes from other ground truth communities. In contrast,
Walktrap mainly confuses node memberships within clusters that do have a matching
ground truth community. Again, these observations are supported by the NLD dis-
tributions w.r.t. predicted communities as well, where misclassified nodes exhibit a
similar NLD to correctly classified ones (cp. Fig. 3, bottom row).

These behavioral differences between Synwalk and Walktrap are visible in the
AMI performance as well: whereas both methods misclassify approximately the same
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 Degree distributions for correctly classified andmisclassified nodes in Synwalk results, obtained from
100 different LFR networks with common average degree, network size and mixing parameter. The top row
shows the distributions of the node degrees, the middle row shows the distribution of the normalized local
degrees w.r.t. the ground truth communities and the bottom row shows the distributions of the normalized
local degreesw.r.t. the predicted communities. Synwalk tends tomisclassify nodeswith lownormalized local
degree (w.r.t. the ground truth communities), whereas the influence of the absolute node degree is negligible.
The statistics of the normalized local degrees w.r.t. predicted communities indicate that misclassified nodes
are assigned to additional, small communities (Color figure online)

amount of nodes in the sample network in Fig. 4, Synwalk achieves a significantly
higher AMI value.

The above insights make apparent two advantages of our method. First, whereas
there is no general answer on how to determine the random walk length T for Walk-
trap, Synwalk does not require the tuning of any hyper-parameter. Secondly, consider
a network with many small communities and low average degree. Following our ear-
lier observations, Walktrap will have many misclassified nodes due to the low average
degree. In contrast, the assumption of small communities implies a reasonably high
normalized local degree for the majority of nodes and thus suggests a better perfor-
mance of Synwalk when compared to Walktrap. Indeed, the results in Fig. 5 support
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3 Degree distributions for correctly classified and misclassified nodes in Walktrap results, obtained
from 100 different LFR networks with common average degree, network size andmixing parameter. The top
row shows the distributions of the node degrees, themiddle row shows the distribution of the normalized local
degrees w.r.t. the ground truth communities and the bottom row shows the distributions of the normalized
local degrees w.r.t. the predicted communities. Walktrap tends to misclassify nodes with low normalized
local degree (w.r.t. the ground truth communities) and/or low absolute node degree. The statistics of the
normalized local degrees w.r.t. predicted communities resemble the ones w.r.t. the ground truth communities
(Color figure online)

this intuition. The benchmark networks underlying these results were generated with
parameter set B (see Table 1), effectively lowering the average community size for a
given average degree compared to networks generated with parameter set A. More-
over, Synwalk closes theAMI performance gap to Louvain in this setup for sufficiently
dense networks (cf. also similarly dense networks generated with parameter set A in
Fig. 1).
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(a) (b)

Fig. 4 A sample LFR graph with communities as detected by Synwalk and Walktrap. The network has
N = 600 nodes, an average degree of k = 25 and a mixing parameter of μ = 0.55. Nodes are grouped
according to their ground truth communities and share the same color if they belong to the same detected
cluster. Misclassified nodes are highlighted with a black border. We aggregated nodes from predicted
clusters that have no matching ground truth community into a single residual cluster. Synwalk places
misclassified nodes into additional clusters, whereasWalktrap confuses node memberships between ground
truth communities (Color figure online)

Fig. 5 Comparison of Infomap, Synwalk, Walktrap, Louvain and GraphTool on LFR benchmark networks
with given average degree and network size. The lines and shaded areas show the mean and standard
deviation of AMI as a function of the mixing parameter, obtained from 100 different network realizations.
The networks were generated with parameter set B (see Table 1), simulating smaller communities with
higher normalized local degrees. Synwalk outperformsWalktrap closes the performance gap to Louvain on
sufficiently dense networks in this setup (Color figure online)

5.3 Illustration on empirical networks

In this section we illustrate the applicability of Synwalk on a selection of empiri-
cal networks (see Table 2) by comparing the detection results of Synwalk, Infomap,
Walktrap, Louvain and GraphTool. For this purpose, we report the number of detected
clusterings in Table 3, the number and fraction of non-trivial clusters thereof in Table 4,
and the modularity score in Table 5.

