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Abstract
This paper studies time series extrinsic regression (TSER): a regression task of which
the aim is to learn the relationship between a time series and a continuous scalar
variable; a task closely related to time series classification (TSC), which aims to
learn the relationship between a time series and a categorical class label. This task
generalizes time series forecasting, relaxing the requirement that the value predicted
be a future value of the input series or primarily depend on more recent values. In
this paper, we motivate and study this task, and benchmark existing solutions and
adaptations of TSC algorithms on a novel archive of 19 TSER datasets which we have
assembled. Our results show that the state-of-the-art TSC algorithm Rocket, when
adapted for regression, achieves the highest overall accuracy compared to adaptations
of other TSC algorithms and state-of-the-art machine learning (ML) algorithms such
as XGBoost, Random Forest and Support Vector Regression. More importantly, we
show that much research is needed in this field to improve the accuracy ofMLmodels.
We also find evidence that further research has excellent prospects of improving upon
these straightforward baselines.
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1 Introduction

In the past decade, there has been an increasing interest in time series analysis research,
in particular time series classification (TSC) (Bagnall et al. 2017; Dau et al. 2019;
Bagnall et al. 2015; Fawaz et al. 2019; Dempster et al. 2020; Tan et al. 2020b) and
time series forecasting (TSF) (Hyndman 2018;Makridakis et al. 1982;Makridakis and
Hibon 2000; Makridakis et al. 2018, 2020). TSC is the task of predicting a discrete
label that classifies the time series into some finite discrete categories (Bagnall et al.
2017; Dau et al. 2019). On the other hand, TSF aims to predict future values of a series
based on recent or seasonal values. It typically assumes that future values will more
closely resemble recent values than those in the distant past.

Despite the thousands of papers published in both of these fields each year, there
has been little investigation of Time Series Extrinsic Regression (TSER), i.e. a task to
predict numeric values that depend on the whole series, rather than depending more
on recent than past values such as TSF. The difference between TSC and TSER is
that TSC maps a time series to a finite set of discrete labels while TSER predicts a
continuous value from the time series. For instance, TSCmight classify an ECG signal
as arrhythmia or normal, while TSER could be used to predict a quantitative value such
as the heart rate or respiratory rate of a patient (Pimentel et al. 2015, 2016; Meredith
et al. 2012; Karlen et al. 2010) based on patterns in the ECG signal. TSER can be
considered a special case of scalar-on-function regression (SoFR) from the statistics
community (Reiss et al. 2017; Goldsmith and Scheipl 2014), where the functional data
is a time series. SoFR considers a time series as functional data and builds statistical
models to map functional data to a scalar response value. In our case, we address the
problem from aML perspective, treating it as a regression problem, taking time series
data as the input and outputting a numeric value.

The term regression has different meaning in different contexts. In the broader
machine learning context, regression means predicting a continuous numerical value
from a set of features (Segal 2004; Sammut and Webb 2011). With respect to TSF,
regression usually means fitting the historical time series data with a regression model
such asARIMA (Box and Jenkins 1970) or Exponential Smoothing (Gardner Jr 1985;
Hyndman et al. 2008; Chatfield 1978) models to forecast future values of the time
series. TheseTSF regressionmodels typically heavily rely on recent or seasonal values,
or sliding input windows of some form.

In this work, we refer to the TSER problem as a more general methodology of
predicting a single continuous scalar value from a time series. We aim to predict
values that can be either a continuation of the input time series or external to it and do
not necessarily need to be a future value or depend on recent values. In the case where
predicting a future value of a series is of interest, then that becomes a TSF problem.
If predicting a finite discrete value is of interest, then that becomes a TSC problem.
We are interested in a more general task that lies in between the spectrum of these two
tasks, which cannot be solved intuitively using models from these two tasks or SoFR.

For instance, we are interested in predicting the heart rate of a person from
accelerometer data (Reiss et al. 2019; Zhang et al. 2014), predicting the crop yield
or fuel load from satellite image series describing the evolution of the ‘colours’ of
the vegetation over the years; neither of which are discrete or future values. Figure
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1034 C. W. Tan et al.

Fig. 1 Prediction of live fuel moisture content (LFMC) using satellite images time series

1 shows the example of predicting live fuel moisture content (LFMC) of the United
States using a series of satellite images where the value of LFMC is a continuous value
in the range from 0 to 200%. The input is the series of spectral values (i.e. time series
of colour values) representing the state of a surface (or ‘pixel’) over the last 12months;
the target is to infer the amount of moisture in the vegetation, i.e. the ratio between the
weight of water in vegetation and the weight of the dry part of vegetation (information
that is obtained by sampling vegetation in the field, weighing it and drying it to weigh
it again). This is a very important variable, as the risk of fire increases very rapidly
as soon as the LFMC goes below 80% (Yebra et al. 2018), making it an invaluable
variable for forest fire early warning systems. A very similar application is the one of
predicting crop yield from these same series of spectral values, with great importance
for food safety and agricultural planning (Pelletier et al. 2019).

Typical regression algorithms do not work well when applied directly to such prob-
lems because they do not take into account the temporal aspect of the data. These
algorithms also suffer from the curse of dimensionality, especially when the data is
sampled with high sampling frequency and with a large number of channels. TSC
algorithms on the other hand were not designed for these continuous scalar outputs.
In particular, they are predicated on the assumption that the output values are not
ordered. Hence, we need algorithms that are able to learn the relationship between
time series data and the continuous scalar variable. There has been some research in
this area where the algorithms and features are specifically designed for the specific
tasks (Reiss et al. 2019; Zhang et al. 2014; Zhang 2015; De Vito et al. 2008). Unfortu-
nately, these algorithms do not generalise well to other problems. For instance, those
specific features created from photoplethysmogram (PPG)measurements (Zhang et al.
2014; Reiss et al. 2019) for heart rate estimation cannot be used to predict crop yields
and vice-versa.

