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Abstract
Dealing with relational learning generally relies on tools modeling relational data.
An undirected graph can represent these data with vertices depicting entities and
edges describing the relationships between the entities. These relationships can be
well represented by multiple undirected graphs over the same set of vertices with
edges arising from different graphs catching heterogeneous relations. The vertices of
those networks are often structured in unknown clusters with varying properties of
connectivity. These multiple graphs can be structured as a three-way tensor, where
each slice of tensor depicts a graph which is represented by a count data matrix. To
extract relevant clusters, we propose an appropriatemodel-based co-clustering capable
of dealing with multiple graphs. The proposed model can be seen as a suitable tensor
extension of mixture models of graphs, while the obtained co-clustering can be treated
as a consensus clustering of nodes frommultiple graphs. Applications on real datasets
and comparisons with multi-view clustering and tensor decomposition methods show
the interest of our contribution.
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1 Introduction

Relational data are ubiquitous in various fields (web, biology, neurology, sociology,
communication, economics, etc.), and their accessibility has kept increasing in recent
years. These data, as a whole, form a network formalized by a graph, where each node
is an entity, and each edge is a connection between a pair of nodes; this graph can be
directed or not.Wefind this situation in various scientific publications; the relationships
between documents can often be described as multiple graphs with different types of
links. In fact, several relationships, such as co-terms, co-authors, co-keywords, and
co-references between documents can be used. The objective of this work is to address
the clustering of multiple graphs. This is a graph mining task of clustering vertices
into several groups in the presence of multiple types of proximity relations. We could
hypothesize that the combination of different information that arises from multiple
graphs may improve the clustering results. For instance, two documents which share
a number of words and/or have one or more authors in common and/or quote each
other, are likely to deal with the same topic. Incorporating this additional information
leads us to consider a tensor representation of the data.

To deal with multiple graphs, various models and methods under different
approaches are proposed to analyze these networks. In Banerjee et al. (2007) and
Tang et al. (2009), the authors proposed a multi-way clustering framework for rela-
tional data, where different types of entities are simultaneously clustered, based not
only on their intrinsic attribute values, but also on the multiple relations between the
entities. Other works use a spectral decomposition-based approach relying on the com-
bination of adjacency matrices (Tang et al. 2009; Chen et al. 2017; Nie et al 2017).
In these works, the clustering is not the main objective of the proposed approaches,
nevertheless it can be deduced from decomposition results.

On the other hand, one of the most used methods in this context is the Stochastic
Block Model (SBM) (Nowicki and Snijders 2001) which is a probabilistic approach.
SBM is commonly used for network modeling and discovering the latent community
structures from a graph. It provides a statistical approach able to model data matrix,
symmetric or not, into homogeneous blocks. This leads to consider SBM (Daudin et al.
2008) as a particular case of the Latent Block Model (LBM) proposed by Govaert and
Nadif (2003, 2005, 2006) and extended in (Shan andBanerjee 2008;Govaert andNadif
2013), which models any kind of data matrices not necessarily square or symmetric.
In other words, the clustering of the graph directed or not, is in fact, a particular
case of co-clustering (Dhillon et al. 2003; Labiod and Nadif 2014; Salah and Nadif
2019; Affeldt et al. 2021). In this work, we consider graphs represented by adjacency
matrices assimilated to contingency tables. Thus, considering the previous example
of document clustering, the relations between documents (co-terms, co-authors, etc.)
are count data and can be represented by particularly sparse contingency tables. Many
works in the literature show the interest of Poisson distribution for graph theory and
clustering of random graphs (Janson 1987; Daudin et al. 2008).

To the best of our knowledge, this is the first attempt to formulate a model-based
co-clustering for sparse three-way data. To this end, we rely on the latent block model
(Govaert and Nadif 2013) for its flexibility to consider any data matrices. Figure 1
presents a binary three-way dataset constructed frommultiple graphs, and the expected
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Implicit consensus clustering frommultiple graphs 2315

Fig. 1 Goal of clustering of multiple graphs

results in terms of co-clustering. This leads us to consider our objective as a problem
of consensus clustering from different sources.

Consensus clustering, also called cluster ensembles, refers to the situation in which
different clusterings have been obtained from a dataset, and it is desired to find a single
consensus clustering that is a better fit in some sense than the existing clusterings.
Thereby, consensus clustering aims to reconcile clustering information about the same
data set coming from different runs of the same algorithm or different algorithms. This
kind of consensus is referred to, in the paper, as explicit consensus clustering. On the
other hand, we will aim to obtain a consensus clustering from different sources (slices)
with the same algorithm as in our case. We refer to this type of consensus clustering
as implicit consensus clustering. The key contributions of this work are:

– We first establish the links between Poisson Latent Block Model (PLBM) and
Poisson Stochastic BlockModel (PSBM). Thenwe show the interest of considering
PLBM rather than PSBM.

– Wepropose aSparsePLBM(SPLBM), a suitable probabilisticmodel for clustering
of multiple graphs. Then we derive an EM-type learning algorithm.

– We perform extensive numerical experiments and compare our proposal with
multi-view and tensor decomposition methods.

– Finally, using the ensemble method, we prove that the proposed algorithm, which
canbeviewedas an implicit consensus clustering formultiple graphs, ismore effec-
tive than explicit clustering obtained by traditional consensus clustering methods.

The remainder of this paper is organized as follows. In Sect. 2, we present related
work and show the strong points of our approach. Section 3 reviews PLBM, shows the
limits of traditional PSBManddescribes Sparse PLBM(SPLBM). Sect. 4 discusses the
extension of SPLBM to consider multiple graphs. In Sect. 5, we present a variational
Expectation-Maximization algorithm. Sect. 6 is devoted to evaluating our approach.
Finally, Sect. 7 concludes the paper and gives some directions for future research.

2 Related work

Although SBM is popular in social networks analysis, dealing with the count data and
due to the degree of heterogeneity, the traditional SBM fail to detect relevant clusters
of edges to adress community detection problem (Qiao et. al 2017). Thereby, sev-
eral authors have developed a degree-corrected SBM. In Karrer and Newman (2011),
using aPoissonSBM, they introduced a parameter θi controlling the degree of expected
degrees of vertices i . They consider that each xi j with i �= j is distributed accord-
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2316 R. Boutalbi et al.

