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Abstract
In many domains where data are represented as graphs, learning a similarity metric
amonggraphs is considered a key problem,which can further facilitate various learning
tasks, such as classification, clustering, and similarity search. Recently, there has been
an increasing interest in deep graph similarity learning, where the key idea is to learn a
deep learningmodel thatmaps input graphs to a target space such that the distance in the
target space approximates the structural distance in the input space. Here, we provide
a comprehensive review of the existing literature of deep graph similarity learning.We
propose a systematic taxonomy for the methods and applications. Finally, we discuss
the challenges and future directions for this problem.
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1 Introduction

Learning an adequate similaritymeasure on a feature space can significantly determine
the performance of machine learning methods. Learning such measures automatically
from data is the primary aim of similarity learning. Similarity/Metric learning refers
to learning a function to measure the distance or similarity between objects, which is
a critical step in many machine learning problems, such as classification, clustering,
ranking, etc. For example, in k-Nearest Neighbor (kNN) classification (Cover and
Hart 1967), a metric is needed for measuring the distance between data points and
identifying the nearest neighbors; in many clustering algorithms, similarity measure-
ments between data points are used to determine the clusters. Although there are some
general metrics like Euclidean distance that can be used for getting similarity measure
between objects represented as vectors, these metrics often fail to capture the specific
characteristics of the data being studied, especially for structured data. Therefore, it is
essential to find or learn a metric for measuring the similarity of data points involved
in the specific task.

Metric learning has been widely studied in many fields on various data types. For
instance, in computer vision, metric learning has been explored on images or videos
for image classification, object recognition, visual tracking, and other learning tasks
(Mensink et al. 2012;Guillaumin et al. 2009; Jiang et al. 2012). In information retrieval,
such as in search engines, metric learning has been used to determine the ranking of
relevant documents to a given query (Lee et al. 2008; Lim et al. 2013). In this paper,
we survey the existing work in similarity learning for graphs, which encode relational
structures and are ubiquitous in various domains.

Similarity learning for graphs has been studied for many real applications, such
as molecular graph classification in chemoinformatics (Horváth et al. 2004; Fröh-
lich et al. 2006), protein-protein interaction network analysis for disease prediction
(Borgwardt et al. 2007), binary function similarity search in computer security (Li
et al. 2019), multi-subject brain network similarity learning for neurological disorder
analysis (Ktena et al. 2018), etc. In many of these application scenarios, the num-
ber of training samples available is often very limited, making it a difficult problem
to directly train a classification or prediction model. With graph similarity learning
strategies, these applications benefit from pairwise learning that utilizes every pair of
training samples to learn a metric for mapping the input data to the target space, which
further facilitates the specific learning task.

In the past few decades, many techniques have emerged for studying the similarity
of graphs. Early on, multiple graph similarity metrics were defined, such as the Graph
Edit Distance (Bunke and Allermann 1983), Maximum Common Subgraph (Bunke
and Shearer 1998; Wallis et al. 2001), and Graph Isomorphism (Dijkman et al. 2009;
Berretti et al. 2001), to address the problem of graph similarity search and graph
matching. However, the computation of these metrics is an NP-complete problem in
general (Zeng et al. 2009). Although some pruning strategies and heuristic methods
have been proposed to approximate the values and speed up the computation, it is
difficult to analyze the computational complexities of the above heuristic algorithms
and the sub-optimal solutions provided by them are also unbounded (Zeng et al. 2009).
Therefore, these approaches are feasible only for graphs of relatively small size and
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in practical applications where these metrics are of primary interest. Thus it is hard
to adapt these methods to new tasks. In addition, for other methods that are rela-
tively more efficient, like theWeisfeiler-Lehman method in Douglas (2011), since it is
developed specifically for isomorphism testing without mapping functions, it cannot
be applied for general graph similarity learning. More recently, researchers have for-
mulated similarity estimation as a learning problem where the goal is to learn a model
that maps a pair of graphs to a similarity score based on the graph representations. For
example, graph kernels, such as path-based kernels (Borgwardt and Kriegel 2005) and
the subgraphmatching kernel (Yan et al. 2005; Yoshida et al. 2019), were proposed for
graph similarity learning. Traditional graph embedding techniques, such as geometric
embedding, are also leveraged for graph similarity learning (Johansson and Dubhashi
2015).

With the emergence of deep learning techniques, graph neural networks (GNNs)
have become a powerful new tool for learning representations on graphs with various
structures for various tasks. The main distinction between GNNs and the traditional
graph embedding is that GNNs address graph-related tasks in an end-to-end manner,
where the representation learning and the target learning task are conducted jointly
(Wu et al. 2020), while the graph embedding generally learns graph representations
in an isolated stage and the learned representations are then used for the target task.
Therefore, the GNN deepmodels can better leverage the graph features for the specific
learning task compared to the graph embedding methods. Moreover, GNNs are easily
adapted and extended for various graph related tasks, including deep graph similar-
ity learning tasks in different domains. For instance, in brain connectivity network
analysis in neuroscience, community structure among the nodes (i.e., brain regions)
within the brain network is an essential factor that should be considered when learn-
ing node representations for cross-subject similarity analysis. However, none of the
traditional graph embedding methods are able to capture such special structure and
jointly leverage the learned node representations for similarity learning on brain net-
works. In Ma et al. (2019), a higher-order GNN model is developed to encode the
community-structure of brain networks during the representation learning and lever-
age it for the similarity learning task on these brain networks. Some more examples
from other domains include the GNN-based graph similarity predictive models intro-
duced for chemical compound queries in computational chemistry (Bai et al. 2019a),
and the deep graph matching networks proposed for binary function similarity search
and malware detection in computer security (Li et al. 2019; Wang et al. 2019c).

In this survey paper, we provide a systematic review of the existing work in deep
graph similarity learning. Based on the different graph representation learning strate-
gies and how they are leveraged for the deep graph similarity learning task, we propose
to categorize deep graph similarity learning models into three groups: Graph Embed-
ding based-methods, GNN-based methods, and Deep Graph Kernel-based methods.
Additionally, we sub-categorize the models based on their properties. Table 2 shows
our proposed taxonomy, with some example models for each category as well as the
relevant applications. In this survey, we will illustrate how these different categories
of models approach the graph similarity learning problem. We will also discuss the
loss functions used for the graph similarity learning task.
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Scope and contributions. This paper is focused on surveying the recently emerged
deep models for graph similarity learning, where the goal is to use deep strategies
on graphs for learning the similarity of given pairs of graphs, instead of computing
similarity scores based on predefined measures. We emphasize that this paper does
not attempt to survey the extensive literature on graph representation learning, graph
neural networks, and graph embedding. Priorwork has focused on these topics (seeCai
et al. 2018; Goyal and Ferrara 2018; Lee et al. 2019;Wu et al. 2020; Rossi et al. 2020b;
Cui et al. 2018; Zhang et al. 2018a for examples). Here instead, we focus on deep graph
representation learning methods that explicitly focus on modeling graph similarity. To
the best of our knowledge, this is the first survey paper on this problem.We summarize
the main contributions of this paper as follows:

• Two comprehensive taxonomies to categorize the literature of the emerging field
of deep graph similarity learning, based on the type of models and the type of
features adopted by the existing methods, respectively.

• Summary and discussion of the key techniques and building blocks of the models
in each category.

• Summary and comparison of the different deep graph similarity learning models
across the taxonomy.

• Summary and discussion of the real-world applications that can benefit from deep
graph similarity learning in a variety of domains.

• Summary anddiscussionof themajor challenges for deepgraph similarity learning,
the future directions, and the open problems.

Organization. The rest of the paper is organized as follows. In Sect. 2, we introduce
notation, preliminary concepts, and define the graph similarity learning problem. In
Sect. 3, we introduce the taxonomy with detailed illustrations of the existing deep
models. In Sect. 4, we summarize the datasets and evaluations adopted in the existing
works. In Sect. 5, we present the applications of deep graph similarity learning in
various domains. In Sect. 6, we discuss the remaining challenges in this area and
highlight future directions. Finally, we conclude in Sect. 7.