Therefore in this paper, we aim to motivate the research into developing more gen-
eral TSER algorithms. We start by introducing the first TSER benchmarking archive,
which we have assembled and contains 19 datasets in various domains in Tan et al.
(2020a). These datasets have varying number of dimensions, dimensions with unequal
lengths and missing values. They are used to benchmark some adaptations of classical
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regression and TSC algorithms as well as SoFR techniques. Our results show that
simple variants of some state- of-the-art TSC algorithms outperform standard regres-
sion techniques (i.e. ones developed for tabular data) that do not take into account the
underlying series nature of the data. More importantly, we show that most methods
obtain similar accuracies and the top method—Rocket—is actually not far in accuracy
from algorithms that ignore the sequential information in the series data, XGBoost
(Chen and Guestrin 2016) and Random Forest (Breiman 2001), which motivates the
need for the development of a subfield of research.

The rest of this paper is organised as follows. In Sect. 2, we introduce the problem
that we aim to address and discuss the related work. Then we describe some of the
applications of TSER with respect to the benchmark datasets we created in Sect. 2.2.
Section 3 then describes how the classic regression and TSC algorithms can be adapted
for TSER. After that, we evaluate these algorithms on the first TSER benchmark
datasets in Sect. 4. Finally, in Sect. 5, we summarise our contribution and give some
direction for future work.

2 Time series extrinsic regression

Time Series Extrinsic Regression (TSER) is a regression task that learns the mapping
from time series data to a scalar value. It shares resemblance to other fields such as
SoFR and time series regression, which has different meaning in different contexts.
In this section, we give a formal definition to TSER as we employ it. We will also try
to clear any misunderstandings that the readers might have and introduce the task that
we aim to address. We first define a time series in Definition 1.

Definition 1 A time series S is an ordered collection of L pairs of measurements and
timestamps, S = {(s1, t1), (s2, t2), ..., (sL , tL)}, where si ∈ R

D and t1 to tL are the
timestamps for some measurements s1 to sL .

Note that the D-dimensional measurement si measures the same phenomena with
different instruments at the same time. Time series data differs from static data in a
way that the ordering of the data attribute in time series data is critical in finding the
best discriminating features in time series data.

Classification and Regression are both supervised learning tasks that learn the rela-
tionship between a target variable and a set of features (Sammut andWebb 2011). The
main difference between Classification and Regression is that Classification predicts
a categorical value for a data instance that categorises the data into some finite cat-
egories, while Regression predicts a continuous value. Regression tasks can become
Classification tasks when the predicted values are discretized into some finite labels
for the data. In this work, we only focus on Regression. For example, the simplest
regression algorithm, linear regression, assumes a linear relationship between a set
of predictors (features) and a target variable, and fits a straight line through all the
predictors to generate a prediction for the target variable.

Traditionally in ML, the features used for regression are static and have no relation
to time. For instance, we could predict house prices using features such as the number
of bedrooms, crime rate, nitric oxides concentration (pollution level), accessibility
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Fig. 2 Example of an autoregression model of order 7, AR(7)

to radial highways and weighted distances to employment centers.1 These features
(predictors) do not depend on time and are less likely to change over time. They are
then used to train anMLalgorithm such as aRandomForest (Breiman 2001), XGBoost
(Chen and Guestrin 2016) or even linear regression to predict house price, the target
variable that we are interested in. Different from the traditional regression problem,
the regression problem that we tackle in this work, considers time series data as the
features. With respect to the house price prediction example, instead of using a single
value for the number of rooms, crime rate or pollution level, we use the time series
of these features to predict house prices. For example the daily crime rate or daily
pollution level over the last one month. A more concrete example of regression in our
context is the prediction of heart rate which can only be achieved using time series
data such as PPG and accelerometer data (Reiss et al. 2019; Zhang 2015; Zhang et al.
2014) that measures the pulse and movement of the subject within a certain period of
time.

A very large branch of time series analysis deals with TSF (Hyndman 2018; Hynd-
man et al. 2008; Makridakis et al. 2018), where regression carries a slightly different
meaning. In TSF, regression is used to fit autoregressive models on the historical time
serieswhichmodels the recent and/or seasonal values in the time series. Figure 2 shows
an example of a linear autoregressive model of order 7, AR(7), i.e. the model uses the
past 7 days minimum daily temperature to forecast the minimum daily temperature
for the next day.

These models are then extrapolated to predict future values of the same time series.
Going back to the example of predicting house prices, autoregressive models can be
used to fit past house prices data and produce a good forecast for future house prices,
as it is very likely that house price depends on the price in the previous months. In
our regression context, we can also build models to predict future house price using
past house prices. However, we aim at developing more general models that do not

1 https://www.kaggle.com/vikrishnan/boston-house-prices.
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make the assumptions that frequently underlie forecasting models, such as that the
most recent values are most indicative of future values. In other words, we can see that
forecasting models will not be useful in our regression example of predicting heart
rate, as heart rate is not a future value of ECG, PPG and accelerometer signal and does
not depend more on the final value of these data than on the initial ones.

Rather, heart rate is a quantitative value of the signal that can be obtained through
counting the number of peaks in the signal. Formally, we define the task of Time Series
Extrinsic Regression in Definition 2.

Definition 2 A time series extrinsic regression model is a function T → R, where T
is a class of time series. Time series extrinsic regression seeks to learn a regression
model from a dataset D = {(t1, r1), . . . , (tn, rn)}, where ti is a time series and ri is a
continuous scalar value.

2.1 Related work

Time series data can be considered as functional data, where the measurements are
a function of time (Goldsmith and Scheipl 2014). Functional regression is a widely
studied task in the statistics community (Reiss et al. 2017; Goldsmith and Scheipl
2014). Functional regression models can be classified into three categories: (1) scalar
responses with functional predictors (scalar-on-function regression); (2) functional
responses with scalar predictors (function-on-scalar regression); and (3) functional
responses with functional predictors (function-on-function regression) (Reiss et al.
2017). The task of mapping a time series to a scalar value, TSER, is closely related
to scalar-on-function regression (SoFR), a task that maps functional data (e.g., a time
series) to a scalar response (Reiss et al. 2017; Goldsmith and Scheipl 2014). SoFR
typically works by first representing the time series data in its functional form. Then
a basis function such as Functional Principal Components (FPC), B-spline, Fourier
or Wavelet can be applied to smooth the data and reduce noise. Finally a regression
model is applied to the smoothed data to predict the scalar value.

