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Abstract
Subgroup discovery (SD) is an exploratory patternmining paradigm that comes into its
ownwhen dealingwith large real-world data, which typically involvesmany attributes,
of a mixture of data types. Essential is the ability to deal with numeric attributes,
whether they concern the target (a regression setting) or the description attributes (by
which subgroups are identified). Various specific algorithms have been proposed in
the literature for both cases, but a systematic review of the available options is missing.
This paper presents a generic framework that can be instantiated in various ways in
order to create different strategies for dealing with numeric data. The bulk of the
work in this paper describes an experimental comparison of a considerable range of
numeric strategies in SD,where these strategies are organised according to four central
dimensions. These experiments are furthermore repeated for both the classification
task (target is nominal) and regression task (target is numeric), and the strategies are
compared based on the quality of the top subgroup, and the quality and redundancy
of the top-k result set. Results of three search strategies are compared: traditional
beam search, complete search, and a variant of diverse subgroup set discovery called
cover-based subgroup selection. Although there are various subtleties in the outcome
of the experiments, the following general conclusions can be drawn: it is often best to
determine numeric thresholds dynamically (locally), in a fine-grained manner, with
binary splits, while considering multiple candidate thresholds per attribute.
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1 Introduction

This work considers an aspect of subgroup discovery that has been insufficiently
addressed by the existing literature: numeric data. Although numeric attributes have
been the subject of a number of recent papers, this work will explain and empirically
demonstrate that this coverage has been incomplete, and that actually superior results
can be obtained by a more thorough treatment of numeric attributes. Essentially two
areas existwhere the presence of numeric attributes requires attention: on the side of the
target attribute(s) (in the case of a regression setting), and on the side of the description
attributes (those attributes that are not targets, and are available to construct subgroups
from). On the target side, several recent papers discuss the treatment of numeric target
attributes (Atzmüller and Lemmerich 2009; Boley et al. 2017; Lemmerich et al. 2012,
2013, 2016), but all these papers describe methods that essentially assume nominal
description attributes.

Conversely, on the description side, only few papers discuss algorithms that incor-
porate substantial treatment of numeric description attributes (Belfodil et al. 2018;
Bosc et al. 2018; Grosskreutz and Rüping 2009), but they use or require a binary tar-
get. Consequently, none of the papers described here cover the combination of numeric
description attributes and a numeric target. With the possible exception of the MIDOS
system (Wrobel 1997), one of the first SD systems, this makes the approach anal-
ysed here in detail the only one that provides full numeric capability. The combined
approach is central to the design of Cortana,1 the SD system that the authors have
worked on for over 10years (Duivesteijn 2013; Duivesteijn et al. 2010, 2012; Konijn
et al. 2013, 2015;Mampaey et al. 2012, 2015;Meeng andKnobbe 2011, 2020;Meeng
et al. 2014; Duivesteijn and Meeng 2016)

Of course, when arguing that many SD systems do not allow numeric description
attributes, the immediate counterargument is that this limitation is easily resolved with
discretisation prior to the SD run. This is true indeed, but such a discretisation step
might permanently remove information, leading to a loss of precision and suboptimal
results. And while discretisation is an important, if not crucial, tool in SD, because an
unequivocal subgroup description requires clear boundaries in the continuous domain,
the question is at what stage in the analysis this switch from continuous to discrete is
best made. This work argues and demonstrates that dynamic, or local, discretisation,
in other words thresholding the data while performing the search for subgroups, is
generally preferable over pre-discretisation (global).

Aside from loss of precision, there is another, more subtle downside to the naive
discretisation performed by most SD systems. By replacing numeric attributes with
nominal approximations, one not only lowers the resolution, but also destroys the
order information stored in the numeric representation: it is no longer clear that ‘high’
is greater than ‘medium’ and ‘low’, it is just different. A corollary of this loss of
order is that it is also no longer possible to investigate subgroups of different sizes, by
combiningmore or fewer consecutive labels (e.g. ‘low’ and ‘medium’).An undesirable
side effect of this type of discretisation is that the size of candidate subgroups is too
directly tied to the granularity of the discretisation. The alternative approach is to

1 http://datamining.liacs.nl/cortana.html.
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discretise the data while retaining the order information, for which a slightly richer
representation is needed.

This work identifies a number of dimensions over which SD algorithms can vary
in their treatment of numeric attributes. These include the choice when to apply dis-
cretisation, whether to do classical (nominal) or order-preserving discretisation, but
also other options, such as whether to do a fine or coarse discretisation. Although
one could examine the effect of choices made for each of these dimensions in isola-
tion, such an analysis would miss interactions between them. So, besides analysing
the effects of various parameter choices within individual dimensions, this work also
offers a systematic analysis of the combined effects of these choices over all examined
dimensions, as is relevant in real-world analyses.

Table 1 gives an overview of the different numeric strategies that are examined
in this work. Each line in the table represents a separate strategy, identified by the
different choices for the following dimensions: discretisation timing, interval type,
granularity, and selection method. Of these dimensions, the first three are related
to candidate generation, whereas the last relates to candidate selection. Strategies
are referred to by a combination of a number and an acronym formed from the first
character of their values for the aforementioned dimensions. As the table suggests,
there aremany different options to compare, and extensive experimentation is required
to shed light on the best choice for each dimension and the optimal combination of
settings. The usefulness of each strategy is evaluated for discrete (classification) and
numeric (regression) target attributes, using multiple quality measures and search
strategies, and results are compared based on both subgroup quality and redundancy.
The dimensions and strategies are outlined in more detail in Sect. 3.

The contributions of this paper can be summarised as follows:

– An outline is provided of how numeric data plays a role in SD on the description
side, and on the target side.

– Four dimensions relevant to dealing with numeric description attributes are iden-
tified, leading to a theoretical sixteen possible configurations.

– Extensive experimentation is discussed in order to compare the different configu-
rations on a range of datasets.

– Experiments are performed in both a classification (nominal target) and a regres-
sion (numeric target) setting.

– For each target type, experiments are performed using three quality measures that
favour different aspects of subgroups.

– The optimal choice per dimension is reported, as is an overall ranking of configu-
rations, for both target types, considering all evaluated quality measures.

– With respect to result (set) quality, a comparison is made between complete search
and traditional beam search.

– With respect to subgroup redundancy, complete search is compared to both a tra-
ditional beam search and a specialised redundancy-reducing beam search strategy.

The remainder of this work is organised as follows. The introduction is completed
by listing the four central dimensions and discussing some key aspects of SD. Sec-
tion 2 provides the necessary foundations, including pseudocode for the generic SD
algorithm that will be applied. Section 3 covers the various numeric strategies and
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Table 1 Dimensions over which subgroup discovery algorithms dealing with numeric description attributes
can vary

Strategies not considered in this work are listed without acronym
a This would create single value intervals, these are generally uninformative.
b This would be the same as performing a more coarse discretisation with the fine variant
c No algorithm like this exists

how these can be organised according to four dimensions. Section 4 describes the rel-
evant literature. Section 5 contains the bulk of this work, with a series of experiments
investigating the different settings empirically, as well as discussions about the results.
Section 6 presents general conclusions and lists future work.

2 Preliminaries

2.1 Data

Throughout this work, the following definition of a dataset is used:

Definition 1 (Dataset) A dataset D is a bag of N records ri ∈ D of the form: ri =(
ai1, . . . , a

i
l , t

i
)
, with l a positive integer from Z

+.

Here, ai1, . . . , a
i
l are the values of r

i for the description attributes a1, . . . , al , and t i is
the value for the target attribute t . In general, both description and target attributes can
be taken from an unrestricted domain A. When a nominal attribute serves as target, a
single target value needs to be assigned, and it comes from its domain of class labels.
Targets can also be formed by a numeric attributes, taken from R. In this case, no
target value is assigned.
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When considering subgroups, the central concept of SD, a distinction should be
made between their intensional and extensional part. Definition 2 covers the first.

Definition 2 (Description) A description is a function: I : A
l → {0, 1}, where I

covers a record ri iff : I
(
ai1, . . . , a

i
l

) = 1.

Typically, the description language I in SD consists of (conjunctions of) con-
ditions on description attributes of the general form ‘ai operator value’. Examples
include ‘Smokes = false’ and ‘EyeColour = brown ∧ Length ≥ 1.76’. The notation
I∅ is used for the empty description, which imposes no restrictions. It selects the
entire dataset and can be refined by adding a first conjunct. The depth of a subgroup
is defined as the number of conjuncts in the description.

As noted above, a subgroup description could be said to precede a subgroup exten-
sion, in that it is through the description that a search algorithm imposes restrictions
on the data to select a subset of records. Definition 3 expresses this relation.

Definition 3 (Extension) An extension EI corresponding to a description I is the bag
of records EI ⊆ D that I covers: EI = {

ri ∈ D | I (
ai1, . . . , a

i
l

) = 1
}
.

From now on, the subscript I is omitted if no confusion can arise, and a subgroup
extension is simply referred to as E.

The explicit differentiation of the intensional and extensional facets of a subgroup
is required in some SD algorithms (van Leeuwen and Knobbe 2012). However, for the
remainder of this work, s denotes a subgroup, encompassing both its intension and
extension. For any particular subgroup s, with extension E, n denotes its size, that is,
the number of records in that subgroup: n = |E|.

2.2 Subgroup discovery

SubgroupDiscovery is a local, supervised, descriptive, patternminingparadigm.These
three aspects set it apart fromother paradigms (such as classification), and entail certain
behaviour discussed in more detail here.

Descriptive Since the inception of SD (Klösgen 1992, 1996; Wrobel 1997), sub-
groups are taken to consist of both an intensional and extensional part. The former is the
subgroup description, the latter is the extension, the subset of records that is selected
through this description. Although an extension is relevant, without the accompany-
ing concise description in terms of the available attributes it is of limited use. The
paradigm would be simply subset discovery, rather than Subgroup Discovery.

Moreover, multiple very different descriptions that select similar subsets can all
yield new insights individually, and learning about their correlation can expand knowl-
edge as well. In this, redescription mining (Galbrun and Miettinen 2017) is related.

Local The goal of SD is to identify interesting local models, by means of subgroups,
ofwhichmultiple (potentially overlapping) onesmight exist. Here, localmeans that the
quality of a subgroup is independent from any other findings, which is in contrast with
the global models that dominate other paradigms such as classification or regression.
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Its local nature allows both identifying small parts of the data that behave exceptionally
and fully capturing overlapping patterns of which global models can only identify part
of the knowledge.

Supervised As a supervised paradigm, SD optimises with respect to a predefined
target. Various (multivariate) target types exist, but this work is confined to single
nominal (in fact, binary) and single numeric targets. For these two types, one typically
looks for subsets of the data with a substantially higher share of either positive or
negative cases, and for subset with a substantially higher or lower average value than
can be expected from that of the entire dataset, respectively.

Combining the supervised and local aspects, SD potentially values smaller subsets
of the data with an interesting target distribution. How interesting this target distribu-
tion is, is quantified by a quality measure, where the typical quality measure strikes a
balance between how unusual a subset is, and how large the subset is (in other words,
how reliable the observed phenomenon is).

Overlap Although some degree of (extension) overlap is intentional and inherent to
the SD paradigm, Section Selection Method below, where so-called saturation effects
are discussed, will demonstrate redundancy should be suppressed in both the candidate
and result set. In this respect, specialised redundancy-reducing methods (Bosc et al.
2018; Kaytoue et al. 2011; Knobbe and Ho 2006a, b; Lavrač and Gamberger 2004;
Lemmerich et al. 2013; Meeng et al. 2014) can help to avoid saturation and to improve
diversity among the reported subgroups. This work evaluates one variant of Diverse
Subgroup Set Discovery (van Leeuwen and Knobbe 2011, 2012) called cover-based
subgroup selection (CBSS).

