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Abstract
The connectivity structure of graphs is typically related to the attributes of the vertices.
In social networks for example, the probability of a friendship between any pair of peo-
ple depends on a range of attributes, such as their age, residence location, workplace,
and hobbies. The high-level structure of a graph can thus possibly be described well by
means of patterns of the form ‘the subgroup of all individuals with certain properties
X are often (or rarely) friends with individuals in another subgroup defined by prop-
erties Y’, ideally relative to their expected connectivity. Such rules present potentially
actionable and generalizable insight into the graph. Prior work has already consid-
ered the search for dense subgraphs (‘communities’) with homogeneous attributes.
The first contribution in this paper is to generalize this type of pattern to densities
between a pair of subgroups, as well as between all pairs from a set of subgroups that
partition the vertices. Second, we develop a novel information-theoretic approach for
quantifying the subjective interestingness of such patterns, by contrasting them with
prior information an analyst may have about the graph’s connectivity. We demonstrate
empirically that in the special case of dense subgraphs, this approach yields results
that are superior to the state-of-the-art. Finally, we propose algorithms for efficiently
finding interesting patterns of these different types.
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1 Introduction

Real-life graphs (also known as networks) often contain attributes for the vertices. In
social networks for example,where vertices correspond to individuals, vertex attributes
can include the individuals’ interests, education, residency, andmore. The connectivity
of the network is usually highly related to those attributes (Fond and Neville 2010;
McPherson et al. 2001; Aral et al. 2009; Li et al. 2017). The attributes of individuals
affect the likelihood of them meeting in the first place, and, if they meet, of becoming
friends. Hence, it appears likely it should be possible to understand the connectivity
of a graph in terms of those attributes, at least to a certain extent.

One approach to identify the relations between the connectivity and the attributes
is to train a link prediction classifier, with as input the attribute values of a vertex pair,
predicting the edge as present or absent (Gong et al. 2014;Yin et al. 2010;Barbieri et al.
2014; Wei et al. 2017). Such global models often fail to provide insight though . To
address this, the local pattern mining community introduced the concept of subgroup
discovery, where the aim is to identify subgroups of data points for which a target
attribute has homogeneous and/or outstanding values (Herrera et al. 2011; Atzmueller
2015). Such subgroup rules are local patterns, in that they provide information only
about a certain part of the data.

Research on local pattern mining in attributed graphs has so far focused on identi-
fying dense vertex-induced subgraphs, dubbed communities, that are coherent also in
terms of attributes. There are two complementary approaches, as stated in Atzmueller
et al. (2016). The first explores the space of communities that meet certain criteria in
terms of density, in search for those that are also homogeneous with respect to some of
the attributes (Moser et al. 2009; Mougel et al. 2010). The second explores the space
of rules over the attributes, in search for those that define subgroups (of vertices) that
form a dense community (Pool et al. 2014; Galbrun et al. 2014; Atzmueller et al.
2016). This is effectively a subgroup discovery approach to dense subgraph mining.

Limitations of the state-of-the-art Both these approaches hinge on the existence of
attribute homophily in the network: the tendency of links to exist between vertices with
similar attributes (McPherson et al. 2001). Yet, while the assumption of homophily is
often reasonable, it limits the scope of application of prior work . A first limitation of
the state-of-the-art is thus its inability to find e.g. sparse subgraphs.

A second limitation is the fact that the interestingness of such patterns has invari-
ably been quantified using objective measures—i.e. measures that do not depend on
the data analyst’s prior knowledge. Yet, the most ‘interesting’ patterns found are often
obvious and implied by such prior knowledge (e.g. communities involving high-degree
vertices, or in a student friendship network, communities involving individuals prac-
ticing the same sport). Not only may uninteresting patterns appear interesting if prior
knowledge is ignored, also interesting patternsmay appear uninteresting and are hence
not found. E.g., a pattern in a student friendship network that indicates tennis lovers
are rarely connected may be due to the lack of suitable facilities or a tennis club.
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Mining explainable local and global subgraph patterns 323

A third limitation of prior work is that the patterns describe only the connectivity
within a single group and not between two potentially distinct groups. As an obvious
example, this excludes patterns that describe friendships between a particular subgroup
of female and a subgroup of male individuals in a social network, but as we will show
in the experiments real-life networks contain many less obvious examples.

Contributions We depart from the existing literature in formalizing a subjective
interestingness measure, rather than an objective one, and this for sparse as well as
for dense subgraph patterns. In this way, we overcome the first and second limita-
tions of prior work discussed above. More specifically, we build on the ideas from the
exploratory data mining framework FORSIED (De Bie 2011a, 2013). This framework
stipulates in abstract terms how to formalize the subjective interestingness of patterns.
Basically, a background distribution is constructed to model prior beliefs the analyst
holds about the data. Given that, one can identify patterns which strongly contrast to
this background knowledge and are highly surprising to the analyst. Moreover, this
interestingness measure is naturally applicable for patterns describing a pair of sub-
groups, to which we will refer as bi-subgroup patterns. Hence, our method overcomes
the third limitation of prior work. Finally, apart from a local pattern mining strategy
which is used to identify interesting patterns one by one, we also propose a strategy to
mine patterns globally, that is, to summarize the whole graph in ameaningful way such
that all the interesting patterns can immediately be seen. The resulting summarization
can be considered as a type of global pattern. Our specific contributions are:

– Novel definitions of single-subgroup patterns and bi-subgroup patterns, as well as
patterns that are global summaries for attributed graphs. (Sect. 3)

– Aquantification of their Subjective Interestingness (SI), based onwhat prior beliefs
an analyst holds, or what information an analyst gains when observing a pattern.
(Sect. 4)

– An algorithm to mine bi-subgroup patterns based on beam search. (Sect. 5)
– An algorithm to mine global (or summarization) patterns from which a series of
interesting single-subgroup and bi-subgroup patterns can be revealed. (Sect. 5)

– An empirical evaluation of our method on real-world data, to investigate its ability
to encode the analyst’s prior beliefs and identify subjective interesting patterns.
(Sect. 6)

This manuscript is a significant extension of Deng et al. (2020). The main additions
include the further generalization of the single-subgroup and bi-subgroup patterns
(both types are local patterns) to global patterns, the quantification of the SI as well
as the search algorithm for global patterns. Moreover, we substantially extend the
experiment section by analyzing the parameter sensitivity of our beam search methods
to the beam width, further investigating research questions already proposed in Deng
et al. (2020) on more real-world datasets, as well as evaluating the performance of our
global pattern mining method.
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2 Related work

In this section, we first briefly review some graph modelling work (Sect. 2.1), more
specifically, those based on formulating a statistical ensemble of networks (i.e., the
collection of all possible realizations into which the considered network may reason-
ably evolve with a probability (Fronczak 2012)). The numerical and analytical study
of such ensembles provides the foundation of model fitting, model selection, for vari-
ous applications including the pattern mining (Casiraghi et al. 2016). We then review
related work dedicated to pattern mining in attributed graphs. This review is along two
dimensions, concerning local patterns (Sect. 2.2.1) and global patterns (Sect. 2.2.2)
respectively.

2.1 Graphmodelling

Graph modelling typically considers a given network (i.e., the one we observe) as
merely a realization among a large number of possibilities. All possible realizations
including the observed one that are consistent with some given aggregate statistics,
forms the so-called statistical ensemble of networks.

A well-founded probabilistic framework to such graph modelling is provided by
exponential random graph models (ERGMs) (Holland and Leinhardt 1981; Harris
2013). In ERGMs, each graph has a probability that depends on a number of chosen
statistics of the network. Such models allow one to sample random graphs that match
certain graph properties as closely as possible, without the need to know the underlying
network generation process (Fronczak 2012). Nevertheless, a downside of ERGMs is
their intractable fitting on large, finite networks. Recently, Casiraghi et al. introduce
a broad class of analytically tractable statistical ensembles of finite, directed and
weighted networks, referred to as generalized hypergeometric ensembles (Casiraghi
et al. 2016).

Unlike ERGMs that aim to be an accurate and objective probabilistic model for the
data, the aim of our method is to provide the data analyst with subjectively interesting
insights into the data. To do that, intelligible pattern syntaxes need to be designed to
represent the data‘s local or global information. Secondly, the found patterns must
be contrasted with a model of the data analyst’s belief state about the data (called
the background distribution) to quantify their interestingness to the data analyst (this
makes our approach a subjective one). A further distinction from ERGMs is that our
method is naturally an iterative method, allowing the data analyst to gain new insights
from one or a few patterns at a time.

2.2 Patternmining in attributed graphs

Real-life graphs often have attributes on the vertices. Pattern mining considering both
structural aspect and attribute information promises more meaningful results, and thus
has received increasing research attention.
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Mining explainable local and global subgraph patterns 325

2.2.1 Local pattern mining

The problem of mining cohesive patterns was introduced by Moser et al. (2009).
They define a cohesive pattern as a connected subgraph whose edge density exceeds
a given threshold, and vertices exhibit sufficient homogeneity in the attribute space.
Mougel et al. (2010) computes all maximal homogeneous clique sets that satisfy some
user-defined constraints. All these works emphasize the graph structure and consider
attributes as complementary information. Rather than assuming attributes to be com-
plementary, descriptive community mining, introduced by Pool et al. (2014) aims to
identify cohesive communities that have a concise description in the vertices’ attribute
space. They propose cohesiveness measure, which is based on counting erroneous
links (i.e., connections that are either missing or obsolete w.r.t. the ‘ideal’ commu-
nity given the induced subgraph). To a limited extent, their method can be driven by
user’s domain-specific background knowledge, and more specifically, it is a prelim-
inary description or a set of vertices that are expected to be part of a community.
Then the search is triggered by those seed candidates. Our proposed SI, in contrast, is
more versatile in a sense that allows incorporating more general background knowl-
edge. Galbrun et al. (2014) proposes a similar target to Pool et al.’s, but relies on a
different density measure, which is essentially the average degree. Atzmueller et al.
(2016) introduces description-oriented community detection. In this work, a subgroup
discovery approach is applied to mine patterns in the description space so it comes
naturally that the identified communities have a succinct description.

All previous works quantify the interestingness in an objective manner, in the sense
that they cannot consider a data analyst’s prior beliefs and thus operate regardless of
context. Also, all previous works focus on a set of communities or dense subgraphs,
overlooking other meaningful structures such as a sparse or dense subgraph between
two different subgroups of vertices.

2.2.2 Global pattern mining by summarizing or clustering

Discovering global patterns that can uncover useful insights in attributed graphs are
typically tailored to a graph summarization or a clustering task. Although these two
tasks can both output graph summary, their goals (even when solely considering the
structural aspect) are fundamentally different. Graph summarization seeks to group
together vertices that connect with the rest of the graph in a similar way, while clus-
tering simply group vertices that are densely connected to each other and are well
separated from other groups (Liu et al. 2018).
Graph summarization Tian et al. (2008) proposes SNAP and k-SNAP for controlled
and intuitive graph summarization. Thesemethods can produce customized summaries
based on user-selected attributes and relationships that are of interest. Furthermore, the
resolutions of the resulting summaries can alsobe controlledbyusers. ThenZhanget al.
(2010) further builds on this work by addressing two key limitations. First, they allow
automatic categorization of numeric attributes (which is a common scenario). Second,
they propose a measure to access the interestingness of summaries so that the user
does not have to manually inspect a large number of summaries to find the interesting
ones. However, their interestingness measure is not subjective, simply considering
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the tradeoff among diversity, coverage and conciseness. Chen et al. (2009) proposes
SUMMARIZE-MINE, a framework that performs the detection of frequent subgraphs
on randomised summaries for multiple iterations, so that a lossy compression can
be effectively turned into a virtually lossless one. In addition to pattern discovery,
graph summarization on attributed graphs can serve for several applications including
compression (Hassanlou et al. 2013; Wu et al. 2014), influence analysis (Shi et al.
2015; Adhikari et al. 2017) and so on. For a more comprehensive review of existing
publications regarding these goals, we refer the interested readers to a survey paper
by Liu et al. (2018).
Graph clustering Prior methods of clustering attributed graphs seek to partition the
given graph into clusters with cohesive intra-cluster structures and homogeneous
attribute values. Some enforce homogeneity in all attributes (Akoglu et al. 2012;
Zhou et al. 2009; Xu et al. 2012; Cheng et al. 2011). However, they are not guaranteed
to reveal meaningful patterns in datasets without efforts of attribute selection, since
irrelevant attributes can strongly obfuscate clusters. More recently, subspace cluster-
ing is used to loosen this constraint (Günnemann et al. 2010; Günnemann et al. 2011).
Perozzi et al. (2014) detects focused clusters and outliers based on user preferences,
allowing the user to control the relevance of attributes and as a consequence, the graph
mining results. Wang et al. (2016) proposes a novel nonnegative matrix factoriza-
tion (NMF) model in which sparsity penalty is introduced to select the most related
attributes for each cluster.

Unlike all previous graph summarization or clustering methods where the resulting
vertex groups are forced to satisfy some pre-specified topologies or edges structures
(e.g., being more densely connected within the group), patterns revealed in our sum-
marization approach are not limited to that, as their interestingness is quantified by a
subjective measure depending on the user’s prior expectation.

3 Subgroup pattern and summary syntaxes for graphs

In this section we introduce both single subgroup and bi-subgroup patterns along with
summaries for graphs. Here, we first introduce some notation.