Functional linear models (FLM) are the most common approach for SoFR, which
extend the standard multiple linear regression model to functional data (Goldsmith
and Scheipl 2014). Most work in the literature of SoFR focused on better estimating
the weights that are applied to every timestep of the time series data (Goldsmith
and Scheipl 2014). The study of Goldsmith and Scheipl (2014) shows that SoFR
models have been applied to problems such as predicting annual rainfall from observed
temperature and predicting fat content in meat from near-infrared spectrum. The study
compares various SoFR models with its ensemble counterparts and non-functional
models such as random forest and gradient boosting machines. The results concluded
that ensembles ofmodelswork better than a singlemodel.More importantly, the results
also show the limitation of FLMs where non-functional models such as random forest
are robust and consistently outperform other FLMs on all the test datasets. In addition,
functional regression models usually require an in-depth understanding of the data on
hand and experience, in order to apply the right basis function to fit the model. For
instance, Fourier basis functions will not work well on non-periodic signals.
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While we have not been able to identify any prior work in the ML community
specifically addressing the more general class of learning task that we call time series
extrinsic regression, there are a number of specialised techniques addressing specific
cases. In addition to forecasting, one that has received considerable attention is heart
rate (HR) estimation using photoplethysmogram (PPG) sensors (Reiss et al. 2019;
Zhang et al. 2014). These methods rely on spectral analysis (Zhang et al. 2014; Zhang
2015; Salehizadeh et al. 2016; Schäck et al. 2017) but they were not very accurate
(Reiss et al. 2019). A convolutional neural network based approach that takes the
signal in the frequency domain as input has been proposed to improve the prediction
accuracy (Reiss et al. 2019). This approachwas shown to be significantlymore accurate
compared to the existing spectral methods.

Similar to heart rate estimation, respiratory rate (RR) estimation can also be
achieved using PPG sensors (Pimentel et al. 2016; Meredith et al. 2012; Pimentel
et al. 2015). Estimating RR is an important task because it is often the earliest sign of
critical illness (Meredith et al. 2012). Existingmethods fail to distinguish between peri-
ods of high and low quality data and were not able to generalise well to other datasets
(Pimentel et al. 2016). Typically, estimation of RR from PPG is achieved by applying a
moving window to the time series producing an estimate for RR per window (Pimentel
et al. 2016) and consists of four key components, (a) extracting respiratory signals;
(b) estimating respiratory rates; (c) fusing the estimates and (d) quality assessments
(Pimentel et al. 2015, 2016). A probabilistic approach was proposed (Pimentel et al.
2015) using the Gaussian process regression framework to extract RR from the differ-
ent sources ofmodulation in thePPGsignal. The authors then proposed anothermethod
(Pimentel et al. 2016) by fitting multiple autoregressive models to the extracted res-
piratory signals. Their method was evaluated on two datasets, the Capnobase (Karlen
et al. 2010) and the BIDMC dataset (Pimentel et al. 2016) (both can be found in http://
peterhcharlton.github.io/RRest/datasets.html). Although the results showed that their
method achieved the best mean absolute error (MAE) on both datasets compared to
other existing methods in RR estimation, it was only significantly different to one of
the methods on the Capnobase dataset. There were no significant difference on the
BIDMC dataset.

Other than health monitoring, there are also similar works done for pollution mon-
itoring, where the goal is to predict pollutant concentration using on-field sensors
(De Vito et al. 2008). De Vito et al. (2008) proposed a simple feed-forward network
with 5 hidden layers, taking 7 sensor inputs to estimate benzene concentration in an
Italian city. The method, although simple, achieved very lowMAE of 0.13μg/m3, but
is not generalisable.

2.2 TSER applications and datasets

To support research TSER, we created the first TSER benchmarking archive, available
online at http://tseregression.org/. In this section, we describe the possible applications
of TSER and our first TSER archive. The current TSER archive contains 19 time series
datasets from 5 application areas, Health Monitoring, Energy Monitoring, Environ-
ment Monitoring, Sentiment Analysis and Forecasting. The archive contains 8 datasets
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assembled from the UCI machine learning repository (Dua and Graff 2017), 3 from
physionet.org, 1 from a signal processing competition (Zhang et al. 2014), 1 from the
Covid-19 database from theWorld Health Organisation, 1 from the Australian Bureau
of Meteorology (BOM) and the rest are donations. These datasets are unnormalised
with varying number of dimensions, unequal length dimensions and missing values.
We briefly describe these datasets below and refer readers to Tan et al. (2020a) for a
more detailed description. Table 1 outlines the properties of the datasets in the current
TSER archive.

2.2.1 Energy monitoring

With advances in Smart City and Internet of Things applications, the task to monitor
energy and power consumption has become more important than ever. The ability to
predict energy and power consumption accurately can savemillions of dollars for a big
company. Energy monitoring is typically done by collecting data such as temperature,
humidity, rain, voltage and current readings from sensors attached all over a building.
These data are collected in the formof time series and ismapped to the power consump-
tion of the building. For example, higher power consumption will be observed during
winter months as more energy is required to heat up a building. The AppliancesEn-
ergy,HouseholdPowerConsumption1 andHouseholdPowerConsumption2 are the
three datasets in this archive targeting this application. Figure 3 shows an example of
time series data in the HouseholdPowerConsumption datasets.

2.2.2 Environment monitoring

In the context of climate change, environment monitoring has become more important
than ever. Environmentmonitoring is the task of predicting anything related to our envi-
ronment such as pollution level, rainfall, crop yield and flood water level. The three
datasets BenzeneConcentration, BeijingPM10Quality and BeijingPM25Quality
focus on predicting pollution level in a metropolitan city. The LiveFuelMoisture-
Content is a dataset about predicting live fuel moisture content (moisture content in
leaves) using series of satellite images, which we described in the introduction. Pre-
dicting the moisture content is very critical in bushfire prevention that could prevent
the lost of thousands of lives and millions to billions of dollars. Figure 4 shows an
example of the satellite image time series of a tree cover with 7 spectral bands in the
LiveFuelMoistureContent dataset. The three FloodModeling datasets address predic-
tion of the height of different riverbeds given a series of rainfall events. Here again,
being able to predict the rise of water is critical to mitigate its risk. The relationship
between rainfall and water height in different locations is non-linear, as it depends
on topography, transpiration and rainfall dynamics. Here we assume that topography
and land-cover (which drives transpiration) is not known and propose to model water
height directly from rainfall time series. Finally, the AustraliaRainfall dataset con-
tains the hourly temperature of various locations in Australia and the goal is to predict
the total daily rainfall in those locations based on the hourly temperature. This is useful
as temperature sensors are much cheaper and easy to maintain as compared to rain
gauges.
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Fig. 3 Examples of the daily voltage, current and sub-metering measurements in the HouseholdPowerCon-
sumption dataset that is used to predict the total daily active and reactive power consumption in a house