Fig. 2 Political blogs dataset: clustering with PSBM and DC-SBM/Croinfo

ing to Poisson(θiθ jδk�), where δk� is the expected value of the adjacency matrix
for the vertices i and j lying in block (k, �) while xii is distributed according to
Poisson( 12θ

2
i δkk). Doing so and under some constraints on the θi ’s, they proposed the

DC-SBM (Degree-Corrected SBM) clustering algorithm (DC-SBM1) from an undi-
rected graphonn vertices, possibly including self-edges. Furthermore, they established
the equivalence between the maximization of the log-likelihood and the maximization
of mutual information used as an objective function for clustering bipartite graphs
(Dhillon et al. 2003). It is important to emphasize that the model proposed in Karrer
and Newman (2011) is similar to that proposed by Nadif and Govaert (2005), where
the authors also showed this connection with the maximization of mutual information;
they proposed the Croinfo algorithm as illustrated in Fig. 2. In fact, the objective
function maximized by DC-SBM, which can also be used for the co-clustering of an
undirected graph, is associated with a constrained Poisson LBM commonly used in
the co-clustering context; see e.g.; Ailem et al. (2017a, b) and Role et al. (2019). To
sum up, considering DC-SBM which implies that the data are generated according to
a Poisson LBM with P(xi j , xi .x. jγk�) where P(xi j ; λ) = e−λλ

xi j

xi j ! , the proportions of
the classes of the nodes are assumed to be equal. In addition, although both algorithms
DC-SBM or Croinfo are different, the objective is the same, and the clustering
considered is based on an approach similar to that of the traditional hard clustering
algorithms; for more detail, the reader can refer to recent works (Govaert and Nadif
2013, 2018).

In our contribution, we structured graphs as three-way data where the clustering is
the principal objective. We propose an extension of LBM to tackle the co-clustering of
multiple undirected/directed graphs where each cell of the diagonal is not necessarily
equal to an even number as conventionally considered in community detection. To
do this, we adopt an EM-type approach to refer to the Expectation-Maximization
algorithm (Dempster et al. 1977; McLachlan and Peel 2000) and not Classification

1 In the paper, to distinguish between a model and its derived algorithm we use typewriter font for an
algorithm, thereby DC-SBM is the model and DC-SBM its derived algorithm.
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EM (Celeux and Govaert 1992). Furthermore, we will show that this purpose can be
viewed as an implicit consensus clustering from Multiple Graphs.

3 Poisson latent and stochastic blockmodels

Given an n × d data matrix X = (xi j , i ∈ I = {1, . . . , n}; j ∈ J = {1, . . . , d}), it
is assumed that there exists a partition on I and a partition on J . A pair of partitions
(Z,W)will represent a partition of I×J into g×m blocks. The partitionZ for rows can
be represented by a label vector (z1, . . . , zn) where zi ∈ {1, . . . , g} or a binary matrix
Z = (zik) ∈ {0, 1}n×g satisfying

∑g
k=1 zik = 1. In the same manner the partition W

for columns can be represented by a label vector (w1, . . . , wd)wherew j ∈ {1, . . . ,m}
or a binary matrix W = (w j�) ∈ {0, 1}d×m satisfying

∑m
�=1 w j� = 1.

3.1 Poisson latent blockmodel (PLBM)

Denoting Z and W the sets of possible labels Z for I and W for J , the marginal
density function f (X;�) of the Poisson Latent Block Model (PLBM) (Govaert and
Nadif 2018) can be written

f (X,�) =
∑

(z,w)∈Z×W

∏

i,k

π
zik
k

∏

j,�

ρ
w j�
�

∏

i, j,k

P(xi j ; xi .x. jγk�)
zikw j� (1)

where � = (π , ρ, γ ), with π = (π1, . . . , πg) and ρ = (ρ1, . . . , ρm) where (πk =
P(zik = 1), k = 1, . . . , g), (ρ� = P(w j� = 1), � = 1, . . . ,m) are the mixing
proportions of row and column clusters respectively, and γ = (γk�; k = 1, . . . g, � =
1, . . . ,m). For thismodel, the complete data are taken to be the vector (X,Z,W)where
unobservable Z and W lead to the labels, the resulting complete data log-likelihood
can be written as follows:

LC (Z,W,�) = log f (X,Z,W;�)

=
∑

i,k

zik logπk +
∑

j,�

w j� log ρ� +
∑

i, j,k,�

zikw j� logP(xi j ; xi .x. jγk�).

To estimate �, we consider the EM algorithm (Dempster et al. 1977). However,
the E-step using the log-likelihood of (1) directly is intractable due to the dependence
structure among the rows and columns. Govaert and Nadif (2005) suggest a variational
approximation in relying on the interpretation of EM due to Neal and Hinton (1998).
This leads to maximize the following lower bound of the log-likelihood criterion:

LC (Z̃, W̃,�) + H(Z̃) + H(W̃) (2)

where LC (Z̃, W̃,�) is the fuzzy complete-data log-likelihood. H(Z̃) = −∑
i,k z̃ik

log z̃ik with P(zik = 1|X) = z̃ik, and H(W̃) = −∑
j,� w̃ j� log w̃ j� with P(w j� =

1|X) = w̃ j� are the entropies.
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2318 R. Boutalbi et al.

3.2 Poisson stochastic blockmodel

Aswementioned earlier, Poisson SBM, evenDC-SBM, are particular cases of Poisson
LBM insofar as the latter can model matrices, symmetric or not, oriented or non-
oriented graphs, numbers of row clusters and columns clusters not necessarily equal
(g �= m) and finally with proportions of clusters equal or not. Therefore the transition
from LBM to SBM is easy to show. Thereby, for undirected graph, the maximization
of (2) leads to maximizing

LC (Z̃,�) + 2H(Z̃)

which is proportional to

∑

i,k

z̃ik logπk + 1

2

∑

i �= j,k �=�

z̃ikw̃ j� logP(xi j ; xi .x. jγk�)

+ 1

2

∑

i,k

z̃ik logP(xii ; xi .xi .γkk) −
∑

i,k

z̃ik log z̃ik .

The main differences between both models are a) with the Poisson SBM, the
third term which concerns the diagonal of X is ignored and it does not take into
account the degree of nodes unlike LBM, b) with the Poisson LBM, xi j |zikw j� = 1 ∼
P(xi .x. jγk�), while with SBM xi j |zikw j� = 1 ∼ P(γk�).

Notice that γk� depends only on the block k� and not on the margins. Thereby,
starting from PLBM, we will see next how to take into account the sparsity often
present in the graphs.

3.3 PLBM for sparse data: sparse PLBM (SPLBM)

Recently, in Ailem et al. (2017b), the authors proposed a generative mixture model for
co-clustering document-term matrices referred to as SPLBM. With this model, they
assume that for each diagonal block kk the values xi j ∼ Poisson(λi j ) where

λi j = xi .x. j

∑

k

[zikw jk]γkk or xi j |zikw jk = 1 ∼ P(xi .x. jγkk)

and for each block k� with k �= �, xi j ∼ Poisson(λi j ) where the parameter λi j takes
the following form:

λi j = xi .x. j

∑

k,� �=k

[zikw j�]γ or xi j |zikw j� = 1 ∼ P(xi .x. jγ ).