Some of the above include (intermediate) post-processing procedures to reduce
saturation and redundancy. Another approach to prevent these is to avoid the many
variations in the first place. All but one of the strategies listed in Table 1 achieve this
naturally.

2.2.1 Subgroup discovery algorithm

In order to perform the experiments with different numeric strategies under compa-
rable circumstances, a generic algorithm is introduced that can be parameterised in
a number of ways. As such, this SDMM algorithm, which also features in Cortana,
can implement the various settings that are analysed. This section presents the various
aspects of this generic algorithm, including its description language, the discretisation
algorithm, its search strategies, and the quality measures.

Description Language A description language in SD determines the nature of the
descriptions it will consider and report. In the majority of SD implementations, as in
this paper, descriptions consist of a conjunction of conditions on individual attributes.
Deriving more complex subgroups from simpler ones by adding conjuncts to the
description one by one is known as refinement, and is the principal way of traversing
the search space. The attractive property of conjunctions is that the size of the subgroup
never grows with refinement. The algorithm presented below is slightly more strict, as
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it requires that fewer records in the dataset are covered after adding a new condition
to a conjunction, such that it selects a proper subset.

Quality Measure A quality measure objectively evaluates a candidate description in
a given dataset. For each description I in the description language I, a quality measure
is a function that quantifies how interesting the subgroup s is.

Definition 4 (Quality Measure) A quality measure is a function ϕD : I → R that
assigns a unique numeric value to a description I and its associated extension EI ,
given a dataset D.

A quality measure quantifies various aspects of a subgroup (Fürnkranz and Flach
2005), and in the choice of quality measure, the analyst indicates their preference for
certain aspects of the desired subgroups. As different target types and qualitymeasures
entail very different search and solution spaces (Mampaey et al. 2012, 2015), six
measures are evaluated, three for each target type. Details of these measures and their
respective properties are provided in the experimental section.

Search Constraints In principle, SD algorithms aim to discover subgroups that score
high on a quality measure. But, it is common practice to also impose additional con-
straints on subgroups that are found by SD algorithms. Usually these constraints
include lower bounds on the quality of the description (ϕD(I ) ≥ p1) and the size of
the induced subgroup (n ≥ p2). Also, an upper limit is often set on the search depth
(d).

Algorithm 1: SDMM(D, ϕD , P)
input : dataset D, quality measure ϕD , search constraints P
output: final result set F

1 F ← ∅, S ← ∅

2 S ← S ∪ I∅
3 while S 	= ∅ do
4 s ← SelectSeed(P , S)
5 S ← S \ s
6 R ← GenerateRefinements(s, D, P)
7 foreach r ∈ R do
8 score ← ϕD(r)
9 AddToCandidateSet(P , S, r , score)

10 AddToResultSet(P , F , r , score)

11 return F

Pseudocode Algorithm 1 describes the generic SD algorithm SDMM. The set of
search parameters P holds all required parameters, including target information, the
selection method used, and search constraints. On line 2, the empty description I∅
is added to S, the set of subgroups that will act as candidates for refinement. This
description selects thewhole dataset, as it poses no restriction on it. TheSelectSeed
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Algorithm 2: EqualFrequencyDiscretisation(a, B, o)
input : a, vector of ascending values; B, desired number of bins; o, refinement operator used
output: set of cut points B

1 B ← ∅, n ← |a|
2 for b = 1 to B −1 do
3 x ← 
nb/B�
4 if o 	= ‘≥’ and (nb modulo B) = 0 then x ← x −1
5 B ← B ∪ a[x]
6 return B

function (line 4) selects the appropriate candidate. The selection is based on the quality
and canonical order of the candidates, as defined by (the conditions in) its description.

Further, to accommodate different search space exploration strategies in a single
generic algorithm, GenerateRefinements (line 6) adapts its behaviour accord-
ingly. For level-wise searches, refinements are created only for the current search
level, and relevant refinements are then added to the set of candidates S for the next
level. For other forms of search space traversal (e.g. depth-first or breadth-first search),
GenerateRefinements will show slightly different behaviour.

Finally, the addition of a subgroup to the candidate set S (line 9) and the final result
set F (line 10) is performed by specialised functions that check against search con-
straints and take care of trimming, re-ordering, or other post-processing of these sets, if
required. The addition rules for S and F slightly differ regarding minimum subgroup
size (mincov + 1 for S), and the maximum size and minimum quality constraint are
irrelevant for S. Regarding the latter, optimistic estimates (Grosskreutz and Rüping
2009;Wrobel 1997) appreciate that candidate with a score below theminimum quality
might be refined into good (the best possible) subgroups.

It is good to note that the SDMM algorithm is a local-refinement algorithm. Local
refinement means that descriptions are generated based only on the local domain of
a subgroup extension, and not on the domain of the entire dataset. This for example
entails thatmore accurate cut pointswill be generated, the further the search progresses
to smaller subsets of the data. Local refinement also allowsminimumcoverage pruning
and avoiding meritless conjunctions, thus reducing search complexity.

2.3 Discretisation

In the context of this work, all discretisation is performed using Algorithm 2, Equal-
FrequencyDiscretisation. Also, the number of cut points is static, meaning it is
the same for all attributes, throughout a search (Dougherty et al. 1995).

The algorithm takes a few inputs. A vector of values a forms the current input
domain, which can either be the entire attribute data, or only those values covered by
the subgroup under investigation. By design of the SDMM algorithm, domain values
never require sorting during search and are always in ascending order. The desired
number of bins B, and the operator o that will be used for (the conditions using) the
returned cut points are also required.
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The selected cut points define consecutive intervals that cover (approximately) the
same number of values. Equal coverage is impossible when n/B does not produce
an integer and in case of duplicate values around cut points. These are fundamental
problems of discretisation, but, for more than a decade, this heuristic has shown to
generally produce (close to) equal coverage.

Bounds inB are always inclusive. For operator ‘≥’, they are the left (lower) bounds
of the half-bounded intervals. For other operators, they are the right (upper) bounds,
as used in Mampaey et al. (2012) and Mampaey et al. (2015)). As an example, for
a = [w, x, y, z] and B = 2, line 4 produces ≥ y and ≤ x , for operators ‘≥’ and ‘≤’,
respectively. For a = [x, y, z] and B = 2, both operators select intervals covering two
values (≥ y and ≤ y). The effect of the operation on line 4 is equal to using a with
descending values.

In general, other methods for discretisation could be used equally well. These
could be supervised techniques for classification targets (Fayyad and Irani 1993),
single (Kontkanen and Myllymäki 2007) or multidimensional MDL-based methods
(Nguyen et al. 2014), or V-optimal discretisation (Ioannidis 2003). This work uses
Algorithm 2 exclusively, as it is fast, simple, and applicable in both the classification
and regression setting.

It furtherworkswell, because, as SD is supervised, good subgroups select a subset of
records for which the target distribution is favourable (positives or numeric extremes).
So, although the selection of the cut points from the description attribute domain
is unsupervised, this information of the target is always taken into account when
generating refinements. Also, SDMM performs local refinement (see Sect. 2.2.1),
making the binning progressively finer and to the point.

3 Numeric strategies

3.1 Dimensions

This work revolves around the different ways in which numeric attributes can be
treated in SD.Different possible strategies are identified, bymeans of four dimensions.
Below, the dimensions are described inmore detail. Aworked example of the described
dimensions can be found at the end of this section.

Discretisation Timing SD deals with numeric data by setting conditions on the
included values, typically by requiring values to be above or below a certain thresh-
old. In realistic, non-trivial data, the continuous domain is extensive, and one needs to
select a subset of reasonable values in order for the SD process to be remain tractable
(discretisation).

One option, global discretisation, performs this by replacing the original values
prior to analysis, based on all the data. The local alternative determines suitable cut
points dynamically whenever a numeric attribute is encountered while mining. Con-
sequently, it has the option of choosing cut points appropriate for the subset of data
under investigation at any point in the search space.

The dimension referred to as discretisation timing distinguishes the two options.
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Interval Type The term interval type refers to the way in which a given set of cut
points is treated to produce candidate subgroups. In the context of discretisation, it is
customary to take B−1 cut points, and create a single nominal feature to represent in
which of the B intervals (bins) the numeric value falls. Subgroups are then formed by
setting the derived feature to one of these values.

Although this approach is very popular, due to its straightforward discretisation and
ease of interpretation, it also has fundamental limitations. Because of its consecutive
nature, subgroups can never cover more than roughly 1/B of the data, making this
approach rather inflexible, and too directly dependent on the setting of B. A more
flexible alternative is to (conceptually) translate the B−1 cut points into B−1 binary
features, each corresponding to a binary split on the respective cut point, thus allowing a
wide range of sizes. The resulting overlapping featuresmight better capture the subsets
in the data with favourable target values (positives or numeric extremes).

The two values for the interval type, nominal and binaries, now correspond to the
two approaches described here.

Granularity The term granularity is used to describe how (many) candidates are
generated given a numeric input domain, and the possible choices are fine and coarse.

In case of fine, every value from the input domain is used to generate candidates. For
coarse, only a selected number of values from the input domain are used to generate
candidates. For the latter process, discretisation techniques can be used. In granularity,
there is a trade-off between the computation cost and the chances of finding the optimal
subgroups. A fine strategy may produce good subgroups, but the subgroups produced
by a similar coarse approach might be as good or only marginally worse, at a fraction
of the computation time.

Selection Method The dimensions above all relate to candidate generation, influ-
encing which candidate subgroups are generated and evaluated by the description
generator. Besides these candidate generation dimensions, there is also a candidate
selection dimension to an SD algorithm. Candidate selection refers to the process
used to include generated candidates into the final result set and/or use them for the
remainder of the search. On the set of all valid generated candidates, two selection
methods can be applied, all and best.

The all method does not filter out any of the generated candidates, meaning that
all valid candidates will be included in the result set and/or will be available for the
remainder of the search process. In contrast, the best method allows only the single
best of all valid candidates for a given numeric attribute to continue.

When refining a single attribute, the number of generated candidates is equal for
these options, as determining the best candidate requires evaluating all. Still, depending
on other settings, there might be huge differences, both in terms of computation and
redundancy. In case of exhaustive search, all is computationally more expensive, but,
as it makes the search less greedy (more exploration), it might yield better results.
In combination with beam search, there is no essential difference, as the beam width
limits the size of the search space.

Redundancy is a common issue with all, due to saturation effects. Especially in
combination with fine, a single attribute might produce many similar high-valued
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Table 2 Example showing discretisation of column ‘height’ using the nominal (heightn ) and binaries
(heightl , heightlm ) strategy for all data, and for the subgroup ‘gender = f emale’ only (vn and vl , vlm )

gender height heightn heightl heightlm vn vl vlm

female 153 a 1 1 a 1 1
male 166 a 1 1
female 169 a 1 1 a 1 1
female 170 a 1 1 b 0 1
female 171 b 0 1 b 0 1
female 174 b 0 1 c 0 0
male 178 b 0 1
male 179 b 0 1
male 180 c 0 0
male 180 c 0 0
female 182 c 0 0 c 0 0
male 187 c 0 0
male 190 c 0 0

subgroups. Result sets then show little variation, and additionally, having many such
candidates in a beam undermines exploration, as greediness increases.

This demonstrates that an optimal choice for this dimension is not obvious and
relies on other choices. Therefore, thorough experimental analysis is required that
gauges combined effects.