2.2.3 Health monitoring

Health monitoring is the task of monitoring the health or vital signs of an individual.
The data typically comes from a wearable device that can be attached to the subject,
such as a photoplethysmogram (PPG), electrocardiogram (ECG), electroencephalo-
gram (EEG) or accelerometer. In this work, we focus on three tasks, estimating heart
rate, respiratory rate and blood oxygen saturation level. The PPGDalia, IEEEPPG
and BIDMCHR are datasets focusing on heart rate estimation. Figure 5 illustrates an
example of the PPG and accelerometer signal from the PPGDalia dataset.BIDMCRR
and BIDMCSpO2 are both datasets on predicting respiratory rate and blood oxygen
saturation level, respectively.
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1042 C. W. Tan et al.

Fig. 4 Example of LiveFuelMoistureContent time series with 7 spectral bands

2.2.4 Sentiment analysis

Sentiment analysis is the interpretation and classification of emotions (positive, nega-
tive or neutral) within some text using text analysis techniques. This is typically done
by analysing text comments or posts on websites and social media platforms to pre-
dict a sentiment score (Moniz and Torgo 2018). Moniz and Torgo (2018) released a
dataset containing 100,000 news items on four topics: economy,microsoft, obama and
palestine with the respective social feedback on 3 social media platforms: Facebook,
Google+ and LinkedIn. Here we attempted a different approach to predict the senti-
ment score by analysing the number of reactions received for the piece of news on
the respective social media platforms. We included the NewsHeadlineSentiment and
NewsTitleSentiment datasets that aim to predict the sentiment score of news headline
and news title using the number of reactions over time from social media platforms
illustrated in Fig. 6 .

2.2.5 Forecasting

As described in the introduction and Sect. 2, TSF is the task of predicting future values
based on some recent and/or seasonal values. This is usually done by fitting a model to
the historical data and extrapolating it into the future. Our regression problem can be
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Fig. 5 Example of time series in the PPGDalia dataset. The title shows the subject and the current heart
rate in beats per minute (BPM)

seen as a general case of forecasting where we are still predicting a continuous value
that may not necessarily be a future value or depending more heavily on recent values.
Thus, we included in this archive a dataset that could easily be solved with forecasting
models to show that forecasting tasks can also be tackled using TSER models. The
Covid3Month dataset contains the daily confirmed number of COVID-19 cases in
most countries in the world from January to March 2020, and the goal is to predict
the death rate at the start of April 2020. An example of the daily confirmed Covid-19
cases and death rate for Italy is shown in Fig. 7.

3 Existing algorithms

In this section, we describe some existing algorithms for TSER problems. Most meth-
ods developed in TSERcases are highly specific to a problem and are not generalisable,
as discussed in Sect. 2.1. We observe the similarity of TSER with TSC (Bagnall et al.
2017) in Definition 2. The only difference between both tasks is that the target variable
is continuous instead of discrete for TSC. Hence, in principle, most methods devel-
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Fig. 6 Example of news popularity on 3 social media platforms. The title of the news is “Obama denounces
rise of ‘vulgar and divisive‘ politics of Trump” with the headline “And it’s worth asking ourselves what
each of us may have done to contribute to this vicious atmosphere in our politics,” Obama told the ...”
(https://time.com/4259468/obama-trump-violence-rallies/). The values in the brackets correspond to the
respective sentiment value in news title and headline after 2 days

Fig. 7 Daily confirmed Covid-19 cases and death rate for Italy

oped for TSC can be adapted for TSER problems. These algorithms are categorised
into 4 types: feature-based, dictionary-based, distance-based and deep learning.
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3.1 Feature-based algorithms

Feature-based algorithms learn from time series data by extracting discriminating
features. Then these features are used to train a classification or regression model. In
this section, we discuss some existing feature-based algorithms for time series data.

3.1.1 Classical regression models

Classical regression models such as Support Vector Machine (SVM), Linear Regres-
sion (LR) and Random Forest (RF) are designed for tabular data. These models learn
a mapping function from some input features extracted from the time series to the
target variable. A straightforward approach is to treat the time series as tabular data
where the time series values are the features. Multidimensional time series will be
flattened out into a single long feature vector of length D × L , where D is the num-
ber of dimensions in the series and L is the length of the time series. For instance, a
time series with 3 dimensions and 100 data points results in a feature vector with 300
features. Generally, this approach will not take into account the temporal dimension
which is important for discriminating time series because each feature is assumed to
be independent of one another.

Despite the simplicity of treating the values of each time series as the features, a
more common practice is to extract features from the whole time series. These features
are used to characterise the time series which are commonly used for forecasting and
visualisation (Kang et al. 2017;Montero-Manso et al. 2020). The FFORMA algorithm
(Montero-Manso et al. 2020) is a feature-based forecastmodel that trains ameta-model
using features extracted from the time series. The meta-model is used for assigning
weights to various forecasting algorithmsbased on the characteristics of the time series.
Features are also being used to visualise the performance of forecasting algorithms
in an instance space, where time series are represented in a 2-dimensional space
(Kang et al. 2017). These features include the summary statistics of the time series,
spectral entropy, trend, seasonality, linearity and autocorrelation are extracted from
the time series (Kang et al. 2017; Montero-Manso et al. 2020). The tsfeatures
R package2 is a popular package that extracts various features from time series data.
Fulcher et al. (2013) introduce theHighlyComparativeTimeSeriesAnalysis (HCTSA)
features set that consists of over 7000 time series features. The Canonical Time Series
Characteristics (Catch22) (Lubba et al. 2019) is a reduced set of HCTSA that consists
of the 22 most discriminating features for TSC, evaluated on the UCR TSC archive.
Although Catch22 when trained with a decision tree classifier is not as accurate as
some state-of-the-art TSC algorithms, it is more interpretable, which may important
in some applications.