Synwalk and Infomap behave similarly in terms of their single-number character-
istics. An exception to this observation is the github network, where Synwalk detects
a greater number of (non-trivial) clusters. Notably, Walktrap results consistently show
a higher fraction of trivial clusters when compared to Synwalk and Infomap.
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Table 3 Number of detected clusters for on the examined empirical networks

Network Detected clusters
Infomap Synwalk Walktrap Louvain GraphTool

dblp 14,544 14,587 30,425 595 682

facebook 860 837 1227 62 156

github 1644 3935 7161 50 106

lastfm-asia 422 445 328 28 35

pennsylvania-roads 47,174 49,095 15,101 484 881

wordnet 5786 6058 14,063 516 541

The random walk-based methods Infomap, Synwalk, Walktrap yield a significantly higher amount of
detected communities when compared to Louvain (modularity maximization) and GraphTool (SBM Infer-
ence)

The random walk-based methods Infomap, Synwalk, Walktrap yield a signifi-
cantly higher number of detected communities when compared to Louvain (based
on modularity maximization) and GraphTool (based on SBM Inference). GraphTool
consistently detects almost no trivial clusters. Louvain detects no trivial clusters except
on the pennsylvania-roads and wordnet networks. As expected, Louvain consistently
yields the highest modularity scores.

Additionally, we compare the different methods by looking at the distribution of
cluster sizes and normalized local degrees in their detected clusterings. For all distri-
bution plots we consider clusters with less than three members as trivial and we do not
include their statistics in the distributions. We provide the results for further cluster
and node properties in Appendix E for the sake of completeness.

Infomap and Synwalk again behave similar given their cluster and node property
distributions. A deviation from this pattern is apparent in the distribution of NLDs (see
Fig. 6) for the github network, where Synwalk exhibits higher NLDs when compared
to Infomap and Walktrap. The cluster size distributions (see Fig. 7) of Walktrap show
a trend towards small clusters. As the empirical networks under consideration are
significantly larger than the examined LFR networks in Sect. 5.2, a random walk
length of T = 4 might not be the optimal hyperparameter choice and thus could
explain the many trivial clusters detected (cp. Table 4).

Interestingly, whereas Synwalk achieved similar AMI performance as Walktrap in
Sect. 5.2, Synwalk shows similar qualitative behavior to Infomap regarding cluster and
node property statistics on empirical networks. However, the differences in the qualita-
tive detection behavior of Synwalk andWalktrap that we discussed in Sect. 5.2.2 could
explain the different results on the larger empirical networks. We further conjecture
that the common search heuristic (see Sect. 5.2) of Synwalk and Infomap acts as a
”regularizer” on larger networks, i.e., the properties of predicted clusterings become
more similar the larger the networks.

Last,we compare the detection results of Synwalk, Louvain andGraphToolw.r.t. the
distributions of cluster sizes in Fig. 8 and normalized local degrees in Fig. 9. Cluster
size distributions are compact and unimodal for Synwalk and GraphTool, whereas
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Table 5 Modularity scores on the examined empirical networks

Network Modularity
Infomap Synwalk Walktrap Louvain GraphTool

dblp 0.73 0.73 0.67 0.81 0.72

facebook 0.76 0.74 0.75 0.80 0.62

github 0.39 0.27 0.36 0.45 0.14

lastfm-asia 0.74 0.70 0.77 0.81 0.68

pennsylvania-roads 0.90 0.89 0.95 0.99 0.95

wordnet 0.66 0.65 0.60 0.76 0.56

We list the number of detected clusters, the number of non-trivial (less than three nodes) clusters including the
fraction thereof in brackets, and the modularity score for each clustering. As expected, Louvain (modularity
maximization) achieves the highest modularity scores. The randomwalk-basedmethods Infomap, Synwalk,
Walktrap produce similar scores across the networks.GraphTool (SBMInference) tends to yiels lower scores
when compared to Synwalk, except on the pennsylvania-roads network

(a) (b) (c)

(d) (e) (f)

Fig. 6 Distributions of normalized local degrees w.r.t. the discovered communities on empirical networks
for Infomap, Synwalk and Walktrap. The distributions generated by Synwalk resemble Infomap closely.
An exception here is again the github network (Color figure online)

Synwalk yields consistently smaller communities than GraphTool by roughly and
order of magnitude. Louvain cluster sizes vary in a broader range.

A consistent pattern is visible in the distributions of normalized local degrees:
Synwalk delivers the highest and Louvain the lowest values/distribution centers with
GraphTool in between. Remarkably, the distribution centers differ up to several orders
of magnitude between methods. These observations indicate that Synwalk detects
smaller communities with higher normalized local degree when compared to Louvain
and GraphTool and supports our findings in Sect. 5.2.2.