Example Table 2 shows an example that demonstrates the effects of various options
described for the dimensions above. The table contains the height of 13 women and
men. A straightforward discretisation in three bins (over the entire dataset) would
produce the following cut points: ≤ 170 and ≤ 179. The three conceptual bins can
be represented in two alternative ways: a single nominal attribute to represent three
bins of size roughly 13/3 (column heightn), or two binary columns, one representing
the low bin and one representing the low/medium bin (columns heightl and heightlm).
Column heightn is the result of a nominal strategy, columns heightl and heightlm of
the binaries strategy.

Note that negations (complements) and conjunctions of these two features suffice to
generate all other possibilities. Also, the example demonstrates a coarse granularity,
since only a modest number of cut points is produced. A fine discretisation would look
similar, but just with more (12) nominal values, and more binary features.

The cut points mentioned here are relevant for a global discretisation (or for sub-
groups at depth 1). However, at greater depths, these cut points are suboptimal, since a
subset with a different distribution of height might exist. For example, if search would
reach subgroup ‘gender = female’, cut points ≤ 169 and ≤ 171 would be more bal-
anced, providing a 2/2/2 discretisation, rather than the 3/2/1 discretisation produced
by the global cut points. This is demonstrated in the last three columns (the column
names v (for virtual) indicate that these features are typically not materialised). The
local cut points differ in two important aspects from the global ones. First, the cut
points are placed at smaller values, since on average, the women in the dataset are
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less tall. And second, the cut points are placed closer together, demonstrating a higher
resolution at greater search depths. A local strategy would produce such cut points
dynamically during the search process.

3.2 Dimensions table

Table 1 in the Introduction already presented an overview of the different strategies that
are examined in this work. Since the choice for each of the four dimensions described
above is binary, this leaves a combined total of sixteen strategies. To these sixteen, one
extra strategy is added (see below), as it does not properly fit within the framework
of dimensions described above. However, a number of strategies are considered to be
not useful, and thus not included in our experiments.

First, in a nominal setting, consecutive bounded intervals are created, and when this
is done for each unique value in the input domain, as per the fine setting, this would
result in single value intervals. This behaves the same as using ‘=’ on numeric values
and, in general, it leads to uninformative descriptions and tiny subgroups. As this is
unaffected by the parameter settings for both the dimensions discretisation timing and
selection method, all four strategies combining nominal and fine are omitted from the
experiments below. They are 5-lnfa, 6-lnfb, 13-gnfa, and 14-gnfb.

Also not included are strategies that involve the combination global, binaries and
coarse (11-gbca and 12-gbcb). The reasoning here is that global yields a fixed discreti-
sation that reduces the cardinality of the data (and therefore the number of possible cut
points) before the search process commences. If the cardinality is then further reduced
in a coarse setting, still prior to analysis, the result is a reduction that could have been
established by a more coarse discretisation to begin with.

The final omission is the strategy combining global, nominal, coarse and best.
While this theoretically would produce a valid combination, it is highly restrictive in
the candidate space considered, and (probably for that reason) is not present in the
literature. The combination global, nominal produces nominal attributes fromnumeric
ones (that in itself already involve a considerable loss of information), and additionally
only continuing with the best candidates per discretised attribute (something that is
typically not done to normal nominal attributes either) does not seem like a reasonable
and promising approach.

Finally, an extra strategy is added: the BestInterval algorithm introduced by
Mampaey et al. (2012, 2015). In linear time, it creates bounded intervals thatmaximise
the quality for the target by setting an upper and a lower bound simultaneously. It is
given the systematic name 17-lxfb, but it is only considered in the classification target
setting and deviates from the other strategies, so it is mentioned separately.

3.3 Search space exploration strategies

This work compares three different search space exploration strategies: traditional
beam search, ‘complete’ search, and CBSS beam search.

In SD, the local patterns are typically searched for bymeans of a top-down traversal
of the pattern space, up to a certain specified depth. Small descriptions, selecting
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large subsets of de data, are refined by adding conditions on individual attributes
to form more extensive descriptions, selecting a subset of the ‘parent’ subgroup, or
seed. Various different modes of search have been proposed, from exhaustive to very
heuristic (e.g. by sampling from the pattern space). Although different search method
are considered, the majority of this work focusses on a heuristic method (beam search)
that nicely balances exploration and exploitation of the search space.

Traditional beam search (Lowerre 1976) conducts a level-wise search, and at each
level it maintains a ranked list (by quality) of subgroups considered so far. At the end
of a level, only the topW (known as the beamwidth) subgroups are allowed to produce
candidates for the next level by means of refinement.

CBSS beam search is similar, but instead of maintaining a list of W candidates, it
initially collects many more solutions per level. At the end of each search level, and
also at the end of the entire search process, a subset of size W of the solutions in the
temporary collection is selected which should encourage diversity of the candidate
or result set. (The work considers ‘attaining diversity […] equivalent to removing
redundancy.’)

Conversely, ‘complete’ search does not set a limit on the number of candidates,
and thus is not heuristic in this sense. Here, the term complete is used, instead of
the more common term exhaustive, since the exhaustive alternative to beam search is
often combined with heuristic numeric strategies, that include (local) discretisation or
the selection method best. Note that this particularly holds for a setting that is often
referred to as exhaustive in the literature, that is, global discretisation followed by a
complete traversal of the resulting, much reduced, pattern space.

Section 5.6 of the experiments compares results of the traditional and CBSS beam
search, both in terms of quality and diversity. Section 5.5 evaluates to what extent
result quality is influenced by the traditional beam search heuristic, compared to the
complete setting.

4 Related work

The strategies presented in this work relate to an extensive range of topics. Therefore,
only a selection of relevant work is discussed.

First, many papers make a comparison between SD algorithms. This is done in
overview papers like (Atzmüller 2015; Herrera et al. 2011), as well as in papers that
introduce new algorithms (Atzmüller and Lemmerich 2009; Atzmüller and Puppe
2006; Boley et al. 2017; Grosskreutz and Rüping 2009; Grosskreutz et al. 2008; Klös-
gen 1999; van Leeuwen and Knobbe 2012; Lemmerich et al. 2016; Mampaey et al.
2015; Meeng et al. 2014; Wrobel 1997). However, these papers only include a subset
of the strategies presented in this work, and then only a very specific implementation
of this limited set. The exclusive aim of this work is to provide a systematic and com-
prehensive experimental evaluation and comparison of all presented strategies, and
this sets it apart from earlier work.

Historically, algorithms that were unable to deal with numeric description attributes
resorted to a nominal strategy, usually in combination with global discretisation.
Algorithms based on the FP-growth method (Han et al. 2000), like (Atzmüller and
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Lemmerich 2009; Atzmüller and Puppe 2006; Grosskreutz et al. 2008; Lemmerich
et al. 2016), are examples of this. The use of this combination has limitations, but
facilitates (the design of) fast and efficient SD algorithms. Another class of such algo-
rithms uses optimistic estimates (Wrobel 1997), and requires neither option. However,
other drawbacks exist. For example, Boley et al. (2017) requires ordinal targets, and,
like Lemmerich et al. (2016), found that computing optimistic estimates can be more
costly than amuch simpler approach,whereasGrosskreutz andRüping (2009) requires
depth-first search, a binary target, a huge data structure, and two separate mining runs
to create nominal and numeric descriptions.

The local variations of nominal strategies presented in this work appear to be novel,
at least in the context of SD. These are a logical consequence of completing the matrix
of SD strategies in Table 1.

Strategy 17-lxfb results from the work of Mampaey et al. (2012, 2015). It exploits
properties of convex and additive quality measures in order to compute the bounded
interval that maximises the quality for the target in linear time. Conceptually, it could
be seen as a strategy that uses a Cartesian alternative for dimension interval type. It
considers all ordered interval pairs based on the cut points in a domain, likeGrosskreutz
and Rüping (2009), which combines global, Cartesian, fine, and all. The Cartesian
option is not included in Table 1, as many of the additional possible combinations
have never been considered in literature.

Even though Grosskreutz and Rüping (2009) is not considered here, a number of its
observations are relevant in the current context. First, it explains why entropy-based
discretisation, with either overlapping or non-overlapping intervals, typically leads
to suboptimal results. Moreover, it found that for entropy-based discretisation, the
local option never resulted in an optimal result where the global discretisation did
not, corroborating the observations of Dougherty et al. (1995) and Frank and Witten
(1999). In fact, overall, equal-frequency discretisation outperformed entropy-based
discretisation. The experiments below use only equal-frequency discretisation, but
evaluate it in both global and local discretisation contexts.

Section Overlap in the Introduction listed some literature concerning redundancy
reduction, and indicated that a Diverse Subgroup Set Discovery (DSSD) variant, the
CBSS covering approach (van Leeuwen and Knobbe 2011, 2012), is included in the
experiments.With (Diverse) Subgroup SetDiscovery, onemoves away fromSubgroup
Discovery and its local nature, as subgroups are no longer ‘judged purely on their own
merit’ (Duivesteijn 2013, p. 2), but ‘should always be judged also on their joint merit’
(van Leeuwen and Knobbe 2012, p. 219). Still, redundancy reduction has become
somewhat of a staple in pattern mining, such that the analysis below is justified.
The experiments will gauge whether a pure SD approach, using a traditional beam
search and the strategies listed in Table 1, can compete with this technique in terms
of redundancy and quality (Sect. 5.6), and run time (Sect. 5.7).

Aspects of DSSD are used in the work of Bosc et al. (2018), which is an original
approach to SD, that poses very little restrictions on the numeric description attributes.
The technique uses Monte Carlo Tree Search to sample subgroups from the search
lattice, and is even compared to the Cortana tool used for the experiments in the current
work. Some aspects of the analysis presented below could be investigated for this
method also, but not all dimensions are relevant in a sampling context. Additionally,
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themethodonly addresses classification, such that a full analysiswould not be possible.
For the same reason, Lavrač and Gamberger (2004) is not considered.

An elegant method that tries to bridge the gap between heuristic and exhaustive
search is RefineAndMine (Belfodil et al. 2018). This method is an anytime algorithm
that, given enough time, enumerates the pattern space exhaustively. It can be inter-
rupted at any time, while offering guarantees about how close the intermediate result
is to the (theoretic) optimum. Unfortunately, its search and numeric strategy, and inter-
pretation of search depth, do not fit the framework of this work, and, as the method is
strictly confined to binary targets, it is not considered here.

5 Experiments

The experiments described below analyse the benefits and drawbacks of the strategies
listed in Table 1. Before the individual experiments are discussed, an overview is
presented of the experimental conditions, parameters, and the datasets that feature in
the subsequent sections. The 17,020 experiments2 were all performed using the SD
tool Cortana (Meeng and Knobbe 2011), using the SDMM algorithm.

The primary quality measures considered, motivated by their popularity in the
literature, are WRAcc (Lavrač et al. 1999) for nominal targets, and |z-score| (Pieters
et al. 2010) for numeric targets. Additionally, two alternative measures for each target
type are considered, for a total of six measures. These are lift (Brin et al. 1997)
and binomial (Klösgen 1992) for nominal targets (tested in a ‘target value versus rest’
setting), and |deviation| and |t-statistic| (Pieters et al. 2010) for numeric targets. Table 3
provides definitions for these measures. Note that for the numeric measures, absolute
versions of the quality measures are used, simply because the interest is in both the
high and the low deviations of the target distribution.