Once the features are extracted, they can be used with any classical regression
model. Next, we discuss some of the popular regression models. The SVM (Cortes
and Vapnik 1995) is a popular classification model. Support Vector Regression (SVR,
Drucker et al. 1997) is a variant of SVM designed for regression. Unlike many regres-
sion algorithms that seek to minimize squared error, SVR tries to fit the error rate

2 https://github.com/robjhyndman/tsfeatures.
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within a threshold, ε (Drucker et al. 1997). SVR works by mapping the data into a
higher-dimensional space so that it is linearly separable using a kernel function such
as linear, sigmoid or Gaussian Radial Basis Function (RBF, Cortes and Vapnik 1995).
Then it fits a hyperplane through the data bounded by two boundary lines which are ε

distance apart from the hyperplane. The boundary lines are formed by support vectors
which are datapoints that are closest to the boundary.

The RF (Breiman 2001) algorithm has proven to be very robust on many classifi-
cation and regression tasks (Segal 2004). It is a bootstrap aggregation (also known as
bagging) ensemble learningmethod that combines the predictions ofmultiple decision
trees to improve prediction accuracy (Breiman 2001). Bagging is a type of ensemble
learning method that randomly samples the data with replacement to build multiple
models and aggregates the outputs from all models. Bagging aims to reduce the vari-
ance of high variance models such as decision trees. RF builds a multitude of decision
trees at training time and outputs the average values of the appropriate leaf for regres-
sion tasks (Breiman 2001). There are 2 main hyper-parameters that need to be tuned
for each problem, the number of trees Ntree and the number of features randomly
selected at each node m (Breiman 2001). One major disadvantage of RF is that it is
prone to overfit datasets with noisy classification/regression tasks.

Extreme Gradient Boosting (XGBoost, Chen and Guestrin 2016) is a further accu-
rate and popular machine learning algorithm. Similar to RF, XGBoost is a decision
tree based ensemble learning algorithm that aims to reduce the variance and bias. Dif-
ferent from RF that uses bagging, XGBoost uses gradient boosting with regularisation
to avoid overfitting, a problem in RF (Chen and Guestrin 2016). XGBoost reduces
bias by building models sequentially while minimising the errors from previous mod-
els (Chen and Guestrin 2016). The errors are minimised using the gradient descent
algorithm. This essentially “boosts” the model’s performance over time (Chen and
Guestrin 2016).

3.1.2 Functional linear models

SoFR is widely studied in the statistics community. Specifically FLM is the most
common approach for SoFR as it is simple and intuitive (Goldsmith and Scheipl
2014). FLM extends the standard multiple linear regression model to functional data
(Goldsmith and Scheipl 2014). It is expressed as Yi = ∫ 1

0 Wi (s)β(s)ds + εi , where
Yi is the scalar response, Wi (s) is the functional form of the time series, β(s) is
the coefficient function and εi is the random noise in the data (Reiss et al. 2017;
Goldsmith and Scheipl 2014). Most work in the literature of SoFR had focused on
better estimating the β(s) coefficient function with various basis functions.

In this work, we will only be focusing on the two most popular basis functions for
FLM. The FPC basis function when applied to FLM is commonly known as functional
principal component regression (FPCR). FPCR is based on functional principal com-
ponent analysis (FPCA) decomposition (Goldsmith and Scheipl 2014) that is similar
to PCA decomposition where the data is represented by Kw principal components that
explain the most variance in the data. Other than FPC, the smoothness in the coeffi-
cient function can be enforced using spline basis functions (Goldsmith and Scheipl
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2014). The B-spline basis function is one of the most popular choices where the β(s)
coefficient function is expressed in terms of KB B-spline basis.

3.1.3 Interval-based features

Instead of extracting features from the whole time series, features can be extracted
from the intervals of the time series. It has been shown that these interval-based
features generally give better performance than whole series features (Deng et al.
2013; Bagnall et al. 2017). The Time Series Forest algorithm (Deng et al. 2013) is one
of the most accurate TSC algorithms (Bagnall et al. 2017). It extracts three features,
mean, standard deviation and slope from an interval of a time series and builds a forest
of time series trees, where random intervals are selected in each node of the tree (Deng
et al. 2013).

Time series shapelets algorithms (Ye and Keogh 2009; Rakthanmanon and Keogh
2013; Lines et al. 2012) find the best discriminating shapelets (subsequences) in the
data. The first time series shapelets classifier (Ye and Keogh 2009) trains a decision
tree using shapelets as the splitting criterion. However, the algorithm has very high
training complexity as it needs to scan through a high number of shapelet candidates.
Since then, many novel scalable algorithms for shapelet discovery have been proposed
(Rakthanmanon and Keogh 2013;Mueen et al. 2011; Grabocka et al. 2014; Lines et al.
2012). The most accurate shapelet algorithm, Shapelet Transform (ST)(Lines et al.
2012) transforms a time series using the distance of a time series to all k shapelets,
creating a feature vector with k dimensions. The transformed time series are then
used to construct one of the most accurate TSC algorithms, Shapelet Ensemble (SE)
(Bagnall et al. 2015). SE is an ensemble consisting of 8 standard classifiers each
applied to the shapelet features.

3.1.4 Random convolutional kernel transform (Rocket)

Recently, Dempster et al. (2020) proposed the Rocket classifier that achieves state-
of-the-art accuracy in TSC with a fraction of the computational expense of existing
methods. Rocket transforms time series using a large number of random convolutional
kernels and trains a ridge regression classifier. These kernels have random length,
weights, bias, dilation, and padding, andwhen applied to a time series produce a feature
map. Then the maximum value and the proportion of positive values are computed
from each feature map, producing two real-valued numbers as features per kernel.
With the default 10,000 kernels, Rocket produces 20,000 features. Rocket was found
to be the most accurate TSC classifier compared with other state-of-the-art algorithms
such asHIVE- COTE (Lines et al. 2016) and InceptionTime (Fawaz et al. 2020) when
benchmarked on the 85 TSC datasets (Dau et al. 2019). As Rocket was designed for
classification tasks, in this work, we adapt Rocket for regression tasks by replacing
the ridge regression classifier with a ridge regression model.
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3.2 Dictionary-based algorithms

Dictionary-based algorithms transform time series by building a dictionary that rep-
resents the observed frequency of a particular pattern or feature in the time series. The
algorithms then learn to discriminate between different time series by comparing the
dictionary of the two time series. This is also known as the “bag of words” algorithm
where the patterns (subsequences) are discretized into words.