An attributed graph is denoted as a triplet G = (V , E, A) where V is a set of
n = |V | vertices, E ⊆ (V

2

)
is a set of m = |E | undirected edges,1 and A is a set of

attributes a ∈ A defined as functions a : V → Doma , where Doma is the set of values
the attribute can take over V . For each attribute a ∈ A with categorical Doma and
for each y ∈ Doma , we introduce a Boolean function sa,y : V → {true, false}, with
sa,y(v) � true for v ∈ V iff a(v) = y. Analogously, for each a ∈ A with Doma ⊆ R

and for each l, u ∈ Doma such that l < u, we define sa,[l,u] : V → {true, false},
with sa,[l,u](v) � true iff a(v) ∈ [l, u]. We call these Boolean functions selectors, and
denote the set of all selectors as S. A description or rule W is a conjunction of a subset
of selectors: W = s1 ∧ s2 . . . ∧ s|W |. The extension ε(W ) of a rule W is defined as the

1 We consider undirected graphs without self-edges for the sake of presentation and consistency with most
literature. However, we note that all our results can be easily extended to directed graphs and graphs with
self-edges.
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subset of vertices that satisfy it: ε(W ) � {v ∈ V |W (v) = true}. We also informally
refer to the extension as the subgroup. Now a description-induced subgraph can be
formally defined as:

Definition 1 (Description-induced-subgraph)Given an attributedgraphG = (V , E, A),
and a description W , we say that a subgraph G[W ] = (VW , EW , A) where VW ⊆
V , EW ⊆ E , is induced by W if the following two properties hold,

(i) VW = ε(W ), i.e., the set of vertices from V that is the extension of the description
W ;

(ii) EW = (VW
2

) ∩ E , i.e., the set of edges from E that have both endpoints in VW .

Example 1 Figure 1 displays an example attributed graph G = (V , E, A) with n = 9
vertices, m = 12 edges (Graph in Fig. 1a, vertex attributes in Fig. 1b). Each vertex is
annotated with one real-valued attribute (i.e., a) and three nominal (or for simplicity,
binary) attributes (i.e., b,c,d). Consider a descriptionW = sa,[0,3]∧sb,1. The extension
of this description is the set of vertices with attribute a value from 0 to 3 and attribute
b as 1, i.e., ε(W ) = {0, 1, 2, 3}. The subgraph induced by W is formed from ε(W )

and all the edges connecting pairs of vertices in that set (highlighted with red (dark in
greyscale) in Fig. 1a).

3.1 Local pattern

3.1.1 Single-subgroup pattern

A first pattern syntax we consider, and which has already been studied in prior work,
informs the analyst about the density of a description-induced subgraph G[W ]. We
assume the analyst is satisfied by knowing whether the density is unusually small, or
unusually large, and given this does not expect to know the precise density. It thus
suffices for the pattern syntax to indicate whether the density is either smaller than, or
larger than, a specified value.We thus formally define the single-subgroup pattern syn-
tax as a triplet (W , I , kW ), where W is a description and I ∈ {0, 1} indicates whether

(a) (b)

Fig. 1 Example attributed graph with 9 vertices (0–8) and 4 associated attributes (a–d). The subgraph
induced by the description (W = sa,[0,3] ∧ sb,1) is highlighted in red (dark in greyscale)
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the number of edges EW in subgraph G[W ] induced byW is greater (or less) than kW .
Thus, I = 0 indicates the induced subgraph is dense, whereas I = 1 characterizes a
sparse subgraph. The maximum number of edges in G[W ] is denoted by nW , equal
to 1

2 |ε(W )|(|ε(W )| − 1) for undirected graphs without self-edges. One example of
a single-subgroup pattern in Fig. 1 can be (sa,[0,3] ∧ sb,1, 0, 6), corresponding to the
dense subgraph highlighted in red (dark in greyscale).

Remark 1 (Difference to dense subgraph pattern in van Leeuwen et al. (2016)) Though
the syntax for our single-subgroup pattern seems similar to that of the dense subgraph
pattern (i.e., (W , kW )) proposed by van Leeuwen et al. (2016), they are essentially
different definitions serving for different data mining tasks. In van Leeuwen et al.
(2016), the aim is to identify subjectively interesting subgraphs based on merely link
information. For this aim, W in the dense subgraph pattern syntax represents the set
of vertices in the subgraph, which has no association with node attributes. Moreover,
an indicator I is included in our pattern syntax. This allows to regard not only sur-
prisingly dense subgraphs but also surprisingly sparse ones as interesting. In contrast,
van Leeuwen et al. (2016) focuses on those surprisingly dense subgraphs. Because of
these differences in W and I , kW is different accordingly.

3.1.2 Bi-subgroup pattern

We also define a pattern syntax informing the analyst about the edge density between
two potentially different subgroups. More formally, we define a bi-subgroup pat-
tern as a quadruplet (W1,W2, I , kW ), where W1 and W2 are two descriptions, and
I ∈ {0, 1} indicates whether the number of connections between ε(W1) and ε(W2)

is upper bounded (1) or lower bounded (0) by the threshold kW . The maximum
number of connections between the extensions ε(W1) and ε(W2) is denoted by
nW � |ε(W1)||ε(W2)| − 1

2 |ε(W1 ∧ W2)|(|ε(W1 ∧ W2)| + 1) for undirected graphs
without self-edges. For example, the bi-subgroup pattern (sa,[0,3] ∧ sb,1, sb,0, 1, 0) in
Fig. 1, expresses sparse (or more precisely, zero) connection between the red vertex
group (i.e., {0, 1, 2, 3}) and the blue one (i.e., {4, 5, 6}) . Note that single-subgroup
patterns are a special case of bi-subgroup patterns when W1 ≡ W2.

Remark 2 (Setting of kW ) Although kW for a pattern (W1,W2, I , kW ) can be any value
with which the number of connections between ε(W1) and ε(W2) (or within ε(W1)

when W1 ≡ W2) are bounded, our work focuses on identifying patterns whose kW is
the actual number of connections between these two subgroups (or within this single
subgroup when W1 ≡ W2), as such patterns are maximally informative.

3.2 Global pattern: summarization for graphs

Here we define a global pattern syntax, which describes the edge density between
any pair of subgroups selected from a set of subgroups that form a partition of the
vertices. We first define the notion of a summarization rule, before introducing the
global pattern syntax itself.
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Definition 2 (Summarization rule for an attributed graph) Given an attributed graph
G = (V , E, A), the summarization rule S of G is a set of descriptions such that their
extensions are vertex-clusters that form a partition of the whole vertex set. That is,
S = {Wi |i = 1, 2, . . . , c}where c ∈ N is the number of disjoint vertex-clusters, where
∪c
i=1ε(Wi ) = V , ∀Wi ∈ S it holds that ε(Wi ) 
= ∅, and ∀Wi ,Wj ∈ S, i 
= j it holds

that ε(Wi ) ∩ ε(Wj ) = ∅.
Definition 3 (Summary for an attributed graph based on a summarization rule) A
summary S for an attributed graph G = (V , E, A) based on a summarization rule
S = {Wi |i = 1, 2, . . . , c} is a complete weighted graph S = (V S, ES, w)with weight
function w : ES → R, whereby V S = {ε(W )|W ∈ S} is the set of vertices (referred
to as supervertices of the original graph G, i.e. each vertex from S is a set of vertices

from G), ES = (V S

2

) ∪ V S is the set of edges (to which we refer as superedges;

the superedges in
(V S

2

)
represent the undirected edges between distinct supervertices,

and the superedges in V S represent the self-loops). The weight w({ε(Wi ), ε(Wj )})
for each superedge {ε(Wi ), ε(Wj )} ∈ ES will be denoted shorthand by di, j , and is
defined as the number of edges between vertices from ε(Wi ) and those from ε(Wj ).

We define a global pattern syntax informing the analyst about the summarization
for an attributed graph G = (V , E, A) with c disjoint vertex-clusters. More formally,
we define a summarization pattern as a tuple (S,S) where S is the summarization
rule, and S is the corresponding summary. Note that when revealing a summarization
pattern (S,S) to an analyst, she or he gets access to its related local subgroup patterns:
c single-subgroup patterns and c(c − 1)/2 bi-subgroup patterns. An example of the
global pattern for Fig. 1 can be ({sa,[0,3] ∧ sb,1,¬sa,[0,3] ∧ sb,1, sb,0},S∗) where S∗
represents the corresponding summary (see Fig. 2).

(a) (b)

Fig. 2 Example summarization pattern for Fig. 1 with the summarization rule {sa,[0,3] ∧ sb,1, ¬sa,[0,3] ∧
sb,1, sb,0} and the summary S∗. This summary S∗ is composed of three supervertices each of which
corresponds to a set of vertices satisfying sa,[0,3] ∧ sb,1 (red circle with dotted line), ¬sa,[0,3] ∧ sb,1 (blue
circle with solid line), sb,0 (yellow circle with dashed line) respectively, and superedges each of which
connects one supervetex to the other with a weight representing the number of edges between them
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4 Formalizing the subjective interestingness

4.1 General approach

We follow the approach as outlined by De Bie (2011b) to quantify the subjective
interestingness of a pattern, which enables us to account for prior beliefs a data analyst
may hold about the data. In this framework, the analyst’s belief state is modeled
by a background distribution P over the data space. This background distribution
represents any prior beliefs the analyst may have by assigning a probability (density)
to each possible value for the data according to how plausible the analyst thinks this
value is. As such, the background distribution also makes it possible to evaluate the
probability for any given pattern to be present in the data, and thus to assess the
surprise of the analyst when informed about its presence. It was argued that a good
choice for the background distribution is the maximum entropy distribution subject to
some particular constraints that represent the analyst’s prior beliefs about the data. As
the analyst is informed about a pattern, the knowledge about the data will increase,
and the background distribution will change. For details see Sect. 4.2.

Given a background distribution, the Subjective Interestingness (SI) of a pattern can
be quantified as the ratio of the Information Content (IC) and the Description Length
(DL) of the pattern. The IC is defined as the amount of information gained when
informed about the pattern’s presence, which can be computed as the negative log
probability of the pattern w.r.t. the background distribution P . The DL is quantified
as the length of the code needed to communicate the pattern to the analyst. These
are discussed in more detail in Sect. 4.3, but first we further explain the background
distribution (Sect. 4.2).

Remark 3 (Positioning with respect to directly related literature) Here we clarify how
previous work is leveraged, and what concepts are newly introduced in our work.
We define single/bi-subgroup patterns and global patterns in an attributed graph. To
quantify the SI measure for such patterns, we follow the framework outlined byDe Bie
(2011b). As mentioned above, in this framework, the SI is computed as the ratio of
the IC and the DL w.r.t. the background distribution which models the analyst’s belief
state. This framework also provides the general idea for deriving the initial background
distribution and updating it to reflect newly acquired knowledge. Adriaens et al. (2017)
later introduced a new type of graph-related prior that the background distribution can
incorporate, and this prior is considered in our work. In van Leeuwen et al. (2016), this
frameworkwas used to identify subjectively interesting dense subgraphs,merely based
on link information. In our work, we leverage some computational results from van
Leeuwen et al. (2016) (i.e., in updating the background distribution, approximating
the IC), and made further adaptions such that the framework proposed by De Bie
(2011b) can serve for our newly proposed patterns based on attribute information (i.e.,
single-subgroup patterns, bi-subgroup patterns and global patterns).
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4.2 The background distribution

4.2.1 The initial background distribution

To derive the initial background distribution, we need to assume what prior beliefs the
data analyst may have. Here we discuss three types of prior beliefs which are common
in practice: (1) on individual vertex degrees; (2) on the overall graph density; (3) on
densities between bins (particular subsets of vertices).

(1–2) Prior beliefs on individual vertex degrees and on the overall graph density.
Given the analyst’s prior beliefs about the degree of each vertex, De Bie (2011b)
showed that the maximum entropy distribution is a product of independent
Bernoulli distributions, one for each of the random variable bu,v , which equals
to 1 if (u, v) ∈ E and 0 otherwise. Denoting the probability that bu,v = 1 by
pu,v , this distribution is of the form:

P(E) =
∏

u,v

pu,v
bu,v · (1 − pu,v)

1−bu,v ,

where pu,v = exp(λru + λcv)

1 + exp(λru + λcv)
.

This can be conveniently expressed as:

P(E) =
∏

u,v

exp((λru + λcv) · bu,v)

1 + exp(λru + λcv)
.

The parameters λru and λcv can be computed efficiently. For a prior belief on the
overall density, every edge probability pu,v simply equals the assumed density.

(3) Additional prior beliefs on densities between bins. We can partition vertices in
an attributed graph into bins according to their value for a particular attribute.
For example, vertices representing people in a university social network can
be partitioned by class year. Then expressing prior beliefs regarding the edge
density between two bins is possible. This would allow the data analyst to
express, for example, an expectation about the probability that people in class
year y1 are connected to those in class year y2. If the analyst believes that people
in different class years are less likely to connect with each other, a discovered
pattern would be more informative if it contrasts more with this kind of belief,
i.e. if it reveals a high density between two sets of people from different class
years. As shown in Adriaens et al. (2017), the resulting background distribution
is also a product of Bernoulli distributions, one for each of the random variables
bu,v ∈ {0, 1}:

P(E) =
∏

u,v

exp((λru + λcv + γku,v ) · bu,v)

1 + exp(λru + λcv + γku,v )
, (1)
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where ku,v is the index for the block corresponding to the intersecting part
of two bins which vertex u and vertex v belongs to correspondingly. λru , λcv
and γku,v are parameters and can be computed efficiently. Note our model is not
limited to incorporate this type of belief related to a single attribute. Vertices can
be partitioned differently by another attribute. Our model can consider multiple
attributes so that analysts could express prior beliefs regarding the edge densities
between bins resulting from multiple partitions2.

4.2.2 Updating the background distribution

Upon being represented with a pattern, the background distribution should be updated
to reflect the data analyst’s newly acquired knowledge. The beliefs attached to any
value for the data that does not contain the pattern should become zero. In the
present context, once we present a subgroup pattern (W1,W2, I , k) to the analyst,
the updated background distribution P ′ should be such that φW (E) ≥ kW (if I = 0)
or φW (E) ≤ kW (if I = 1) holds with probability one, where φW (E) denotes a
function counting the number of edges between ε(W1) and ε(W2). De Bie (2011a)
presented an argumentation for choosing P ′ as the I-projection of the previous back-
ground distribution onto the set of distributions consistent with the presented pattern.
Then van Leeuwen et al. (2016) showed that the resulting P ′ is again a product of
Bernoulli distributions:

P ′(E) =
∏

u,v

p′
u,v

bu,v · (1 − p′
u,v)

1−bu,v

where p′
u,v =

{
pu,v if ¬(

u ∈ ε(W1), v ∈ ε(W2)
)
,

pu,v ·exp(λW )

1−pu,v+pu,v ·exp(λW )
otherwise.