2 Notation and preliminaries

In this section, we provide the necessary notation and definitions of the fundamental
concepts pertaining to the graph similarity problem that will be used throughout this
survey. The notation is summarized in Table 1.

LetG = (V , E,A) denote a graph,where V is the set of nodes, E ⊆ V×V is the set
of edges, andA ∈ R

|V |×|V | is the adjacencymatrix of the graph. This is a general nota-
tion for graphs that covers different types of graphs, including unweighted/weighted
graphs, undirected/directed graphs, and attributed/non-attributed graphs.

We are also assuming a set of graphs as input, G = {G1,G2, . . . ,Gn}, and the goal
is measure/model their pairwise similarity. This relates to the classical problem of
graph isomorphism and its variants. In graph isomorphism (Miller 1979), two graphs
G = (VG, EG) and H = (VH , EH ) are isomorphic (i.e., G ∼= H ), if there is a
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Table 1 Summary of notation

G Input graph

V The set of nodes in a graph G

E The set of edges in a graph G

a, a,A Scalar, vector, matrix

G Graph set G = {G1,G2, . . . ,Gn}
M Similarity function

si j Similarity score between two graphs Gi ,G j ∈ G
R
m×m m−dimensional Euclidean space

Im Identity matrix of dimension m

AT Matrix transpose

L Laplacian matrix

gθ ∗ x Convolution of gθ and x

mapping function π : VG → VH , such that (u, v) ∈ EG iff (π(u), π(v)) ∈ EH .
The graph isomorphism is an NP problem, and no efficient algorithms are known
for it. Subgraph isomorphism is a generalization of the graph isomorphism problem.
In subgraph isomorphism, the goal is to answer for two input graphs G and H , if
there is a subgraph of G (G ′ ⊂ G) such that G ′ is isomorphic to H (i.e., G ′ ∼=
H ). This is suitable in a setting in which the two graphs have different sizes. The
subgraph isomorphism problem has been proven to be NP-complete (unlike the graph
isomorphism problem) (Garey and Johnson 1979). The maximum common subgraph
problem is another less-restrictive measure of graph similarity, in which the similarity
between two graphs is defined based on the size of the largest common subgraph in
the two input graphs. However, this problem is also NP-complete (Garey and Johnson
1979).

Definition 1 (Graph Similarity Learning) Let G be an input set of graphs, G =
{G1,G2, . . . ,Gn} where Gi = (Vi , Ei ,Ai ). Let M denote a learnable similarity
function, such that M : (Gi ,G j ) → R, for any pair of graphs Gi ,G j ∈ G. Assume
si j ∈ R denote the similarity score computed using M between pairs Gi and G j .
Then M is symmetric if and only if si j = s ji for any pair of graphs Gi ,G j ∈ G. M
should satisfy the property that: sii >= si j for any pair of graphs Gi ,G j ∈ G. And,
si j is minimum if Gi is the complement of G j , i.e, Gi = Ḡ j , for any graph G j ∈ G.

Clearly, graph isomorphism and its related variants (e.g., subgraph isomorphism,
maximum common subgraphs, etc.) are focused on measuring the topological equiv-
alence of graphs, which gives rise to a binary similarity measure that outputs 1 if
two graphs are isomorphic and 0 otherwise. While these methods may sound intu-
itive, they are actually more restrictive and difficult to compute for large graphs. Here
instead, we focus on a relaxed notion of graph similarity that can be measured using
machine learning models, where the goal is to learn a model that quantifies the degree
of structural similarity and relatedness between two graphs. This is slightly similar
to the work done on modeling the structural similarity between nodes in the same
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graph (Ahmed et al. 2020; Rossi and Ahmed 2014; Ahmed et al. 2018). We formally
state the definition of graph similarity learning (GSL) in Definition 1. Note that in the
case of deep graph similarity learning, the similarity function M is a neural network
model that can be trained in an end-to-end fashion.

3 Taxonomy of models

In this section, we describe the taxonomy for the literature of deep graph similarity
learning. As shown in Fig. 1, we propose two intuitive taxonomies for categorizing
the various deep graph similarity learning methods based on the model architecture
and the type of features used in these methods.

First, we start by discussing the categorization based on which model architec-
ture has been used. There are three main categories of deep graph similarity learning
methods (see Fig. 1a): (1) graph embedding basedmethods, which apply graph embed-
ding techniques to obtain node-level or graph-level representations and further use the
representations for similarity learning (Tixier et al. 2019; Nikolentzos et al. 2017;
Narayanan et al. 2017; Atamna et al. 2019; Wu et al. 2018; Wang et al. 2019a; Xu
et al. 2017; Liu et al. 2019b); (2) graph neural network (GNN) basedmodels, which are
based on using GNNs for similarity learning, including GNN-CNNs (Bai et al. 2018,
2019a), Siamese GNNs (Ktena et al. 2018; Ma et al. 2019; Liu et al. 2019a; Wang
et al. 2019c; Chaudhuri et al. 2019) andGNN-based graphmatching networks (Li et al.
2019; Ling et al. 2019; Bai et al. 2019b; Wang et al. 2019b; Jiang et al. 2019; Guo
et al. 2018); and (3) deep graph kernels that first map graphs into a new feature space,
where kernel functions are defined for similarity learning on graph pairs, including
sub-structure based deep kernels (Yanardag and Vishwanathan 2015) and deep neural

Fig. 1 Proposed taxonomy for categorizing the literature of deep graph similarity learning based on amodel
architecture, b type of features
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network based kernels (Al-Rfou et al. 2019; Du et al. 2019). In the meantime, different
methods may use different types of features in the learning process.

Second, we discuss the categorization of methods based on the type of features used
in them. Existing GSL approaches can be generally grouped into two categories (see
Fig. 1b): (1)methods that uses single-graph features (Ktena et al. 2018;Ma et al. 2019;
Liu et al. 2019a;Wang et al. 2019c; Chaudhuri et al. 2019); (2)methods that uses cross-
graph features for similarity learning (Li et al. 2019; Ling et al. 2019; Bai et al. 2019b;
Al-Rfou et al. 2019;Wang et al. 2019b; Bai et al. 2019b). Themain difference between
these two categories of methods is that for methods using single-graph features, the
representation of each graph is learned individually, while those methods that use
cross-graph features allow graphs to learn and propagate features from each other and
the cross-graph interaction is leveraged for pairs of graphs. The single-graph features
mainly includes graph embeddings at different granularity (i.e.,node-level, graph-
level, and subgraph-level), while the cross-graph features includes the cross-graph
node-level features and cross-graph graph-level features, which are usually obtained
by node-level attention and graph-level attention across the two graphs in each pair.

Next, we detail the description of the methods based on the taxonomy in Fig. 1a,
b. We summarize the general characteristics and applications of all the methods in
Table 2, including the type of graphs they are developed for, the type of features, and
the domains/applications where they could be applied. We describe these methods in
the following order:

1. Graph embedding based GSL
2. Graph Neural Network based GSL
3. Deep graph kernel based GSL

3.1 Graph embedding based graph similarity learning

Graph embedding has received considerable attention in the past decade (Cui et al.
2018; Zhang et al. 2018a), and a variety of deep graph embedding models have been
proposed in recent years (Huang et al. 2019; Narayanan et al. 2017; Gao and Ji 2019b),
for example the popular DeepWalk model proposed in (Perozzi et al. 2014) and the
node2vecmodel from (Grover and Leskovec 2016). Similarity learningmethods based
on graph embedding seek to utilize node-level or graph-level representations learned
by these graph embedding techniques for defining similarity functions or predicting
similarity scores (Tsitsulin et al. 2018; Tixier et al. 2019; Narayanan et al. 2017).
Given a collection of graphs, these works first aim to convert each graph G into a
d−dimensional space (d 	 ‖V ‖), where the graph is represented as either a set
of d−dimensional vectors with each vector representing the embedding of one node
(i.e.,node-level embedding) or a d−dimensional vector for the whole graph as the
graph-level embedding (Cai et al. 2018). The graph embeddings are usually learned in
an unsupervisedmanner in a separate stage prior to the similarity learning stage, where
the graph embeddings obtained are used for estimating or predicting the similarity
score between each pair of graphs.
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3.1.1 Node-level embedding based methods