Summarizing, in our comparison of the random walk-based methods (including
Synwalk), Louvain and GraphTool their fundamentally different approaches to com-
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Distributions of cluster sizes for the detection results on empirical networks for Infomap, Synwalk and
Walktrap. Synwalk produces similar statistics to Infomap that are clearly distinguishable from Walktrap’s
results (Color figure online)

(a) (b)

(d) (e) (f)

(c)

Fig. 8 Distributions of cluster sizes for the detection results on empirical networks for Synwalk, Louvain and
GraphTool. Synwalk consistently detects smaller clusters thanGraphTool.Whereas cluster size distributions
appear compact and unimodal for Synwalk and GraphTool, Louvain yields a wider spectrum of cluster sizes
(Color figure online)

munity detection manifest in clear qualitative differences of their detected clusters.
In light of the No Free Lunch theorem, each method captures different aspects of the
networks’ structure, each of which may be interesting to an expert analyzing networks
in his domain of expertise.
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Distributions of normalized local degreesw.r.t. the discovered communities on empirical networks for
Synwalk, Louvain andGraphTool. Synwalk yields highest normalized local degrees, followed byGraphTool
and Louvain, which delivers the lowest normalized local degrees. This observation is consistent across all
networks. Interestingly, the distribution centers differ by up to several orders of magnitude (Color figure
online)

6 Conclusion

In this work, we introduced Synwalk, a community detectionmethod based on random
walk modelling, that is characterized by an information-theoretic objective function.
Our experiments underline the solid theoretical basis of synthetic random walk-based
models and show that we can achieve robust performance across a wide range of
problem setups. For specific networks, e.g., networks with many small communities
and low average degree, Synwalk outperforms Infomap and Walktrap, at least on
generated LFR benchmark graphs.

We deem random walk modelling an interesting counterpart to (stochastic) block
modelling for community detection that deserves more attention, as it opens up many
interesting avenues for future research. For example, our present study was limited
to undirected networks only, suggesting a closer investigation of Synwalk in directed
and/or weighted networks or networks with special properties (e.g., small worlds,
etc.). Note that, as does Infomap, we estimate the transition probabilities and invariant
distribution in (4) and (5) using the PageRank (Brin and Page 1998) algorithm with
a non-zero teleportation probability (cp.Appendix B, Rosvall and Bergstrom 2008;
Rosvall et al. 2009). This avoids the problem that a random walk may end up in
an absorbing state in directed networks and naturally supports weighted networks.
Hence, the Synwalk objective and our implementation are perfectly applicable to
directed and/or weighted networks. Given the results in Sect. 5.3 we surmise that on
directed empirical networks Synwalk will also yield qualitatively similar results to
Infomap. Further, a deeper understanding of the optimization landscape induced by
the Synwalk objective and the influence of the optimization algorithm is required,
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as well as an extension of the approach to overlapping and hierarchical community
structures.

Another interesting avenue for future work is to consider alternative definitions
of the graph-induced random walks to the one we chose in (4), such as biased ran-
dom walks, maximum entropy random walks, or even continuous-time random walks
(cf. Masuda et al. 2017; Lambiotte et al. 2014). Recall that Synwalk tries to find a
clustering that yields a synthetic random walk as close as possible to the network-
induced random walk. One could view the synthetic random walk as a model of what
we try to find out about the network, whereas the network-induced random walk as
the lens through which we view this network. In that sense, choosing a certain lens
will determine what aspects we can and cannot see about the network. Note that
choosing a different network-induced random walk will not change the form of our
objective function in (14). Only the transition probabilities and invariant distribution
in (4) and (5) need to be computed accordingly. Thus, only little implementation effort
would be necessary to realize these variants (cp. Appendix B). Yet, they may capture
very different and interesting aspects of one and the same network.