How to compute λW is also given in van Leeuwen et al. (2016).

Remark 4 (Updating P if a summarization pattern is presented) In the case that a
summarization pattern (S,S) is presented to the analyst, we simply update the back-
ground distribution as if all the subgroup patterns related to (S,S) were presented,
and we denote such updated background distribution by P(S,S).

4.3 The subjective interestingness measure

We now discuss how the SI measure can be formalized by relying on the background
distribution, first for local and then for global patterns.

4.3.1 The SI measure for a local pattern

The information content (IC) Given a pattern (W1,W2, I , kW ), and a background
distribution definedby P , the probability of the presence of the pattern is the probability

2 Simply by replacing γku,v in Eq. 1 with
∑i=h

i=1 γkiu,v
where h is the number of attributes considered (also

the number of partitions).
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of getting more than kW (for I = 0) or nW − kW (for I = 1) successes in nW
trials with possibly different success probability pu,v (for I = 0) or 1 − pu,v (for
I = 1). More specifically, we consider a success for the case I = 0 to be the presence
of an edge between some pair of vertices (u, v) for u ∈ ε(W1), v ∈ ε(W2), and
pu,v is the corresponding success probability. In contrast, the absence of an edge
between some vertices (u, v) is deemed to be a success for the case I = 1, with the
probability as 1 − pu,v . The work of van Leeuwen et al. (2016) proposed to tightly
upper bound the probability of a similar dense subgraph pattern by applying the general
Chernoff/Hoeffding bound (Chernoff 1952; Hoeffding 1963). Here, we can use the
same approach, which gives:

Pr[(W1,W2, I = 0, kW )] ≤ exp

(
− nWKL

(
kW
nW

‖ pW

))
,

Pr[(W1,W2, I = 1, kW )] ≤ exp

(
− nWKL

(
1 − kW

nW
‖ 1 − pW

))
,

where

pW = 1

nW

∑

u∈ε(W1),v∈ε(W2)

pu,v. (2)

KL
(

kW
nW

‖ pW

)
is the Kullback-Leibler divergence between two Bernoulli distribu-

tions with success probabilities kW
nW

and pW respectively. Note that:

KL
( kW
nW

‖ pW
) = KL

(
1 − kW

nW
‖ 1 − pW

)
,

= kW
nW

log
(kW /nW

pW

) + (
1 − kW

nW

)
log

(1 − kW /nW
1 − pW

)
.

We can thus write, regardless of I :

Pr[(W1,W2, I , kW )] ≤ exp

(
− nWKL

(
kW
nW

‖ pW

))
.

The information content is the negative log probability of the pattern being present
under the background distribution. Thus, using the above:

IC[(W1,W2, I , kW )] = − log(Pr[(W1,W2, I , kW )]),
≥ nWKL

(
kW
nW

‖ pW

)
. (3)

The description length (DL) A pattern with larger IC is more informative. Yet, some-
times it is harder for the analyst to assimilate as its description is more complex. A
good SI measure should trade off IC with DL. The DL should capture the length of the
description needed to communicate a pattern. Intuitively, the cost for the data analyst
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to assimilate a descriptionW depends on the number of selectors inW , i.e., |W |. Let us
assume communicating each selector in a description W has a constant cost of α and
the cost for I and kW is fixed. The total description length of a pattern (W1,W2, I , kW )

can then be written as

DL[(W1,W2, I , kW )] = α(|W1| + |W2|) + β. (4)

The subjective interestingness (SI) In summary, we obtain:

SI[(S,S)] = IC[(W1,W2, I , kW )]
DL[(W1,W2, I , kW )] ,

=
nWKL

(
kW
nW

‖ pW

)

α(|W1| + |W2|) + β
. (5)

Remark 5 (Justification about choices of α and β) In all our experiments for use cases,
we apply α = 0.6, β = 1. We here state the reason for this choice.

In practice, the absolute value of the SI from Eq. 5 is largely irrelevant, as it is only
used for ranking the patterns, or even just for finding a single pattern (i.e., the most
interesting one to the analyst). Thus, we can set β = 1 without losing generality, such
that the only remaining parameters is α.

Tuning α biases the results toward more or fewer selectors to describe the subgroup
pattern. Notice an optimal extent of such kind of bias cannot be determined by doing
model selection in the statistical sense, but rather should be chosen based on aspects
of human cognition (e.g., larger α should be used when the analyst prefers patterns in
a more succinct form). In this work, we set α = 0.6 throughout all use cases which
gives qualitative results. However, α can be flexibly tuned for adapting to the analyst’
preferences.

4.3.2 The SI measure for a global pattern

The information content (IC) The probability of a global summarization pattern turns
out to be harder to formulate analytically, and thus also the negative log probability of
the pattern – which is the subjective amount of information gained by observing the
pattern. However, it is relatively straightforward to quantify the (subjective) amount
of information in the connectivity in the graph prior to observing the pattern, and after
observing the pattern. The difference between these two is thus the information gained.
More formally, we thusmathematically define the IC of a summarization pattern (S,S)

as the difference between the log probability for the connectivity in the graph (i.e., the
edge set E) under P(S,S) and that under P:

IC[(S,S)] = log P(S,S)(E) − log P(E). (6)

This quantity is straightforward to compute where P(S,S) is computed as the updated
background distribution as if all the subgroup patterns related to (S,S)were presented
(previously mentioned in Remark 4 in Sect. 4.2.2).
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The description length (DL). We search for optimal S by a strategy that is based on
splitting a binary search tree (for details see Sect. 5.2.1). Thus, the cost for the data
analyst to assimilate S is linear to the number of descriptions in S, i.e. c. As for S,
assimilating it costs quadratically to c, because S is essentially a complete graph with
c vertices and c(c + 1)/2 edges. The total description length of a pattern (S,S) can
be written as

DL[(S,S)] = ζ · c(c + 1)/2 + η · c + θ. (7)

where θ is a constant term for mitigating the quadratically increasing drop in SI value
given by an increasing c, and this helps to avoid early stopping.
The subjective interestingness (SI) In summary, we obtain:

SI[(S,S)] = IC[(S,S)]
DL[(S,S)] ,

= log P(S,S)(E) − log P(E)

ζ · c(c + 1)/2 + η · c + θ.
. (8)

Remark 6 (Justification about choices of ζ , η and θ ) In all our experiments, we use
ζ = 0.02, η = 0.02, θ = 1. As stated in Remark 5 in Sect. 4.3.1, parameters of
the DL indicate how much the data analyst prefers patterns that can be described
succinctly, and thus should be determined based on aspects of human cognition instead
of statistical model selection. We here follow the similar sense to choose the DL
parameters for global patterns (i.e.,ζ, η and θ in Eq. 8). Notice we set a high value
for θ (i.e., 1) in comparison with ζ (i.e., 0.02) and η (i.e., 0.02). This is a safe choice
to avoid early stopping (i.e., the iterating stops before the analyst observes a suitable
global pattern).

5 Algorithms

This section describes the algorithms for mining interesting patterns locally and glob-
ally, in Sects. 5.1 and 5.2 respectively, followed by an outline to the implementation
in Sect. 5.3.

5.1 Local patternmining

Since the proposed SI interestingness measure is more complex than most objective
measures, we consider applying some heuristic search strategies to help maintain
the tractability. For searching single-subgroup patterns, we used beam search (see
Sect. 5.1.1). To search for the bi-subgroup patterns, however, a traditional beam over
both W1 and W2 simultaneously turned out to be more difficult to apply effectively.
We thus propose a nested beam search strategy to handle this case. More details about
this strategy are covered by Sect. 5.1.2.

123



336 J. Deng et al.

5.1.1 Beam search

In the case of mining single-subgroup patterns, we applied a classical heuristic search
strategy over the space of descriptions—the beam search. The general idea is to only
store a certain number (called the beam width) of best partial description candidates
of a certain length (number of selectors) according to the SI measure, and to expand
those next with a new selector. This is then iterated. This approach is standard practice
in subgroup discovery, being the search algorithm implemented in popular packages
such as Cortana (Meeng and Knobbe 2011), One Click Miner (Boley et al. 2013), and
pysubgroup (Lemmerich and Becker 2018).

5.1.2 Nested beam search

The basic idea of this approach is to nest one beam search into the other one where
the outer search branches based on a ‘beam’ of promising selector candidates for the
description W1 , and the inner search expands those for W2. The detailed procedure
for this nested beam search is shown in Algorithm 1, and related notation displayed
in Table 1.

The total number of interesting patterns identified by Algorithm 1 is x1 · x2. Note
that we deliberately constrain the beam to contain at least x1 differentW1 descriptions
so that a sufficient diversity among all the discovered patterns is guaranteed (see lines
22–23 in Algorithm 1).

5.2 Global patternmining

To identify the most interesting global (or summarization) pattern, a greedy search
strategy (see Sect. 5.2.1) equipped with some speedup strategies (see Sect. 5.2.2) are
adopted.

Table 1 Notations for
Algorithm 1

Notation Description

OuterBeam The outer beam storing best description pairs
(W1,W2) during the search

InnerBeam The inner beam only storing best
descriptions W2

x1 The outer beam width (i.e., the minimum
number of different descriptions W1
contained in the outer beam

x2 The inner beam width

D The search depth (i.e., maximum number of
selectors combined in a description)
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Algorithm 1: Subjectively Interesting BiSubgroup Pattern Mining
input : Graph G = {V , E, A}, x1, x2, D
output: Top x1 · x2 bi-subgroup patterns contained in OuterBeam

1 S ← the set of all selectors to build descriptions from;
2 OuterBeam ← {∅} ;
3 d1 ← 0;
4 d2 ← 0;
5 while d1 < D do // The outer search
6 C1 ← all the W1 candidates in OuterBeam;
7 for C1 ∈ C1 do // Expand on W1 candidates
8 for s1 ∈ S do
9 Z1 ← C1 ∧ s1;

10 InnerBeam ← {∅};
11 while d2 < D do // The inner search
12 C2 ← all the W2 candidates in InnerBeam;
13 for C2 ∈ C2 do // Expand W2 candidates
14 for s2 ∈ S do
15 Z2 ← C2 ∧ s2;
16 kW ← the number of edges between vertices ε(Z1) and ε(Z2);
17 // compute SI of the pattern (Z1, Z2, I , kW )

using Eq. 5
18 si′ ← SI[(Z1, Z2, I , kW )];
19 // Add (si′, Z2) to the InnerBeam if InnerBeam

contains less than x2 elements or replace
the tuple with the smallest SI in
InnerBeam if si′ is larger than that
value

20 InnerBeam ← UpdateBeam(InnerBeam, (si′, Z2), x2);

21 d2 ← d2 + 1

22 for (si,Z) ∈ InnerBeam do
23 // Add (si, Z1, Z) to the OuterBeam if the number of

various W1 descriptions in OuterBeam is less
than x1 or replace the tuple with the smallest
SI if si is larger than that value

24 OuterBeam ← UpdateBeam(OuterBeam, (si, Z1, Z), x1);

25 d1 ← d1 + 1

5.2.1 The basic search strategy

The algorithm begins by checking each possible summarization rule only containing
a single-selector description and its negation. Applying such a rule at the beginning
means cutting the whole vertex set into two non-overlapping clusters, each of which
satisfies a description in this rule correspondingly. The rule whose corresponding
summarizaiton pattern has the maximal SI value is selected as a seed set for S. Then
the algorithm iterates in the following way to greedily grow that set: for each existing
description in the set, the algorithm again checks the application of an additional
single-selector description and its negation. This further separates a particular vertex
cluster into two sub-clusters, one of which additionally satisfies this description and
the other does not. The optimal combination of the existing description to further
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specify and the additional single-selector description are selected. The search stops
when reaching some search budget (e.g. the maximum number of iterations). The
detailed procedure for this search is displayed in Algorithm 2.

Algorithm 2: Interesting Summarization Pattern Mining
input : Graph G = {V , E, A}, Search Iteration budget D
output: (S,S)

1 S ← {∅};
2 VertexClusters ← {V }// A set of vertex-clusters each of which is

formed by the extension of a description in S. Initially, it
is a set only containing one member, the whole vertex set ;

3 i ← 0 // The number tracking the iteration round ;

4 while i < D do
5 si← −∞;
6 S

′ ← S;
7 S

′′ ← S;
8 VertexClusters′ ← VertexClusters;

9 for W ∈ S do // Iterate over each description rule currently in
S

10 for a ∈ A do // Iterate over each attribute
11 Sa ← the set of all selectors associated with the attribute a;

12 for s ∈ Sa do // Iterate over each selector of the
attribute a

13 // Update S
′ by replacing W with two more specific

descriptions such that one additionally
satisfies s, and the other does not

14 S
′ ← S

′ \ {W } ∪ {W ∧ s,W ∧ ¬s};
15 // Update VertexClusters′ correspondingly
16 VertexClusters′ ← VertexClusters′ \ {ε(W )} ∪ {ε(W ∧ s), ε(W ∧ ¬s)};
17 S ′ ← A summary of G = {V , E, A} based on the summarization rule S;
18 si′ ← SI[(S′,S ′)];
19 if si′ >si then
20 si←si′;
21 S ← S

′;
22 VertexClusters←VertexClusters′;
23 S ← S ′

24 S
′ ← S

′′// Revert to S
′′ ;

25 i + +;

5.2.2 Speedup strategies

Parallel processing Our search strategy is trivially parallelizable. To gain some
speedup, the search process for each attribute and its related selectors (lines 10–24 in
Algorithm 2) is executed simultaneously in multiple processors.