The three quality measures per type mainly differ in how they treat subgroup size
(this is deliberate). On the low end, both lift and |deviation| do not have a weighting
factor, and thus somewhat favour smaller subgroups (where larger deviations are more
easily observed). On the high end, WRAcc and |z-score| favour larger subgroups, and
binomial and |t-statistic| fall in between. While |t-statistic| and |z-score| use the same
subgroup-size scaling factor

√
n, the former divides by the standard deviation of the

subgroup σs , instead of that of the dataset (σD). As it is easier to achieve a smaller
dispersion using small subgroups, this measure generally favours such subgroups.

Some of the detailed analyses focus mainly on WRAcc and |z-score|, as these are
good representatives for the two target types. Still, Sect. 5.3 combines the findings for
all measures, and Sect. 5.4 offers a direct comparison of them.

Years of observation showed that the type of SD algorithm employed here rarely
produces better results beyond the first three levels, but, to be safe, experiments are
performed using search depth settings between 1 and 4. A cursory analysis of average
top-10 scores for different datasets and strategies is presented in Fig. 1, which confirms
this observation. Additionally, one could argue that too complex subgroup descriptions

2 Results and methods for replication are found at: http://datamining.liacs.nl/for-real.zip.
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Table 3 Quality measures used
in subsequent experiments

Target type Measure Definition

Classification lift (TP/n)/(T /N )

binomial
√
n/N · (TP/n − T /N )

WRAcc TP/N − (T /N · n/N )

Regression |deviation| |μs − μD |
|t-statistic| |(√n · (μs − μD )

)
/σs |

|z-score| |(√n · (μs − μD )
)
/σD |

For the classification target, T is the number of occurrences of the
designated target value in the whole dataset, and TP indicates how
many of those are covered by the subgroup. For the regression target,
μs and μD refer to the target mean of the subgroup and of the dataset,
respectively. The standard deviation σD is computed using the sum of
squared deviations divided by N , for σs the division is by n − 1

are in disagreement with the easy-to-interpret, exploratory, and descriptive nature of
the paradigm.

Respectively, a minimum and maximum subgroup size of 0.1N and 0.9N is
enforced for all subgroups, to avoid overly small subgroups attaining unrealistically
high scores. Beam search is performed using a beam of size 100. Although the SD
process can be stopped at any time, all experiments are run until completion (the
search space is exhausted). The parallelisation option of Cortana is not used, so all
experiments were performed using a single cpu-thread.

Tables 4 and 5, respectively, list the datasets used in the experiments for the clas-
sification and regression setting. These datasets are taken from the UCI repository
(Dua and Graff 2017), and the collection is chosen such that it gives a good mix
with respect to the various statistics. It represents a range of sizes (N ), number of
numeric description attributes (|numeric|), (positive) target share (for classification
datasets), and target cardinality (C) (for regression datasets). The adult and pima-
indians datasets are customarily used with a classification target, but here they are
also used in a regression setting, using the age attribute as numeric target.

5.1 Best number of bins

This section is dedicated to the ‘number of bins’ parameter B. This parameter con-
trols the number of cut points that is eventually used by the SD algorithm. Setting this
parameter such that results are optimal is a non-trivial task, as it is not immediately
clear what the effect of this parameter is within the context of the various strate-
gies. Furthermore, the possibility that effects differ amongst target type settings, and
datasets, further hinders a straightforward selection of the parameter value. Therefore,
this section presents the results of experiments performed to obtain insights into the
intrinsic complexities stemming from these compound effects.

The 9828 experiments concern all strategies that use the coarse alternative for
candidate generation, and the two strategies that combine finewith global and binaries.
As described in Sect. 3.2, the latter can (should) be used in a coarse setting.
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Fig. 1 Plots showing the development of average subgroup quality (WRAcc and |z-score|) for the 10 best
subgroups, for different datasets and strategies. Only the adult dataset (regression), show a noticeable
increase beyond depth 3. For ionosphere (classification) there is a small increase, for some strategies

For a single strategy, for each dataset and search depth, result sets of experiments
using different parameter settings for B are collected. For each result set, the average
score for the top-k subgroups is computed, and by ranking these average scores it is
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Table 4 Datasets with a classification target. Listed are the dataset and target name, target value, positive
target share (T/N, proportion of records having the target value), dataset size N, and |numeric|, the number
of numeric description attributes

Dataset Target Target value Positive (%) N |numeric|

adult Class ≥50K 23.93 48,842 6

covertype Cover_Type Lodgepole pine 48.76 581,012 10

credit-a class + 44.49 690 6

ionosphere class g 64.10 35 34

pima-indians class tested_positive 34.90 768 8

wisconsin Class 1 34.48 699 9

Table 5 Datasets with a regression target

Dataset Target Target μ C N |numeric|

abalone Class_Rings 9.934 28 4177 7

adulta Age 38.644 74 48,842 5

auto-mpg class 23.515 129 398 4

boston-housing MEDV 22.533 229 506 12

communities ViolentCrimesPerPop 0.238 98 1994 126

forestfires area 12.847 251 517 10

pima-indiansa age 33.241 52 768 7

Listed are the dataset and target name, target average μ, target cardinality C , dataset size N , and |numeric|,
the number of numeric description attributes (so excluding the target column)
a Same datasets as in the classification setting, but using a different (target) setting

determined what value of B, ranging from 2 to 10, results in the highest average score.
This process is performed separately for each quality measure.

Table 6 presents a summary of the results, and lists, for each strategy and quality
measure, the optimal number of bins. These are also the numbers used in the subsequent
experiments that compare different strategies. The various subtables in Table 12 in
Appendix A provide more detail, and list results for depths 1, 2, 3, and 4, and a top-k
of 1. Table 6 lists the overall μ(B) values, rounded to the nearest integer.

Experiments involving binaries strategies often led to multiple settings of B yield-
ing the highest score. In part, this results from the nature of the algorithm. That is,
the complete set of cut points obtained when creating B half-bounded intervals will
occur in the set of cut points obtained when creating 2B half-bounded intervals, or
more generally, any integer multiple of B. In such cases, only the lowest value of B
is reported. Furthermore, within each table, the value for B at depth 1 is equal for the
all and best alternative of an otherwise similar strategy, this is true by design.

The results show that there is no universal rule that guarantees a good number of
bins. Not only does the best number differ per strategy, for a single strategy it can
differ over quality measures, even for the same target type. Nonetheless, a number of
general observations that can serve as guideline are listed and discussed below.
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Table 6 The number of bins used in subsequent experiments, for each strategy and quality measure

Target type Measure 3-lbca 4-lbcb 7-lnca 8-lncb 9-gbfa 10-gbfb 15-gnca

Classification lift 6 6 4 4 6 5 5

binomial 7 8 4 4 8 8 3

WRAcc 7 6 2 2 7 7 2

Regression |deviation| 7 7 6 6 9 9 6

|t-statistic| 6 6 5 5 7 6 4

|z-score| 7 8 4 4 7 7 4

These numbers are based on μ(B) in Table 12

The best number of bins for …

1. binaries is higher than for nominal, irrespective of target type, nominal is really
low for classification targets, when used withWRAcc,

2. binaries greatly decreases over depths for lift and |deviation|, is stable for bino-
mial and |t-statistic|, and increases somewhat for WRAcc and |z-score|, nominal
decreases over depths, regardless of the target type and quality measure,

3. most strategies vary greatly over datasets, irrespective of target type.

A first general conclusion concerns the clear difference between binaries and nom-
inal strategies. Consistently, the former lists higher numbers. This is not surprising,
as for the two strategies the effects of higher values of B are quite distinct, although
the impact differs per target type.

For nominal, when B increases, the size of the subgroups decreases, something that
is especially problematic in the classification target setting, as the subgroups might no
longer be able to cover all positives. In terms of ROC-space analysis (Fawcett 2006),
these subgroups fall in the lower left-hand corner, such that the upper left-hand corner
can never be reached by further refinement. In a regression setting, small subgroups
are less problematic, as they can still cover numeric extremes.

For binaries, it is tempting to think that a higher B would also result in smaller
subgroups. But, remember that for binaries, B−1 overlapping conjuncts are created,
covering both small and large subsets of the data. And especially in conjunctions at
greater search depths, including larger conjuncts might be more useful than having
only smaller ones, as combinations of the latter often become too small to meet the
minimum subgroup size constraint, and allow little possibilities for optimisation. It
also explains why all strategies generally list a higher number of bins in the regression
target setting.

Noteworthy also is the behaviour of lift and |deviation|. At greater depths, these list
substantially lower number of bins. This prevents the candidates from becoming too
small, through refinement, before reaching this depth. So, this compensates for the
fact that these measures favour small subgroups.

Obviously, the last item is the most troubling. Some general trends are observed,
but the key problem of choosing a good setting of B for all situations remains illusory,
and the dataset characteristics listed in Tables 4 and 5 provide no guidance here.
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Conclusion There is no universal rule that guarantees a good number of bins, but
nominal strategies prefer a lower number than binaries strategies.

5.2 Comparing subgroup discovery strategies

The experimental sections further down (from Sects. 5.2.3–5.2.7) each focuses on
a different dimension, but all follow a similar setup. First, it lists the strategies that
are compared. Then, separately for each target type, results are discussed. Finally, a
conclusion closes off each section, stating which option should be preferred.

Results are presented in two different forms, tables with qualities of the best (top-1)
subgroup and tables with Mann-Whitney U -scores (Mann and Whitney 1947) for the
top-10 subgroups. Each table lists the results for all strategies in Table 1, but 17-lxfb is
only included for classification targets. Individual sections then contrast different pairs
of strategies, depending on the dimension being discussed. For strategies that involve
a B parameter, a superscript behind the name indicates what setting of B was used to
produce the result. Most tables can be found in Appendix A.

5.2.1 Performance by best subgroup

The analyses of the different strategies start by considering the best subgroup found.
Table 7 presents a summary for all quality measures, whereas Tables 13 and 14,
provided in Appendix A, offer the detailed scores of the different strategies on the
various datasets forWRAcc and |z-score|, respectively. Per depth and dataset, strategies
are ranked based on their quality score, and given are both the average rank over all
datasets per depth, and the average of these averages (μ(r j , (1, 2, 3, 4))). The tables
also list Friedman F values, which are relevant for the critical difference diagrams
in Fig. 2. These figures plot the different strategies on a horizontal scale representing
their average rank as computed from the best subgroup. Low numbers (in other words
good ranks) indicate that on average, a strategy performs well.

The figures furthermore provide information about the significance of differences
in average rank, bymeans of critical difference (CD) indicator bars. If two strategies in
any diagramare separated by less than the length of theCDbar at the top, they cannot be
said to differ significantly (significance level α = 0.05). Black bars across the CD plot
help making this call for different pairs of strategies. The procedure for computing
the critical distance is outlined by Demšar (2006), and only its relevant details are
provided here. The Friedman critical value CV f equals 2.096 for the classification
experiments, and 2.138 for regression. The value FF in Table 7 should be above the
CVf for the strategies not to be equal. If this is the case, post-hoc Nemenyi tests are
permitted and the critical distance now becomes CD = 5.531 for classification, and
CD = 4.541 for regression, as indicated in the respective figures.

The first observation is that the general order over all depths does not differ much.
In the classification setting, the extensive strategies 1-lbfa and 2-lbfb, and the special
strategy 17-lxfb, always rank best. Then comes a group of binaries strategies, first
those combined with coarse and all, than those with coarse and best. The nominal
strategies always rank last.