Finally, as it is not only thinkable to change the network-induced random walk but
also the synthetic random walk model, future research shall investigate random walk
modelling approaches with a different synthetic random walk design from that in (8).
As discussed above, the synthetic random walk is a model of what we are trying to
find out about a network. Hence, the question arises whether such approaches can be
tailored to detect communities of specific types or within specific network classes.
Note that by changing the synthetic model necessarily the resulting objective function
will be different from the one derived in this work, which in turn may entail new
challenges in the optimization procedure.
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Appendix A Proofs

A.1 Derivation of the Synwalk Objective

Proposition 1 Let {Xt }be a stationaryMarkov chainwith transition probabilitymatrix
P derived from the weight matrix W of the network G and let QY be a transition
probability matrix of the same size parameterized as in (8). Then, for every partition
Y , it holds that

min
{[r iα]α∈Yi , si , ui }i∈KY

D(P‖QY ) ≤ I (Xt ; Xt−1) −
∑

i∈KY
pi D(pi→i‖pi ) (18)

where pi and pi→i are defined as in (6).

Since I (Xt ; Xt−1) is independent of the candidate partitionY ,minimizing the right-
hand side of (18) over the partition Y is equivalent to a corresponding maximization
of J (Y).

Proof Let pα→i := ∑
β∈Yi

pα→β , pα �→i := ∑
j �=i pα→ j = 1 − pα→i , and let Ii (α)

denote the indicator function for cluster Yi , i.e.,

Ii (α) =
{
1 if α ∈ Yi

0 otherwise.
(19)

Then from (8) follows that

D(P‖QY ) =
∑

α,β

pα pα→β log
pα→β

qα→β

=
∑

α,β

pα pα→β

⎡

⎣Im(α)(β) log
pα→β

rm(β)
β (1 − sm(α))

+(1 − Im(α)(β)) log
pα→β

rm(β)
β sm(α)

um(β)

1−um(α)

⎤

⎦

=
∑

j

∑

α

∑

β∈Y j

pα pα→β log

pα→β

pα→ j

r j
β

+
∑

i

∑

α∈Yi

pα pα→i log
pα→i

1 − si
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+
∑

i

∑

j �=i

∑

α∈Yi

pα pα→ j log
pα→ j

si
u j

1−ui

=
∑

j

∑

α

∑

β∈Y j

pα pα→β log

pα→β

pα→ j

r j
β

+
∑

i

∑

j �=i

∑

α∈Yi

pα pα→ j log

pα→ j
pα �→i
u j

1−ui

+
∑

i

∑

α∈Yi

pα pα→i log
pα→i

1 − si
+

∑

i

∑

α∈Yi

pα pα �→i log
pα �→i

si

=
∑

j

∑

α

∑

β∈Y j

pα pα→β log

pα→β

pα→ j

r j
β

+
∑

i

∑

j �=i

∑

α∈Yi

pα pα→ j log

pα→ j
pα �→i
u j

1−ui

+
∑

i

∑

α∈Yi

[
pα pα→i log

pα pα→i

pα(1 − si )
+ pα pα �→i log

pα pα �→i

pαsi

]

=
∑

j

∑

α

∑

β∈Y j

pα pα→β log

pα→β

pα→ j

r j
β

+
∑

i

∑

j �=i

∑

α∈Yi

pα pα→ j log

pα→ j
pα �→i
r j

1−ri

+
∑

i

D(pα pα→i‖pα(1 − si )). (20)

We can now independently minimize the first summation term w.r.t {[r j
β ]β∈Y j } j∈KY ,

the second summation termw.r.t [ui ]i∈KY , and the last summation termw.r.t [si ]i∈KY .
Considering the latter, one can show (Cover and Thomas 2006, Lemma 10.8.1) that
the Kullback–Leibler divergence D(pα pα→i‖pα(1 − si )) is minimized for

1 − si =
∑

α∈Yi

pα pα→i = pi→i (21)

and hence

si = 1 − pi→i = pi �→i . (22)

The minimizer regarding the distribution over nodes can be found along similar
lines. For the first summation term in (20) we observe that

∑

j

∑

α

∑

β∈Y j

pα pα→β log

pα→β

pα→ j

r j
β

=
∑

j

∑

α

pα pα→ j

∑

β∈Y j

pα→β

pα→ j
log

pα→β

pα→ j

r j
β

=
∑

j

p j

∑

α

pα pα→ j

p j

∑

β∈Y j

pα→β

pα→ j
log

pα→β

pα→ j

r j
β

=
∑

j

p j

∑

α

pα pα→ j

p j

∑

β∈Y j

pα→β

pα→ j
log

pα pα→β

p j

pα pα→ j
p j

r j
β
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=
∑

j

p j

∑

α

∑

β∈Y j

pα pα→ j

p j

pα→β

pα→ j
log

pα pα→β

p j

pα pα→ j
p j

r j
β

=
∑

j

p j D

(
pα pα→ j

p j
· pα→β

pα→ j

pα pα→ j

p j
· r j

β

)

and by again employing (Cover and Thomas 2006, Lemma 10.8.1), for a fixed cluster
j this quantity is minimized for

r j
β =

∑

α

pα pα→β

p j
= pβ

p j
= P(Xt = β|Yt = j). (23)