Assuming ∀� �= k, γk� = γ leads to suppose that all blocks outside the diagonal
share the same parameter. SPLBM has been designed from the ground up to deal with
data sparsity problems. As a consequence, in addition to seeking homogeneous blocks,
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it also filters out homogeneous but noisy ones due to the sparsity of the data. The pdf
of SPLBM can be written as follows:

f (X,�) =
∑

(z,w)∈Z×W

∏

i,k

π
zik
k

∏

j,k

ρ
w jk
k

∏

i, j,k

× (P(xi j ; λkk)
)zikw jk

∏

i, j,k,� �=k

(P(xi j ; λ)
)zikw j� .

Assuming that the complete data are (X,Z,W), the complete data log-likelihood
LC (Z,W,�) takes the following form :

log

⎛

⎝
∏

i,k

π
zik
k

∏

j,�

ρ
w jk
k

∏

i, j,k

(
e−xi .x. jγkk (xi .x. jγkk)

xi j

xi j !
)zikw jk

∏

i, j,k,� �=k

(
e−xi .x. jγ (xi .x. jγ )xi j

xi j !
)zikw j�

⎞

⎠ .

(3)

To estimate the parameters �, Z and W, a variationnel EM has been proposed
(Ailem et al. 2017b) to maximize (2).

Note that although SPLBM is a co-clustering model, we can derive a graph clus-
tering algorithm from an adjacency matrix (symmetric or not). Thereby, when we
are dealing with undirected graphs; strating with the same initialization of z and w
(z(0) = w(0)), we obtain the same row and column clusters, that is essential for the
undirected graph clustering problem.

3.4 PSBM, PLBM and SPLBM for graphs

AlthoughPLBMcandealwith sparsematrices, SPLBMcanbemore suitable for sparse
matrices (Fig. 3). It is designed to seek a diagonal block structure and capture the most
reliable associations between the rows and columns object clusters. SPLBM assumes
that each diagonal block (or co-cluster) is generated according to the Poisson distri-
bution with some specific parameters, and each non-diagonal co-cluster representing
noise data is generated according to Poisson distribution with identical parameters. In
Fig. 4 we report the graphical models of Poisson models discussed in the paper.

To clarify expectations and the impact of this parameterization, on the political blogs
dataset,2 we applied the clustering algorithms derived fromSBM,PLBM, andSPLBM,
using 30 random initializations and measured the clustering accuracy. Figure 5 shows
the interest of SPLBM, which takes into account the sparsity often present in a graph
network.

The properties of this parameterization prompt us to adopt it for co-clustering with
multiple graphs, as illustrated in Fig. 1. Next, to avoid confusion between all the rows
and columns that are identical in our case, we still keep the notations using the zik’s
and w j�’s.

2 https://dl.acm.org/citation.cfm?id=1134277.

123

https://dl.acm.org/citation.cfm?id=1134277


2320 R. Boutalbi et al.

Fig. 3 a Original data, b co-clustering according PLBM and c co-clustering according SPLBM

x ij

z i

π

λk�

PSBM

xij

zi

θiθjδk�

DC-PSBM/CroInfo

xij

zi

π

wj

ρ

xi.x.jγk�

PLBM

xij

zi

π

wj

ρ

xi.x.jγkk

xi.x.jγ

SPLBM

Fig. 4 Graphical models: zi is the label of row i , w j is the label of column j

Fig. 5 Political blogs dataset: comparison of PSBM, PLBM, and SPLBM in terms of accuracy

The presented models PSBM, PLBM, and SPLBM deal with adjacency matrices
(2D data matrix) to tackle the problem of graph clustering. In the sequel, we deal with
multiple graphs organised as 3D data matrix; each matrix depicts a graph.

4 SPLBMwithmultiple graphs

4.1 Three-way tensor characteristics

A tensor is a multidimensional array, which is also known as the N -way, Nth-order
tensor. A tensor can be viewed as an element product of N vector spaces (Kolda and
Bader 2009). This notion of tensors should not be confused with tensors in physics
and mathematics fields such as stress and strain tensors (Frankel 2012).
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v

d

n

b
=
1..

.v

j = 1...d

i
=

1.
..
n

Fig. 6 Third-way tensor data representation

(a) Horizontal slices. (b) Lateral slices. (c) Frontal slices.

Fig. 7 Slices representations of the three-way tensor

A three-way tensor or third-order tensor has three dimensions and then has three
indices, as shown in Fig. 6. A first-order tensor is a vector, a second-order tensor is a
matrix, and tensors of order three or higher are called higher-order tensors.

The notation used here is very close to that introduced by Kiers (2000) for third-
order tensor. Notice that scalars are represented by lowercase letters e.g. x , and vectors
are expressed by a bold lowercase letter e.g. x. Thematrices are denoted by bold capital
letters e.g. X. And finally, tensors are indicated by bold capital Euler letters e.g. X .
The i th element of vector x is denoted as xi , the element (i, j) of a matrix is expressed
by xi j , and xbi j represents the element (i, j, b) of a tensor.

The order of tensor is referred to as the number of dimensions, also called ways or
modes. One-mode tensor is a vector, second-order tensor is a matrix, and third-order
tensor is a cuboid. In the case of matrix X, a row and column can be denoted by xi :
and x: j , respectively. In the case of three-way tensor xi j :, xi :b, and x: jb represents
the vector of the three different modes respectively. As we consider frontal slices, the
tensor can be represented by {Xb, b = 1 . . . , v} (Fig. 7c); this is the most often chosen
representation. For convenience, in the following, we will denote the tensor entry xi j :
by xi j = (x1i j , . . . , x

b
i j , . . . , x

v
i j ) (Fig. 8); then xbi . = ∑

j x
b
i j and xb. j = ∑

i x
b
i j . In this

sequel, we aim to extract homogeneous sub-tensors from three-way data.

4.2 Definition of the proposedmodel

Weextend SPLBM to Three-way tensor data leading to Tensor SPLBM (or TSPLBM).
The proposed model seeks not only to discover homogeneous tube co-clusters (a three
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xij

v
n

n

v

Fig. 8 The three-way tensor structure

dimensional co-clusters) but also discover important blocks and ignore noisy ones.
Thereby, TSPLBM allows to discover a diagonal co-clusters structure, which are
tubes (through all slices) from the three-way tensor. It makes it more useful for sparse
tensor with high sparsity close to 90%, as shown in the experiments. TSPLM provides
a better partitioning than the classical co-clustering algorithm applied on each slice of
tensor separately or a consensus clustering used on these independent results.