123



178 M. Meeng, A. Knobbe

Ta
bl
e
7

Pe
r
de
pt
h
an
d
da
ta
se
t,
st
ra
te
gi
es

ar
e
ra
nk
ed

ba
se
d
on

th
ei
r
qu
al
ity

sc
or
e

M
ea
su
re

D
ep
th

F
F

1-
lb
fa

2-
lb
fb

3-
lb
ca

4-
lb
cb

7-
ln
ca

8-
ln
cb

9-
gb

fa
10

-g
bf
b

15
-g
nc
a

17
-l
xf
b

li
ft

1
2.
63

9
3.
75

3.
75

6.
25

6.
25

6.
58

6.
58

6.
17

7.
83

5.
92

1.
92

2
1.
15

7
4.
08

4.
50

3.
42

5.
83

6.
17

6.
17

6.
00

6.
75

7.
58

4.
50

3
1.
93

1
4.
00

4.
17

3.
25

4.
58

7.
00

7.
00

5.
00

5.
67

8.
33

6.
00

4
2.
07

3
4.
17

4.
33

3.
25

4.
33

7.
17

7.
17

4.
67

5.
50

8.
33

6.
08

μ
(r

j,
(1

,
2,

3,
4)

)
4.
00

4.
19

4.
04

5.
25

6.
73

6.
73

5.
46

6.
44

7.
54

4.
63

bi
no

m
ia
l

1
1.
73

8
3.
92

3.
92

6.
33

6.
25

5.
75

5.
75

6.
42

6.
42

7.
67

2.
58

2
16

.2
14

1.
75

3.
08

4.
67

4.
92

8.
83

8.
83

5.
08

5.
67

9.
17

3.
00

3
27

.1
08

1.
75

2.
83

3.
58

5.
42

8.
83

8.
83

5.
75

6.
25

9.
17

2.
58

4
21

.9
75

1.
75

2.
83

3.
92

5.
92

8.
83

8.
83

5.
25

5.
75

9.
17

2.
75

μ
(r

j,
(1

,
2,

3,
4)

)
2.
29

3.
17

4.
63

5.
63

8.
06

8.
06

5.
63

6.
02

8.
79

2.
73

W
R
A
cc

1
2.
91

4
3.
67

3.
67

5.
75

7.
17

7.
58

7.
58

4.
42

4.
42

7.
58

3.
17

2
14

.8
40

1.
92

3.
50

4.
25

5.
58

9.
08

9.
25

4.
25

5.
17

8.
67

3.
33

3
17

.2
81

2.
00

2.
92

4.
67

5.
25

9.
08

9.
25

4.
67

5.
58

8.
67

2.
92

4
18

.5
53

2.
17

3.
00

4.
17

5.
42

9.
08

9.
25

4.
92

5.
75

8.
67

2.
58

μ
(r

j,
(1

,
2,

3,
4)

)
2.
44

3.
27

4.
71

5.
85

8.
71

8.
83

4.
56

5.
23

8.
40

3.
00

123



For real: a thorough look at numeric attributes in subgroup discovery 179

Ta
bl
e
7

co
nt
in
ue
d

M
ea
su
re

D
ep
th

F
F

1-
lb
fa

2-
lb
fb

3-
lb
ca

4-
lb
cb

7-
ln
ca

8-
ln
cb

9-
gb

fa
10

-g
bf
b

15
-g
nc
a

17
-l
xf
b

|d
ev
ia
ti
on

|
1

2.
74

1
2.
36

2.
36

5.
36

5.
36

5.
93

5.
93

5.
64

5.
64

6.
43

2
7.
06

7
1.
93

3.
50

3.
43

4.
36

5.
79

6.
43

5.
14

5.
57

8.
86

3
11

.9
09

1.
29

3.
86

2.
71

4.
57

6.
07

6.
64

5.
21

5.
79

8.
86

4
10

.9
21

1.
64

4.
07

2.
43

4.
57

6.
21

6.
79

4.
93

5.
50

8.
86

μ
(r

j,
(1

,
2,

3,
4)

)
1.
80

3.
45

3.
48

4.
71

6.
00

6.
45

5.
23

5.
63

8.
25

|t
-s
ta
ti
st
ic
|

1
3.
32

1
2.
36

2.
36

5.
29

5.
29

6.
79

6.
79

4.
93

5.
36

5.
86

2
2.
20

7
3.
43

3.
50

3.
86

4.
21

5.
93

6.
36

4.
79

5.
36

7.
57

3
3.
59

7
2.
71

3.
43

3.
00

4.
79

6.
50

6.
93

5.
07

5.
43

7.
14

4
3.
26

5
3.
43

2.
93

3.
14

4.
14

6.
36

6.
79

5.
50

5.
57

7.
14

μ
(r

j,
(1

,
2,

3,
4)

)
2.
98

3.
05

3.
82

4.
61

6.
39

6.
71

5.
07

5.
43

6.
93

|z
-s
co
re
|

1
3.
48

4
2.
43

2.
43

6.
07

3.
71

6.
36

6.
36

5.
86

5.
86

5.
93

2
5.
50

3
1.
93

3.
21

3.
36

5.
64

7.
29

7.
29

4.
79

4.
93

6.
57

3
13

.8
20

1.
57

2.
57

3.
14

4.
29

7.
71

7.
71

5.
29

5.
43

7.
29

4
13

.0
39

2.
00

2.
43

3.
29

4.
57

7.
86

7.
86

4.
93

4.
64

7.
43

μ
(r

j,
(1

,
2,

3,
4)

)
1.
98

2.
66

3.
96

4.
55

7.
30

7.
30

5.
21

5.
21

6.
80

Fo
r
ea
ch

st
ra
te
gy
,t
he

av
er
ag
e
ra
nk

ov
er

al
ld

at
as
et
s,
fo
r
de
pt
hs

1,
2,

3,
an
d
4,

is
gi
ve
n
he
re
,a
s
is
th
e
av
er
ag
e
of

th
es
e
av
er
ag
es

(μ
(r

j,
(1

,
2,

3,
4)

))
.F

or
W
R
A
cc

an
d
|z
-s
co
re
|

m
or
e
de
ta
ile

d
in
fo
rm

at
io
n
ca
n
be

fo
un

d
in

Ta
bl
es

13
an
d
14

,r
es
pe
ct
iv
el
y.
T
he

Fr
ie
dm

an
F
va
lu
es

ar
e
lis
te
d
in

th
os
e
ta
bl
es
,p
er

de
pt
h,
on

th
e

μ
(r

j,
de
pt
h)

(F
F
)
lin

es
,a
nd

ar
e

ba
se
d
on

th
e
(a
ve
ra
ge
)
ra
nk

s
in

co
lu
m
n
r.
Fr
ie
dm

an
F
sc
or
es

in
ita
lic

ar
e
be
lo
w
th
e
cr
iti
ca
lv

al
ue
,u

si
ng

α
=

0.
05

.A
s
su
ch
,t
he

po
st
-h
oc

N
em

en
yi

te
st
is
no

tp
er
m
itt
ed
,a
nd

no
va
lid

cr
iti
ca
l
di
ff
er
en
ce

di
ag
ra
m
s
ca
n
be

cr
ea
te
d.

T
he

se
ct
io
ns

di
sc
us
si
ng

ex
pe
ri
m
en
ta
l
re
su
lts

fo
r
th
e
va
ri
ou
s
di
m
en
si
on
s,
Se
ct
.5

.2
.3

an
d
on

w
ar
ds
,a
nd

Ta
bl
e
9
us
e
th
e

av
er
ag
e
ra
nk

in
fo
rm

at
io
n
fr
om

th
is
ta
bl
e

123



180 M. Meeng, A. Knobbe

Fig. 2 Critical difference diagrams for the classification targets (left), usingWRAcc, and regression targets
(right), using |z-score|, for depth 1, 2, 3, and 4 (top to bottom). Within a plot, the strategies are ordered
counter-clockwise, from best to worst. Strategies connected by a thick horizontal line, differ by less than
the critical difference (CD), and cannot be said to differ significantly (α = 0.05). The general order over
all depths does not differ much, and is similar for the two target settings. In the regression setting, strategy
17-lxfb is not used, and the average rank of 3-lbca is better than that of the related binaries strategies.

Generally, the order in the regression setting is the same. But here the local variants
of the binaries strategies perform better than the global variants. Also, 3-lbca performs
better than the rest of this group.

Conclusion The binaries strategies rank before the nominal ones, and the more
extensive variants come first, regardless of target type.

5.2.2 Performance by top-10 ranking

The analysis described above considers only the best subgroup, whereas SD is gener-
ally expected to produce a ranked list of alternative subgroups. To give an insight into
the distribution of scores in the involved rankings, the Mann-Whitney U test is used,
and two tables listing these U -scores are presented (Tables 15, 16).

U -scores compare two distributions to determine if one is stochastically greater than
the other, in which case the probability of an observation from the first distribution
exceeding that of the second is different from the reverse probability (of an observation
from the second exceeding that of the first). In the extreme case of U = 0, all values
from one distribution come before all values of the other distribution. Such an insight
can not be obtained by comparing the means, or medians, of two rankings.
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When comparing two strategies, all scores of their result setsF1 andF2, of size F1
and F2 respectively, are put together, sorted, and assigned combined ranks. Then, U1
is computed for set F1 as follows:

U1 = �1 − F1 (F1 + 1)

2
, (1)

where�1 is the sum of ranks of result setF1. The same is done forF2, and the smaller
of U1 and U2 is used as U for significance testing.

The tables in Appendix A compare the top-10 rankings of different strategies, so
F1 = F2 = 10. For a one-sided test, and a significance level of 5%, the critical value
is 27. So, when U ≤ 27 the null hypothesis “the distributions are equal” is rejected.

However, the tables do not listU , butU1, as this shows which of the two strategies
is better. Using the fact thatU2 = F1 · F2 −U1, scores below 50 indicate that the first
(left) strategy is better, scores above 50 mean the second (right) strategy is better.

The final columns of the table, under ‘≤ 27 / ≥ 73 / valid’, indicate, per depth,
how often the U -score is significant for the left and right strategy, respectively, and
for how many datasets a top-10 is available. When ‘valid’ is not equal to the number
of datasets, it indicates that, in some experimental settings, not enough subgroups are
found to create a top-10 ranking.

The columns under ‘Wins’ use a number of symbols to summarise which of the
strategies is better over all tested datasets, for a given depth. Triangles point in the
direction of the strategy that has a better ranking more often than the other, = means
there is no ‘winner’. Respectively,�,�, and<, indicate that the left strategy is: better
for all datasets, and all results are significant; better for all datasets, but not all results
are significant; better overall, but not better for all datasets. Right-pointing triangles
have equivalent meanings for the right strategy.

Unlike the number of (valid) results, the number of symbols is equal for all strate-
gies, which allows for a straightforward comparison. In the classification setting, each
strategy is compared to nine others (Table 15). There are eight such comparisons in the
regression setting (Table 16). When interpreting these tables, readers are suggested to
favour the triangles over individual U -scores.

5.2.3 Interval type: binaries versus nominal

The next four sections discuss the four different dimensions separately, and determine
the optimal choice for each dimension. Sometimes, there is a clear winner (as is
the case in this first section), but the best choice might depend on the context, that
is, on the setting of the three remaining dimensions. For the two strategies within
a context, only the setting for the dimension under investigation differs, settings for
the other dimensions are the same. For that reason, these sections list the appropriate
contexts and discuss context-dependent choices where relevant. The four dimensions
are discussed not in the order that they were introduced, but in order of complexity of
the analysis. Therefore, the discussion starts with the simplest, the dimension interval
type, with the two possible values binaries and nominal.