There are various bag of words algorithms for TSC. Notably some of the popular
ones are the Bag of Patterns (BOP) (Lin et al. 2012), Symbolic Aggregation Approx-
imation Vector Space (SAXVSM) (Senin and Malinchik 2013), Bag of Symbolic
Fourier Approximation (SFA) Words (BOSS) (Schäfer 2015), Word Extraction for
TSC (WEASEL) (Schäfer and Leser 2017a) and WEASEL + Multivariate Unsuper-
vised Symbols and Derivatives (MUSE) (Schäfer and Leser 2017b).

The recent TSC benchmark survey (Bagnall et al. 2017) ranks BOSS as the
most accurate dictionary-based classifier. BOSS builds a dictionary using SFA words
(Schäfer 2015). Each subsequence in the time series is transformed into SFA words
using truncated discrete fourier transform, making it robust to noise.

Although the survey (Bagnall et al. 2017) did not compare with WEASEL,
WEASEL is arguablymore accurate than BOSS (Schäfer and Leser 2017a).WEASEL
improves on BOSS by determining discriminative Fourier coefficients using ANOVA
f-test and applying Chi-Squared test for feature selection (Schäfer and Leser 2017a).
WEASEL+MUSE aims to tackle multivariate TSC by splitting the time series into its
dimensions and applying the univariate transformation to each dimension (Schäfer and
Leser 2017b). It also transforms the derivative of each dimension into words and con-
catenates these with a dimension identifier to enrich the feature space. Finally, similar
to WEASEL, a feature selection technique is applied to filter out non-discriminative
features (Schäfer and Leser 2017b).

3.3 Distance-based algorithms

The majority of TSC research has been focused on the similarity of two time series.
This involves matching two time series and computing the distance between them.
Then, a k-nearest neighbour (k-NN) algorithm is applied to find the most similar time
series (Lines and Bagnall 2015; Tan et al. 2020b).

The k-Nearest Neighbour (k-NN) algorithm is one of the simplest andmost intuitive
algorithms (Sammut andWebb 2011). A k-NN algorithm requires two parameters, (1)
the number of nearest neighbours k and (2) a distance metric (Sammut and Webb
2011). Similar to any other classical regression models described in Sect. 3.1.1, k-NN
was initially designed for tabular data. Some examples of distance metrics for tabular
data are the Euclidean, Manhattan, Minkowski and Mahalanobis distances. Using one
of these distance metrics, the model finds k nearest instances from the training dataset
to a query instance in the feature space (Sammut and Webb 2011). For regression, the
target values of the k nearest neighbours are averaged out and assigned as the target
of the query instance. Weighted average can also be applied using the distances to the
query to put more emphasis on nearer neighbours.
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(a) (b)

Fig. 8 Example of alignment of two time series using a Euclidean distance and b DTW distance

For time series data, the k-NN algorithm has to take into account the temporal
dimension of the data. Hence, the distance measures (Lines and Bagnall 2015; Tan
et al. 2020b) are also different from classic k-NN algorithms for tabular data. They are
commonly known as elastic distances. The simplest is the Euclidean distance (ED),
which is similar to the ED used for tabular data. Equation 1 describes the ED to
compute the distance between two time series P and Q, where D is the number of
dimensions and L is the length of the time series.

ED(P, Q) =
D∑

j=1

√√
√
√

L∑

i=1

(p j
i − q j

i )2 (1)

A limitation of ED is that it cannot allow for processes that are not directly aligned or
which unfold at differing rates.

Distancemeasures that domake such allowance are known as elastic distances. One
popular example is the Dynamic Time Warping (DTW) distance. DTW computes the
minimum distance of two time series by finding the optimum alignment of two time
series and taking into account the temporal order of the data (Lines and Bagnall 2015;
Tan et al. 2018, 2020b). Typically, DTW is computed with a warping constraint that
limits the warping path (Tan et al. 2018). This has the effect of minimising irregular
warping and reducing the time complexity of DTW (Tan et al. 2018, 2020b). Since
DTW is a widely studied distancemeasure, we refer interested readers to the following
papers (Tan et al. 2018, 2020b) for more details.

Figure 8a, b illustrate the differences between ED andDTWdistance. Formultivari-
ate time series, DTW can be computed dependent or independent of the dimensions
of the time series, commonly known as DTWD and DTWI (Shokoohi-Yekta et al.
2017).

There are various other distance measures other than ED and DTW, none of which
dominates the others in terms of classification accuracy, but each of which excels
at some tasks (Lines and Bagnall 2015). The Ensembles of Elastic Distances (EE)
(Lines and Bagnall 2015) is a combination of 11 elastic distances that is significantly
more accurate than each of the individual distances. Although accurate, EE is not
computationally efficient as it requires a grid search over a range of parameters for
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each elastic distance. FastEE (Tan et al. 2020b) is a significantly faster version of EE
that trims the parameter space by leveraging off the properties of each elastic distances.
Instead of performing a grid search, Proximity Forest (PF) (Lucas et al. 2019) is a tree-
based algorithm where an elastic distance and its parameters are selected at random
at each node of the tree. PF has shown to be significantly more accurate and faster
than EE for many TSC tasks (Lucas et al. 2019). Although the modification of the NN
algorithm for regression tasks is very straightforward, applying EE or PF to regression
tasks requires more complex modification of the algorithm which we leave for future
work. In this work, we focus only on the two most popular TSC NN algorithms, NN
with ED (NN-ED) and DTW distance (NN-DTW).