Our proposal Tensor SPLBM considers 3D data matrixX = [xi j ] ∈ R
n×n×v where

n is the number of nodes, and v the number of graphs (slices). Figure 1 presents a tensor
data with v graphs. As X is symmetric per slice b, when i = j we have zik = w jk

and for k = 1, . . . , g we have πk = ρk . This leads to deduce the fuzzy complete data
log-likelihood LC (Z̃,�) from (3)

LC (Z̃,�) = 2
∑

i,k

z̃ik logπk +
∑

i, j,k

z̃ik z̃ jk

v∑

b=1

logP(xbi j ; xbi .xb. jγ b
kk)

+
∑

i, j,k,� �=k

z̃ik z̃ j�

v∑

b=1

logP(xbi j ; xbi .xb. jγ b).

and the lower bound of log-likelihood criterion noted FC (Z̃,�) (“Appendix A” for
more details). Thus, to estimate 	 and Z̃, from which we can deduce Z, we optimize

1

2
FC (Z̃,�) = 1

2
LC (Z̃,�) + H(Z̃) (4)

where H(Z̃) = −∑
i,k z̃ik log z̃ik is the entropy.

After some algebraic calculations, we can simplify the criterion (up a constant) that
takes the following form (“Appendix B” for more details)

∑

i,k

z̃ik logπk + 1

2

∑

b

(∑

k

[

xbkk log(
γ b
kk

γ b
) − [xbk.]2(γ b

kk − γ b)

]

+ Nb(log(γ
b) − Nbγ

b)

)

+ H(Z̃)

(5)

where xbk. = ∑
i z̃ik x

b
i . = ∑

j z̃ jk x
b
. j = xb.k , x

b
kk = ∑

i, j z̃ik z̃ jk x
b
i j , and Nb = ∑

i, j x
b
i j .
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5 Variational inference

To estimate the parameters of the model, we rely on the Variational EM algorithm
(Govaert and Nadif 2005), and we extend it to multiple graphs. In the sequel, the
proposed algorithm is referred to as TSPLBM.

E-step It consists in computing, for all i, j, k the posterior probabilities z̃ik and z̃ jk
given the estimated parameters�. As

∑
k z̃ik = ∑

k z̃ jk = 1, using the corresponding
Lagrangians, up to terms which are not function of z̃ik , leads to

log z̃(t+1)
ik ∝ logπk + 1

2

⎛

⎝
∑

j

z̃(t)jk

v∑

b=1

P i jb
kk +

∑

j �=i,k �=�

z̃(t)j�

v∑

b=1

P i jb
k�

⎞

⎠ , (6)

where P i jb
kk = logP(xbi j ; xbi .xb. jγ b

kk) and with k �= �, P i jb
k� = logP(xbi j ; xbi .xb. jγ b). The

update of z̃(t+1)
ik , in a simple form (Algorithm 1), is described in “Appendix C” where

z̃(t)ik represents the value of z̃ik in the previous iteration (t).
M-stepGiven the previously computed posterior probabilities Z̃, theM-step consists

in updating, ∀k, the parameters πk , γ b
kk and γ b. The estimated parameters are defined

as follows. First, taking into account the constraints
∑

k πk = 1, it is easy to show that

πk =
∑

i z̃ik
n . Secondly, it is easy to obtain for all b, k (“Appendix C”)

γ b
kk =

∑
i, j z̃ik z̃ jk x

b
i j

∑
i z̃ik x

b
i .

∑
j z̃ jk x

b
. j

= xbkk
[xbk.]2

and, γ b = Nb − ∑
i, j,k z̃ik z̃ jk x

b
i j

N 2
b − ∑

k
∑

i z̃ik x
b
i .

∑
j z̃ jk x

b
. j

= Nb − ∑
k x

b
kk

N 2
b − ∑

k[xbk.]2
. (7)

The T
¯
SPLBM algorithm (Algorithm 1) for multiple graphs alternates the two previ-

ously described Expectation-Maximization steps until the objective function value (4)
change is small or there is no change. At the convergence, a hard co-clustering where
each data point either belongs to a cluster completely or not is deduced from z̃ik’s using
the maximum a posterior principle defined by ∀i, zi ∈ {1, . . . , g} is given by zi =
argmax
k=1..g

z̃ik .

The computational complexity of the TSPLBM algorithm scales linearly with the
number of non-zero entries. Let us denote nz the number of non-zero entries in X ,
i t the number of iterations, g the number of clusters and v the number of slices; the
computational complexity is given in O(i t · g · v · nz).

6 Experiments

The objective of our experiments is fivefold. First, we discuss some connections
between TSPLBM and multiview clustering (Sect. 6.2). Secondly, we evaluate the
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Algorithm 1: TSPLBM
Input: X , g.
Initialization: Z(0) randomly and compute �(0), t = 0
repeat

E-Step: Compute z̃(t+1)
ik

z̃(t+1)
ik ∝ πk exp

(
1
2

∑
j z̃

(t)
jk

∑v
b=1 x

b
i j log(

γ b
kk

γ b )

)

M-Step: Update �(t+1) = (π
(t+1)
k , (γ b

kk)
(t+1), (γ b)(t+1)) given by

πk =
∑

i z̃
(t+1)
ik
n , γ b

kk = xbkk
[xbk.]2

, and γ b = Nb−∑
k x

b
kk

N2
b−∑

k [xbk.]2
until the objective function value (4) change is small, or there is no change;
return Z, �

Table 1 Characteristics of datasets

Datasets Type #Graphs #Nodes #Clusters Sparsity (%)

UC-digits Images 6 2000 10 98

100leaves Images 3 1600 100 98

3sources Text 3 169 6 80

BBC Text 4 685 5 88

DBLP1 Text 3 2223 3 96

Nus-Wide-8 Text + Images 6 2738 8 83

DBLP3 Text 3 12,550 10 99

Amazon-products-10 Text + Images 7 9897 10 98

interest to consider multiple graphs simultaneously by TSPLBM, unlike tensor
decomposition methods that consider a reduced matrix arising from multiple graphs
(Sect. 6.3). Thirdly, we evaluate the impact of considering multiple graphs (Sect. 6.4).
Fourthly, we show how we can harness the results obtained by TSPLBM (Sect. 6.5).
Finally, we show that TSPLBM can be viewed as an implicit consensus clustering
and propose a solution to increase its clustering performance in an ensemble method
framework (Sect. 6.6).

6.1 Datasets description and pre-processing

We used eight datasets with a different number of graphs (slices) and clusters. Table 1
shows the characteristics of datasets in terms of the type of instances (image or
image+text), the number of graphs/slices (#Graphs), the number of instances (#Nodes),
the number of clusters (#Clusters) and the rate of sparsity.
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Fig. 9 Amazon-products-10 dataset reorganized according to the true clusters

We selected four benchmark datasets3 commonly used to compare multi-view clus-
teringmethods, namely UC-digits, 3sources, BBC, 100leaves. Further, we constructed
four datasets for multiple graphs clustering, namely DBLP1, DBLP3, Nus-Wide-8,
and Amazon-products-10. Hereafter, we give in detail the description of each dataset
– UC-digits consists of 2000 images of handwritten digits (including ten classes correspond to the

number 0–9) described by six views Fourier coefficients of the character shapes, profile correlations,
Karhunen-Love coefficients, pixel averages, Zernike moments, and morphological features.