Applying these minimizers yields

min
{[r iα]α∈Yi , si , ui }i∈KY

D(P‖QY ) = min[ui ]i∈KY
I (Xt ; Xt−1) − H(Yt ) + H(St |Yt )

−
∑

i

∑

j �=i

pi pi→ j log
u j

1 − ui
(24)

where St = 1 is a binary RV reflecting whether we stay in or leave a cluster at time t .
Since for the distribution over clusters [ui ]i∈KY there exists no closed-form solution to
the best of our knowledge, we choose [ui ]i∈KY = [pi ]i∈KY as a sub-optimal solution.
In other words, we utilize the stationary distribution of {Yt }. Inserting this choice
yields

min
{[r iα]α∈Yi , si , ui }i∈KY

D(P‖QY ) ≤ I (Xt ; Xt−1) −
∑

i

pi D(pi→i‖pi ). (25)

This completes the proof. 
�

A.2 Bounds on the Synwalk Objective

Proposition 2 Let {Xt }be a stationaryMarkov chainwith transition probabilitymatrix
P derived from the weight matrix W of the network G and let Y be any candidate
partition. Then, we have

0 ≤
∑

i∈KY
pi D(pi→i‖pi ) ≤ I (Yt ; Yt−1) ≤ I (Xt ; Xt−1) (26)

where {Yt } is the process obtained by projecting {Xt } through the partition Y (see
Sect. 3).

Proof The first inequality follows immediately from the non-negativity of Kullback–
Leibler divergence; the last inequality is the data processing inequality (Cover and
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Thomas 2006, Th. 2.8.1), which follows from the fact that Yt − Xt − Xt−1 − Yt−1 is
a Markov tuple. We are thus left with proving the second inequality.

To this end, consider a relaxation of optimization problem (9), in which we let the
distribution over clusters depend on the originating cluster; i.e., rather than a single
distribution [ui ]i∈KY , we now consider a set of distributions {[u j

i ]i∈KY } j∈KY . In other
words, we consider, for every partition Y , the minimization problem

min
{[r iα]α∈Yi , si , [uij ] j∈KY }i∈KY

D(P‖QY ). (27)

It can be shown along the lines of Proposition 1 that the distributions [r iα]α∈Yi and si ,
for i ∈ KY , minimizing (9) also minimize (27). Thus, we have with (24) that

min
{[r iα ]α∈Yi , si , [uij ] j∈KY }i∈KY

D(P‖QY ) = min
{[uij ] j∈KY }i∈KY

I (Xt ; Xt−1) − H(Yt ) + H(St |Yt )

−
∑

i

∑

j �=i

pi pi→ j log
uij

1 − uii
. (28)

The right-hand side can be shown to be minimized by setting

uij = pi→ j

pi �→i
= P(Yt = j |Yt−1 = i,Yt �= i) = P(Yt = j |Yt−1 = i, St−1 = 1) (29)

for j �= i and uii = 0 for every i ∈ KY . Thus, we have

−
∑

i

∑

j �=i

pi pi→ j log
uij

1 − uii
(30)

= −
∑

i

∑

j �=i

P(Yt = j,Yt−1 = i) logP(Yt = j |Yt−1 = i, St−1 = 1) (31)

= −
∑

i

∑

j

P(Yt = j,Yt−1 = i, St−1 = 1) logP(Yt = j |Yt−1 = i, St−1 = 1)

(32)

= P(St−1 = 1)H(Yt |Yt−1, St−1 = 1)

= H(Yt |Yt−1, St−1) (33)

because H(Yt |Yt−1, St−1 = 0) = 0. Inserting this into (28) yields

min
{[r iα]α∈Yi , si , [uij ] j∈KY }i∈KY

D(P‖QY ) (34)