3.4 Deep learning algorithms

Deep learning models are capable of predicting both discrete labels (classification)
and continuous values (regression). Fundamentally, the output of a neural network is
a continuous value. Typically for classification tasks, softmax activation is used at the
output layer to output class probabilities and classification is done by taking the class
with the highest probability. The softmax activation is replaced with linear activation
for regression tasks. Apart from the activation functions, the loss function has to be
changed as well. The categorical cross entropy loss function that is commonly used for
classification can be replaced by either the mean squared error or the mean absolute
error loss function for regression tasks, in this case, mean squared error is chosen.
Recently, several deep learning models have been developed and benchmarked for
TSC (Fawaz et al. 2019; Wang et al. 2017; Fawaz et al. 2018, 2020). In this work,
we adapted three TSC deep learning models, Residual Networks (ResNet), Fully
Convolutional Neural Networks (FCN) and Inception network (Fawaz et al. 2020).

ResNet and FCN were first proposed in Wang et al. (2017). In a recent survey
on deep learning for TSC (Fawaz et al. 2019), ResNet was ranked the most accurate
univariate TSC model benchmarked on 85 univariate time series datasets (Dau et al.
2019). ResNet consists of 3 residual blocks with 3 convolutional layers in each block,
followed by a global average pooling layer and an output layer. Different from the
typical convolutional networks, ResNet has a shortcut residual connection between the
convolutional layers which makes training easier by reducing the vanishing gradient
effect.

FCN is the most accurate deep learning model for multivariate TSC on 12 multi-
variate time series datasets (Baydogan and Runger 2015) and the secondmost accurate
deep learning model for univariate TSC. It is composed of three convolutional blocks
with batch normalisation and a ReLU activation function. Then, global average pool-
ing is applied to the last convolutional block and connected to a softmax classifier
(Fawaz et al. 2019). For regression, the softmax activation function is replaced with
linear activation function.

Fawaz et al. (2020) recently proposed the Inception network, which significantly
improved existing deep learning models and achieved competitive performance with
the state-of-the-art TSC model, HIVE-COTE (Lines et al. 2016). The Inception net-
work consists of two different residual blocks connecting the input to the next block’s
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input to mitigate the vanishing gradient problem (Fawaz et al. 2020). Each residual
block is comprised of three Inception modules. There are two major components in
each of the inception module. The first one is the bottleneck layer that reduces the
dimension of the time series usingm filters and also allowing the Inception network to
have ten times longer filters than ResNet (Fawaz et al. 2020). The second component
consists of sliding multiple filters of different lengths to the output of the first compo-
nent. AMaxPooling operation is also applied to the time series in parallel to these two
components. The output from each of the convolution and MaxPooling operation is
then concatenated to form the output of the Inception module. Finally, global average
pooling is applied to the final residual block and passed to a fully connected layer for
classification.

In our work, we use the same architecture from the original papers (Fawaz et al.
2019, 2020) with some minor modifications to the activation and loss functions as
mentioned above. We refer interested readers to the respective papers for the details
of these architectures.

4 Benchmarking results

In this section, we evaluate the regression algorithms described in Sect. 3 and set a
baseline using the datasets from our TSER archive (Tan et al. 2020a) described in
Sect. 2.2. We evaluate and benchmark the following regression algorithms:

1. FPCR (Goldsmith and Scheipl 2014)
2. FPCR with B-spline (Goldsmith and Scheipl 2014)
3. Grid-search optimised SVR (Drucker et al. 1997)
4. RF (Breiman 2001) with 100 trees
5. XGBoost (Chen and Guestrin 2016) with 100 trees
6. NN-ED with k = 1, 5 (1-NN-ED and 5-NN-ED)
7. NN-DTW with k = 1, 5 (1-NN-DTW and 5-NN-DTW) and warping window

w = 0.1 × L
8. FCN (Fawaz et al. 2019)
9. ResNet (Fawaz et al. 2019)

10. Inception Network (Fawaz et al. 2020)
11. Rocket (Dempster et al. 2020).

Missing values in the time series are linearly interpolated. When using a traditional
regression model (i.e. non-temporal), the time series are flattened out into a single
long feature vector.

We used the standard Scikit-Learn Python library (Pedregosa et al. 2011) to imple-
ment SVR and RF algorithms. The SVR algorithm is optimised by performing a
3-fold cross validation with grid search on the hyper-parameters. Specifically, the ker-
nel, gamma and C parameters are optimised from a standard range of values. The
kernel function is selected from RBF and Sigmoid. The gamma parameter selected
from [0.001, 0.01, 0.1, 1] defines the influence of support vectors. The regularisation
parameter C is selected from [0.1, 1, 10, 100]. XGBoost was implemented using the
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Python XGBoost library.3 Apart from the number of trees, we use the default param-
eters for both RF and XGBoost from the Python libraries. Our empirical experiments
show that RF and XGBoost with parameters optimised using a grid search strategy
performs similarly orworse than the default parameters and takes a significantly longer
time to train. Hence they are excluded from this benchmark. The FPCR and FPCRwith
B-spline models are implemented using the Scikit-FDA Python package,4 a library
for functional data analysis in Python.

For time series algorithms, we adapted the code from Fawaz et al. (2019)5 for both
ResNet and FCN and Fawaz et al. (2020)6 for Inception Network. The code for Rocket
was taken from Dempster et al. (2020)7 and modified for multivariate time series with
the help from the original authors. The multivariate version of Rocket applies the
transformation to each dimension independently.

The time series NN algorithms were all implemented in Java. Our source code
has been made open source online at https://github.com/ChangWeiTan/TS-Extrinsic-
Regression.

Since some of the algorithms are non-deterministic, we evaluate all the algorithms
over 5 runs and report the average root mean squared error (RMSE), one of the most
widely used metrics for regression tasks. Equation 2 describes the formal definition
of RMSE where n is the number of instances, yi and ŷi are the actual and predicted
target respectively.

RMSE =
√∑n

i=1(ŷi − yi )2

n
(2)

We compare the algorithms statistically over the current datasets following the
recommendations from (Demšar 2006). First, we rank each algorithm by RMSE for
every dataset. Rank 1 is assigned to the algorithmwith the lowest RMSEwhile rank 13
is assigned to the highest one. Fractional ranking is assigned to the algorithm in case
of ties. We then compute the average rank for each algorithm. Then, the Friedman test
(Friedman 1940; Demšar 2006) was applied to the average ranks. If the null hypothesis
is rejected, the post-hoc two-tailed Nemenyi test is used to compare the algorithms
to each other (Demšar 2006). Using this test, the performance of the algorithms is
significantly different if the average ranks differ by at least the critical difference
shown in Eq. 3, where qα = 3.313 is the critical value for α = 0.05, k = 13 being
the number of algorithms and N = 19 being the number of datasets. This gives
CD = 4.186.