– 3sources consists of 169 news texts reported by three newspaper sources BBC, Reuters, and The
Guardian.

– BBCconsists of 658 documents fromBBCnews splited into four segments and addressing five different
topics.

– 100leaves consists of 1600 images from one hundred plant species and described by shape descriptor,
fine-scale margin, and texture histogram features.

– DBLP1 consists of 2223 papers published in three different journals and described by words from title,
words from abstract, and authors.

– DBLP3 is similar to the DBLP1 dataset but including 12,550 papers from ten journals.
– Nus-Wide-8 consists of 2738 images from Flickr addressing eight topics and described by tags, Color

Histogram (CH), Color Correlogram (CORR), Edge direction histogram (EDH),Wavelet texture (WT),
and block-wise color moments (CW55).

– Amazon-products-10 consists of 9897 product images from ten product categories and is described
by words of product title, words of the product description, LBP features, Haralick features, and
Gabor features, co-viewed and co-purchased products. Figure 9 shows all graphs (slices) reorganized
according to the true partition into 10 classes.

In these tensor datasets, each (slice) graph can be assimilated to adjacency matri-
ces representing similarities between nodes (objects). Note that the TSPLBM model
considers count or binary adjacency matrices. Thereby, in order to apply TSPLBM for
image datasets where graphs represent similarities between images according to each
type of feature, we had to convert these matrices into binary adjacency matrices (1
if the similarity is higher than ninety-seven percent quantile and 0 otherwise). In this
way, we were able to study the robustness of our algorithm even when one or many
slices in original data do not respect the expected structure –binary or count data–.

6.2 T
¯
SPLBM versus multi-view clustering

The multi-view clustering (MvC) (Bickel and Scheffer 2004) aims to perform clus-
tering from diverse sources or domains, where each object (instance) is described by
several sets of features (or views). The MvC methods are used in several applications,
such as image clustering, where we can have different kinds of features. They allow to
taking into account the information arising from each view. Because of the diversity of
feature sets, each view can be converted to a symmetric instances × instances similar-
ity/dissimilarity matrix. This brings us back to a tensor representation of these views

3 https://github.com/KunyuLin/Multi-view-Datasets.
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Table 2 Mutiview clustering performance comparison

Datasets MultiNMF SwMV TSPLBM

ACC NMI ACC NMI Purity ACC NMI Purity

UC-digits 0.88 0.80 0.94 0.91 0.95 0.74 0.80 0.76

3sources 0.48 0.46 0.35 0.10 0.36 0.66 0.54 0.66

BBC 0.48 0.33 0.33 0.05 0.33 0.66 0.66 0.66

100leaves 0.67 0.86 0.59 0.87 0.61 0.46 0.81 0.46

DBLP1 – – NA NA NA 0.83 0.57 0.85

Nus-Wide-8 – – 0.28 0.004 0.28 0.56 0.41 0.56

– means that we could not retrieve the results for MultiNMF for these datasets
NA means that the SwMV algorithm could not find clustering solution
Bold values indicate the best performances in terms of ACC, NMI and Purity

where each of them is a graph where the edges are continuous. Thereby, even though
each view is not a count matrix, we compared TSPLBM—after binarisation—with
two recent and effective algorithms SwMV (Nie et al 2017) and MultiNMF (Liu et al.
2013). We consider 6 bases from the 8 ones for which we have or can apply these two
algorithms.

We performed the same experimentation procedure as TSPLBM with 30 runs, and
we compute the average of ACC, NMI, and Purity (Sripada and Rao 2011). For the
MultiNMF, we pricked up the results in terms of ACC and NMI that are available in
Wang et al. (2020) and Wang et al. (2015).

Table 2 are reported the obtained results on the six multi-view datasets. Thereby
SwMV does a better job than MultiNMF; it achieves good results on UC-digits and
100Leaves. However, SwMV could not give the clustering for DBLP1. On the other
hand, TSPLBM achieves highly better results than SwMV on the four datasets.

Overall, from these experiments, even with binary edges, we observe that TSPLBM
gives encouraging results compared with SwMV and MultiNMF applied on graphs
with continuous edges.

6.3 T
¯
SPLBM versus and tensor decomposition approaches

Undoubtedly and for a long time, to deal with tensor data X ∈ R
n×n×v , the tensor

decomposition methods are the most popular (Kolda and Bader 2009). Even if they are
not devoted to clustering, they allow to contribute to this task. Actually, these methods
return a factor matrix ∈ R

n×r (r is a given rank) that can be used for clustering.
Thus, we used a list of suitable algorithms for the clustering: Kmeans++ (Arthur
and Vassilvitskii 2007), Spectral clustering (SC) (Ng et al. 2001), and the
EM algorithm (Dempster et al. 1977) derived from diagonal Gaussian Mixture Model
(GMM) available in the Scikit-Learn package. Thereby, we compared the sparse
tensor co-clustering algorithm TSPLBMwith PARAFAC (Harshman and Lundy 1994) and
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Fig. 10 Comparison between TSPLBM and tensor decomposition approaches based on clustering perfor-
mances (ACC, NMI, and purity)

Tucker decomposition (Tucker 1966) on the six datasets presented in the previous
section. We used different ranks (10, 20, and 50) and performed 30 runs with random
initialization. Thus, we computed ACC, NMI, and purity by averaging all runs.

In Fig. 10 are reported the obtained clustering results for the six datasets accord-
ing to the different tensor-based algorithms (PARAFAC, TUCKER decomposition, and
TSPLBM) and the clustering algorithmsapplied on the obtained tensor decomposi-
tion. The results concern tensor decomposition approaches with rank number equal
to 10 (The results for rank 20 and 50 are similar to those using rank equal to 10).
We observe that in most of the cases TSPLBM does a better job than PARAFAC and
Tucker decomposition methods. For the 3sources and Caltech-7 datasets, PARAFAC
and TUCKER decomposition with GMM obtain close results in terms of Purity and
Accuracy but TSPLBM achieves higher performances in terms of NMI.

To compare the computing time of TSPLBM and tensor decomposition approaches,
we represent in Fig. 11 the time execution in seconds. We notice that for the four
datasets 3sources, BBC, DBLP1, and UCI-digits, TSPLBM is close to all other
approaches in terms of time execution. However, with Nus-wide-8 and 100Leaves,
the time execution is more important, this is due to the dataset size and the number
of clusters for Nus-wide-8 and 100Leaves. Note however, in Fig. 10, we observe that
TSPLBM outperforms tensor decomposition approaches with approximately 25 points
of ACC for both datasets.