The choice between these two settings is relevant in the following contexts:
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– local with coarse and all. In this context, 3-lbca is pitted against 7-lnca.
– local with coarse and best. This means comparing 4-lbcb with 8-lncb.
– global with coarse and all. Pitting 9-gbfa against 15-gnca, where the former is
transformed into a coarse strategy by using a low number of values, as described
in Sect. 3.2.

Classification Target As Tables 13 and 15 demonstrate, the binaries setting consis-
tently outperforms the nominal setting in all relevant contexts. The average ranks are
always better for binaries, and the difference between these ranks gets quite large at
greater depths. Furthermore, binaries lists a better quality for 65 out of 72 compar-
isons. The 2 times nominal lists a better score, and the 5 ties, all occur at depth 1. Also
note that for the ionosphere dataset, binaries qualities are sometimes twice as high as
those of nominal. In terms of Mann-WhitneyU -scores, binaries lists a betterU -score
for each of the 66 results, of which 63 are significant. For the lift and binomial quality
measures, observations are similar.

Regression Target Again, binaries is the clear preferred choice in all experiments
(Tables 14 and 16). Here also, the average ranks are always better for binaries, and this
option lists a better quality for 69 out of 84 comparisons, nominal achieves a better
score 14 times. As in the classification setting, the difference of the average ranks
gets quite large at greater depths. Between strategies, the |z-score| generally differs
by some 5–10%, but some are up to 40 percent. With respect to the top-10 rankings,
binaries is better in all of the 77 experiment, with 63 results being significant. For
|deviation| and |t-statistic| these statistics are almost identical.

Conclusion Always prefer binaries. It clearly outperforms nominal in all contexts
for both target types.

5.2.4 Granularity: fine versus coarse

This section contrasts options fine and coarse of dimension granularity. The relevant
contexts are:

– local with binaries and all. This concerns strategies 1-lbfa and 3-lbca.
– local with binaries and best. The relevant strategies are 2-lbfb and 4-lbcb.

Classification Target Without exception, fine is the better option. All of its average
ranks are better, and of the 48 comparisons, fine wins 38, coarse wins 4, and there are
6 ties. The wins of coarse are interesting, as one might expect that the search space of
coarse is a subset of that of fine. However, this is true only for complete search, not for
a heuristic (beam) search. Table 13 shows that the wins occur at depths greater than 1,
indicating that the beam of the coarse variant of the strategy contained a candidate that
was both not included in the beam of the fine counterpart, and proved to be a better seed
for refinement than any of the candidates the latter beam contained. Closer inspection
of the scores shows that for the first context, the coarse scores are on average 97.45%
of that of fine, and 16 out of 24 times the difference is smaller than 2%. For the second
context, coarse scores are on average 96.85% of that of fine, and 13 times out of 24

123



For real: a thorough look at numeric attributes in subgroup discovery 183

the quality it is not worse by more than 2%, or even better. Concerning the top-10
rankings in Table 15, 22 out of 24, and 15 out of 23, results are significant for the first
and second context, respectively, and all results are in favour of fine. The trend for lift
and binomial is the same, though for the former there are more ties and a few wins for
coarse.

Regression Target Again, without exception, fine is the better option, as can be
observed in Tables 14 and 16. All average ranks are better, and of the 56 quality
comparisons fine wins 44, coarse wins 3, and there are 9 ties. For the first and second
context, respectively, the coarse scores are on average 98.65% and 98.43% of that of
fine, and 41 times out of 56 the difference is smaller than 2%. For the top-10 rankings,
25 out of 28, and 20 out of 26, results are significant, for the two contexts respectively.
Here, results are similar for |deviation| and |t-statistic|.

Conclusion Invariably, fine is better. Considering that coarse is a heuristic numeric
strategy, this might not seem remarkable, although, as mentioned, in a beam setting
fine is not guaranteed to perform better at greater search depths. Nevertheless, the
quality of the top subgroups coarse produces is within a few percent of those of fine,
and sometimes even better, though the latter can only happen in a beam search.

5.2.5 Selection method: all versus best

Next, options all and best of dimension selection method are compared. The relevant
contexts are:

– local with binaries and fine. Comparing 1-lbfa with 2-lbfb.
– local with binaries and coarse. Selecting 3-lbca and 4-lbcb.
– local with nominal and coarse. Pitting 7-lnca against 8-lncb.
– global with binaries and fine. Using both 9-gbfa and 10-gbfb as coarse.

Classification Target Clearly, all is the better option. First, note that all and best
strategies using the same number of bins would attain identical average ranks, and
qualities, at depth 1. Still, in every context, all outperforms best with respect to the
qualities in Table 13. At depth 2, 3, and 4, all always has a better average rank. With
respect to the qualities, it is interesting to see that in the first, third, and fourth context,
there are a large number of ties, 59 of 72 results, and all does not often win, 12 times.
Whereas, in the second context, all wins 18 of the 24 comparisons. Of the 96 quality
comparisons, only 5 differ by more than 5%, with a maximum of 8.1%. Note that for
the first context, the quality for best is better than all, at depth 4, for the ionosphere
dataset (this can be seen by the rank, due to rounding the quality scores appear to be
the same). This is caused by the same beam effect as described above. Because the
variant in the second context uses a different number of bins, the fact that qualities for
the ionosphere dataset are better for best than for all at depth 3 can not be ascribed to
the beam search per se.

Table 15 show that in the binaries contexts, all is better for 66 out of 69 results,
of which 50 are significant. In the only nominal context, results for all and best are
basically identical, and thus never significant. Again, overall trends are similar for lift
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and binomial, but for the former half the quality scores tie for the second context, and
all wins half the comparisons in the fourth.

Regression Target Overall, results for all are better for this target type. When con-
sidering the quality scores in Table 14, the high number of ties is notable. Here, the first
two contexts should be considered separately from the latter two. For the first two, the
average rank of all is better in all settings (above depth 1), and all wins about half of
the comparisons. For the third context, all results, and thus ranks, are identical, for the
fourth, just 4 results differ. Here, a beam effect can be observed for dataset forestfires
at depth 3 for the first context, and at depth 4 for the first and third context. With
respect to the 112 equivalent qualities, only 3 differ by more than 2%. Considering
the results for the top-10 rankings in Table 16, all binaries contexts behave similar,
resulting in wins for all in 76 of the 78 comparisons, with 61 significant results. For
the only nominal context, 10 out of 23 results are wins for all, the remaining 13 are
ties, and only 3 wins are significant. Results for |deviation| and |t-statistic| are similar
for all contexts.

Conclusion Option all performs better than best, which is no surprise. The more
interesting observations relate to the performance of best. Out of the 208 results for
the two target types combined, the score for the top subgroup is within 1% of the all
score, or better, 169 times, and only 8 differences of more than 5% were observed.
This suggests that the very heuristic best selection method is a very capable alternative
to all when considering result quality, often coming within 1% of the all result.

5.2.6 Discretisation timing: local versus global discretisation

This section compares options local and global of dimension discretisation timing.
The contexts relevant to determine the best choice among these two alternatives are:

– binaries with coarse and all. The relevant strategies in this context are 3-lbca and
9-gbfa, where the latter is transformed into a coarse strategy by using a low number
of values, as described in Sect. 3.2.

– binarieswith coarse and best. This compares 4-lbcb with 10-gbfb, here, using few
values for 10-gbfb.

– nominal with coarse and all. It pits 7-lnca against 15-gnca.

Of all experimental settings, results for discretisation timing are the least unequiv-
ocal, and the most dependent on the context, search depth, and quality measure. In
part, this is due to an implementation detail. Both global and local use Algorithm 2.
But, for a single attribute, local potentially yields the same bin boundaries in case of
‘≤’ and ‘≥’, whereas global creates discretised data once, always using ‘≤’. For the
example in Sect. 2.3, a = [x, y, z] and B = 2, this yields [y, y, z], and results on depth
1 are not guaranteed to be identical. An implementation where global considers the
original, undiscretised, data and selects static cut points once, separately for ‘≤’ and
‘≥’, would be identical. However, most emphasis should be on the results of greater
depths, where the difference between the options is most prominent.
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Classification Target The results inTables 13 and 15 showverymixed and convoluted
results. In the first two contexts, alternative local is better 19 times, there are 7 ties, and
global wins 22 times. For the third context, there are 18 ties, and 6 wins for global, all
for the ionosphere and wisconsin datasets at greater depths. The average ranks follow
these patterns.

Considering the Mann-Whitney U -scores for the top-10 rankings, most results
at depth 1 are close or identical, and never significant. At depth 2, 3, and 4, local
outperforms its non-dynamic counterpart 15 out of 18 times (7 significant) in the first
context. Of the 3 non-significant wins for global, 2 occur for the wisconsin dataset.
For the second context, there are 7 wins for local (4 significant), global wins 11 times
(4 significant). For the third context, there are 12 wins for local (3 significant), and
the 6 times global wins, involve the aforementioned datasets again, but all results are
now significant.

This time, results for lift and binomial are quite different. Here, all has a better
average rank 20 out of 24 times, and a better quality for 83 out of 144 results. Qualities
are equal 26 times, and better for best 35 times. Regarding U -scores, lift has a better
result 42 times (34 significant), there are 12 ties, and 17 wins for global (2 significant).
For binomial, these results are similar to those ofWRAcc.

Regression Target In the first context, local is clearly better, with better average
ranks for greater depths, and a better quality 19 out of 28 times. Table 14 shows there
are 4 ties, and 5 times global is better. Also, of the 26U -score comparisons, local wins
22 (15 significant), there is 1 tie, and global wins 5 times (1 significant). Concerning
qualities for the second and third context, there are 14 wins for local, 2 ties, and 12
wins for global, and 7 wins for local, 6 ties, and 15 wins for global, respectively.
Regarding U -scores in Table 16, there are 26 wins for local (13 significant), 1 tie, 26
wins for global (14 significant).

As with the classification setting, most statistics are skewedmore in favour of local,
when using |deviation| and |t-statistic|.

Conclusion With respect to classification targets, local should be preferred when
considering all contexts, depths, and qualitymeasures overall. Regarding the top result,
there is not much difference between the options when used withWRAcc, but with lift
and binomial, local clearly performs better. The local alternative also performs better
when considering the top-10 rankings.

For regression targets, local performed clearly better at greater depth in the first
binaries context, and should be the preferred choice. Although in the second and third
context there is not much difference between the two alternatives when usingWRAcc,
preference shifts towards local when considering |deviation| and |t-statistic|.

A more general finding is that global might be better than local at depth 1, but that
the latter is, and gets, better at greater search depths, proving that its flexibility is useful.
Although, this result is not all that convincing in the classification setting, it is for the
more complex regression setting. While Dougherty et al. (1995), Frank and Witten
(1999) and Grosskreutz and Rüping (2009) found that for entropy-based histograms
there was no big difference between local and global, the difference is relevant for the
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equal-frequencybinning employedhere. Especially thebinaries strategy 3-lbca greatly
benefits from it.

5.2.7 Mampaey et al. (17-lxfb) versus all other strategies

So far, strategy 17-lxfb was left out of the analyses, but it is the exclusive focus of
this section. Unlike the previous sections, this one does not revolve around contexts.
Still, a separation along dimensions is instrumental when analysing the results. Most
important is the differentiation between binaries and nominal strategies. The latter is
treated as a single group, the former is sometimes divided into subgroups, when this
provides additional insights.

The original implementation of 17-lxfb was extended to take into account the min-
imum and maximum subgroup size constraints. Without the former, the algorithm
selects perfect (scoring) intervals, but the subgroups might be too small to be included
in the result set. Also, the linear version of this algorithm was not used.3 Instead, the
quadratic number of intervals is evaluated, as in Grosskreutz and Rüping (2009). This
does not influence the results, but does affect the run times.