Reusing some computationsWe further speedup the search by circumventing some
redundant computations when computing the SI for each candidate of summarization
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(a) (b) (c)

Fig. 3 Illustration of the existence of a common subgroup pattern when branching in two different ways

pattern. As mentioned above in Sect. 4.2.2, P(S,S) is computed as an updated back-
ground distribution as if all the subgroup patterns related to (S,S) were presented,
which requires to determine λW for each related subgroup pattern. Nevertheless, when
branching in different ways during the search (i.e., using different pairs of a selector
and its negation to extend a given description), extensions do not interfere with sub-
group patterns whose descriptions are not extended. Hence, their λW do not need to
be recomputed, providing a speed up.

Here we illustrate that, by taking the attributed network in Fig. 1 as the example
(see Fig. 3 which visualizes the corresponding adjacency matrix with arranged vertex
indices in left and in bottom; Entries are not indicated for simplicity). Assume the
network is currently divided into two vertex subgroups each respectively satisfying
b = 1 and b = 0, and the search is in the step of finding the optimal selector to specify
the description b = 1 (indices of corresponding vertices are highlighed in red (dark
in greyscale) in Fig. 3a). Though the adjacency matrix is cut in two different ways,
refining the description b = 1 into two more specific ones by adding a ≤ 3 and a > 3
(in Fig. 3b), or adding c = 0 and c = 1 (in Fig. 3c), both do not interfere with the
subgroup satisfying b = 0 (the blue striped area).

5.3 Implementation

Formining pattern locally,Pysubgroup (Lemmerich andBecker 2018), a Python pack-
age for subgroup discovery implementation written by Florian Lemmerich, was used
as a base to be built upon. We integrated our nested beam search algorithm and SI
measure (along with other state-of-the-art interestingness measures for comparison)
into this original interface. A Python implementation of all the algorithms and the
experiments is available at https://bitbucket.org/ghentdatascience/globalessd_public.
All experiments were conducted on a PC with Ubuntu OS, Intel(R) Core(TM) i7-
7700K 4.20GHz CPUs, and 32 GB of RAM.
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6 Experiments

Weevaluate ourmethods on six real-world networks. In the following,we first describe
the datasets (Sect. 6.1). Then we present the conducted experiments and discuss the
results with a purpose to address the following questions:

RQ1 Are our local pattern mining algorithms sensitive to the beamwidth? (Sect. 6.2)
RQ2 Does our SI measure outperform state-of-the-art objective interestingness mea-

sures? (Sect. 6.3)
RQ3 Is the SI truly subjective, in the sense of being able to consider a data analyst’s

prior beliefs? (Sect. 6.4)
RQ4 How can optimizing SI help avoid redundancy between iteratively mined pat-

terns? (Sect. 6.5)
RQ5 Is our global pattern mining approach able to summarize the whole graph in a

meaningful way such that all the interesting patterns can be revealed? (Sect. 6.6)
RQ6 How do the algorithms scale? (Sect. 6.7)

6.1 Data

Basic data information is summarized in Table 2.
Caltech36 and Reed98 Two Facebook social networks from the Facebook100 (Traud
et al. 2012) data set, gathered in September 2005: one for Caltech Facebook users,
and one for Reed University. Vertex attributes describe the person’s status (faculty or
student), gender, major, minor, dorm/house, graduation year, and high school.
LastfmA social network of friendships between Lastfm.com users, generated from
the publicly available dataset (Cantador et al. 2011) in the HetRec 2011 workshop.
In this dataset, tag assignments of a list of most-listened musical artists provided by
each user are given in [user, tag, artist] tuples, where those tags are unstructured text
labels that users used to express songs of artists. We then took tags that a user ever
assigned to any artist and assigned those to the user as binary attributes expressing
a user’s music interests. This dataset has been used in many publications to evaluate
local pattern mining methods (Pool et al. 2014; Atzmueller et al. 2016; Galbrun et al.
2014).
DBLPtopics A citation network generated from the DBLP citation data V113 (Tang
et al. 2008; Sinha et al. 2015) by choosing a random subset of publications from
20 conferences4 selected to cover 4 research areas: Machine Learning, Database,
Information Retrieval, and Data Mining. Vertices represent publications, and directed
edges represent citation relationships. Each publication is annotated with 50 attributes
(denoted by a1, a2, . . . , a50) whose value indicates the relevance of this paper to a
certain topic. These attributes are obtained by computing the first 50 latent semantic
indexing (LSI) components for the original paper-topic matrix (of size 10837× 9074)

3 This citation dataset are extracted from DBLP website: https://dblp.uni-trier.de/, containing 4107340
publications (from unknown year till May 2019) and 36624464 citation relationships. It can be accessed
by: https://aminer.org/citation.
4 AAAI, CIKM, ECIR, ECML-PKDD, ICDE, ICDM, ICDT, ICLR, ICML, IJCAI, KDD, NIPS, PAKDD,
PODS, SDM, SIGIR, SIGMOD, VLDB, WSDM, WWW.

123

https://dblp.uni-trier.de/
https://aminer.org/citation


Mining explainable local and global subgraph patterns 341

Table 2 Dataset statistics summary

Dataset Type |V | |E | Attribute type #Attributes |S|
Caltech36 Undirected 762 16, 651 Nominal 7 602

Reed98 Undirected 962 18, 812 Nominal 7 748

Lastfm Undirected 1892 12, 717 Binary 11, 946 21, 695

DBLPtopics Directed 10, 837 6883 Numerical 50 300

DBLPaffs Directed 6472 3066 Binary 116 232

MPvotes Undirected 650 49, 631 Binary 39 78

where each entry value indicates the relevance of a paper (represented by row) to a
field of study (represented by column) and this value is provided by the original DBLP
data. In our work, the selector space on which the search is carried does not include
every attribute value pair. A discretization is applied here: values for each attribute are
sorted and discretized into 4 partitions of equal size by 3 quartiles. This gives 3×2 = 6
selectors for each attribute (6×50 = 300 selectors in total) three of which respectively
assign true to vertices with value smaller than the first, second, third quartile of the
total values for this attribute, and the other three are the corresponding negations. We
denote the i-th quartile of values for the attribute a by Qa

i .
DBLPaffs A DBLP citation network based on a random subset of publications same
as the one for the above task. Only papers for which the authors’ country (or state,
in the USA) of affiliation is available are included as vertices. The resulting 116
countries/states are included as binary vertex attributes, set to 1 iff one of the paper’s
authors is affiliated to an institute in that country/state.
MPvotes The Twitter social network generated from friendships between Members
of Parliament (MPs) in UK (Chen et al. 2020). Their voting records on Brexit from
12th June 2018 to 3rd April 2019 are included as 39 binary vertex attributes, set to be
1, or −1 iff this MP vote for/abstain or, against/abstain respectively. Note we include
abstain on both positive and negative sides rather than make abstain (or not abstain)
alone being a value, because a selector that describes a subgroup of MPs abstaining
(or not abstaining) in a particular vote is not very meaningful in practice.

6.2 Parameter sensitivity (RQ1)

For mining local patterns, we used the standard beam search for single-subgroup
patterns, and the nested beam search for bi-subgroup patterns. In all experiments,
we set the search depth D = 2 (because patterns that are described by more than 2
selectors often appear less interesting in practice, and they would add unnecessary
difficulty for interpretation). Then the performance of those beam search methods
ultimately depends on the beam width.
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6.2.1 Experimental setup

Choice of datasets We used Lastfm to investigate the effect of the beam width on
the performance of single-subgroup pattern mining, as it involves the largest search
space (given by the largest number of selectors i.e., 21695). With regard to that on bi-
subgroup pattern mining, because the search is more time-consuming, we used Lastfm
while only considering 100 most frequently used tags as attributes (i.e., giving 200
selectors as the search space). We also used Reed98 as it involves the largest search
space amongdatasets thatwere used in our experiments on bi-subgroup patternmining.

Other settings Though we applied the SI measure with α = 0.6, β = 1 in all use
cases of local pattern mining (as previously mentioned in Remark 5 in Sect. 4.3.1), to
more meaningfully investigate the parameter sensitivity in this experiment, we set α

to be smaller, i.e., α = 0.1.5

6.2.2 Results

Effect of the beam width on single-subgroup pattern mining First, we analyze the
sensitivity of the standard beam search w.r.t. the beam width for single-subgroup
pattern mining. How the search performance changes with the beam width (denoted
by x) is illustrated below (see Fig. 4a for the SI value of the identified best pattern and
Fig. 4b for the run time).

Clearly, increasing x from 1 to 40 results in the same best pattern (with the SI value
as 258.7, the description as ‘IDM = 1’) along with a gentle increase in the run time.
Though it shows a greedy search (i.e., x = 1) can already perform well, this is not
guaranteed.

As indicated in a further investigation, increasing the beamwidth is rendered useless
by the existence of a dominant pattern with a single selector (i.e., ‘IDM = 1’) such
that there are no other patterns that have higher SI value than it and its children.
Once our method incorporates this dominant pattern into the background distribution
for one subsequent iteration to reflect the data analyst’s newly acquired knowledge,
the advantage of a lager beam width appears as the best pattern is identified when x
increases to be 3 (see Fig. 5a). The run time grows linearly as x increases (see Fig. 5b).

Effect of the beam width on bi-subgroup pattern mining To study the effects of the
beam width, we implemented all cases with x1 and x2 being 1, 2, 3, 4, or 7.

In Lastfm, clearly from Fig. 6a, small beam widths (e.g., when x1 = 1 with x2 = 3)
are sufficient for our algorithm to identify the best bi-subgroup pattern (i.e., the one
with SI as 194.8). This is even more the case for Reed98 network, as our method of
bi-subgroup pattern mining always identify the same best bi-subgroup pattern (i.e.,
the one with SI as 728) when gradually increasing x1 and x2.

5 In this sensitivity investigation, applying a relatively larger α (e.g., α = 0.6) can more possibly lead to
positive results (i.e., showing the insensitivity as the same best pattern is always identified while varying
the beam width) but by a fluke: setting α larger in the SI measure penalizes more complex patterns more
heavily, and this makes the best pattern found before further branching in a beam search more easily
dominate, giving less credible positive results. We thus safely chose α to be 0.1 in this experiment.
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(a) (b)

Fig. 4 Varying the beam width x in the search for single-subgroup patterns in Lastfm

(a) (b)

Fig. 5 Varying the beam width x in the search for single-subgroup patterns in Lastfm after incorporating
the dominant pattern described by ‘IDM = 1’

(a) (b) (c)

Fig. 6 Varying the outer/inner beam width x1/x2 in the search for bi-subgroup patterns in Lastfm

For bi-subgroup patternmining in eitherLastfm orReed98, the run time experiences
an approximately linear growth as x1 or x2 increases with the other beamwidth is fixed
(see Fig. 6b and c for Lastfm, Fig. 7b and c for Reed98).

Summary This empirical analysis suggests that overall our algorithms are not sen-
sitive to the beam width. A small beam width is usually sufficient, particularly if there
is a dominant pattern. When that is not the case, slightly increasing the beam width
was sufficient in our experiments.

We recommend an initial setting with x = 5 for single-subgroup pattern discovery
and x1 = 2, x2 = 3 for bi-subgroup pattern discovery, which is usually more than
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(a) (b) (c)

Fig. 7 Varying the outer/inner beam width x1/x2 in the search for bi-subgroup patterns in Reed98

Table 3 Top 4 single-subgroup patterns w.r.t. the SI in Lastfm network

Rank W I kW |ε(W )| pW · nW #inter-edges

1 idm = 1 0 96 78 8.93 496

2 heavy metal = 1 0 220 165 60.04 1322

3 synthpop = 1 0 208 131 57.32 1307

4 new wave = 1 0 292 191 104.01 1731

For each pattern (each row), we display values for elements that constitute the pattern syntax including W ,
I , kW , and also other statistics including its rank, |ε(W )|, pw ·nW and #inter-edges (each column). kW is the
number of observed edges within ε(W ) (i.e., the set of vertices satisfying the descriptionW ), and pW · nW
is the expected number of edges within ε(W ) w.r.t. the background distribution. I is the indicator equal to 0
if the observed pattern is dense for the analyst (i.e., kW > pW · nW ) or 1 otherwise (i.e., kW < pW · nW ).
#inter-edges is the number of connections between ε(W ) and V \ ε(W )

sufficient. If it is not sufficient, the analyst can increment x , either x1 or x2 by 1
iteratively until satisfying results are yielded.

6.3 Comparative evaluation (RQ2)

6.3.1 Experimental setup

A comparison between the SI and other objective interestingness measures can only be
made on their performances on single-subgroup pattern discovery (or more precisely,
dense subgraph mining), because those existing objective measures are limited to
quantify the interestingness of a dense subgraph community.

Choice of datasets and prior beliefsTo constrain the search that uses our SImeasure
to only identify dense subgraphs, we applied individual vertex degrees as the prior
beliefs, and chose sparse networks (i.e, Lastfm and DBLPaffs) for this comparative
task. When using the individual vertex degree as priors, single-subgroup patterns’
density will not be explainable merely from the individual degrees of the constituent
vertices. For real-world networks, given its sparsity (which is common), incorporating
this prior leads to a background distribution with a low average connection probability.
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In this case, our algorithm identify mostly dense clusters (i.e. I = 0), as these are more
informative in the sense of strongly contrasting with the expectation which is towards
sparsity. Lastfm,DBLPtopics andDBLPaffs are all evidently sparse networks. Among
them, Lastfm andDBLPaffswere chosen as their attributes and the discovered patterns
are more readily understood.

Baselines For this comparative evaluation, we consider the following baselines:

– Edge density. The number of edges divided by the maximal number of edges.
– Average degree. The degree sum for all vertices divided by the number of vertices.
– Pool’s community score (Pool et al. 2014). The reduction in the number of erro-
neous links between treating each vertex as a single community and treating all
vertices as a whole.

– Edge surplus (Tsourakakis et al. 2013). The number of edges exceeding the
expected number of edges assuming each edge is present at the same probability
α.