6.4 TSPLBM versus PSBM, PLBM, and SPLBM

In this section, we aim to evaluate the impact of considering multiple graphs simulta-
neously in terms of clustering. To this end, we compare TSPLBM with PSBM, PLBM,
and SPLBM that consider the slices separately (Sect. 3.4).

123



2328 R. Boutalbi et al.

Fig. 11 Time complexity analysis

We performed 30 random initializations and computed Accuracy and Normalized
Mutual Information (NMI) (Strehl and Ghosh 2002) metrics by averaging all runs.
The clustering accuracy noted (ACC) discovers the one-to-one relationship between
two partitions and measures the extent to which each cluster contains data points
from the corresponding class. However, NMI is based on Mutual Information (MI)
and measures the amount of retrieved information considering our knowledge about
the clusters and the obtained results by a clustering method while respecting the
proportions of clusters. For lack of space, we are focus on DBLP1, DBLP3, Nus-
Wide and Amazon-Products-10. In Fig. 12, are reported the performances of the four
algorithmsPSBM,PLBM,SPLBM, andTSPLBM.PSBM,PLBM, andSPLBM are applied
on each slice xb separately unlike TSPLBM which is applied on X considering all
graphs simultaneously. We notice that, in most cases, TSPLBM is better than other
algorithms applied to each graph and allows us to achieve the best trade-off. TSPLBM
includes all graphs and also the graphs with a very complex structure. DBLP3 obtains
the lowest results due to the complex structure of dataset composed of 12K papers
with very close or complementary topics on computer science. We observe that PLBM
and SPLBM do a better job than PSBM for all datasets on the more informative slices.
It is also worth noting that PLBM does good performances in terms of Accuracy on
DBLP1 and in terms of NMI on DBLP3. TSPLBM performs a natural consensus when
considering all slices and allows us to obtain a unique partition at the end with good
clustering results.

6.5 Interpretation of multiple graph clustering results

This part aims to analyze the obtained topics and demonstrate how the proposed
model can help the user interpret the obtained clusters using a visualization method.
To illustrate this, we rely on the Nus-Wide-8 dataset.
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Fig. 12 Comparison in terms of Accuracy andNMI for all datasets with PSBM, PLBM, SPLBM and TSPLBM

Fig. 13 CA applied on topic-tags matrix

On the topics-tagsmatrix,we performed theCorrespondenceAnalysis (CA)method
(Benzecri 1973; Nenadic and Greenacre 2007). The choice of CA is due to the connec-
tion between Poisson distribution, mutual information, and chi-square on which CA is
based, see, e.g., Govaert and Nadif (2018). The matrix topic-tags ZTM is constructed
from image-tagsM based on obtained topics (or partition)Z obtained by TSPLBM. In
Fig. 13, are projected the tags and topics on the two first dimensions of CA including
the top tags in terms of contribution4 on the CA results.

We can notice that there are some close topics and other very different one. For
instance, topic 3 about weddings is opposed to topics 8 and 6 about snow and temple
considering the first and the second dimension respectively. On the other hand, we can
see that topics 1 and 2 about plants and animals are close.

Figure 14 presents the tags whose contribution is important. We show the frequen-
cies of each term for each topic. For topics 2 and 5 (pink and purple color respectively),

4 With CA each tag contributes to the inertia of each axis. The contribution of a tag to axis α is expressed
as a percent of the inertia for axis α.
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Fig. 14 Frequency matrix of subject tags whose contribution is important

we can see that the four top tags areNature, Green,Macro, andFlower related to Plants
topic and Street, City, Night and Architect related to Town topic.

Based on the Co-tags graph and the obtained topics, we construct a graph of image
clusters linked by edges representing the intensity of joint tags between all topics,
this can be computed by Z�HZ where Z is obtained by TSPLBM, and H is the co-
tags matrix. We can notice that there are some topics with a strong relationship like
plants-snow and town-persons. On the other hand, some topics with a weak link like
animals-town and animals-temple. This representation highlights that there are some
tags used with confused meaning. In this context, it is possible to use tensor models
for tags completion and tags correction (Tang et al. 2017; Veit et al. 2017).

6.6 Discussion: implicit consensus versus explicit consensus

In the first part of our experiments, we observed that TSPLBM applied on all slices
simultaneously is, in most of the cases, better than the other algorithms. As we are in
an unsupervised context, we have found it helpful to run the calculation with several
different random initial conditions and take the best result in terms of maximum log-
likelihood, overall runs. This is the usual procedure in clustering. Next we study why
and how we can improve this task.

6.6.1 Towards a consensus clustering

Figure 15 shows the 30 performed runs sorted according to Normalized log-likelihood
(NL), which is the objective function of TSPLBM. We also draw the ACC and NMI
curve according to the 30 runs. We observe that for DBLP1, the best runs leading to
maximal NL are the best runs in terms of clustering (ACC and NMI). However, this
observation is not noticed in all datasets; for instance, some best runs can achieve less
good results in terms ofACC andNMI. This problem is recurrent with all unsupervised
methods where the best runs in terms of the objective function are not necessarily the
best ones in terms of clustering. On the other hand, we may see the proposed model
as an implicit consensus model for graphs clustering, and it is tempting to compare
the proposed model to ensemble-based clustering methods.
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Fig. 15 Normalized Log-likelihood versus NMI and ACC for all runs

6.6.2 Ensemble method

The first works about consensus or ensemble classification have emerged in the con-
text of supervised learning; see for instance (Maclin and Opitz 1997; Schapire 2003;
Dietterich 2000). However, only the majority voting type algorithms work on the
model output level, and the most well-known classification ensembles approaches are
based on different variants of voting (Bauer and Kohavi 1999; Crammer et al. 2008;
Gao et al. 2009). This approach has been extended to unsupervised learning (Strehl
and Ghosh 2002; Vega-Pons and Ruiz-Shulcloper 2011). A clustering ensemble, also
known as a consensus clustering or clustering aggregation, is defined in the same
manner as for classification (Hanczar and Nadif 2012; Alqurashi and Wang 2019;
Yu et al. 2019). It consists in combining multiple clustering models (partitions) into
a single consolidated partition that we refer to as explicit consensus clustering. In
other words, from r partitions {Z1, Z2, Z3,…, Zr}, a consensus clustering leads to
a unique partition Z∗. Based on consensus functions, many approaches exist; see for
instance (Strehl and Ghosh 2002; Hanczar and Nadif 2012; Affeldt et al. 2020a, b). In
Strehl and Ghosh (2002), the authors introduced three ensemble clustering methods
that can produce a consensus partition. All of them consider the consensus problem
on a hypergraph representation of the set of partitions. More specifically, each parti-
tion is a binary classification matrix (with objects in rows and clusters in columns)
where the concatenation of all the set defines the hypergraph. Figure 16 presents this
matrix and different steps to construct a combination of these different graphs of clus-
ters, emerged from different partitions, to obtain a unique graph. To this end, we rely
on the three hypergraph clustering-based approaches proposed by Strehl and Ghosh
(2002), namely Cluster-based Similarity Partitioning Algorithm (CSPA), HyperGraph
Partitioning Algorithm (HGPA), and Meta-CLustering Algorithm (MCLA).