Strategy 17-lxfb was included in the experiments because it produces ‘optimal’
results at depth 1 (of which, at least, one is also a global optimum). Table 13 confirms
this, as there is not a single strategy that attains a better quality for any of the datasets.
And although some of the other strategies are able to attain the same quality score,
17-lxfb has the best average rank.

A more interesting behaviour occurs at greater depths. First, consider the four
strategies that combine binaries with local. For the two that combine with fine, 1-
lbfa lists a better quality than 17-lxfb 8 times out of 18, there are 6 ties, and 17-lxfbwins
4 times, and for 2-lbfb there are 5 wins, 6 ties, and 7 loses. However, these strategies
are better by margins of less than 1% for most results, except those involving the adult
dataset. The average rank of 1-lbfa is now better than that of 17-lxfb, and the average
rank of 2-lbfb is close to it. For 3-lbca, qualities are now within 2% for 15 out of 18
results. This includes the 4 times this strategies score better, but the average ranks
are still always worse. For 4-lbcb, 15 out of 18 qualities are now within 2%, but the
average ranks are still always worse. The 3 times this strategy is better occur for the
adult dataset.

Of the strategies combining binaries with global, 9-gbfa has a better score 4 times
(3 for adult, 1 for pima-indians), and of the 18 comparisons, 10 are better or within
2%. For 10-gbfb only 8, including the 1 better score for pima-indians, are within 2%,
12 are within 4%. The average ranks for these strategies are also always worse.

Interestingly, all binaries strategies score better than 17-lxfb on the adult dataset,
some score also better on ionosphere or pima-indians. Based on the characteristics of
these dataset, listed in Table 4, there is no common theme that binds these datasets.
As such, no reason can be given for why other strategies surpass 17-lxfb for some
datasets, and not others.

For the nominal strategies 7-lnca, 8-lncb, and 15-gnca, every average rank and
quality is better for 17-lxfb. In fact, for the covertype and ionosphere dataset, which

3 Code analysis revealed an exceptional case that would yield a suboptimal interval. None of the results
presented in this work would have been affected, but the tool has wider use.
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include high cardinality description attributes, these strategies are only able to attain
scores that are more than 35%, or even 58%, lower than the 17-lxfb score.

With respect to the Mann-Whitney U results in Table 15, the distinction along
dimensions is informative again. Collectively, there are 180 results for 17-lxfb, these
include 136 wins (76%), of which 116 are significant, for an 85% significant-to-win
ratio. Against strategies combining binaries with local, there are 80 results, 43 wins
(54%), and 33 significant results (77%), indicating that these strategies compare more
favourably to 17-lxfb than others. Against binaries with global, there are 40 results,
33 wins (83%), and 23 significant results (70%). These numbers are even skewed in
favour of 17-lxfb, as 4-lbcb has 0 wins, and 10-gbfb has 1. Most strikingly though,
there are 60 nominal results, all of which 17-lxfb wins significantly.

Conclusion The fact that no other strategy performs better than 17-lxfb at depth 1
is expected. However, for a number of datasets, the same quality is achieved by many
other strategies, some of which could be considered light heuristics. How the results of
various (broad groups of) strategies evolve over increasing depths is also noteworthy.
Strategies involving binaries fare much better than those using a nominal approach.
Nonetheless, only the two computationally most demanding strategies outperform or
tie with 17-lxfb for 3 of the 6 datasets, and just one heuristic comes close. As such,
this strategy should be the method of choice when seeking high quality subgroups in a
classification setting. As mentioned, 17-lxfb was not applicable to regression datasets.

5.3 Ranking subgroup discovery strategies

Table 8 presents the final ranking of strategies, combining information in Tables 7, 13,
14, 15, and 16, and similar tables for lift, binomial, |deviation|, and |t-statistic| not
presented here. This ranking should be considered nothing more than a convenient
summary, and no statistical claims are made about this result. This is because an
aggregation is performed over the same, not different, datasets in the quality tables,
and the Mann-Whitney table is based only on pairwise tests, and does not correct for
multiple hypothesis testing. For more on these issues, refer to Demšar (2006).

The ranking underμ1 is based on the qualities in Tables 7, 13 and 14, that are aggre-
gated in Table 9. Under ‘Classification’ and ‘Regression’ of this table, the strategies
are assigned a rank based on the average of their average rank per depth (also listed
at the average rank line μ(rj , (1, 2, 3, 4)) in the score tables). This shows how the
strategies perform for each target type. To create an overall ranking, combining the
results of the two target types, strategy 17-lxfb needs to be omitted from the analysis.
For example, under ‘Classification excl. 17-lxfb’ the average ranks listed for WRAcc
are based on an analysis of Table 13, where the scores for 17-lxfb are excluded. Note
that the agreement between rankings for classification and regression is rather high,
with a Spearman’s rank correlation ρ = 0.983. Then, listed under ‘Combined’, the
average over these overall average ranks is computed, and the strategies are assigned
a rank based on this average, where a lower average is better.

The ranking under U10 is based on Tables 15 and 16, and aggregate Table 10.
Results are based on the symbols in the ‘Wins’ columns, and count the number of
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Table 8 The final ranking of strategies

Rank Ranking based on

μ1 U10

1 1-lbfa 1-lbfa

2 2-lbfb 3-lbca

3 3-lbca 2-lbfb

4 4-lbcb 9-gbfa

5 9-gbfa 4-lbcb

6 10-gbfb 10-gbfb

7 7-lnca 7-lnca

8 8-lncb 8-lncb

9 15-gnca 15-gnca

These are based on μ1 and U10, and are computed in Tables 9 and 10, respectively. There are two permu-
tations in the list, where a pair of strategies is swapped. So, the rankings strongly agree with each other
(ρ = 0.967), and rank most of the strategies combining local and binaries before those combining global
and binaries, and list all nominal strategies at the bottom
local often performs better than global,
binaries is superior to nominal,
fine triumphs over coarse,
all beats best

left-pointing triangles (<,�,�) when a strategy is on the left, and the number of
right-pointing triangles (>,�,�) when a strategy is on the right, of strategy pairs in
the Mann-Whitney U tables. The sum of these wins is computed, and strategies are
ordered based on this sum, where a higher sum is better. Again, the agreement between
classification and regression is rather high: ρ = 0.967.

Although the rankings are based on different analyses (top-1 versus top-10), they
strongly agree with each other (ρ = 0.967). The nominal strategies always rank
last, the local binaries strategies usually rank before the global strategies, and the all
alternatives outperform their best counterpart.

Themost remarkable findingwould probably be the fact that the heuristic 3-lbca per-
forms so well. Certainly, 2-lbfb is a heuristic also, but its computational complexity
is much higher. Another non-trivial result is the scale at which the nominal strategies
perform worse than binaries strategies. For both target types, nominal strategies rank
at the bottom of the list. Generally, the table reaffirms some of the general trends that
were observed before.

Conclusion The relative order and performance of strategies is very consistent over
both all quality measures and when determined considering the best individual sub-
group and ranking of the set of top subgroups.

5.4 Comparison of quality measures

The detailed analyses so far mainly revolved around the popular and well-established
quality measuresWRAcc and |z-score|. These measures are used because they address
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Table 10 A ranking based on the Mann-Whitney U tables for all strategies

Strategy Classification Regression Combined

ϕl ϕb ϕw �+17
C �−17

C r−17
C ϕd ϕt ϕz �R rR �−17

C+R Rank

1-lbfa 34 35 35 104 95 1 32 32 32 96 1 191 1

2-lbfb 21 26 27 74 65 3 25 25 26 76 2 141 3

3-lbca 29 23 26 78 74 2 25 25 24 74 3 148 2

4-lbcb 17 13 12 42 41 5 16 16 14 46 5 87 5

7-lnca 9 5 6 20 20 7 7 8 7 22 7 42 7

8-lncb 6 0 3 9 9 9 3 3 2 8 8 17 8

9-gbfa 19 20 22 61 60 4 21 22 21 64 4 124 4

10-gbfb 9 12 14 35 35 6 13 12 14 39 6 74 6

15-gnca 5 6 0 11 11 8 2 1 3 6 9 17 9

17-lxfb 18 25 25 68

The table lists the number of wins for each strategy (left-pointing triangles (<,�,�) when a strategy is
on the left of a strategy pair, right-pointing triangles otherwise). For classification targets, the counts in
the columns under ϕ and �+17

C , include comparisons to strategy 17-lxfb. To make the two target settings

comparable, �−17
C lists the counts excluding all 17-lxfb comparisons. Columns do not sum to 180 (144)

in case of ties (=). The rankings for the classification and regression settings, r−17
C and rR , respectively,

strongly agree with each other (ρ = 0.967). Here, strategy 8-lncb is ranked before 15-gnca, as it wins more
of their direct comparisons

different target types, that entail different search characteristics. Further experiments
were performed for additional measures per target type, as there are no guarantees that
findings for these measures generalise to other types of quality measures.

Quality measures differ in the aspects of subgroups they favour, and the size of
subgroups is often an important factor. As WRAcc and |z-score| favour rather large
subgroups, four measures more prone to select smaller subgroups were evaluated.

Although the experiments demonstrate that the different runs vary a lot in their
search and reported subgroups, the resulting ranking of numeric strategies is surpris-
ingly similar across measures. This degree of correlation can already be gleaned from
Tables 9 and 10, where the triplets of columns associated with the three measures
per setting show a surprising consistency. Concerning the μ1 and U10 rankings in the
classification setting, the Spearman’s rank correlations with WRAcc are ρ = 0.921
and ρ = 0.875 for binomial, and ρ = 0.827 and ρ = 0.954 for lift, respectively. For
the regression setting, the Spearman’s rank correlations with |z-score| are ρ = 0.946
and ρ = 0.975 for |t-statistic|, and ρ = 0.946 and ρ = 0.975 for |deviation|. Here,
|deviation| and |t-statistic| have a correlation of ρ = 1 for both the μ1 and U10 rank-
ings. Concerning the rankings, the different settings benefit in very similar ways from
the various strategies considered, despite searching for alternative types of subgroups.

Concerning the search, or pattern, space, a different picture emerges, that is highly
related to the size aspect of themeasures. Crudely, themaximum number of candidates
at each search level in a beam search is given by the beam width times the number
of candidates at depth 1. For the same depth, the amount of candidates produced by
the measures that favour large subgroups is closest to this number, whereas for the
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‘unweighed’ lift and |deviation| measures it deviates a lot, binomial and |t-statistic|
are in between. For a single measure, with increasing depths, the amount of candi-
dates produced by the measures that favour large subgroups remains relatively high
and closest to the maximum, whereas for unweighed measures the amount rapidly
decreases. These observations hold over the various strategies and datasets. The inter-
pretation is that for measures that favour smaller subgroups the candidates in the beam
are generally smaller, and such subgroups generate fewer valid refinements.

5.5 Complete search versus beam search

The experiments use a beam search to efficiently traverse the potentially large search
spaces associated with numeric attributes. When considering the findings presented
so far, one might object that they only hold in the context of such heuristic search.
In fact, it might be that some poorly performing strategies, for example those using a
nominal setting, are better suited for complete search space exploration. In order to
test any potential differences under complete search strategies, the experiments were
executed also with a complete version of the SD algorithm. Results are compared for
depth 2 and 3 for WRAcc and |z-score|. Depth 1 results are always the same.

Interestingly, there is hardly any difference between the results of the two search
strategies. The best number of bins for each strategy remains the same, as does the
ranking of strategies in Table 8. The few differences that do occur are small, such that
they do not change the overall findings. A general observation is that, basically, only
strategy 1-lbfa and 3-lbca benefit from complete search, though marginally.