Node-level embedding based methods compare graphs using the node-level repre-
sentations learned from the graphs. The similarity scores obtained by these methods
mainly capture the similarity between the corresponding nodes in two graphs. There-
fore they focus on the local node-level information on graphs during the learning
process.

node2vec-PCA. In Tixier et al. (2019), the node2vec approach (Grover and Leskovec
2016) is employed for obtaining the node-level embeddings of graphs. To make the
embeddings of all the graphs in the given collection comparable, they apply the princi-
pal component analysis (PCA) on the embeddings to retain the first d 	 D principal
components (where D is the dimensionality of the original node embedding space).
Afterwards, the embedding matrix of each graph is split into d/2 2D slices. Suppose
there are n nodes in each graphG and the embedding matrix for graphG is F ∈ R

n×d ,
then d/2 2D slices each with R

n×2 will be obtained, which are viewed as d/2 chan-
nels. Then each 2D slice from the embedding space is turned into regular grids by
discretizing them into a fixed number of equally-sized bins, where the value associate
with each bin is the count of the number of nodes falling into that bin. These bins can
be viewed as pixels. Then, the graph is represented as a stack of 2D histograms of its
node embeddings. The graphs are then compared in the grid space and input into a 2D
CNN as multi-channel image-like structures for a graph classification task.

Bag-of-vectors. InNikolentzos et al. (2017), the nodes of the graphs are first embedded
in the Euclidean space using the eigenvectors of the adjacency matrices of the graphs,
and each graph is then represented as a bag-of-vectors. The similarity between two
graphs is thenmeasured by computing amatching based on theEarthMover’sDistance
(Rubner et al. 2000) between the two sets of embeddings.

Although node embedding based graph similarity learning methods have been
extensively developed, a common problem with these methods is that, since the com-
parison is based on node-level representations, the global structure of the graphs tends
to be ignored, which actually is very important for comparing two graphs in terms of
their structural patterns.

3.1.2 Graph-level embedding basedmethods

The graph-level embedding based methods aim to learn a vector representation for
each graph and then learn the similarity score between graphs based on their vector
representations.

(1) graph2vec. In Narayanan et al. (2017), a graph2vec was proposed to learn dis-
tributed representations of graphs, similar toDoc2vec (Le andMikolov2014) in natural
language processing. In graph2vec each graph is viewed as a document and the rooted
subgraphs around every node in the graph are viewed as words that compose the doc-
ument. There are two main components in this method: first, a procedure to extract
rooted subgraphs around every node in a given graph following theWeisfeiler-Lehman
relabeling process and second, the procedure to learn embeddings of the given graphs
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by skip-gram with negative sampling. The Weisfeiler-Lehman relabeling algorithm
takes the root node of the given graph and degree of the intended subgraph d as inputs,
and returns the intended subgraph. In the negative sampling phase, given a graph and a
set of rooted subgraphs in its context, a set of randomly chosen subgraphs are selected
as negative samples and only the embeddings of the negative samples are updated
in the training. After the graph embedding is obtained for each graph, the similarity
or distance between graphs are computed in the embedding space for downstream
prediction tasks (e.g., graph classification, clustering, etc.).

(2) Neural networks with Structure2vec. In Xu et al. (2017), a deep graph embed-
ding approach is proposed for cross-platform binary code similarity detection. A
Siamese architecture is applied to enable the pair-wise similarity learning, and the
graph embedding network based on Structure2vec (Dai et al. 2016) is used for learn-
ing graph representations in the twin networks, which share weights with each other.
The Structure2vec is a neural network approach inspired by graphical model inference
algorithms where node-specific features are aggregated recursively according to graph
topology. After a few steps of recursion, the network will produce a new feature rep-
resentation for each node which considers both graph characteristics and long-range
interaction between node features. Given is a set of K pairs of graphs < Gi ,Gi

′ >,
with ground truth pair label yi ∈ {+1,−1}, where yi = +1 indicates that Gi and
Gi

′ are similar, and yi = −1 indicates they are dissimilar. With the Structure2vec
embedding output for Gi and Gi

′, represented as fi and fi ′ respectively, they define
the Siamese network output for each pair as

Sim(Gi ,Gi
′) = cos(fi , fi ′) = 〈fi , fi ′〉

‖fi‖ · ‖fi ′‖ (1)

and the following loss function is used for training the model.

L =
K∑

i=1

(Sim(Gi ,Gi
′) − yi )

2 (2)

(3) Simple permutation-invariant GCN. In Atamna et al. (2019), a graph represen-
tation learning method based on a simple permutation-invariant graph convolutional
network is proposed for the graph similarity and graph classification problem. A graph
convolution module is used to encode local graph structure and node features, after
which a sum-pooling layer is used to transform the substructure feature matrix com-
puted by the graph convolutions into a single feature vector representation of the input
graphs. The vector representation is then used as features for each graph, based on
which the graph similarity or graph classification task can be performed.

(4) SEED: sampling, encoding, and embedding distributions. In Wang et al.
(2019a), an inductive and unsupervised graph representation learning approach called
SEED is proposed for graph similarity learning. The proposed framework consists
of three components: sampling, encoding, and embedding distribution. In the sam-
pling stage, a number of subgraphs called WEAVE are sampled based on the random
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walk with earliest visit time. Then in the encoding stage, an autoencoder (Hinton and
Salakhutdinov 2006) is used to encode the subgraphs into dense low-dimensional vec-
tors. Given a set of k sampled WEAVEs {X1, X2, X3, . . . , Xk}, for each subgraph Xi

the autoencoder works as follows.

zi = f (Xi ; θe), X̂i = g(zi ; θd), (3)

where zi is the dense low-dimensional representation for the input WEAVE subgraph
Xi , f (·) is the encoding function implemented with an Multi-layer Perceptron (MLP)
with parameters θe, and g(·) is the decoding function implemented by another MLP
with parameters θd . A reconstruction loss is used to train the autoencoder:

L = ||X − X̂ ||22 (4)

After the autoencoder is well trained, the final subgraph embedding vectors
z1, z2, z3, . . . , and zk can be obtained for each graph. Finally, in the embedding dis-
tribution stage, the distance between the subgraph distributions of two input graphs
G and H is evaluated using the maximum mean discrepancy (MMD) (Gretton et al.
2012) on the embeddings. Assume the k subgraphs sampled from G are encoded into
embeddings z1, z2, . . . , zk , and the k subgraphs of H are encoded into embeddings
h1,h2, . . . ,hk , the MMD distance between G and H is:

M̂MD(G, H) = ||μ̂G − μ̂H ||22 (5)

where μ̂G and μ̂H are empirical kernel embeddings of the two distributions, which
are defined as:

μ̂G = 1

k

k∑

i=1

φ(zi ), μ̂H = 1

k

k∑

i=1

φ(hi ) (6)

where φ(·) is the feature mapping function used for the kernel function for graph
similarity evaluation. An identity kernel is applied in this work.

(5) DGCNN: disordered graph CNN. In Wu et al. (2018), another graph-level rep-
resentation learning approach called DGCNN is introduced based on graph CNN and
mixed Gaussian model, where a set of key nodes are selected from each graph. Specif-
ically, to ensure the number of neighborhoods of the nodes in each graph is consistent,
the same number of key nodes are sampled for each graph in a key node selection
stage. Then a convolution operation is performed over the kernel parameter matrix
and the nodes in the neighborhood of the selected key nodes, after which the graph
CNN takes the output of the convolutional layer as the input data of the overall con-
nection layer. Finally, the output of the dense hidden layer is used as the feature vector
for each graph in the graph similarity retrieval task.