CD = qα

√
k(k + 1)

6N
(3)

3 https://xgboost.readthedocs.io/en/latest/python/python_intro.html.
4 https://fda.readthedocs.io/en/latest/.
5 https://github.com/hfawaz/dl-4-tsc.
6 https://github.com/hfawaz/InceptionTime.
7 https://github.com/angus924/rocket.
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CD

13 12 11 10 9 8 7 6 5 4 3 2 1

3.74 Rocket
5.16 InceptionNetwork
5.21 FCN
5.37 XGBoost
5.47 ResNet
5.79 Random Forest
7.16 FPCR

7.21FPCR-BSpline
7.845-NN-DTWD
8.00SVROptimised
9.005-NN-ED
10.111-NN-DTWD
10.951-NN-ED

Fig. 9 Critical difference diagram showing statistical difference comparison of 13 regression algorithms
on the current regression archive

Finally, a critical difference diagramwasused to visualise the comparison,where the
thick horizontal line connecting a group of algorithms indicates that all the algorithms
in the group are not significantly different from one another (Demšar 2006). Figure 9
shows the critical difference diagram of comparing the algorithms used to benchmark
the existing archive. The average ranks are indicated next to the algorithms in the
figure.

The critical difference diagram in Fig. 9 shows that Rocket is the most accurate
algorithmwith an average rank of 3.74 and is significantly different from1-NN-EDand
1-NN-DTWD. The figure also shows that there is no significant difference between the
state-of-the-art time series algorithms and classical regression algorithms. However,
our experiments indicate that Rocket is the most computationally efficient compared
to all other algorithms.

We further compare the relative performance of each algorithmon the current TSER
archive. The relative performance of an algorithm is computed by scaling the RMSE
of each algorithm with the median RMSE obtained for a dataset. Equation 4 describes
the equation to scale the RMSE of algorithm j for dataset i .

scaled_RMSE j
i = RMSE j

i

RMSE j
i + median(RMSEi )

(4)

The algorithm with median RMSE can be interpreted as the algorithm that gives
the average performance for the dataset. Hence, values larger than 0.5 indicate worse
performance, while values smaller than 0.5 indicate a better performance than the
average performance. Figure 10 illustrates the scaled RMSE for each algorithm in the
form of boxplots. It shows that most algorithms have their values around 0.5, while
bespoke time series algorithms such as Rocket, FCN, ResNet and Inception Network
have larger spread in the values and tend to have values smaller than 0.5. This implies
that when time series algorithms perform better, they perform significantly better than
the other algorithms, while the other algorithms tend to perform similarly to an average
algorithm. The median of all algorithms are similar, around 0.5, which suggests that
there is room for better algorithms to be developed for TSER problems.

Table 2 shows a more detailed results of these algorithms on all the datasets in
the archive. The results show that Rocket performs the best overall with the lowest
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Fig. 10 The relative RMSE of each algorithm on the current TSER archive. Values greater than 0.5 indicate
that the algorithm has RMSE higher than the average algorithm while values smaller than 0.5 indicate an
RMSE lower than the average algorithm

average RMSE ranks followed by the other state-of-the-art TSC algorithms. RF and
XGBoost are both very competitive compared with the time series algorithms. This is
expected as XGBoost and RF are both the state of the art in ML algorithms, especially
in popular data science andML competitions (Nielsen 2016). The results also indicate
that the SoFR algorithms are also competitive as they are not significantly different
from the standard regression algorithms. This further strengthens our findings from
Fig. 10 that there is room for better algorithms to be developed for TSER problems
and that new algorithms should also be computationally efficient.

On the tasks of energy and health monitoring, time series algorithms are clearly
performing better than classical regression algorithms, with the top 3 algorithms being
time series algorithms. For instance, Inception network performs the best on heart rate
prediction tasks while Rocket is the most accurate on energy prediction tasks. There
is no clear winner for environment monitoring tasks. Classical regression algorithms
perform better at predicting pollution level while time series algorithms perform better
on the remaining datasets. The reason is that, the pollutionmetrics from these pollution
datasets can be estimated fairly easily by applying a threshold to the measurements
from gas sensors, where classical regression algorithms such as RF and XGBoost are
very good at. Nonetheless, we expect a TSER algorithm that uses feature extraction
techniques such as the TSC counterparts, Shapelet Transform (Lines et al. 2012), Time
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Series Forest (Deng et al. 2013) and BOSS (Schäfer 2015), will perform better than
classical regression algorithms.

Although there is also no clear winner on the new sentiment analysis task that we
propose in this work, the results show that predicting sentiment scores using time
series data is feasible, achieving very low RMSE scores. Both classical regression and
time series algorithms perform similarly on forecasting tasks. This is expected as both
types of algorithms are not designed for forecasting and we expect that a forecasting
algorithm if adapted for TSER will perform better. Besides, the small Covid3Month
dataset with 140 time series of length 84 may not have enough data for the algorithms
to train on. Overall, the results indicate that there is a need to design better TSER
algorithms that can better generalise for most datasets.

5 Conclusion and future work

In this paper, we introduced and motivated the Time Series Extrinsic Regression prob-
lem where the goal is to predict a continuous value using time series data. We showed
some examples of real-life applications where TSER may be useful and discussed
some existing methods for this task. We benchmarked these methods on the first
TSER benchmarking archive and showed that Rocket, one of the state-of-the-art TSC
algorithms performs the best overall. Although time series specific Rocket achieved
the highest overall rank on accuracy, its rank is not statistically distinguishable from
classical machine learning algorithms XGBoost and Random Forest that ignore the
temporal order of the data. This is in contrast to the state-of-the-art in time series clas-
sification, where bespoke algorithms significantly outperform approaches that ignore
the temporal information in the data. Therefore, this suggests much research is needed
to develop better algorithms to improve accuracy on TSER problems.
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