– Segregation index (Freeman1978). The difference between the number of expected
inter-edges to the number of observed inter-edges, normalized by the expectation.

– Modularity of a single community (Newman 2006; Nicosia et al. 2009). The mod-
ularity measure of a single community based on transforming the definition of
modularity to a local measure.

– Inverse average-ODF (out-degree fraction) (Yang and Leskovec 2015). 1 minus
the average fraction of vertices’ out-degrees to degrees.

– Inverse conductance.The number of edges inside the cluster divided by the number
of edges leaving the cluster.

More detailed descriptions along withmathematical definitions for these baselines can
be found in Table 11 in “Appendix A”.

Other settings For single-subgroup pattern discovery on both Lastfm andDBLPaffs
networks, we use beam search with beam width 5 and search depth 2.

6.3.2 Results

Four most interesting patterns w.r.t. the SI and these baseline measures on Lastfm
are presented in Tables 3 and 4 respectively. For each pattern, we display values
for elements that constitute the pattern syntax including W , I , kW , and also other
statistics including its rank, |ε(W )|, and #inter-edges. #inter-edges is the number of
connections between ε(W ) and V \ ε(W ), telling how isolated a particular group of
members is. Particularly for patterns discovered using the SI, we also display pW ·nW ,
the expected number of connections within ε(W ) w.r.t. the background distribution.
Comparing pW · nW to kW gives a direct sense of how much the analyst’s expectation
differs from the truth (Recall pW from Eq. 2).

Here, we summarize the main findings.
Using baselines Each of those objective measures exhibits a particular bias that

arguably makes the obtained patterns less useful in practice. The edge density is eas-
ily maximized to a value of 1 simply by considering very small subgraphs. That’s
why the patterns identified by using this measure are all those composed of only 2
vertices with 1 connecting edge. In contrast, using the average degree tends to find
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Mining explainable local and global subgraph patterns 347

very large communities, because in a large community there are many other vertices
for each vertex to be possibly connected to. Although Pool argued that their measure
may be larger for larger communities than for smaller ones, in their own experiments
on the Lastfm network as well as in our own results, it yields relatively small com-
munities (Pool et al. 2014). As they explained, the reason was Lastfm’s attribute data
is extremely sparse with a density of merely 0.15%. Note that patterns with the top
10 edge surplus values are the same as those for the Pool’s measure. Although these
two measures are defined in different ways, Pool’s measure can be further simplified
to a form essentially the same as the edge surplus. Pursuing a larger segregation index
essentially targets communities which have much less cross-community links than
expected. This measure emphasizes more strongly the number of cross-community
links, and yields extremely small or large communities with few inter-edges on Lastfm.
Using the modularity of a single community tends to find rather large communities
representing audiences of mainstreammusic. The results for the inverse average-ODF
and the inverse conductance are not displayed in the supplement, because the largest
values for these two measures can be easily achieved by a community with no edges
leaving this community, for which a trivial example is the whole network.

Using the SI We argue that the patterns extracted using our SI measure are most
insightful, striking the right balance between coverage (sufficiently large) and speci-
ficity (not conveying too generic or trivial information). The top one characterises a
group of 78 IDM (i.e., intelligent dance music) fans. Audiences in this group are con-
nected more frequently than expected (96 vs. 8.93), and they altogether only have 496
connections to those people not into IDM, which is much sparser than connections
within the IDM group (as the connectivity density across the group and that within the
group are respectively 496/(78×1814) ≈ 0.0035 and96/(78×(78−1)/2) ≈ 0.0320).

Remark 7 (Results on DBLPaffs) ForDBLPaffs, the same conclusion as above can also
be reached. See top 4 single-subgroup patterns on DBLPaffs w.r.t. our SI and other
measures in Tables 12 and 13 respectively in “Appendix A”.

SummaryUnlike state-of-the-art objective interestingness measures, each of which
exhibits a particular bias, the proposed SI measure achieves a natural balance between
coverage and specificity, arguably leading to more insightful patterns.

6.4 The effects of different prior beliefs: a subjective evaluation (RQ3)

6.4.1 Experimental setup

Todemonstrate the SI’s subjectiveness,we consider different prior beliefs, in search for
patterns w.r.t. the SI. We deliberately perform this evaluation on bi-subgroup pattern
discovery for a more generic and interesting setting.

Choice of datasets In the following, we analyze results on Caltech36 and Reed98.
These two networks are chosen, because their straightforward domain knowledge
provides us the ease for prior belief settings. People, even those that are not social
scientists, normally hold prior beliefs about this sort of friendship network (e.g., they
commonly believe that students of different class years are less likely to know each
other than students from the same class year).
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348 J. Deng et al.

Other settingsFor bi-subgroup pattern discovery,we applied the nested beam search
with x1 = 2, x2 = 3, and D = 2. Moreover, we constrain the target descriptions W1
and W2 to include at least one common attribute but with various values, so that the
corresponding pair of subgroups ε(W1) and ε(W2) do not overlap with each other.
Under this setting, the obtained patterns are more explainable, and the results are
easier to evaluate.

6.4.2 Results

The 4 most subjectively interesting patterns under each prior belief are presented
in Table 6 (for Caltech36) and Table 7 (for Reed98), with their associated notations
are summarized in Table 5.

Incorporating Prior 1 We first incorporated prior belief on the individual vertex
degree (i.e. Prior 1). In general, the identified patterns belong to knowledge commonly
held by people, and are not useful. The top 4 patterns on Caltech36 all reveal people
graduating in different years rarely know each other (rows for Prior 1 in Table 6), in
particular between ones in class of 2006 and ones in class of 2008 (indicated by the
most interesting pattern). Although W2 of the second pattern (i.e., status = alumni)
does not contain the attribute graduation year, it implicitly represents people who
had graduated in former year. For Reed98, the discovered patterns under Prior 1 also
express the negative influence of different graduation years on connections (rows for
Prior 1 in Table 7).

IncorporatingPrior 1 andPrior 2Wethen incorporated prior beliefs on the densities
between bins for different graduation years (i.e., Prior 2). All the extracted top 4
patterns on Caltech 36 indicate rare connections between people living in different
dormitories, and this is also not surprising (rows for Prior 1 + Prior 2 in Table 6).

For Reed98, incorporating Prior 1 and Prior 2 provides interesting patterns (rows
for Prior 1 + Prior 2 in Table 7). The top one indicates people living in dormitory 88
are friends with many in dormitory 89. In contrast, what people commonly believe is
that people living in different dormitories are less likely to know each other. For an
analyst who has such preconceived notion, this pattern is interesting. Both the fourth
and the seventh patterns reveal a certain person knew more people in class of 2009
than expected.

Table 5 Notations in Tables 6, 7 and 8

Notation Description

W1/W2 The description of the first/second subgroup

|ε(W1)|/|ε(W2)| The subgroup of vertices satisfying the description W1/W2

kW The number of observed edges between ε(W1) and ε(W2)

pW · nW The expected number of edges between ε(W1) and ε(W2)

w.r.t. the background distribution

I The indicator equal to 0 if the observed pattern is dense for the

analyst (i.e., kW > pW · nW ) or 1 otherwise (i.e., kW < pW · nW )
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Incorporating Prior 1, Prior 2 and Prior 3 ForCaltech 36, by additionally incorpo-
rating prior beliefs on the dependency of the connectivity probability on the difference
in dormitories (i.e., Prior 3), patterns characterizing some interesting dense connec-
tions are discovered (rows for Prior 1 + Prior 2 + Prior 3 in Table 7). For instance, the
top pattern indicates three people in class of 2004 connect with many in class of 2008.
In fact, these three people’s graduation had been postponed, as their status is ‘student’
rather than ‘alumni’ in year 2005. Furthermore, the starting year for those 2008 cohort
is exactly when these three people should have graduated. Therefore, these two groups
had opportunities to become friends. The fourth pattern indicates an alumnus who had
studied in a high school knew almost all the students living in a certain dormitory. The
reason behind this pattern might be worth investigating, which could be for instance,
this alumni worked in this dormitory.

Summary As the results show, incorporating different prior beliefs leads to dis-
covering different patterns that strongly contrast with these beliefs. The proposed SI
measure thus succeeds in quantifying the interestingness in a subjective manner.

6.5 Evaluation on iterative patternmining (RQ4)

6.5.1 Experimental setup

Our method is naturally suited for iterative pattern mining, in a way to incorporate the
newly obtained pattern into the background distribution for subsequent iterations. We
show this on searching for bi-subgroup patterns because they are more generic.

Choice of datasets Dataset DBLPaffs and Lastfm are used, as the meanings of
their attributes are clear and straightforward, giving an ease to explain the discovered
patterns.

Other settings Other settings for this task are the same as for addressing RQ2.
The nested beam search with x1 = 2, x2 = 3, and D = 2 was applied. The target
descriptions W1 and W2 are constrained to include at least one common attribute but
with various values, making the corresponding pair of subgroups ε(W1) and ε(W2)

not overlap with each other.

6.5.2 Results

Results for Lastfm are displayed and discussed in “Appendix B”. Here we only analyze
the results on DBLPaffs. Table 8 displays top 3 patterns found in each of the four
iterations on DBLPaffs.

Iteration 1 Initially,we incorporated prior on the overall graph density. The resulting
top pattern indicates papers from institutes in USA seldom cite those from other
countries.

Iteration 2 After incorporating the top pattern in iteration 1, a set of dense patterns
were identified. All the top 3 patterns reveal a highly-cited subgroup of papers whose
authors are affiliated to institutes in California and New Jersey. This agrees with fact
that many of the world’s largest high-tech corporations and reputable universities are
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Mining explainable local and global subgraph patterns 353

located in these regions. Examples include Silicon valley, Stanford university in CA,
NEC Laboratories, AT&T Laboratories in NJ, among others.

Iteration 3The top 3 patterns in iteration 3 reveal that papers from authors with Chi-
nese affiliations are rarely cited by papers with authors from other countries. However,
they are frequently cited by papers with Chinese authors, as indicated by our identi-
fied top single-subgroup pattern in DBLPaffs (see Table 12 in “Appendix A”). This
indicates researchers with Chinese affiliations are surprisingly isolated, the reason of
which might be interesting to investigate.

Iteration 4 The top patterns in iteration 4 reveal that papers from institutions in
Washington state are highly cited by others, in particular by papers from California.
Closer inspection revealed that the majority of these papers are written by authors
from Microsoft Corporation and the University of Washington.

Summary By incorporating the newly obtained patterns into the background dis-
tribution for subsequent iterations, our method can identify patterns which strongly
contrast with this knowledge. This results in a set of patterns that are not redundant
and highly surprising to the data analyst. Note that the lack of redundancy arises nat-
urally, without the need for explicitly constraining the overlap between the patterns in
consecutive iterations. In fact, some amount of overlap may still occur, as long as the
non-redundant part of the information is sufficiently large.

6.6 Empirical results on the discovered global patterns (RQ5)

To demonstrate the use of our method for mining interesting global patterns, we illus-
trate and analyze the experimental results on DBLPaffs (in Sect. 6.6.1), DBLPtopics
(in Sect. 6.6.2) andMP (in “Appendix C”). Each of these datasets serves an interesting
case study for us to evaluate our method on.

6.6.1 Case study on DBLPaffs

Task Paper citations relate to authors’ affiliations to some extent. For example, insti-
tutions in some particular countries or regions are reputable, and often produce
highly-cited research. Also, collaborations and mutual citations may frequently occur
in institutions from some certain countries or regions. Thus, of particular interest
could be patterns that describe a subgroup of papers from affiliations A frequently (or
rarely) cite papers in another subgroup from affiliations B. We show such patterns can
be revealed by a summarization yielded by our approach.

The resulting summarizationBy running our algorithm for 6 iterations, this citation
network is summarized into 7 subgroups each consisting of papers satisfying a partic-
ular description about their authors’ affiliations. These 7 subgroups are respectively
defined by

1. USA = 1 and WA (Washington) = 1;
2. USA = 1 and WA = 0 and China = 1;
3. USA=1andWA=0andChina=0 andCA(California) = 1 andNJ (NewJersey) =1;
4. USA = 1 and WA = 0 and China = 0 and CA = 1 and NJ = 0;
5. USA = 1 and WA = 0 and China = 0 and CA = 0;
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354 J. Deng et al.

Fig. 8 The resulting summary of DBLPaffs. Each supervertex (representing a paper subgroup) is labelled
by its number of members (in the centre of the blue circle) and its description (near the blue circle). Each
directed edge connects one supervertex to the other, and its linewidth indicates the connectivty density from
a subgroup (e.g. ε(W1)) to the other one (e.g., ε(W2)). A thicker edge means the citations from ε(W1) to
ε(W2) are more frequent) (Color figure online)

Fig. 9 Theheatmap representationof the densitymatrix forDBLPaffs, alignedwith a dendrogram illustration
of the splitting hierarchy on the left. A deeper color of each square indicates a higher connectivity density
from a subgroup (represented by row) to another one (represented by column) (Color figure online)

6. USA = 0 and China = 1;
7. USA = 0 and China = 0.

The summary is displayed in Fig. 8. In the following, we discuss properties of local
subgroup patterns revealed in our summarization to access its validity.

Remark 8 (Redundancy in the descriptions) One may notice that some subgroup
descriptions can bemore concise. For example, the first subgroup pattern “USA=1 and
WA = 1” should induce the same extension as only“WA = 1”. There is no mechanism
in our approach for the global pattern mining that would prefer the alternative shorter
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Mining explainable local and global subgraph patterns 355

description of the same subgroup. Yet, such redundancy can be easily identified and
adjusted in post-processing.Moreover, this issue does not affect our single/bi-subgroup
pattern mining approach where each iteration of the search essentially identifies an
optimal pattern rather than a split (in global pattern mining approach), and shorter
description of the same subgroup would have a larger SI value given by its smaller
DL value.

DiscussionA series of interesting local subgroup patterns emerge from the resulting
summarization. The density matrix where its entry at the i-th row and the j-th column
is the citation density from papers in the i-th subgroup to the j-th is visualized by a
heatmap, of which the left side is lined up with a dendrogram illustrating the splitting
hierachy (see Fig. 9).