(6) N-Gram graph embedding. In Liu et al. (2019b), an unsupervised graph repre-
sentation based method called N -gram is proposed for similarity learning onmolecule
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graphs. It first views each node in the graph as one token and applies an analog of the
CBOW (continuous bag of words) (Mikolov et al. 2013) strategy and trains a neural
network to learn the node embeddings for each graph. Then it enumerates the walks of
length n in each graph, where each walk is called an n-gram, and obtains the embed-
ding for each n-gram by assembling the embeddings of the nodes in the n-gram using
element-wise product. The embedding for the n-gram walk set is defined as the sum
of the embeddings for all n-grams. The final n-gram graph-level representation up to
lenght T is then constructed by concatenating the embeddings of all the n-gram sets
for n ∈ {1, 2, . . . , T } in the graph. Finally, the graph-level embeddings are used for
the similarity prediction or graph classification task for molecule analysis.

By summarizing the embedding basedmethods,we find themain advantage of these
methods is their speed and scalability, due to the fact that the graph representations
learned through these factorized models are developed on each single graph where
there is no feature interactions across graphs. This property makes these methods a
great option for graph similarity learning applications such as graph retrieval, where
similarity search becomes a nearest neighbor search in a database of the precomputed
graph representations by these factorized methods. Moreover, these embedding based
methods provide a variety of perspectives and strategies for learning representations
from graphs and demonstrate that these representations can be used for graph simi-
larity learning. However, there are also shortcomings in these solutions, a common
one being that the embeddings are learned independently on the individual graphs in
a separate stage from the similarity learning, therefore the graph-graph proximity is
not considered or utilized in the graph representation learning process, and the rep-
resentations learned by these models may not be suitable for graph-graph similarity
prediction compared to the methods that integrate the similarity learning with the
graph representation learning in an end-to-end framework.

3.2 GNN-based graph similarity learning

The similarity learning methods based on Graph Neural Networks (GNNs) seek to
learn graph representations byGNNswhile doing the similarity learning task in an end-
to-end fashion. Figure 2 illustrates a general workflow of GNN-based graph similarity
learning models. Given pairs of input graphs < Gi ,G j , yi j >, where yi j denotes the
ground-truth similarity label or score of < Gi ,G j >, the GNN-based GSL methods
first employ multi-layer GNNs with weightsW to learn the representations for Gi and
G j in the encoding space, where the learning on each graph in a pair could influence
each other by some mechanisms such as weight sharing and cross-graph interactions
between the GNNs for the two graphs. Amatrix or vector representation will be output
for each graph by the GNN layers, after which a dot product layer or fully connected
layers can be added to produce or predict the similarity scores between two graphs.
Finally, the similarity estimates for all pairs of graphs and their ground-truth labels
are used in a loss function for training the model M with parameters W .
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Before introducing the methods in this category, we provide the necessary back-
ground on GNNs.

GNN preliminaries. Graph neural networks (GNNs) were first formulated in Gori
et al. (2005),which proposed to use a propagation process to learn node representations
for graphs. It has then been further extended by Scarselli et al. (2008) and Gallicchio
and Micheli (2010). Later, graph convolutional networks were proposed which com-
pute node updates by aggregating information in local neighborhoods (Bruna et al.
2013; Defferrard et al. 2016; Kipf and Welling 2016), and they have become the most
popular graph neural networks, which are widely used and extended for graph repre-
sentation learning in various domains (Zhou et al. 2018; Zhang et al. 2018b; Gao et al.
2018; Gao and Ji 2019a, b).

With the development of graph neural networks, researchers began to build graph
similarity learning models based on GNNs. In this section, we will first introduce the
workflow of GCNs with the spectral GCN (Shuman et al. 2013) as an example, and
then describe the GNN-based graph similarity learning methods covering three main
categories.

Given a graph G = (V , E,A), where V is the set of vertices, E ⊂ V × V is the
set of edges, and A ∈ R

m×m is the adjacency matrix, the diagonal degree matrix D
will have elements Di i = ∑

j Ai j . The graph Laplacian matrix is L = D − A, which

can be normalized as L = Im −D− 1
2AD− 1

2 , where Im is the identity matrix. Assume
the orthonormal eigenvectors of L are represented as {ul}m−1

l=0 ∈ R
m×m , and their

associated eigenvalues are {λl}m−1
l=0 , the Laplacian is diagonalized by the Fourier basis

[u0, . . . , um−1](= U) ∈ R
m×m and L = U3UT where 3 = diag([λ0, . . . , λm−1]) ∈

R
m×m . The graph Fourier transform of a signal x ∈ R

m can then be defined as
x̂ = UTx ∈ R

m (Shuman et al. 2013). Suppose a signal vector x : V → R is defined
on the nodes of graph G, where xi is the value of x at the i th node. Then the signal x
can be filtered by gθ as

y = gθ ∗ x = gθ (L)x = gθ (U3UT)x = Ugθ (�)UTx (7)

where the filter gθ (�) can be defined as gθ (�) = ∑K−1
k=0 θk�

k , and the parameter
θ ∈ R

K is a vector of polynomial coefficients (Defferrard et al. 2016). GCNs can be
constructed by stacking multiple convolutional layers in the form of Eq. (7), with a
non-linearity activation (ReLU) following each layer.

Based on how graph-graph similarity/proximity is leveraged in the learning, we
summarize the existing GNN-based graph similarity learning work into three main
categories: (1) GNN-CNN mixed models for graph similarity prediction, (2) Siamese
GNNs for graph similarity prediction, and (3) GNN-based graph matching networks.

3.2.1 GNN-CNNmodels for graph similarity prediction

The works that use GNN-CNNmixed networks for graph similarity prediction mainly
employ GNNs to learn graph representations and leverage the learned representations
into CNNs for predicting similarity scores, which is approached as a classification or
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Fig. 2 Illustration of GNN-based graph similarity learning

regression problem. Fully connected layers are often added for the similarity score
prediction in an end-to-end learning framework.

(1) GSimCNN. In Bai et al. (2018), a method called GSimCNN is proposed for
pairwise graph similarity prediction, which consists of three stages. In Stage 1, node
representations are first generated by multi-layer GCNs, where each layer is defined
as

conv(xi ) = ReLU (
∑

j∈N (i)

1√
did j

x jW(l) + b(l)) (8)

where N (i) is the set of first-order neighbors of node i plus node i itself, di is the degree
of node i plus 1, W(l) is the weight matrix for the l−th GCN layer, b(l) is the bias,
and ReLU (x) = max(0, x) is the activation function. In Stage 2, the inner products
between all possible pairs of node embeddings between two graphs from different
GCN layers are calculated, which results in multiple similarity matrices. Finally, the
similaritymatrices from different layers are processed bymultiple independent CNNs,
where the output of the CNNs are concatenated and fed into fully connected layers
for predicting the final similarity score si j for each pair of graphs Gi and G j .

(2) SimGNN. In Bai et al. (2019a), a SimGNN model is introduced based on the
GSimCNN from (Bai et al. 2018). In addition to pairwise node comparison with node-
level embeddings from the GCN output, neural tensor networks (NTN) (Socher et al.
2013) are utilized to model the relation between the graph-level embeddings of two
input graphs, whereas the graph embedding for each graph is generated via a weighted
sumof node embeddings, and a global context-aware attention is applied on each node,
such that nodes similar to the global context receive higher attention weights. Finally,
both the comparison between node-level embeddings and graph-level embeddings are
considered for the similarity score prediction in the CNN fully connected layers.
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Fig. 3 Siamese architecture with graph convolutional networks

3.2.2 Siamese GNNmodels for graph similarity learning

This category of works uses the Siamese network architecture with GNNs as twin
networks to simultaneously learn representations from two graphs, and then obtain a
similarity estimate based on the output representations of theGNNs. Figure 3 shows an
example of Siamese architecturewithGCNs in the twin networks,where theweights of
the networks are shared with each other. The similarity estimate is typically leveraged
in a loss function for training the network.