= I (Xt ; Xt−1) − H(Yt ) + H(St |Yt ) + H(Yt |Yt−1, St−1) (35)
(a)= I (Xt ; Xt−1) − H(Yt ) + H(St−1|Yt−1) + H(Yt |Yt−1, St−1) (36)
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(b)= I (Xt ; Xt−1) − H(Yt ) + H(Yt , St−1|Yt−1) (37)
(c)= I (Xt ; Xt−1) − H(Yt ) + H(Yt |Yt−1)

(d)= I (Xt ; Xt−1) − I (Yt ; Yt−1) (38)

where (a) is due to stationarity, (b) due to the chain rule of entropy, (c) since St−1
is a function of Yt and Yt−1, and (d) by the definition of mutual information. Since,
finally, (27) optimizes over a larger feasible set (over [u j

i ]i, j∈KY rather than [ui ]i∈KY ),
the minimum of (27) cannot exceed the minimum of (9). We thus have with (25) that

I (Xt ; Xt−1) − I (Yt ; Yt−1) ≤ I (Xt ; Xt−1) −
∑

i

pi D(pi→i‖pi ). (39)

This completes the proof. 
�

A.3 Synwalk objective attains global optimum on network of isolated cliques

Proposition 3 Let G be an unweighted network of disconnected cliques, defined by the
partition Y true. Then, Y true is a global optimizer of (14).

Proof We prove Proposition 3 by first deriving the upper bound of the Synwalk objec-
tive for the given type of network, and then showing that the ground truth partition
achieves this upper bound.

LetG be an unweighted network of disconnected cliques, i.e., there exists a partition
function Y true such that the link set E of G equals

⋃
i∈KY true (Y true

i )2. Note that self-
loops are included in the link set. Since the network is unweighted, movement within
cliques and the invariant distributionwithin each clique are uniform. Since the resulting
Markov chain {Xt } is not irreducible, infinitely many invariant distributions exist for
the entire alphabet X . Specifically, for every distribution p• = [p•

i ]i∈KY true over the
ground truth communities, the distribution on X defined by pα = p•

m(α)/|Y true
m(α)| is

invariant under P . Thus, we have that

H(Xt ) = −
∑

α∈X

p•
m(α)

|Y true
m(α)|

log
p•
m(α)

|Y true
m(α)|

= −
∑

i∈KY•
p•
i log

p•
i

|Y true
i | . (40)

Given that the random walker is currently at node α in cluster Y true
i , all nodes in this

cluster (including α) are equally likely to be visited in the next step. Thus, it follows
that H(Xt |Xt−1 = α) = log |Y true

m(α)|. Combining this with H(Xt ) yields the upper
bound

I (Xt ; Xt−1) = H(Xt ) − H(Xt |Xt−1) (41)

= H(Xt ) −
∑

α∈X
pαH(Xt |Xt−1 = α) (42)

= H(Y •), (43)
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where Y • is a random variable with distribution p•.
Since the clusters coincide with the cliques in G there are no links connecting one

cluster with another. Hence, we have pi→i = 1 for every cluster and thus J (Y true) =
H(Y •) = I (Xt ; Xt−1), i.e., the upper bound from (15) is achieved. 
�

Note that a coarsening2

of the partition Y true does not achieve this optimum. Indeed, while for Ỹ being a
coarsening of Y true it still holds that p̃i→i = 1, we get

p̃i =
∑

j :Y true
j ⊆Ỹi

p•
j (44)

and thus J (Ỹ) = H(Ỹ ) < H(Y •) due to data processing (Cover and Thomas 2006,
Problem 2.4).

Appendix B Implementation Details

As already noted in Sect. 4.1 for a given network (specifically, its weight matrixW ) the
Synwalk objective in (14) depends only on the candidate clustering Y given the tran-
sition probabilities [pα→β ]α,β∈X and stationary distribution [pα]α∈X (see Sect. 3.2).
The transition probabilities can be computed according to (4).We estimate the station-
ary distribution using the PageRank (Brin and Page 1998) algorithm with a damping
factor of 0.85 for any given network. Importantly, note that these quantities need only
be computed once for each network and can be held fixed during the optimization
procedure.

We tackle the combinatorial optimization problem over candidate clusterings by
reusing Infomap’s stochastic and recursive search algorithm as described in Rosvall
and Bergstrom (2010, Appendix S1). To enable a fair comparison between Synwalk’s
and Infomap’s objective functions we use the same set of default hyper-parameters
for the search algorithm.