Obviously, the most cohesive subgroup are papers from institutions in Washington
state in USA, as they cite those within this subgroup most frequently (indicated by
the darkest green square in the top left). Closer inspection revealed that the majority
of these papers are written by authors from Microsoft Corporation and the University
of Washington.

The most highly-cited subgroup is the third one (indicated by the dark color of all
the squares along the third column except the one in the third row). This subgroup
only contains 15 papers, and their authors are affiliated to institutes in California and
New Jersey, neither in Washington nor China. Note this also agrees with bi-subgroup
patterns found in previous experiment for addressing RQ3 (Iteration 2 in Sect. 6.5). As
already been pointed out, many of the world’s largest high-tech corporations and rep-
utable universities are located in this region. Examples include Silicon valley, Stanford
university in CA, NEC Laboratories, AT&T Laboratories in NJ, among others.

Another interesting subgroup is the second one ofwhich authors arewith affiliations
in China and USA (except Washington). Researchers related to this subgroup are
surprisingly isolated, as their papers are seldom cited by those from other subgroups
but very frequently (or to be more precise, the second most frequently) within this
subgroup (indicated by the shallow color of all the squares along the second column
except the one in the second row). In fact, Chinese affiliatedwith research organisations
in China and Chinese affiliated with organisations in USA, have coauthored most
papers in this subgroup. The reason of their isolation might be interesting for data
analysts to investigate. Again, this coincides with what we found in experiment for
addressing RQ3 (Iteration 3 in Sect. 6.5). The difference is the identified subgroup
here is more specified (i.e., also being with affiliation in USA except Washington).

A follow-up experiment The rest subgroup defined by USA = 0 and China = 0 (i.e.,
the 7th one) contains a considerable number ofmembers (indicated by the largest circle
in Fig. 8). Continuing to run our algorithm for subsequent iterations tends to split this
subgroup up such that some cohesive groups affiliated with organisations in other
countries are revealed. For example, subgroups related to affiliations in Singapore,
Canada, the Netherlands emerge respectively in the first 3 subsequent iterations (see
the corresponding splitting hierarchy highlighted by red dashed lines in Fig. 10). They
all cite papers within the same subgroup or those from the third subgroup (i.e., the
overall most highly-cited one) very frequently (see rows 7, 8, 9 of the heatmap in
Fig. 10).
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Fig. 10 The heatmap representation of the density matrix among subgroups obtained by running our algo-
rithm for another 3 subsequent iterations on DBLPaffs, with a dendrogram illustration of the splitting
hierarchy on the left. A deeper color of each square indicates a higher connectivity density from a subgroup
(represented by row) to another one (represented by column). The splitting hierarchy for the 3 new iterations
are in red dashed lines (Color figure online)

6.6.2 Case study on DBLPtopics

Task A data analyst working for an academic organization may want to obtain a
high-level view of citation vitality among different research fields. GivenDBLPtopics
dataset, we here show the global pattern identified by our summarization approach can
provide such high-level view, revealing interesting local subgroup patterns of the form
‘papers of study field A frequently (or rarely) cite those of field B’. We also show the
obtained global pattern can provide the data analyst further insights by linking with
information about paper distribution among different conferences.

The resulting summarization The summarization of DBLPtopics is generated by
running our algorithm for 4 iterations, and the resulting summarization rule means to
divide all papers into the following 5 subgroups:

1. a1 < Qa1
2 ∧ a8 ≥ Qa8

1 (Theoretical machine learning);
2. a1 < Qa1

2 ∧ a8 < Qa8
1 (Practical machine learning);

3. a1 ≥ Qa1
2 ∧ a5 < Qa5

3 ∧ a3 < Qa3
3 (Data mining);

4. a1 ≥ Qa1
2 ∧ a5 < Qa5

3 ∧ a3 ≥ Qa3
3 (Information retrieval);

5. a1 ≥ Qa1
2 ∧ a5 ≥ Qa5

3 (Database).

For each subgroup, we list its original description and a corresponding short interpreta-
tion (in brackets) based on summarizing attributes’ meaning. Asmentioned previously
(in Sect. 6.1), an attribute is essentially one of the first 50 LSI components for the origi-
nal paper-topic matrix. Its meaning can thus be described by its 5 subcomponents with
highest absolute weights (shown in Table 9). A higher weight means this attribute’s
meaning is closer (positive sign) or more contrasting (negative sign) to this research
field. We will use these short interpretations rather than original descriptions in the
following part, because these are more straightforward. Generally, this summarization
not only successfully captures those 4 research areas that publications in DBLPtopics
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Table 9 The meaning of
attributes related to the resulting
summarization

Attribute Meaning (Top 5 most strongly asso-
ciated fields of study by absolute
weight)

a1 Data mining (0.55)

Machine Learning (− 0.49)

Database (0.32)

Computer Science (0.28)

Information retrieval (0.25)

a3 Data mining (0.41)

Computer science (− 0.40)

Mathematics (0.39)

Information retrieval (0.30)

Pattern recognition (0.24)

a5 Database (0.61)

Information retrieval (− 0.49)

Query optimization (0.21)

World Wide Web (− 0.18)

Mathematics (0.15)

a8 Mathematical optimization (0.45)

Information retrieval (0.44)

Database (0.37)

Data mining (− 0.25)

Computer science (0.22)

are intended to cover (i.e., Machine Learning, Database, Information Retrieval, and
Data Mining), but also identifies a deeper-level structure (i.e., the partition of machine
leaning papers into two subgroups according to different aspects they emphasize: more
practical or more theoretical).

The summary of DBLPtopics based on the resulting summarization rule is dis-
played in Fig. 11. To highlight the citation vitality between each pair of subgroups,
the corresponding citation density matrix is visualized by a heatmap, lined up with a
dendrogram on the left illustrating the splitting hierarchy (see Fig. 12).

Discussion As shown in Fig. 12, the citation density within the same subgroup is
often high, indicating papers of similar research field often cite each other.

Exceptions are the second (practical machine learning) subgroup and the third one
(data mining) which respectively cite the fifth (database) and the fourth (information
retrieval) most frequently. This accords with the fact that solving data mining or
practical machine learning research questions often necessitates database techniques
or information retrieval to solve some subtasks.

Clearly, the fourth and the fifth subgroup are most cohesive (indicated by those two
evidently dark green squares in the fourth and the fifth place of the diagonal). Also,
these two groups cite each other and the data mining subgroup very frequently.
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Fig. 11 The resulting summary ofDBLPtopics. Each supervertex (representing a paper subgroup) is labelled
by its number of members (in the centre of the blue circle) and its description (near the blue circle). Each
directed edge connects one supervertex to the other, and its linewidth indicates the connectivty density from
a subgroup (e.g. ε(W1)) to the other one (e.g., ε(W2)). A thicker edge means the citations from ε(W1) to
ε(W2) are more frequent) (Color figure online)

Fig. 12 The heatmap representation of the density matrix for DBLPtopics, aligned with a dendrogram
illustration of the splitting hierarchy on the left (Recall Qa

i denotes the i-th quartile of values for the attribute
a). A deeper color of each square indicates a higher connectivity density from a subgroup (represented by
row) to another one (represented by column) (Color figure online)

One downstream task: knowing more about conferences The summarization gener-
ated by our approach can be useful in some downstream analysis tasks. Here we show
an example of utilizing it to know more about conferences, simply by linking with
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Fig. 13 The distribution publications in 20 selected conferences within each subgroup. For each bin repre-
senting a subgroup, the subgroup description is placed on the top, and the number of papers in this subgroup
is placed on the right end. The length of a rectangular in a certain color and hatch inside a bin is proportional
to the percentage of publications in a certain conference in a subgroup. Conferences are in alphabetical
order (Color figure online)

the distribution of publications in those 20 selected conferences within each subgroup
(displayed in Fig. 13).

First, by merely looking at the distribution for each subgroup, the data analysts
can learn the relationship between research fields and conferences, e.g., answering
questions like which research field is dominated by which conference. As can be seen,
a noticeable large proportion of publications in regard to the information retrieval
(the fourth subgroup) are in SIGIR and CIKM. and the database publications (the
fifth subgroup) are mostly in ICDE, VLDB, SIGMOD. The data mining subgroup
(the third one) is special in a sense that their publications are distributed quite evenly.
WWWonly holds a slim majority, and publications from KDD, AAAI, ICDM, CIKM
are a little bit more than those from another venue (except WWW). Moreover, it is
interesting to notice KDD and ICDM appear to be more interdisciplinary, accepting
papers surprisingly evenly from these research areas compared to other conferences
(as there is no noticeably longer dark brown or light green rectangular in either one of
these 5 horizontal bins in Fig. 13).

Also, the data analyst can combine Figs. 12 and 13 to deduce the citation vitality
among different conferences. For example, publications in SIGIR and CIKM often
cite those also in these two conferences (as the fourth subgroup is very cohesive), and
they also often cite publications in WWW, AAAI, KDD,CIKM (those dominating the
third subgroup).
Summary As shown by these case studies on different datasets, global patterns iden-
tified by our method can not only directly provide insights by revealing a series of
interesting single-subgroup and bi-subgroup patterns, but also be utilized to facilitate
some downstream analysis tasks.
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6.7 Scalability evaluation (RQ6)

6.7.1 Experimental setup

Choice of datasets We used Lastfm to investigate the scalability to the number of
selectors, because it can give a largest number of selectors (i.e., 21695) as the search
space.

Other settings Same as for other experiments, in the scalability evaluation, we
applied the beam searchwith x = 5 (for single-subgroup pattern discovery), the nested
beam search with x1 = 2, x2 = 3, and D = 2 (for bi-subgroup pattern discovery), 8
processors running in parallel (for global pattern mining).

6.7.2 Results

Effect of |S|. Figure 14 displays run time on Lastfm w.r.t. the number of selectors in
the search space (i.e., |S|). It is clear that, in either single-subgroup or global pattern
mining, the run time experiences a linear growth as we gradually double the |S| (from
10 to 20,480), whereas the run time for bi-subgroup pattern mining increases more
than linearly, and exceeds 1 day when |S| is larger than 2560.

Run time The run time of our experiments for addressing RQ2 to RQ5, as well as
the |S| and |V | statistics are listed in Table 10. The influence of the |S| and |V | on the
run time is evident.

(a) (b) (c)

Fig. 14 Run time (s) parametrized by |S| on Lastfm

Table 10 Run time

Dataset |S| |V | Run time (s)

Single-subgroup pattern mining (RQ2) Lastfm 21, 695 1892 278.49

DBLPaffs 232 6472 32.40

Bi-subgroup pattern mining (RQ3 and RQ4) Caltech36 602 762 1312.57

Reed98 748 962 1965.41

Lastfm 200 1892 679.85

DBLPaffs 232 6472 3114.78

Global pattern mining (RQ5) DBLPaffs 232 6472 830.69

DBLPtopics 150 10, 837 1570.90

MPvotes 78 650 12.73
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Summary The run time grows linearly in the number of attributes in both
single-subgroup and global pattern mining, whereas it grows faster than linearly in
bi-subgroup pattern mining.

7 Conclusion

Prior work of pattern mining in attributed graphs typically only search for dense
subgraphs (‘communities’) with homogenous attributes. We generalized this type of
pattern to densities within this subgraph (no matter whether dense or sparse, which
we refer as single-subgroup pattern), between a pair of different subgroups (which
we refer as bi-subgroup pattern), as well as between all pairs from a set of subgroups
that partition the whole vertex set (which we refer as global pattern).

We developed a novel information-theoretic approach for quantifying interesting-
ness of such patterns in a subjective manner, with respect to a flexible type of prior
knowledge the analyst may have about the graph, including insights gained from pre-
vious patterns.

The empirical results show that our method can efficiently find interesting patterns
of these new different types. In the standard problem of dense subgraph mining, our
method can yield results that are superior to the state-of-the-art. We also demonstrated
empirically that our method succeeds in taking in account prior knowledge in a mean-
ingful way.

The proposed SI interestingness measure has considerable advantages, but a price
to pay for this is in terms of computational time. To help maintain the tractability, we
succumb to some accurate heuristic search strategies. It would be useful for the future
work to discover a search strategy with performance guarantee and to further speed
up the search (e.g., by branch and bounds).
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Appendix

A For Section 6.3: A comparative evaluation onDBLPaffs network
(RQ2)

Some objective interestingness measures we used for comparison, as well as their
explanations are listed in Table 11.

We consider undirected graphs for the sake of presentation and consistency with
most literature. However, we note that the generalization to directed graphs is straight-
forward.

B For Section 6.5: Evaluation on the iterative patternmining on
Lastfm dataset (RQ4)

Table 14 displays the top 3 patterns found in each of the five iterations on the Lastfm.
The description search space is built based on only 100 most frequently used tags, that
means, |S| = 100 × 2.

Iteration 1 Initially, we incorporate prior belief on individual vertex degree. The
extracted most interesting pattern reflects a conflict between aggressive heavy metal
fans and mainstream pop lovers who do not listen to heavy metal at all.

Iteration 2 After incorporating the top pattern identified in iteration 1, what comes
top is the one expressing again a conflict between mainstream and non-mainstream
music preference, but another kind (i.e., pop with no indie, and experimental with no
pop). Also, we can notice only the second pattern for the iteration 1 is remained in
the iteration 2 top list but with a lower rank as third. The interestingness of any sparse
pattern associated with the newly incorporated one under the updated background
distribution is expected to decrease, as the data analyst’s would not feel surprised
about such pattern.

Iteration 3 In iteration 3, our method tends to identify some interesting dense
patterns, mainly related to synth pop and new wave genres. The top one states synth
pop fans frequently connect with many people listening to new wave but not synth
pop. This pattern appears fallacious at the first glance. Nevertheless, synth pop is a
subgenre of new wave music. Also, the latter group may listen to synth pop but they
use a different tag ‘synthpop’ instead of ‘synth pop’, as there are even 102 audience
only tag synth pop as ’synthpop’ (see the third patten). Hence, this pattern makes sense
as it describes dense connections between two groups which resemble each other.