(1) Siamese GCN. The work in Ktena et al. (2018) proposes to learn a graph similarity
metric using the Siamese graph convolutional neural network (S-GCN) in a supervised
setting. The S-GCN takes a pair of graphs as inputs and employs spectral GCN to get
graph embedding for each input graph, after which a dot product layer followed by
a fully connected layer is used to produce the similarity estimate between the two
graphs in the spectral domain.

(2) Higher-order Siamese GCN.Higher-order Siamese GCN (HS-GCN) is proposed
in Ma et al. (2019), which incorporates higher-order node-level proximity into graph
convolutional networks so as to perform higher-order convolutions on each of the input
graphs for the graph similarity learning task. A Siamese framework is employed with
the proposed higher-order GCN in each of the twin networks. Specifically, random
walk is used for capturing higher-order proximity from graphs and refining the graph
representations used in graph convolutions. Both this work and the S-GCN (Ktena
et al. 2018) introduced above use the Hinge loss for training the Siamese similarity
learning models:

LHinge = 1

K

N∑

i=1

N∑

j=i+1

max(0, 1 − yi j si j ), (9)

where N is the total number of graphs in the training set, K = N (N − 1)/2 is the
total number of pairs from the training set, yi j is the ground-truth label for the pair
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of graphs Gi and G j where yi j = 1 for similar pairs and yi j = −1 for dissimilar
pairs, and si j is the similarity score estimated by the model. More general forms of
higher-order information [e.g., motifs (Ahmed et al. 2015, 2017b)] have been used
for learning graph representations (Rossi et al. 2018, 2020a) and would likely benefit
the learning.

(3) Community-preserving Siamese GCN. In Liu et al. (2019a), another Siamese
GCNbasedmodel calledSCP-GCNis proposed for the similarity learning in functional
and structural joint analysis of brain networks, where the graph structure used in the
GCN is defined from the structural connectivity network while the node features come
from the functional brain network. The contrastive loss (Eq. 10) along with a newly
proposed community-preserving loss (Eq. 11) is used for training the model.

LContrastive = yi j
2

‖gi − g j‖22 + (1 − yi j )
1

2
{max(0,m − ‖gi − g j‖2)}2 (10)

where gi and g j are the graph embeddings of graph Gi and graph G j computed from
the GCN, m is a margin value which is greater than 0. yi j = 1 if Gi and G j are
from the same class and yi j = 0 if they are from different classes. By minimizing the
contrastive loss, the Euclidean distance between two graph embedding vectors will be
minimized when the two graphs are from the same class, and maximized when they
belong to different classes. The community-preserving loss is defined as follows.

LCP = α(
∑

c

1

|Sc|
∑

i∈Sc
‖zi − ẑc‖22) − β

∑

c,c′
‖ẑc − ẑc′ ‖22 (11)

where Sc contains the indexes of nodes belonging to community c, ẑc = 1
|Sc|

∑
i∈Sc zi

is the community center embedding for each community c, where zi is the embedding
of the i th node, i.e., the i th row in the node embedding Z of the GCN output, and α

and β are the weights balancing the intra/inter-community loss.

(4) Hierarchical Siamese GNN. In Wang et al. (2019c), a Siamese network with two
hierarchical GNN models is introduced for the similarity learning of heterogeneous
graphs for unknown malware detection. Specifically, they consider the path-relevant
sets of neighbors according tometa-paths and generate node embeddings by selectively
aggregating the entities in each path-relevant neighbor set. The loss function in Eq. (2)
is used for training the model.

(5) Siamese GCN for image retrieval. In Chaudhuri et al. (2019), Siamese GCNs are
used for content based remote sensing image retrieval, where each image is converted
to a region adjacency graph in which each node represents a region segmented from
the image. The goal is to learn an embedding space that pulls semantically coherent
images closer while pushing dissimilar samples far apart. Contrastive loss is used in
the model training.

Since the twin GNNs in the Siamese network share the same weights, an advantage
of the SiameseGNNmodels is that the two input graphs are guaranteed to be processed
in the samemanner by the networks. As such, similar input graphs would be embedded
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Fig. 4 Comparison of the learning process of Siamese GNN and GNN-based graph matching network

similarly in the latent space. Therefore, the Siamese GNNs are good for differentiating
the two input graphs in the latent space or measuring the similarity between them.

In addition to choosing the appropriate GNN models in the twin networks, one
needs to choose a proper loss function. Another widely used loss function for Siamese
network is the triplet loss (Schroff et al. 2015). For a triplet (Gi ,Gp,Gn), Gp is from
the same class as Gi , while Gn is from a different class from Gi . The triplet loss is
defined as follows.

LTriplet = 1

K

∑

K

max(dip − din + m, 0) (12)

where K is the number of triplets used in the training, dip represents the distance
betweenGi andGp, din represents the distance betweenGi andGn , andm is a margin
value which is greater than 0. By minimizing the triplet loss, the distance between
graphs from same class (i.e., dip) will be pushed to 0, and the distance between graphs
from different classes (i.e.,din will be pushed to be greater than dip + m.

It is important to consider which loss function would be suitable for the targeted
problem when applying these Siamese GNN models for the graph similarity learning
task in practice.

3.2.3 GNN-based graphmatching networks

The work in this category adapts Siamese GNNs by incorporating matching mecha-
nisms during the learning with GNNs, and cross-graph interactions are considered in
the graph representation learning process. Figure 4 shows this difference between the
Siamese GNNs and the GNN-based graph matching networks.

(1) GMN: graph matching network. In Li et al. (2019), a GNN based architecture
calledGraphMatchingNetwork (GMN) is proposed, where the node updatemodule in
each propagation layer takes into account both the aggregated messages on the edges
for each graph and a cross-graph matching vector which measures how well a node
in one graph can be matched to the nodes in the other graph. Given a pair of graphs
as input, the GMN jointly learns graph representations for the pair through the cross-
graph attention-based matching mechanism, which propagates node representations
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by using both the neighborhood information within the same graph and cross-graph
node information. A similarity score between the two input graphs is computed in the
latent vector space.

(2) NeuralMCS: neural maximum common subgraph GMN. Based on the graph
matching network in Li et al. (2019) and Bai et al. (2019b) proposes a neural maximum
common subgraph (MCS) detection approach for learning graph similarity. The graph
matching network is adapted to learn node representations for two input graphs G1
and G2, after which a likelihood of matching each node in G1 to each node in G2 is
computed by a normalized dot product between the node embeddings. The likelihood
indicateswhich node pair ismost likely to be in theMCS, and the likelihood for all pairs
of nodes constitutes the matching matrix Y for G1 and G2. Then a guided subgraph
extraction process is applied, which starts by finding themost likely pair and iteratively
expands the extracted subgraphs by selecting onemore pair at a time until addingmore
pairs would lead to non-isomorphic subgraphs. To check the subgraph isomorphism,
subgraph-level embeddings are computed by aggregating the node embeddings of the
neighboring nodes that are included in the MCS, and Euclidean distance between
the subgraph embeddings are computed. Finally, a similarity/match score is obtained
based on the subgraphs extracted from G1 and G2.

(3) Hierarchical graph matching network. In Ling et al. (2019), a hierarchical
graph matching network is proposed for graph similarity learning, which consists
of a Siamese GNN for learning global-level interactions between two graphs and a
multi-perspective node-graph matching network for learning the cross-level node-
graph interactions between parts of one graph and one whole graph. Given two graphs
G1 and G2 as inputs, a three-layer GCN is utilized to generate embeddings for them,
and aggregation layers are added to generate the graph embedding vector for each
graph. In particular, cross-graph attention coefficients are calculated between each
node in G1 and all the nodes in G2, and between each node in G2 and all the nodes
in G1. Then the attentive graph-level embeddings are generated using the weighted
average of node embeddings of the other graph, and a multi-perspective matching
function is defined to compare the node embeddings of one graph with the attentive
graph-level embeddings of the other graph. Finally, the BiLSTMmodel (Schuster and
Paliwal 1997) is used to aggregate the cross-level interaction feature matrix from the
node-graph matching layer, followed by the final prediction layers for the similarity
score learning.