In a nutshell, the search algorithm splits into a core optimization phase and a tuning
phase. Initially, each node serves as its own cluster. During the core optimization phase,
neighboring clusters are greedily joined in a recursive fashion so as to maximize the
given objective function. In the tuning phase there are two alternating mechanisms
trying to further improve the objective. First, a fine tuning step moves single nodes
between the clusters resulting from the core phase. Secondly, a coarse tuning step
that divides the clusters resulting from the core phase into sub-clusters (by applying
the core algorithm) and moves these sub-clusters between their parent clusters. For
technical details we refer the reader to Rosvall and Bergstrom (2010, Appendix S1).

2 We call a partition Ỹ = {Ỹ1, . . . , ỸM } a coarsening of another partition Y = {Y1, . . . ,YK } if each
cluster in the coarsening Ỹi ∈ Ỹ is comprised of one or more clusters of the original partition Y and
M < K .
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Appendix C Additional Results on the LFR benchmark

Here, we provide additional experiments on the LFR benchmark by investigating the
AMI performance as a function of the network density.

In this experiment we again use parameter set A (see Table 1) to generate the LFR
benchmark networks. We now fix the average degree and the mixing parameter of the
generated LFR networks while varying their sizes in range N ∈ [300, 19,200]. We
then plot the AMI as a function of the network density ρ in Fig. 10. All methods show
improved AMI for increasing network densities, whereas Infomap’s performance still
mostly depends on the mixing parameter. Louvain consistently yields the hightest
AMI values whereas GraphTool does not yield clusterings with relevant AMI values.
Apparently, for Synwalk, Walktrap and Louvain there exist transition phases from
low to high AMI with increasing network density. Interestingly, the location of these
transition phases shifts to higher network densities the higher the absolute value of
the average degree (Fig. 10, rows from left to right; cf. Sect. 5.2.1). In addition,
the AMI results for Synwalk consistently rise above those of Walktrap during these
transition phases. For very small network densities, Synwalk performance drops faster
when compared to Walktrap. In summary, for a given average degree and mixing
parameter, Synwalk performs better than or equal to Walktrap and Infomap, if the
network size/density is sufficiently small/large.

Appendix D Cluster Matching Algorithm

Consider the ground truth clustering Y true = {Yi |i ∈ KY true} and a prediction (by any
community detection algorithm) Y = {Yi |i ∈ KY } with index sets KY true

and KY
respectively. Then, in general, not only will the index sets differ in size but moreover
they will encode equal or highly similar clusters in both clusterings differently. Hence,
a matching between the index sets is necessary in our analyses (see Sect. 5.2.2).

For this purposewe employ the following greedymatching algorithm.Thematching
is based on the contingency table between the two clusterings Y true, Y . In every step
we add an entry to the cluster mapping by greedily picking the clusters with maximum
overlap from the contingency table that do not already have a match. The procedure
stops whenever all clusters of any input clustering have a match. The residual clusters
obtain no mapping.

Appendix E Additional Results on the Empirical Networks

In this appendix we provide additional cluster and node statistics for the empiri-
cal networks considered in Sect. 5.3. The considered cluster properties are a subset
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10 Comparison of Infomap, Synwalk,Walktrap, Louvain and GraphTool on LFR benchmark networks
with given average degree and mixing parameter. The lines and shaded areas show the mean and standard
deviation of AMI as a function of the network density (logarithmic scale), obtained from 50 different
network realizations. Performance of Synwalk,Walktrap and Louvain rises with increasing network density,
irrespective of the mixing parameter

of previously used measures for cluster characterization by Leskovec et al. (2010)
and Yang and Leskovec (2015). Consider a cluster S ⊆ X within an undirected net-
work G = (X , E) and let

mS = 1

2
· |{(α, β) ∈ E | α, β ∈ S}| (45)

denote the number of internal links of S, and

cS = |{(α, β) ∈ E | α ∈ S ∧ β /∈ S}| (46)

denote the number of external links, i.e., links connecting nodes within S to nodes
outside of S. Then we define the following cluster properties.
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Algorithm 1: Greedy Cluster Matching Algorithm

Input: True clustering Y true, predicted clustering Y
Output: Dictionary M: KY true �→ KY
Initialize the dictionary M ← ∅
Initialize the number of true clusters K true = maxKY true