Iteration 4The top 3 patterns in iteration 4 all express negative associations between
new wave and some sort of catchy mainstreammusic (eg. pop, rnb, or hip-hop, among
several others).

Iteration 5 Once we incorporate the most interesting one, patterns characterizing
some positively associated genres stand out. For example, the top one in iteration 5
indicates instrumental audience are friends with many ambient audience who doesn’t
listen to instrumental music. These two genres are not opposite concepts and share
many in common (e.g., recordings for both do not include lyrics). Actually, ambient
music can be regarded as a slow form of instrumental music.
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Table 11 Existing measures for a comparison

Measure Description Mathematical definition

Edge density The ratio of the number of edges
to the number of possible edges
in the cluster

2∗kW|ε(W )|∗(|ε(W )|−1)

Average degree The ratio of the degree sum for
all vertices to the number of
vertices in the cluster

2∗kW|ε(W )|

Pool’s measure (Pool
et al. 2014)

The reduction in the number of
erroneous links between
treating each vertex as a single
community and treating all the
vertices as a whole

∑
u∈ε(W ) d(u) −

(
|ε(W )|∗(|ε(W )|−1)

2 −

kW

)
−#inter-edges = −|ε(W )|∗(|ε(W )|−1)

2 +
3 ∗ kW

Edge Sur-
plus (Tsourakakis
et al. 2013)

The number of edges exceeding
the expected number of edges
within the cluster assuming
each edge is present with the
same probability α

kW − α ∗ |ε(W )| ∗ (|ε(W )| − 1)

Segregation
index (Freeman 1978)

The difference between the
number of expected inter-edges
to the number of the observed
inter-edges, normalized by the
expectation

1 − #inter−edges∗|V |∗(|V |−1)
2∗|E |∗|ε(W )|∗(|V |−|ε(W )|)

Modularity of a single
community (Newman
2006; Nicosia et al.
2009)

The measure quantifying the
modularity contribution of a
single community based on
transforming the definition of
modularity to a local measure

1
2∗|E |

∑
u,v∈ε(W )

(
au,v − d(u)∗d(v)

2∗|E |
)

Inverse Average-
ODF (out-degree
fraction) (Yang and
Leskovec 2015)

The inverse of the Average-ODF
which is based on averaging the
fraction of inter-degree and the
degree for each vertex in the
cluster

1 − 1
|ε(W )|

∑
u∈ε(W )

dW (u)
d(u)

Inverse Conductance The ratio of the number of edges
inside the cluster to the number
of edges leaving the cluster

kW
#inter-edges

For a given attributed graph G = {V , E, �}, and a community induced by a description W such that
ε(W ) ∈ V , d(u) denotes the degree of vertex u ∈ V ; dW (u) denotes the inter-degree of vertex u ∈ ε(W ),
specfically, dW (u) := |{(u, v) ∈ E : v ∈ V \ ε(W )}|; and #inter-edges denotes the number of connections
between ε(W ) and V \ ε(W )

Summary By incorporating the newly obtained patterns into the background dis-
tribution for subsequent iterations, our method can identify patterns which strongly
contrast to this knowledge. This results in a set of patterns that are not redundant and
are highly surprising to the data analyst. Note this does not means we restrict patterns
in different iterations not to be associated with each other. In fact, overlapping could
happen when this is informative.
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Table 12 Top 4 single-subgroup patterns w.r.t. our SI in DBLPaffs network

Rank W I kW |ε(W )| pW · nW #inter-edges

1 China = 1 0 179 873 63.20 566

2 China = 1 ∧ IN (Indiana) = 0 0 179 869 62.58 561

3 China = 1 ∧ Italy = 0 0 179 870 62.67 561

4 China = 1 ∧ Denmark = 0 0 179 870 62.69 562

For each pattern (each row), we display values for elements that constitute the pattern syntax including W ,
I , kW and also other statistics including its rank, |ε(W )|, pw ·nW and #inter-edges (each column). kW is the
number of observed edges within ε(W ) (i.e., the set of vertices satisfying the descriptionW ), and pW · nW
is the expected number of edges within ε(W ) w.r.t. the background distribution. I is the indicator equal to 0
if the observed pattern is dense for the analyst (i.e., kW > pW · nW ) or 1 otherwise (i.e., kW < pW · nW ).
#inter-edges is the number of connections between ε(W ) and V \ ε(W )

C For Section 6.6: Onemore case study onMPvotes for the evaluation
of global patternmining

Task Brexit is a hot topic of debate in UK. MPs’ voting behaviours on Brexit might
affect the likelihood of their connections. Using this information to summarize MPs
friendship network is thus potential to provide insights on the Brexit saga. We here
investigate whether our approach can achieve this.

The resulting summarization The summarization of MPvotes generated from run-
ning our algorithm for 4 iterations splits all MPs into 5 subgroups, and they are
respectively defined by

1. I1 = −1 or 0 ∧ I10 V3 = −1 or 0 ∧ I10 V4 = −1 or 0;
2. I1 = −1 or 0 ∧ I10 V3 = −1 or 0 ∧ I10 V4 = 1;
3. I1 = −1 or 0 ∧ I10 V3 = 1;
4. I1 = 1 ∧ I7 V4 = 1 or 0;
5. I1 = 1 ∧ I7 V4 = −1.

where ‘Ii Vj’ represents the j-th vote in the i-th issue. For an issue around which there
exists only one vote, say the 1st issue, it is simply represented as I1. Detailed interpre-
tation of all voting issues related to our summarization are displayed in Table 15. The
summary ofMPvotes is illustrated in Fig. 15. For a dedicated view of the connectivity
density between each subgroup pair, the corresponding density matrix is visualized
by a heatmap, aligned with an dendrogram illustration of the splitting hierachy on the
left (see Fig. 16).

Discussion Clearly in Fig. 16, our summarization identifies several crucial votings
that partitionMPs into cohesive subgroups. That is, MPs taking the same sides in these
votings connect more frequently to each other (i.e., those within the same subgroup)
than MPs voting differently (i.e., those in other subgroups). The only exception is the
2nd subgroup who connect most frequently to the 3rd subgroup. More interpretations
of these patterns are provided in the following.

Combining with political parties The data analyst can utilize our summarization of
MPvotes to obtain insights about Brexit saga. Here, we provide one example. More
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Table 15 The description of
voting issues related to the
resulting summarization in the
order of spliting

Vote Notation Description

I1 Government in rejecting an
amendment that would have given
MPs the power to stop the UK from
leaving the EU without a deal

I10 V3 Labour’s plan for a close economic
relationship with the EU

I10 V4 UK membership of the European
Free Trade Association (Efta) and
European Economic Area (EEA)

I7 V4 Government in contempt of
parliament

Fig. 15 The resulting summary ofMPvotes. Each supervertex (representing a subgroup of MPs) is labelled
by its number of members (in the centre of the blue circle) and its description (near the blue circle).
Each undirected edge connects between one supervertex and the other, with its linewidth indicating the
connectivity density between these two corresponding subgroups (The thicker the edge, the higher the
connectivity density) (Color figure online)

specifically, we show, by combining with the distribution of MPs’ party affiliations
within each subgroup (illustrated in Fig. 17), our summarization can:

(a) reveal crucial voting issues over which MPs from different parties take different
sides;

(b) provide a high-level view of connectivity densities among different political par-
ties.

Nowwe trace the partition process based on our summarization in order to show (a).
The first split is a vote on I1 of which ‘ayes’ side with the government to keep no-deal
Brexit on the table as a possibility (see the dendrogram in Fig. 17). A clear opinion
conflict between different parties can be observed. More specifically, all the MPs
from Scottish National Party (SNP), Liberal Democrat (LD), Sinn Fein (SF), Plaid
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Fig. 16 The heatmap representation of the density matrix among subgroups obtained by running our algo-
rithm for 4 iterations on MPvotes, aligned with a dendrogram illustration of the splitting hierarchy on the
left. A darker color of each square indicates a higher connectivity density between a subgroup (represented
by row) and another one (represented by column) (Color figure online)

Fig. 17 The distribution of party affiliations ofMPs in each subgroup, alignedwith a dendrogram illustrating
the splitting hierarchy on the left. For each bin corresponding to a subgroup, the subgroup description is
placed on the top, and the number of MPs in this subgroup is placed on the right end. The rectangular length
of a particular color inside a bin is proportional to the number of MPs affiliated with a particular party in
this subgroup (Color figure online)

Cymru (PC), Green (Grn) and the majority of MPs in Labour (Lab) voted against
I1 or abstained (the aggregation of the first, second and third subgroup). All except
two MPs from Conservative (Con) and all from Democratic Unionist Party (DUP)
were in favour (the aggregation of the fourth and fifth subgroup ). Then those ‘Noes’
and abstainers of I1 are divided according to their stances on Lab’s plan for a close
economic relationship with the EU (i.e., I10 V3). ‘Ayes’ of I10 V3 (i.e., the third
subgroup) are dominated by most MPs from Lab. The others are further split over
their votes on UK membership of Efta and Eea (i.e., I10 V4), in which MPs from
some non-mainstream parties voted for or abstained (i.e., the firstst subgroup) and 15
MPs from Lab voted against. In the fourth split of vote on I7 V4, MPs affiliated with
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Con and those with DUP are clearly separated from each other, leading to the fourth
and fifth subgroup respectively.

Then we show (b) by combining our summarization (Fig. 16) and the party affil-
iation distribution (Fig. 17). Here we show some interesting findings. As mentioned
previously, one bi-subgroup pattern reveals frequent connections between the second
subgroup and the third one. The second subgroup can be interpreted as a group of
unrepresentative Lab MPs, whereases the third subgroup corresponds to a representa-
tive group, as closer inspection showsMPs in either of these two subgroups are mostly
affiliated with Lab, though the population of the second subgroup is much smaller.
Also,MPs affiliated with some non-mainstream parties (e.g., SNP, LD,SF,PC) connect
much more to those affiliated with Lab than those with Con, especially those with Lab
belonging to the second subgroup. Although the fourth subgroup is almost made up
with purelyMPs that are fromCon, its relatively small self-connectivity in comparison
with that to the first and the third subgroup indicates not many MPs from Con build
friendship with each other.

References

Adhikari B, Zhang Y, Bharadwaj A, Prakash BA (2017) Condensing temporal networks using propagation,
pp 417–425. https://doi.org/10.1137/1.9781611974973.47

Adriaens F, Lijffijt J, De Bie T (2017) Subjectively interesting connecting trees. In: Ceci M, Hollmén
J, Todorovski L, Vens C (eds) Machine learning and knowledge discovery in databases: European
conference, ECMLPKDD2017, Skopje,Macedonia, Sept 18–22, 2017, Proceedings, Part II, Springer,
vol 10535, pp 53–69. https://doi.org/10.1007/978-3-319-71246-8_4

Akoglu L, TongH,Meeder B, Faloutsos C (2012) PICS: parameter-free identification of cohesive subgroups
in large attributed graphs, pp 439–450. https://doi.org/10.1137/1.9781611972825.38

Aral S, Muchnik L, Sundararajan A (2009) Distinguishing influence-based contagion from homophily-
driven diffusion in dynamic networks. Proc Natl Acad Sci 106(51):21544–21549. https://doi.org/10.
1073/pnas.0908800106

Atzmueller M (2015) Subgroup discovery. WIREs Data Min Knowl Discov 5(1):35–49. https://doi.org/10.
1002/widm.1144

Atzmueller M, Doerfel S, Mitzlaff F (2016) Description-oriented community detection using exhaustive
subgroup discovery. Inf Sci 329:965–984. https://doi.org/10.1016/j.ins.2015.05.008

Barbieri N, Bonchi F, Manco G (2014) Who to follow and why: link prediction with explanations. In: The
20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’14,
New York, NY, USA, Aug 24–27, 2014, pp 1266–1275. https://doi.org/10.1145/2623330.2623733

Boley M, Mampaey M, Kang B, Tokmakov P, Wrobel S (2013) One click mining: interactive local pattern
discovery through implicit preference and performance learning. In: IDEA ’13 proceedings of the
ACM SIGKDD workshop on interactive data exploration and analytics, ACM, New York, NY, USA
2013, pp 27–35. https://doi.org/10.1145/2501511.2501517

Cantador I, Brusilovsky P, Kuflik T (2011) 2nd workshop on information heterogeneity and fusion in
recommender systems (hetrec 2011) In: Proceedings of the 5th ACM conference on recommender
systems. ACM, New York, NY, USA, RecSys 2011

Casiraghi G, Nanumyan V, Scholtes I, Schweitzer F (2016) Generalized hypergeometric ensembles: statis-
tical hypothesis testing in complex networks. arXiv:1607.02441

Chen C, Lin CX, Fredrikson M, Christodorescu M, Yan X, Han J (2009) Mining graph patterns efficiently
via randomized summaries. Proc VLDB Endow 2:742–753

Chen X, Kang B, Lijffijt J, De Bie T (2020) ALPINE: active link prediction using network embedding.
arXiv e-prints arXiv:2002.01227

Cheng H, Zhou Y, Yu JX (2011) Clustering large attributed graphs: a balance between structural and
attribute similarities. ACM Trans Knowl Discov Data (TKDD) 5(2):12:1–12:33. https://doi.org/10.
1145/1921632.1921638

123

https://doi.org/10.1137/1.9781611974973.47
https://doi.org/10.1007/978-3-319-71246-8_4
https://doi.org/10.1137/1.9781611972825.38
https://doi.org/10.1073/pnas.0908800106
https://doi.org/10.1073/pnas.0908800106
https://doi.org/10.1002/widm.1144
https://doi.org/10.1002/widm.1144
https://doi.org/10.1016/j.ins.2015.05.008
https://doi.org/10.1145/2623330.2623733
https://doi.org/10.1145/2501511.2501517
http://arxiv.org/abs/1607.02441
http://arxiv.org/abs/2002.01227
https://doi.org/10.1145/1921632.1921638
https://doi.org/10.1145/1921632.1921638