(4) NCMN: neural graph matching network. In Guo et al. (2018), a Neural Graph
Matching Network (NGMN) is proposed for few-shot 3D action recognition, where
3D data are represented as interaction graphs. A GCN is applied for updating node
features in the graphs and an MLP is employed for updating the edge strength. A
graph matching metric is then defined based on both node matching features and
edge matching features. In the proposed NGMN, edge generation and graph matching
metric are learned jointly for the few-shot learning task.

Recently, deep graph matching networks were introduced for the graph matching
problem for image matching (Fey et al. 2019; Zanfir and Sminchisescu 2018; Jiang
et al. 2019; Wang et al. 2019b). Graph matching aims to find node correspondence
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between graphs, such that the corresponding node and edge’s affinity is maximized.
Although the problem of graphmatching is different from the graph similarity learning
problem we focus on in this survey and is beyond the scope of this survey, some work
on deep graph matching networks involves graph similarity learning and thus we
review some of this work below to provide some insights into how deep similarity
learning may be leveraged for graph matching applications, such as image matching.

(5) GMNs for image matching. In Jiang et al. (2019), a Graph Learning-Matching
Network is proposed for image matching. A CNN is first utilized to extract feature
descriptors of all feature points for the input images, and graphs are then constructed
based on the features. Then the GCNs are used for learning node embeddings from
the graphs, in which both intra-graph convolutions and cross-graph convolutions are
conducted. The final matching prediction is formulated as node-to-node affinitymetric
learning in the embedding space, and the constraint regularized loss along with cross-
entropy loss is used for the metric learning and the matching prediction. In Wang
et al. (2019b), another GNN-based graph matching network is proposed for the image
matching problem, which consists of a CNN image feature extractor, a GNN-based
graph embedding component, an affinity metric function and a permutation prediction
component, as an end-to-end learnable framework. Specifically, GCNs are used to
learn node-wise embeddings for intra-graph affinity, where a cross-graph aggregation
step is introduced to aggregate features of nodes in the other graph for incorporating
cross-graph affinity into the node embeddings. The node embeddings are then used for
building an affinity matrix that contains the similarity scores at the node level between
two graphs, and the affinity matrix is further used for the matching prediction. The
cross-entropy loss is used to train the model end-to-end.

3.3 Deep graph kernels

Graph kernels have become a standard tool for capturing the similarity between graphs
for tasks such as graph classification (Vishwanathan et al. 2010). Given a collection
of graphs, possibly with node or edge attributes, the work in graph kernel aim to learn
a kernel function that can capture the similarity between any two graphs. Traditional
graph kernels, such as random walk kernels, subtree kernels, and shortest-path ker-
nels have been widely used in the graph classification task (Nikolentzos et al. 2019).
Recently, deep graph kernel models have also emerged, which build kernels based on
the graph representations learned via deep neural networks.

3.3.1 Deep graph kernels

In Yanardag and Vishwanathan (2015), a Deep Graph Kernel approach is proposed.
For a given set of graphs, each graph is decomposed into its sub-structures. Then the
sub-structures are viewed as words and neural language models in the form of CBOW
(continuous bag-of-words) and Skip-gram are used to learn latent representations of
sub-structures from thegraphs,where corpora are generated for theShortest-path graph
and Weisfeiler-Lehman kernels in order to measure the co-occurrence relationship
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Fig. 5 The graph representation learning in the deep divergence graph kernels (Al-Rfou et al. 2019)

between substructures. Finally, the kernel between two graphs is defined based on the
similarity of the sub-structure space.

3.3.2 Deep divergence graph kernels

In Al-Rfou et al. (2019), a model called Deep Divergence Graph Kernels (DDGK) is
introduced to learn kernel functions for graph pairs. Given two graphs G1 and G2,
they aim to learn an embedding based kernel function k() as a similarity metric for
graph pairs, defined as:

k(G1,G2) = ‖	(G1) − 	(G2)‖2 (13)

where 	(Gi ) is a representation learned for Gi . This work proposes to learn graph
representation by measuring the divergence of the target graph across a population of
source graph encoders. Given a source graph collection {G1,G2, . . . ,Gn}, a graph
encoder is first trained to learn the structure of each graph in the source collection.
Then, for a target graphGT , the divergence ofGT from each source graph ismeasured,
after which the divergence scores are used to compose the vector representation of the
target graph GT . Figure 5 illustrates the above graph representation learning process.
Specifically, the divergence score between a target graphGT = (VT , ET ) and a source
graph GS = (VS, ES) is computed as follows:

D′(GT ‖GS) =
∑

vi∈VT

∑

j
ei j∈ET

−logPr(v j |vi , HS) (14)

where HS is the encoder trained on graph S.

3.3.3 Graph neural tangent kernel

In Du et al. (2019), a Graph Neural Tangent Kernel (GNTK) is proposed for fusing
GNNs with the neural tangent kernel, which is originally formulated for fully-
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connected neural networks in Jacot et al. (2018) and later introduced to CNNs in
Arora et al. (2019). Given a pair of graphs < G,G ′ >, they first apply GNNs on the
graphs. Let f (θ,G) ∈ R be the output of the GNN under parameters θ ∈ R

m on
input Graph G, where m is the dimension of the parameters. To get the corresponding
GNTK value, they calculate the expected value of

〈
∂ f (θ,G)

∂θ
,
∂ f (θ,G ′)

∂θ

〉
(15)

in the limit that m → ∞ and θ are all Gaussian random variables.
Meanwhile, there are also some deep graph kernels proposed for the node repre-

sentation learning on graphs for node classification and node similarity learning. For
instance, in Tian et al. (2019), a learnable kernel-based framework is proposed for node
classification, where the kernel function is decoupled into a feature mapping function
and a base kernel. An encoder-decoder function is introduced to project each node
into the embedding space and reconstructs pairwise similarity measurements from the
node embeddings. Since we focus on the similarity learning between graphs in this
survey, we will not discuss this work further.

4 Datasets and evaluation

In this section, we summarize the characteristics of the datasets that are frequently
used in deep graph similarity learning methods and the experimental evaluation
adopted by these methods.

4.1 Datasets

Graph data from various domains have been used to evaluate graph similarity learning
methods (Rossi and Ahmed 2015), for example, protein-protein graphs from bioinfor-
matics, chemical compound graphs from chemoinformatics, and brain networks from
neuroscience, etc. We summarize the benchmark datasets that are frequently used in
deep graph similarity learning methods in Table 3.

In addition to these datasets, synthetic graph datasets or other domain-specific
datasets are also widely used in some graph similarity learning works. For example,
in Li et al. (2019) and Fey et al. (2019), control flow graphs of binary functions are
generated and used to evaluate graph matching networks for binary code similarity
search. In Wang et al. (2019c), attacks are conducted on testing machines to generate
malware data, which are then merged with normal data to evaluate the Siamese GNN
model for malware detection. In Jiang et al. (2019), images are collected frommultiple
categories and keypoints are annotated in the images to evaluate the proposed model
for graph matching.
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4.2 Evaluation

During evaluation, most GSL methods take pairs or triplets of graphs as input during
training with various objective functions used for various graph similarity tasks. The
existing evaluation tasks mainly include pair classification (Xu et al. 2017; Ktena
et al. 2018; Ma et al. 2019; Li et al. 2019; Fey et al. 2019), graph classification (Tixier
et al. 2019; Nikolentzos et al. 2017; Narayanan et al. 2017; Atamna et al. 2019; Wu
et al. 2018;Wang et al. 2019a; Liu et al. 2019b; Yanardag and Vishwanathan 2015; Al-
Rfou et al. 2019; Du et al. 2019), graph clustering (Wang et al. 2019a), graph distance
prediction (Bai et al. 2018, 2019a; Fey et al. 2019), and graph similarity search (Wang
et al. 2019c). Classification AUC (i.e., Area Under the ROC Curve) or accuracy are
used as the most popular metric for the evaluation of graph-pair classification or graph
classification task (Ma et al. 2019; Li et al. 2019). Mean squared error (MSE) is used
as evaluation metric for the regression task in graph distance prediction (Bai et al.
2018, 2019a).