Initialize the number of predicted clusters K pred = maxKY
Generate the contingency table C ← contingency_table(Y true,Y)
for i ← 1 to min{K true, K pred } do

ktrue ← −1
k pred ← −1
while ktrue < 0 or ktrue ∈ M .keys() or k pred ∈ M .values() do

ktrue, k pred ← argmaxC
C[ktrue, k pred ] ← −1

end
M[ktrue] ← k pred

end

– Cluster density. The cluster density

ρ(S) = mS( |S|
2

) (47)

is the density of internal links in S.
– Clustering coefficient. The clustering coefficient

c(S) = 1

|S|
∑

α∈S
c(α) (48)

is the average of all node clustering coefficients c(α). Let neigh(α) denote the
neighborhood of node α, i.e., all nodes that are connected to α by a link. Then the
clustering coefficient for some node α is the fraction of realized triangles including
α, i.e.,

c(α) =
1
2 · |{(β, γ ) ∈ E | β, γ ∈ neigh(α)}|

( |neigh(α)|
2

) . (49)

– Conductance. The conductance

κ(S) = cS
mS + cS

(50)

gives the fraction of external links to the total number of cluster edges.
– Cut ratio. The cut ratio

ξ(S) = cS
|S| · (|X | − |S|) (51)
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(a) (b) (c)

(d) (e) (f)

Fig. 11 Distributions of cluster densities for Infomap, Synwalk and Walktrap on empirical networks

(a) (b) (c)

(d) (e) (f)

Fig. 12 Distributions of cluster densities for Synwalk, Louvain and GraphTool on empirical networks

is the ratio of external links to all possible external links.

As already observed in Sect. 5.3, in general the cluster property statistics yielded
by Synwalk and Infomap are highly similar, whereas Walktrap is mostly clearly dis-
tinguishable. The cluster densities (Fig. 11) are inverse proportionally distributed to
the cluster sizes, e.g., Walktrap detects many small communities with high densities
(Fig. 12). Clustering coefficients (Fig. 13) are higher for Walktrap on the github and
wordnet networks when compared to Synwalk and Infomap (Fig. 14). Synwalk pre-
dicts highly conductive clusters for the github network (see conductance distributions
in Fig. 15) (Fig. 16). Walktrap yields significantly smaller cut ratios (Fig. 17) com-
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(a) (b) (c)

(d) (e) (f)

Fig. 13 Distributions of cluster clustering coefficients for Infomap, Synwalk and Walktrap on empirical
networks

(a) (b) (c)

(d) (e) (f)

Fig. 14 Distributions of cluster clustering coefficients for Synwalk, Louvain and GraphTool on empirical
networks

pared to Infomap and Synwalk on the lastfm-asia and pennsylvania-roads networks
(Fig. 18). Distributions of the mixing parameters are displayed in Fig. 19 and show
no notable difference between the three methods. An exception is the github network,
where Synwalk predicts a clustering such that most of the nodes exhibit a mixing
parameter � 0.5. This reflects the high conductance values in Fig. 15.
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(a) (b) (c)

(d) (e) (f)

Fig. 15 Distributions of cluster conductances for Infomap, Synwalk and Walktrap on empirical networks

(a) (b) (c)

(d) (e) (f)

Fig. 16 Distributions of cluster conductances for Synwalk, Louvain and GraphTool on empirical networks

When comparing Synwalk to Louvain and GraphTool, cluster densities (Fig. 12)
are lowest for GraphTool and highest for Louvain with Synwalk ranging in between.
Clustering coefficients (Fig. 14) of Synwalk are significantly higher than those of
Louvain and GraphTool only on pennsylvania-roads. Cluster conductances (Fig. 16)
and cut ratios (Fig. 18) of Synwalk tend to lie in between those of Louvain (lower) and
GraphTool (higher). The mixing parameters (Fig. 20) and show no grave difference
between the methods.
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(a) (b) (c)

(d) (e) (f)

Fig. 17 Distributions of cluster cut ratios for Infomap, Synwalk and Walktrap on empirical networks

(a) (b) (c)

(d) (e) (f)

Fig. 18 Distributions of cluster cut ratios for Synwalk, Louvain and GraphTool on empirical networks
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(a) (b) (c)

(d) (e) (f)

Fig. 19 Distributions of nodemixing parameters for Infomap, Synwalk andWalktrap on empirical networks

(a) (b) (c)

(d) (e) (f)

Fig. 20 Distributions of node mixing parameters for Synwalk, Louvain and GraphTool on empirical net-
works
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