370 J. Deng et al.

Chernoff H (1952) A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. Ann Math Stat 23(4):493–507. https://doi.org/10.1214/aoms/1177729330

De Bie T (2011a) An information theoretic framework for data mining. In: Proceedings of the 17th ACM
SIGKDD international conference on knowledge discovery and data mining, ACM, New York, NY,
USA, KDD ’11, pp 564–572. https://doi.org/10.1145/2020408.2020497

De Bie T (2011b) Maximum entropy models and subjective interestingness: an application to tiles in binary
databases. Data Min Knowl Discov 23(3):407–446. https://doi.org/10.1007/s10618-010-0209-3

De Bie T (2013) Subjective interestingness in exploratory data mining. In: Proceedings of the 12th interna-
tional symposium on advances in intelligent data analysis XII—volume 8207, Springer, Berlin, IDA
2013, pp 19–31. https://doi.org/10.1007/978-3-642-41398-8_3

Deng J, Kang B, Lijffijt J, Bie TD (2020) Explainable subgraphs with surprising densities: a subgroup
discovery approach. In: Proceedings of the 2020 SIAM international conference on data mining,
Cincinnati, Ohio, USA

Fond TL,Neville J (2010) Randomization tests for distinguishing social influence and homophily effects. In:
Proceedings of the 19th international conference on world wide web, WWW ’10, ACM, pp 601–610

Freeman LC (1978) Segregation in social networks. Sociol Methods Res 6(4):411–429. https://doi.org/10.
1177/004912417800600401

Fronczak A (2012) Exponential random graph models. arxiv:1210.7828
Galbrun E, Gionis A, Tatti N (2014) Overlapping community detection in labeled graphs. Data Min Knowl

Discov 28(5–6):1586–1610. https://doi.org/10.1007/s10618-014-0373-y
Gong NZ, Talwalkar A, Mackey L, Huang L, Shin ECR, Stefanov E, Shi ER, Song D (2014) Joint link

prediction and attribute inference using a social-attribute network. ACM Trans Intell Syst Technol
5(2):1–20. https://doi.org/10.1145/2594455

Günnemann S, Färber I, Boden B, Seidl T (2010) Subspace clustering meets dense subgraph mining: a
synthesis of two paradigms. In: 2010 IEEE international conference on data mining, pp 845–850.
https://doi.org/10.1109/ICDM.2010.95

Günnemann S, Boden B, Seidl T (2011) DB-CSC: a density-based approach for subspace clustering in
graphs with feature vectors. In: Gunopulos D, Hofmann T, Malerba D, Vazirgiannis M (eds) Machine
learning and knowledge discovery in databases. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp
565–580

Harris JK (2013) An introduction to exponential random graph modeling, vol 173. Sage Publications,
Beverly Hills

Hassanlou N, Shoaran M, Thomo A (2013) Probabilistic graph summarization. In: Wang J, Xiong H,
Ishikawa Y, Xu J, Zhou J (eds) Web-age information management. Springer, Berlin, pp 545–556

Herrera F, Carmona CJ, González P, del Jesus MJ (2011) An overview on subgroup discovery: foundations
and applications. Knowl Inf Syst 29(3):495–525. https://doi.org/10.1007/s10115-010-0356-2

Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Ame Stat Assoc
58(301):13–30. https://doi.org/10.1080/01621459.1963.10500830

Holland PW, Leinhardt S (1981) An exponential family of probability distributions for directed graphs. J
Am Stat Assoc 76(373):33–50. https://doi.org/10.1080/01621459.1981.10477598

Lemmerich F, Becker M (2018) pysubgroup: easy-to-use subgroup discovery in python. In: Joint European
conference on machine learning and knowledge discovery in databases, pp 658–662

Li J, Wu L, Zaïane O, Liu H (2017) Toward personalized relational learning. In: Proceedings of the 17th
SIAM international conference on data mining, SDM 2017, Society for Industrial and Applied Math-
ematics Publications, United States, pp 444–452

Liu Y, Safavi T, Dighe A, Koutra D (2018) Graph summarization methods and applications: a survey. ACM
Comput Surv (CSUR) 51(3):62:1–62:34. https://doi.org/10.1145/3186727

McPherson M, Smith-Lovin L, Cook JM (2001) Birds of a feather: Homophily in social networks. Annu
Rev Sociol 27(1):415–444. https://doi.org/10.1146/annurev.soc.27.1.415

Meeng M, Knobbe A (2011) Flexible enrichment with cortana–software demo. In: Proceedings of Bene-
Learn, pp 117–119

Moser F, Colak R, Rafiey A, Ester M (2009) Mining cohesive patterns from graphs with feature vectors.
In: Proceedings of the 2009 SIAM international conference on data mining, pp 593–604. https://doi.
org/10.1137/1.9781611972795.51

Mougel PN, Plantevit M, Rigotti C, Gandrillon O, Boulicaut JF (2010) Constraint-based mining of sets of
cliques sharing vertex properties. In:Workshop on analysis of complex networks ACNE’10 co-located
with ECML PKDD 2010, Barcelona, Spain, pp 48–62. https://hal.archives-ouvertes.fr/hal-01381539

123

https://doi.org/10.1214/aoms/1177729330
https://doi.org/10.1145/2020408.2020497
https://doi.org/10.1007/s10618-010-0209-3
https://doi.org/10.1007/978-3-642-41398-8_3
https://doi.org/10.1177/004912417800600401
https://doi.org/10.1177/004912417800600401
http://arxiv.org/abs/1210.7828
https://doi.org/10.1007/s10618-014-0373-y
https://doi.org/10.1145/2594455
https://doi.org/10.1109/ICDM.2010.95
https://doi.org/10.1007/s10115-010-0356-2
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1080/01621459.1981.10477598
https://doi.org/10.1145/3186727
https://doi.org/10.1146/annurev.soc.27.1.415
https://doi.org/10.1137/1.9781611972795.51
https://doi.org/10.1137/1.9781611972795.51
https://hal.archives-ouvertes.fr/hal-01381539


Mining explainable local and global subgraph patterns 371

Newman M (2006) Modularity and community structure in networks. Proce Natl Acad Sci 103(23):8577–
8582. https://doi.org/10.1073/pnas.0601602103

Nicosia V, Mangioni G, Carchiolo V, Malgeri M (2009) Extending the definition of modularity to directed
graphs with overlapping communities. J Stat Mech Theory Exp 03:P03024. https://doi.org/10.1088/
1742-5468/2009/03/p03024

Perozzi B, Akoglu L, Iglesias Sánchez P, Müller E (2014) Focused clustering and outlier detection in large
attributed graphs. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge
discovery and data mining, ACM, New York, NY, USA, KDD ’14, pp 1346–1355. https://doi.org/10.
1145/2623330.2623682

Pool S, Bonchi F, Leeuwen M (2014) Description-driven community detection. ACM Trans Intell Syst
Technol (TIST) 5(2):28:1–28:28. https://doi.org/10.1145/2517088

Shi L, Tong H, Tang J, Lin C (2015) Vegas: visual influence graph summarization on citation networks.
IEEE Trans Knowl Data Eng 27(12):3417–3431. https://doi.org/10.1109/TKDE.2015.2453957

Sinha A, Shen Z, Song Y, Ma H, Eide D, Hsu BP, Wang K (2015) An overview of Microsoft Academic
Service (MAS) and applications. In: Proceedings of the 24th international conference on world wide
web, ACM, pp 243–246

Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z (2008) ArnetMiner: extraction and mining of academic
social networks. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge
discovery and data mining, pp 990–998

Tian Y, Hankins RA, Patel JM (2008) Efficient aggregation for graph summarization. In: Proceedings of the
2008 ACM SIGMOD international conference on management of data, ACM, New York, NY, USA,
SIGMOD ’08, pp 567–580. https://doi.org/10.1145/1376616.1376675

Traud AL, Mucha PJ, Porter MA (2012) Social structure of facebook networks. Physica A Stat Mech Appl
391(16):4165–4180. https://doi.org/10.1016/j.physa.2011.12.021

Tsourakakis C, Bonchi F, Gionis A, Gullo F, Tsiarli M (2013) Denser than the densest subgraph: extracting
optimal quasi-cliqueswith quality guarantees. In: Proceedings of the 19thACMSIGKDD international
conference on knowledge discovery and data mining, ACM, New York, NY, USA, KDD ’13, pp 104–
112. https://doi.org/10.1145/2487575.2487645

van Leeuwen M, De Bie T, Spyropoulou E, Mesnage C (2016) Subjective interestingness of subgraph
patterns. Mach Learn 105(1):41–75. https://doi.org/10.1007/s10994-015-5539-3

Wang X, Jin D, Cao X, Yang L, Zhang W (2016) Semantic community identification in large attribute
networks. In: Proceedings of the thirtieth AAAI conference on artificial intelligence, AAAI Press,
AAAI’16, pp 265–271. http://dl.acm.org/citation.cfm?id=3015812.3015851

Wei X, Xu L, Cao B, Yu PS (2017) Cross view link prediction by learning noise-resilient representation
consensus. In: Proceedings of the 26th international conference on world wide web, International
World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, WWW
’17, pp 1611–1619. https://doi.org/10.1145/3038912.3052575

Wu Y, Zhong Z, XiongW, Jing N (2014) Graph summarization for attributed graphs. In: 2014 International
conference on information science, electronics and electrical engineering, vol 1, pp 503–507. https://
doi.org/10.1109/InfoSEEE.2014.6948163

Xu Z, Ke Y, Wang Y, Cheng H, Cheng J (2012) A model-based approach to attributed graph clustering.
In: Proceedings of the 2012 ACM SIGMOD international conference on management of data, ACM,
New York, NY, USA, SIGMOD ’12, pp 505–516. https://doi.org/10.1145/2213836.2213894

Yang J, Leskovec J (2015) Defining and evaluating network communities based on ground-truth. Knowl
Inf Syst 42(1):181–213. https://doi.org/10.1007/s10115-013-0693-z

Yin Z, Gupta M, Weninger T, Han J (2010) A unified framework for link recommendation using random
walks. In: 2010 international conference on advances in social networks analysis and mining, pp
152–159. https://doi.org/10.1109/ASONAM.2010.27

Zhang N, Tian Y, Patel JM (2010) Discovery-driven graph summarization. In: 2010 IEEE 26th interna-
tional conference on data engineering (ICDE 2010), pp 880–891. https://doi.org/10.1109/ICDE.2010.
5447830

Zhou Y, Cheng H, Yu JX (2009) Graph clustering based on structural/attribute similarities. Proc VLDB
Endow 2(1):718–729. https://doi.org/10.14778/1687627.1687709

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1088/1742-5468/2009/03/p03024
https://doi.org/10.1088/1742-5468/2009/03/p03024
https://doi.org/10.1145/2623330.2623682
https://doi.org/10.1145/2623330.2623682
https://doi.org/10.1145/2517088
https://doi.org/10.1109/TKDE.2015.2453957
https://doi.org/10.1145/1376616.1376675
https://doi.org/10.1016/j.physa.2011.12.021
https://doi.org/10.1145/2487575.2487645
https://doi.org/10.1007/s10994-015-5539-3
http://dl.acm.org/citation.cfm?id=3015812.3015851
https://doi.org/10.1145/3038912.3052575
https://doi.org/10.1109/InfoSEEE.2014.6948163
https://doi.org/10.1109/InfoSEEE.2014.6948163
https://doi.org/10.1145/2213836.2213894
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1109/ASONAM.2010.27
https://doi.org/10.1109/ICDE.2010.5447830
https://doi.org/10.1109/ICDE.2010.5447830
https://doi.org/10.14778/1687627.1687709

	Mining explainable local and global subgraph patterns  with surprising densities
	Abstract
	1 Introduction
	2 Related work
	2.1 Graph modelling
	2.2 Pattern mining in attributed graphs
	2.2.1 Local pattern mining 
	2.2.2 Global pattern mining by summarizing or clustering 


	3 Subgroup pattern and summary syntaxes for graphs
	3.1 Local pattern
	3.1.1 Single-subgroup pattern
	3.1.2 Bi-subgroup pattern

	3.2 Global pattern: summarization for graphs

	4 Formalizing the subjective interestingness
	4.1 General approach
	4.2 The background distribution
	4.2.1 The initial background distribution
	4.2.2 Updating the background distribution

	4.3 The subjective interestingness measure
	4.3.1 The SI measure for a local pattern 
	4.3.2 The SI measure for a global pattern


	5 Algorithms
	5.1 Local pattern mining 
	5.1.1 Beam search
	5.1.2 Nested beam search

	5.2 Global pattern mining 
	5.2.1 The basic search strategy 
	5.2.2 Speedup strategies 

	5.3 Implementation 

	6 Experiments
	6.1 Data 
	6.2 Parameter sensitivity (RQ1)
	6.2.1 Experimental setup
	6.2.2 Results

	6.3 Comparative evaluation (RQ2)
	6.3.1 Experimental setup
	6.3.2 Results

	6.4 The effects of different prior beliefs: a subjective evaluation (RQ3)
	6.4.1 Experimental setup
	6.4.2 Results

	6.5 Evaluation on iterative pattern mining (RQ4)
	6.5.1 Experimental setup
	6.5.2 Results

	6.6 Empirical results on the discovered global patterns (RQ5)
	6.6.1 Case study on DBLPaffs 
	6.6.2 Case study on DBLPtopics 

	6.7 Scalability evaluation (RQ6)
	6.7.1 Experimental setup
	6.7.2 Results


	7 Conclusion
	Acknowledgements
	Appendix
	A For Section 6.3: A comparative evaluation on DBLPaffs network (RQ2) 
	B For Section 6.5: Evaluation on the iterative pattern mining on Lastfm dataset (RQ4) 
	C For Section 6.6: One more case study on MPvotes for the evaluation of global pattern mining 
	References