To improve clustering results of TSPLBM we will adopt the ensemble approach.
We explore in the next part, how implicit consensus clustering through TSPLBM
behaves compared to explicit consensus through cluster ensembles of multiple graphs.
In Fig. 17, we report the proposed approach to compare TSPLBM with the cluster-
ing ensemble methods proposed by Strehl and Ghosh (2002). To do this, we used
the implementation of python package Cluster_Ensembles.5 It relies on CSPA,
HGPA, and MCLA and returns the best results in terms of the mean of NMI between the
obtained consensus clusteringZ∗ and the different clustering solutions {Z1,Z2,Z3,…,
Zr}. Therebey, with TSPLBM, we select the top ten runs maximizing log-likelihood
thenwe carry out the consensus by using the cluster-ensemblesmethods.WithSPLBM,

5 https://pypi.org/project/Cluster_Ensembles/.
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Fig. 16 Process of the transition from clustering to consensus clustering

Fig. 17 Ensemble methods with PSBM, PLBM, SPSBM and TSPBLM. Description of the assessment process
of all algorithms in terms of ACC and NMI (left). Comparison between PSBM, PLBM, SPSBM and TSPBLM
(right)

PLBM, and PSBM, we consider two steps. The first step is the same as that used with
TSPLBM to select the top ten runs and apply the cluster-ensembles methods. The sec-
ond one consists in applying another clustering consensus between graphs to obtain a
unique partition. Note that the consensus clustering information is implicitly provided
by the TSPLBM algorithm.

In Fig. 17 (right) are reported the obtained results in terms of NMI using the com-
parison approach described above. We can notice that TSPLBM achieves the highest
NMI for all datasets. SPLBM does a better or similar job than PLBM on three datasets,
while PSBM obtains the lowest NMI measures on all datasets. These results can be
explained by the fact that the implicit consensus achieved by TSPLBM is optimized
within the objective function of the algorithm, unlike the explicit consensus, where
the partitions are obtained separately.

7 Conclusion

It is well known that the traditional Poisson SBM fails to detect relevant clusters of
edges, this requires a degree-corrected SBM (DC-SBM). Drawing on this, we first
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established some connections between Poisson SBM and the corrected version DC-
SBM with Poisson LBM commonly used for the co-clustering of contingency tables.
We justified the extension of the latter to deal with multiple graphs clustering. To take
into account the sparsity of the tensor, we modified the parametrization of the model
and proposed a Tensor SPLBM (TSPLBM). We derived, thereby, an EM-like learning
algorithm called TSPLBM capable of performing clustering from a tensor data. On
real datasets of text and image graphs, we have shown that TSPLBM, is better than the
cited baselines algorithms in terms of clustering.

On the other hand, we can note that the proposed clustering algorithm TSPLBM
can be seen as an implicit consensus clustering for multiple graphs. To reinforce
our idea that TSPLBM can be used in this sense, a comparative study with explicit
consensus through ensemble clustering methods was realized. Experiments on several
real graphs datasets highlight the effectiveness of TSPLBM. Thereby, this work gives
an extra dimension to LBMas an ensemblemethod. Our approach hasmade it possible
to propose a like-EM learning algorithm. It is possible to develop a like-Classification
EM version. To do this, all that is needed is to insert a classification step between E
and M steps. This could lead to propose an extension of DC-SBM for multiple graphs.

Ourwork opens different avenues for future research. First, in our proposal, we have
considered a Poisson model. However, other distributions and other model variants
can be developed compared to recent approaches relying on the mixture models and
applied on image clustering (Zhang et al. 2021). When a data point has different
representations, the authors propose to maximize a joint probability with multiple
representations that can be generated by diverse methods such as kernel functions or
data embedding methods. The model incorporates the prior information about data
and utilizes it to set preferences for these representations. Second, in order to go
further, the proposed model can be extended in incorporating Must Link and Cannot
Link relationships in the model based on Hidden Markov Random Fields to deal with
semi-supervised learning problems as those already dealt in Wu et al. (2021); Li et al.
(2021). Finally, in our proposal, the number of clusters has been assumed to be known.
It would be interesting to propose an extension of some criteria, such as the Integrated
Completed Likelihood (ICL) criterion, already used with SBM (Daudin et al. 2008).
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A. Appendix: Proof of (4)

The marginal density function f (X;�) of TSPLBM can be written as:

f (X;�) =
∑

(z,w)∈Z×W

∏

i,k

π
zik
k

∏

j,k

ρ
w jk
k

n∏

i, j=1

g∏

k=1

{
v∏

b=1

P(xbi j ; xbi .xb. jγ b
k�)

}zikw jk

×
g∏

k,� �=k

{
v∏

b=1

P(xbi j ; xbi .xb. jγ b)

}zikw j�

.

Thus, the complete-data log-likelihood function is given by:

LC (Z,W,�) =
∑

i,k

zik logπk +
∑

j,k

w jk log ρk +
∑

k

Lk
C

where

Lk
C =

∑

i, j

zikw jk

{
v∑

b=1

P(xbi j ; xbi .xb. jγ b
k�)

}

+
∑

i, j,� �=k

zikw j�

{
v∑

b=1

P(xbi j ; xbi .xb. jγ b)

}

.

Hence, the aim is to maximize the following lower bound of the log-likelihood
criterion:

FC (Z̃, W̃,�) = LC (Z̃, W̃,�) + H(Z̃) + H(W̃)

whereLC (Z̃, W̃,�) is the fuzzy complete-data log-likelihood function. AsX is sym-
metric per slice b, when i = j we have zik = w jk and for k = 1, . . . , g we have
πk = ρk and H(Z̃) = H(W̃). Then the objective function to optimize takes the
following form:

FC (Z̃,�) = LC (Z̃,�) + 2H(Z̃) with LC (Z̃,�) = 2
∑

i,k

z̃ik logπk +
∑

k

Lk
C ,

or 1
2FC (Z̃,�) leading to optimizing 1

2LC (Z̃,�) + H(Z̃). �
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B. Appendix: Proof of (5)

The simplified optimization criterion can be written as:

∑

i,k

z̃ik logπk + 1

2

∑

i, j,k

z̃ik z̃ jk

v∑

b=1

logP(xbi j ; xbi .xb. jγ b
kk)

+ 1

2

∑

i, j,k,� �=k

z̃ik z̃ j�

v∑

b=1

logP(xbi j ; xbi .xb. jγ b) + H(Z̃)

=
∑

i,k

z̃ik logπk + 1

2

[ ∑

i, j,k

z̃ik z̃ jk
∑

b

log

⎛

⎝
e−xbi .x

b
. jγ

b
kk (xbi .x

b
. jγ

b
kk)

xbi j

xbi j !