According to the evaluation results reported in the above works, the deep graph
similarity learning methods tend to outperform the traditional methods. For example,
Al-Rfou et al. (2019) shows that the deep divergence graph kernel approach achieves
higher classification accuracy scores compared to traditional graph kernels such as
the shortest-path kernel (Borgwardt and Kriegel 2005) and Weisfeiler–Lehman ker-
nel (Kriege et al. 2016) in most cases for the graph classification task. Meanwhile,
among the deep methods, methods that allow for cross-graph feature interaction tend
to achieve a better performance compared to the factorized methods that relies only
on single graph features. For instance, the experimental evaluations in Li et al. (2019)
and Fey et al. (2019) have demonstrated that the GNN-based graphmatching networks
have superior performance than the Siamese GNNs in pair classification and graph
edit distance prediction tasks.

The efficiency of different methods is also analyzed and evaluated in some of
these works. In Bai et al. (2019a), some evaluations have been done for comparing
the efficiency of the GNN based graph similarity learning approach SimGNN with
traditional GED approximation methods including A*-Beamsearch (Neuhaus et al.
2006), Hungarian (Riesen and Bunke 2009) and VJ (Fankhauser et al. 2011), where
the core operation for GED approximation may take polynomial or sub-exponential
to the number of nodes in the graphs. For the GNN based model like SimGNN, to
compute similarity scores for pairs of graphs, the time complexity mainly involves
two parts: (1) the node-level and graph-level embedding computation stages, where
the time complexity is O(|E |), and |E | is the number of edges of the graph (Kipf
and Welling 2016); and (2) the similarity score computation stage, where the time
complexity is O(D2K ) (D is the dimension of the graph-level embedding, and K is
the feature map dimension used in the graph-graph interaction stage) for the strategy
of using graph-level embedding interaction, and the time complexity is O(DN 2) (N
is the number of nodes in the larger graph). The experimental evaluations in Bai et al.
(2019a) show that the GNN based models consistently achieve the best results in
efficiency and effectiveness for the pairwise GED computation (Bai et al. 2019a) on
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multiple graph datasets, demonstrating the benefit of using these deep models for the
similarity learning tasks.

5 Applications

Graph similarity learning is a fundamental problem in domains where data are repre-
sented as graph structures, and it has various applications in the real world.

5.1 Computational chemistry and biology

An important application of graph similarity learning in the chemistry and biology
domain is to learn the chemical similarity, which aims to learn the similarity of chemi-
cal elements, molecules or chemical compounds with respect to their effect on reaction
partners in inorganic or biological settings (Brown 2009). An example is the com-
pounds query for in-silico drug screening, where searching for similar compounds in
a database is the key process.

In the literature of graph similarity learning, quite a number of models have been
proposed and applied to similarity learning for chemical compounds or molecules.
Among these work, the traditional models mainly employ sub-graph based search
strategies or graph kernels to solve the problem (Zhang et al. 2013; Zeng et al. 2009;
Swamidass et al. 2005; Mahé and Vert 2009). However, these methods tend to have
high computational complexity and strongly rely on the sub-graph or kernels defined,
making it difficult to use them in real applications. Recently, a deep graph similarity
learning model SimGNN is proposed in Bai et al. (2019a) which also aims to learn
similarity for chemical compounds as one of the tasks. Instead of using sub-graphs
or other explicit features, the model adopts GCNs to learn node-level embeddings,
which are fed into an attention module after multiple layers of GCNs to generate the
graph-level embeddings. Then a neural tensor network (NTN) (Socher et al. 2013)
is used to model the relation between two graph-level embeddings, and the output
of the NTN is used together with the pairwise node embedding comparison output
in the fully connected layers for predicting the graph edit distance between the two
graphs. This work has shown that the proposed deep learning model outperforms the
traditional methods for graph edit distance computation in prediction accuracy and
with much less running time, which indicates the promising application of the deep
graph similarity learning models in the chemo-informatics and bio-informatics.

5.2 Neuroscience

Many neuroscience studies have shown that structural and functional connectivity of
the human brain reflects the brain activity patterns that could be indicators of the brain
health status or cognitive ability level (Badhwar et al. 2017; Ma et al. 2017a, b). For
example, the functional brain connectivity networks derived from fMRI neuroimaging
data can reflect the functional activity across different brain regions, and people with
brain disorder like Alzheimer’s disease or bipolar disorder tend to have functional
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activity patterns that differ from those of healthy people (Badhwar et al. 2017; Syan
et al. 2018; Ma et al. 2016). To investigate the difference in brain connectivity patterns
for these neuroscience problems, researchers have started to study the similarity of
brain networks among multiple subjects with graph similarity learning methods (Lee
et al. 2020; Ktena et al. 2018; Ma et al. 2019).

The organization of functional brain networks is complicated and usually con-
strained by various factors, such as the underlying brain anatomical network, which
plays an important role in shaping the activity across the brain. These constraints make
it a challenging task to characterize the structure and organization of brain networks
while performing similarity learning on them. Recent work in Ktena et al. (2018),
Ma et al. (2019) and Liu et al. (2019a) have shown that the deep graph models based
on graph convolutional networks have a superior ability to capture brain connectiv-
ity features for the similarity analysis compared to the traditional graph embedding
based approaches. In particular, Ma et al. (2019) proposes a higher-order Siamese
GCN framework that leverages higher-order connectivity structure of functional brain
networks for the similarity learning of brain networks.

In view of thework introduced above and the trending research problems in the field
of neuroscience, we believe that deep graph similarity learning will benefit the clinical
investigation of many brain diseases and other neuroscience applications. Promising
research directions include, but are not limited to, deep similarity learning on resting-
state or task-related fMRI brain networks for multi-subject analysis with respect to
brain health status or cognitive abilities, deep similarity learning on the temporal or
multi-task fMRI brain networks of individual subjects for within-subject contrastive
analysis over time or across tasks for neurological disorder detection. Some example
fMRI brain network datasets that can be used for such analysis have been introduced
in Table 3.

5.3 Computer security

In the field of computer security, graph similarity has also been studied for various
application scenarios, such as the hardware security problem (Fyrbiak et al. 2019),
the malware indexing problem based on function-call graphs (Hu et al. 2009), and the
binary function similarity search for identifying vulnerable functions (Li et al. 2019).

In Fyrbiak et al. (2019), a graph similarity heuristic is proposed based on spectral
analysis of adjacency matrices for the hardware security problem, where evaluations
are done for three tasks, including gate-level netlist reverse engineering, Trojan detec-
tion, and obfuscation assessment. The proposed method outperforms the graph edit
distance approximation algorithmproposed inHu et al. (2009) and the neighbormatch-
ing approach (Vujošević-Janičić et al. 2013), which matches neighboring vertices
based on graph topology. Li et al. (2019) is the work that introduced GNN-based
deep graph similarity learning models to the security field to solve the binary function
similarity search problem. Compared to previous models, the proposed deep model
computes similarity scores jointly on pairs of graphs rather than first independently
mapping each graph to a vector, and the node representation update process uses an
attention-based module which considers both within-graph and cross-graph informa-
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tion. Empirical evaluations demonstrate the superior performance of the proposed deep
graph matching networks compared to the Google’s open source function similarity
search tool (Dullien 2018), the basic GNN models, and the Siamese GNNs.

5.4 Computer vision

Graph similarity learning has also been explored for applications in computer vision. In
Wu et al. (2014), context-dependent graph kernels are proposed tomeasure the similar-
ity between graphs for human action recognition in video sequences. Two directed and
attributed graphs are constructed to describe the local features with intra-frame rela-
tionships and inter-frame relationships, respectively. The graphs are decomposed into
a number of primary walk groups with different walk lengths, and a generalized mul-
tiple kernel learning algorithm is applied to combine all the context-dependent graph
kernels, which further facilitates human action classification. In Guo et al. (2018),
a deep model called Neural Graph Matching Network is first introduced for the 3D
action recognition problem in the few-shot learning setting. Interaction graphs are con-
structed from the 3D scenes, where the nodes represent physical entities in the scene
and edges represent interactions between the entities. The proposed NGM Networks
jointly learn a graph generator and a graph matching metric function in an end-to-
end fashion to directly optimize the few-shot learning objective. It has been shown to
significantly improve the few-shot 3D action recognition over the holistic baselines.

Another emerging application of graph similarity learning in computer vision is the
imagematching problem,where the goal is to find consistent correspondences between
the sets of features in two images. As introduced at the end of Sect. 3.2, recently some
deep graphmatching networks have been developed for the imagematching task (Jiang
et al. 2019; Wang et al. 2019b), where images are first converted to graphs and the
image matching problem is then solved as a graph matching problem. In the graph
converted froman image, the nodes represent the unary descriptors of annotated feature
points in images, and edges encode the pairwise relationships among different feature
points in that image. Based on the new graph representation, the feature matching
can be reformulated as graph matching problem. However, it is worth noting that,
this graph matching is actually the graph node matching, as the goal is to match the
nodes between graphs instead of two entire graphs. Therefore, the graph based image
matching problem is a special case or a sub-problem of the general graph matching
problem.

The two application problems discussed above are both promising directions of
applying deep graph similarity learning models for the practical learning tasks in com-
puter vision. A key advice we provide on applying graph similarity learning methods
for these image applications is to first find an appropriate mapping for converting the
images to graphs, so that the learning tasks on images can be formulated as the graph
similarity learning based tasks.
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6 Challenges

6.1 Various graph types

In most of the work discussed above, the graphs involved consist of unlabeled
nodes/edges and undirected edges. However, there are many variants of graphs in
real-world applications. How to build deep graph similarity learning models for these
various graph types is a challenging problem.

Directedgraphs. In someapplication scenarios, the graphs are directed,whichmeans
all the edges in the graph are directed from one vertex to another. For instance, in
a knowledge graph, edges go from one entity to another, where the relationship is
directed. In such cases, we should treat the information propagation process differ-
ently according to the direction of the edge. Recently some GCN based graph models
have suggested some strategies for dealing with such directed graphs. In Kampffmeyer
et al. (2019), a dense graph propagation strategy is proposed for the propagation on
knowledge graphs, where two kinds of weight matrices are introduced for the prop-
agation based on a node’s relationship to its ancestors and descendants, respectively.
However, to the best of our knowledge, no work has been done on deep similarity
learning specifically for directed graphs, which arises as a challenging problem for
this community.

Labeled graphs. Labeled graphs are graphs where vertices or edges have labels.
For example, in chemical compound graphs where vertices denote the atoms and the
edges represent the chemical bonds between the atoms, each node and edge have labels
representing the atom type and bond type, respectively. These labels are important
for characterizing the node-node relationship in the graphs, therefore it is important
to leverage these label information for the similarity learning. In Bai et al. (2019a)
and Ahmed et al. (2018), the node label information are used as the initial node
representations encoded by a one-hot vector and used in the node embedding stage. In
this case, the nodes with the same type share the same one-hot encoding vector. This
should guarantee that even if the node ids are permuted, the aggregation results would
be the same. However, the label information is only used for the node embedding
process within each graph, and the comparison of the node or edge labels across
graphs is not considered during the similarity learning stage. In Al-Rfou et al. (2019),
both node labels and edge labels in the chemo- and bio-informatic graphs have been
used as attributes for learning better alignment across graphs, which has been shown
to lead to better performance. Therefore, how to leverage the node/edge attributes of
the labeled graphs into the similarity learning process is a critical problem.

Dynamic and streaming graphs. Another type of graphs is the dynamic graph, which
has a static graph structure and dynamic input signals/features. For example, the 3D
human action or motion data can be represented as graphs where the entities are rep-
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resented as nodes and the actions as edges connecting the entities. Then similarity
learning on these graphs is an important problem for action and motion recognition.
Moreover, another type of graph is the streaming graph,where both the structure and/or
features are continuously changing (Ahmedet al. 2019;AhmedandDuffield 2019). For
example, online social networks (Ahmed et al. 2017a, 2014a, b). The similarity learn-
ing would be important for change/anomaly detection, link prediction, relationship
strength prediction, etc. Although some work has proposed variants of GNN models
for spatio-temporal graphs (Yu et al. 2017; Manessi et al. 2020), and other learning
methods for dynamic graphs (Nguyen et al. 2018a, b; Tong et al. 2008; Li et al. 2017),
the similarity learning problem on dynamic and streaming graphs has not been well
studied. For example, in themulti-subject analysis of task-related fMRI brain networks
as mentioned in Sect. 5.2, for each subject, a set of brain connectivity networks can
be collected for a given time period, which forms a spatio-temporal graph. It would
be interesting to conduct similarity learning on the spatio-temporal graphs of differ-
ent subjects to analyze their similarity in cognitive abilities, which is an important
problem in the neuroscience field. However, to the best of our knowledge, none of the
existing similarity learning methods is able to deal with such spatio-temporal graphs.
The main challenge in such problems is how to leverage the temporal updates of the
node-level representations and the interactions between the nodes on these graphs
while modeling their similarity.

6.2 Interpretability

The deep graph models, such as GNNs, combine node feature information with graph
structure by recursively passing neural messages along edges of the graph, which is a
complex process and makes it challenging to explain the learning results from these
models. Recently, somework has started to explore the interpretability of GNNs (Ying
et al. 2019;Baldassarre andAzizpour 2019). InYing et al. (2019), aGNNEXPLAINER
is proposed for providing interpretable explanations for predictions of GNN-based
models. It first identifies a subgraph structure and a subset of node features that are
crucial in a prediction. Then it formulates an optimization task that maximizes the
mutual information between a GNN’s prediction and the distribution of possible sub-
graph structures.Baldassarre andAzizpour (2019) explores the explainability ofGNNs
using gradient-based and decomposition-based methods, respectively, on a toy dataset
and a chemistry task. Although these works have provided some insights into the inter-
pretability of GNNs, they are mainly for node classification or link prediction tasks
on a graph. To the best of our knowledge, the explainability of GNN-based graph
similarity models remains unexplored.

6.3 Few-shot learning

The task of few-shot learning is to learn classifiers for new classes with only a few
training examples per class. A big branch of work in this area is based on metric
learning (Wang and Yao 2019). However, most of the existing work proposes few-
shot learning problems on images, such as image recognition (Koch et al. 2015) and
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image retrieval (Triantafillou et al. 2017). Little work has been done onmetric learning
for few-shot learning on graphs, which is an important problem for areas in which data
are represented as graphs and data gathering is difficult, for example, brain connectivity
network analysis in neuroscience. Since graph data usually has complex structure, how
to learn a metric so that it can facilitate generalizing from a few graph examples is a
big challenge. Some recent work (Guo et al. 2018) has begun to explore the few-shot
3D action recognition problem with graph-based similarity learning strategies, where
a neural graph matching network is proposed to jointly learn a graph generator and
a graph matching metric function to optimize the few-shot learning objective of 3D
action recognition. However, since the objective is defined specifically based on the
3D action recognition task, the model can not be directly used for other domains. The
remaining problem is to design general deep graph similarity learning models for the
few-shot learning task for a multitude of applications.

7 Conclusion

Recently, there has been an increasing interest in deep neural network models for
learning graph similarity. In this survey paper, we provided a comprehensive review of
the existing work on deep graph similarity learning, and categorized the literature into
three main categories: (1) graph embedding based graph similarity learning models,
(2) GNN-based models, and (3) Deep graph kernels. We discussed and summarized
the various properties and applications of the existing literature. Finally, we pointed
out the key challenges and future research directions for the deep graph similarity
learning problem.
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