⎞

⎠

+
∑

i, j,k,� �=k

z̃ik z̃ j�
∑

b

⎛

⎝
e−xbi .x

b
. jγ

b
(xbi .x

b
. jγ

b)
xbi j

xbi j !

⎞

⎠
]

+ H(Z̃)

=
∑

i,k

z̃ik logπk + 1

2

[ ∑

i, j,k

z̃ik z̃ jk
∑

b

(
−xbi .x

b
. jγ

b
kk + xbi j log γ b

kk

)

+
∑

i, j,k,� �=k

z̃ik z̃ j�
∑

b

(
−xbi .x

b
. jγ

b + xbi j log γ b
) ]

+
∑

i, j,b

xbi j log(x
b
i .x

b
. j ) − log(xbi j !) + H(Z̃)

Note that
∑

i, j,b x
b
i j log(x

b
i .x

b
. j ) − log(xbi j !) does not depend on Z̃, and � and

therefore can be ignored for optimization purpose. To keep formulas uncluttered we
therefore ignore this term in the subsequent development. Thus, we obtain:

∑

i,k

z̃ik logπk + 1

2

∑

b

[∑

k

(
xbkk log(γ

b
kk) − xbk.x

b
.kγ

b
kk

)

+
(

(Nb −
∑

k

xbkk) log(γ
b) − (N 2

b −
∑

k

xbk.x
b
.k)γ

b

)]

+ H(Z̃)

where xbk. = ∑
i z̃ik x

b
i . = ∑

j z̃ jk x
b
. j = xb.k , x

b
kk = ∑

i, j z̃ik z̃ jk x
b
i j , and Nb = ∑

i, j x
b
i j .

This leads to optimize

∑

i,k

z̃ik logπk + 1

2

∑

b,k

Lkbc + H(Z̃) (8)
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where

Lkbc = xbkk log(
γ b
kk

γ b
) − [xbk.]2

(
γ b
kk − γ b

)
+ Nb

g

(
log(γ b) − Nbγ

b
)

. � (9)

C. Appendix: E-step andM-step

E-step To obtain the expression of z̃ik , we maximize (4) with respect to z̃ik , subject to
the constraint

∑
k z̃ik = 1. The corresponding Lagrangian, up to terms which are not

a function of z̃ik , is given by:

L(Z̃, β) =
∑

i,k

z̃ik logπk + 1

2

∑

i, j,k

z̃ik z̃ jk

(
v∑

b=1

P i jb
kk

)

+ 1

2

∑

i �= j,k �=�

z̃ik z̃ j�

(
v∑

b=1

P i jb
k�

)

−
∑

i,k

z̃ik log(̃zik) + β(1 −
∑

k

z̃ik).

Taking derivatives with respect to z̃ik , we obtain:

∂L(Z̃, β)

∂ z̃ik
= logπk + 1

2

∑

j

z̃ jk

(
v∑

b=1

P i jb
kk

)

+ 1

2

∑

j �=i,k �=�

z̃ j�

(
v∑

b=1

P i jb
k�

)

− log z̃ik − 1 − β.

Setting this derivative to zero yields:

z̃ik =
πk exp 1

2

(∑
j z̃ jk

∑v
b=1 P i jb

kk + ∑
j �=i,k �=� z̃ j�

∑v
b=1 P i jb

k�

)

exp(β + 1)
.

Summingboth sides over all k′ yields exp(β+1) = ∑
k′ πk′ exp 1

2

(∑
j,k′ z̃ jk

∑v
b=1

P i jb
k′k′ + ∑

j �=i,k′ �=� z̃ j�
∑v

b=1 P i jb
k′�

)
. Plugging exp(β + 1) in z̃ik leads to:

z̃ik ∝ πk exp
1

2

⎛

⎝
∑

j

z̃ jk

v∑

b=1

P i jb
kk +

∑

j �=i,k �=�

z̃ j�

v∑

b=1

P i jb
k�

⎞

⎠ � (10)

or,

log z̃ik ∝ logπk + 1

2

⎛

⎝
∑

j

z̃ jk

v∑

b=1

P i jb
kk +

∑

j �=i,k �=�

z̃ j�

v∑

b=1

P i jb
k�

⎞

⎠ .
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M-step Given Z̃ the maximization step consists in computing πk’s, γ b
kk’s and γ b

maximizing 1
2FC (Z̃,	).

– Computation of γkk , ∀k, b. It is easy to show that this can be computed separately.
This leads to derivate (9)

∂Lkbc
∂γ b

kk

= xbkk
γ b
kk

− [xk.]2 = 0 
⇒ γ̂ b
kk = xbkk

[xk.]2 . �

As ∂2Lkbc
∂2γ b

kk
≤ 0 then γ̂ b

kk is a maximum and it is easy to verify that γ̂ b
kk ≤ 1.

– Computation of γ b, ∀b. It suffices to derivate ∑
k L

kb
c .

∂
∑

k L
kb
c

∂γ b
= −

∑
k x

b
kk

γ b
+

∑

k

[xbk.]2 + Nb

γ b
− N 2

b = 0 
⇒ γ̂ b = Nb − ∑
k x

b
kk

N 2
b − ∑

k[xk.]2
. �

A simple expression of zik Note that, plugging the estimation of γ b
kk’s and γ b’s in (8)

yields to:

∑

i,k

z̃ik logπk + 1

2

∑

b

( ∑

k

xbkk log(
γ b
kk

γ b
) − [xbk.]2

xbkk
[xbk.]2

− Nb − ∑
k x

b
kk

N 2
b − ∑

k[xbk.]2
(N 2

b − [xbk.]2) + Nb log(γ
b)

)

+ H(Z̃)

Since Nb = ∑
k x

b
kk , this leads to

∑

i,k

z̃ik logπk +
∑

b

( ∑

k

xbkk log

(
γ b
kk

γ b

)

+ Nb(log(γ
b) − 1)

)

+ H(Z̃)

As xbkk = ∑
i, j z̃ik z̃ jk x

b
i j = ∑

i z̃ik x
b
i . with xbik = ∑

j z̃ jk x
b
i j , after algebraic calcu-

lations as in E-step it is easy to show that

z̃ik ∝ πk exp
1

2

∑

b

(

xbik log

(
γ b
kk

γ b

) )

which becomes

z̃ik ∝ πk exp
1

2

∑

b

( ∑

j

z̃ jk x
b
i j log

(
γ b
kk

γ b

) )
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and we obtain a simple update of z̃ik as follows

z̃(t+1)
ik ∝ πk exp

⎛

⎝1

2

∑

j

z̃(t)jk

v∑

b=1

xbi j log

(
γ b
kk

γ b

)⎞

⎠ . �
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