In the classification setting, only 7 top-1 results are different, on average by less
than 0.7%, and all differ less than 1.7%. For the regression setting, there were 21
differences, that on average differed by 1.3%, with a maximum of 4.9%. The latter
occurs alongwith 6 other differences above 1% for the forestfires dataset, without these
the average would be 0.4%. Interestingly, out of the 28 differences, 24 involved 3-lbca,
and another 3 involved the equivalent 4-lbcb experiment using the same number of
bins. So, complete search only offered a benefit for these strategies.

For the classification setting, not a single triangle in the MW-U table changed,
though 22 individual U-scores differ slightly, all except one for 1-lbfa and 3-lbca. In
the regression setting, only 4 triangles changed, 2 times from � to � for 1-lbfa, 2
from < to � for 3-lbca, and one changed in favour of 3-lbca from < to >. Here, 33
U-scores changed, again mostly for 1-lbfa and 3-lbca.

The negligible difference between the results of complete and beam search is actu-
ally not that surprising. For depth 1, and quite often for depth 2 results also, the extent
of the beam search is such that it in fact considers the same candidates as the com-
plete search. Furthermore, Sect. 3.3 argued that using the term ‘exhaustive’ to describe
complete search is problematic. Section 5.1 suggested that some strategies, the nom-
inal ones especially, require a low number of bins to perform well, as else, through
conjunctions, the subgroups these select become (too) small. In contrast, the binaries
strategies work better using a higher setting of B. As a result, a heuristic beam search,
using a high setting of B, might actually be more extensive, and produce better results,
than a complete search using fewer bins.
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Conclusion The very minimal difference of results between complete search and
beam search indicates that the relative order of the numeric strategies is hardly influ-
enced by the search strategy and that beam search is preferable on any but the smallest
datasets, for reasons of efficiency and scaleability.

5.6 Diverse subgroups from numeric data

So far, experiments focussed on result quality. This section also considers redundancy
in the form of subgroup-extension overlap. Redundancymight cause saturation, which
is problematic when domain experts prefer a result set containing a limited but diverse
set of subgroups, andwhen it limits search space exploration, and result quality, during
a beam search.

Of the specialised redundancy-reduction techniques listed in Sect. 2.2, an attractive
member of the popular DSSD family (van Leeuwen and Knobbe 2012) is used. This
cover-based subgroup selection variant was evaluated using a weight parameter of 0.9,
and a beam width and result set size of 100, all as in the original work.

For each of the strategies listed in Table 1, results were obtained using a traditional
and CBSS beam search. All but one of the strategies are heuristics that naturally
reduce redundancy, and these experiments gauge to what extent the (memory-wise and
computationally far more demanding) CBSS technique has added benefit over a pure
and straightforward SD approach. Performance is analysed both from the perspective
of attained quality and joint entropy H (Knobbe and Ho 2006a, b; van Leeuwen and
Knobbe 2012) of the top-10 subgroups in the final result set.

The CBSS procedure indeed produces higher entropy scores than the presented
beam-search setting. In the classification setting, it achieves a higher entropy in 36%
of the experiments, but for 60% it was equal, and for the remainder beam search
actually obtains a higher entropy. In the regression setting, the CBSS entropy was
higher for 44% of the experiments, and equal for 53%. On average, the CBSS entropy
was higher by 0.214 bits (classification setting) and 0.373 bits (regression setting).

As argued in the original work, redundancy-reduction might not only produce more
diversity, it might also boost the quality of the final subgroups, since the diversity in
the intermediate search levels potentially allows formore exploration, leading to better
results. However, in 99% of the 1584WRAcc experiments, and 95% of the 1820 using
|z-score|, no difference in top-1 quality was observed. In fact, for |z-score| 2% of CBSS
results were indeed better, but 3% were actually worse than that of the beam search.
Therefore, one has to conclude that in terms of quality, CBSS does not produce better
results than the presented beam search, under these settings.

In order to judge the relative merit of the various numeric strategies presented in an
objective sense, a single metric by which to compare strategies is required. In earlier
experiments, the quality of the top 10 subgroups was used, but since in this context,
diversity is the prime focus, the joint entropy of the top-10 is assessed. This metric will
be used both for picking the optimal number of bins per dataset (a prerequisite for the
discretisation-based methods, which is not discussed in detail) and for producing the
final rankings of strategies. A number of related findings are presented first, followed
by an overall discussion.
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Fig. 3 Demonstration of the development of joint entropy, shown on the y-axis, at increasing depth, for
datasets adult and abalone, for classification and regression settings, respectively

A first observation tomake is that the obtained joint entropy is significantly affected
by the search depth. Specifically, the largest values for H are typically obtained at depth
1. At depth 2, a large drop in joint entropy is observed, while at subsequent depths,
there are no major changes. These phenomena are illustrated for two experiments in
Fig. 3. Additionally, the ranking of strategies at depth 1 compared to greater depths
are only moderately correlated, such that findings for both depths 1 and 2 are reported.

Figure 4 shows the final ranking of the strategies for the classification setting on the
left, and the regression setting on the right. For the latter, post-hoc Nemenyi tests are
not permitted, so the diagrams showonly the rank and order of strategies.Most notably,
the strategies that rank high in the earlier quality-based beam search results, 1-lbfa, 2-
lbfb (and 17-lxfb forWRAcc), are amongst the worst-scoring strategies when it comes
to joint entropy, for all depths. The poorly performing nominal strategies now rank
high. Strategy 7-lnca is notable, as it ranks well for both quality and redundancy-based
results.

Overall, it seems that the advice for optimising quality using beam search should
be reversed for reducing redundancy using CBSS: strategies that work well for the
former tend to not work well for the latter, and vice versa. Looking at the correlation
between the average ranks for the two search strategies, this reverse trend is indeed
confirmed. ForWRAcc, a negative correlation is observed of −0.357 for depth 1, and
−0.722 for depth 2. For |z-score|, these are −0.605 (depth 1), and −0.680 (depth 2).

Discussion The facts that CBSS does not produce better quality results, and that
reverse rankings of strategies are observed, are not surprising, and can all be explained
by the same observations. First, DSSD is not SD, and the measures presented in van
Leeuwen and Knobbe (2011, 2012), cover redundancy CR, entropy H , and cover-
based selection �, are all global, they value uniform coverage of the records. In the
context of SD, this is irrelevant, as only records with favourable target values (positives
and numeric extremes) are of interest, and their distribution is often unbalanced.

So, strategies that allowmany top subgroups to accurately capture the relevant target
values attain high quality, but low uniformity. High uniformity is achieved using the
imprecise, disjunct, consecutive nominal strategies, but quality suffers. The drop in
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Fig. 4 Diagrams showing the rank and order of strategies based on the entropy of the top-10, using the CBSS
technique, for depth 1, 2, 3, and 4 (top to bottom). Results for the classification setting, using WRAcc, are
on the left, and on the right are the results for the regression setting, using |z-score|. For the latter, post-hoc
Nemenyi tests are not permitted, so the diagrams show only the rank and order of strategies. The strategies
that rank high in the earlier quality-based beam search results, 1-lbfa, 2-lbfb (and 17-lxfb forWRAcc), are
amongst the worst-scoring strategies when it comes to joint entropy, for all depths. The nominal strategies
that perform poorly when ranked on quality, now rank high.

entropy score above depth 1 occurs because, regardless of the employed strategy, the
top (quality score) subgroups better capture the (skewed) target at greater depths.

Entropy and cover-based selection might be more useful when used in other ways.
First, Knobbe and Ho (2006a, b) also use H , but only to select a diverse set from a
limited top-k result set of high quality subgroups, say 10 out of 30. Also, the covering
approaches used in APRIORI-SD (Kavšek and Lavrač 2006) and CN2-SD (Lavrač
et al. 2004) weight only positive records, which prevents that at some point covering
negatives becomes preferable over covering positives in terms of selection score.

Conclusion CBSSdoes not yield better top-1 results than traditional beam search, but
it does yield higher entropy scores, especially using local, nominal, coarse strategies.

5.7 Notes on run times

While the primary focus of thiswork is on the quality of results of various strategies, run
times are also relevant when choosing a practical strategy for a given dataset. This sec-
tion provides details on the run times incurred by the above experiments. Experiments
were performed sequentially in single-thread mode using a 2013 dual-octacore Xeon
E5-2650V2 server processor (2.60 GHz). Run times should be considered indicative
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Table 11 For the experiments performed using the different search strategies, the main statistics concerning
run times are given

Statistic Classification Regression

Beam CBSS Complete Beam CBSS Complete

Experiments 4752 1584 1188 5460 1820 1365

< 1 s 4223 1065 1023 5445 1248 1241

< 10 s 4745 1324 1137 5460 1564 1299

< 60 s 4751 1424 1166 5460 1722 1338

μ (s) 0.518 678.5 126.9 0.130 138.1 540.6

Median (s) 0.095 0.266 0.082 0.086 0.228 0.068

Maximum (s) 66.78 511,008 139,825 3.136 102,040 647,334

Per depth and qualitymeasure, 396 and 455 experimentswere performed for the classification and regression
setting, respectively, but only for the beam search setting results using addition quality measures were
obtained

only, as experiments were timed only once, and at any moment 15 other (unrelated)
experiments would share the cpu and memory resources (256 GigaByte).

Table 11 shows the run time statistics for the various settings. Per depth and quality
measure, 396 and 455 experimentswere performed for the classification and regression
setting, respectively. The maximum search depth was 4 for the beam and CBSS search
strategy, and 3 for complete search. For all search strategies, results are available for
WRAcc and |z-score|, for the beam search all measures in Table 3were used. Six results
are missing (three for CBSS, three for complete) as they either use too much memory,
or take too long.

All beam experiments terminate within 10 seconds, except for 7 17-lxfb experi-
ments in the classification setting at depth 3 or 4, of which the longest took 66.78
seconds. This is due to its quadratic, instead of linear, implementation, as referred to
in Sect. 5.2.7. Although the issue was identified, experiments use this implementation
to gauge whether a Cartesian alternative for the interval type, as described in Sect. 4,
is feasible. At least for this target type and search strategy, results are promising, as
depth 4 experiments for the largest dataset, covertype, took 15, 58, and 67 seconds for
lift, binomial, and WRAcc, respectively.

The 1-lbfa strategy requires most time, but for the depth 4 covertype experiments,
there is less than 1.7 seconds separating 1-lbfa and 3-lbca, the most involved beam
setting. Also, strategies favouring larger subgroups show the longest run times, but for
the regression setting, with a maximum of 3.136 seconds, this does not say much.

Run times for the CBSS setting are much worse, with more than 10% of the exper-
iments not completing within a minute, and some taking much longer. In this respect,
CBSS compares very unfavourably to the equivalent beam search results, and is often
unusable due to its memory requirement and excessive run times. It should be noted
here that the only difference between the two implementations is the cover-based selec-
tion procedure for the candidate beam and result set, which is thus solely responsible
for the time differences.
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The complete search experiments were only performed up to depth 3, as some 1-
lbfa runs already took a long time to finish. Still, most experiments complete within
a second, and for the classification setting the longest non-1-lbfa experiment, using
3-lbca, took about 7min. For the regression setting, the longest non-1-lbfa experiment
took 45min.

Conclusion The various numeric strategies behave as expected, with the extensive
1-lbfa strategy yielding the longest run times. Although there is some explainable
variation in run time between the strategies, on the whole, beam search is very fast
(the vast majority finishes in several seconds), suggesting that run time should not be
a determining factor in the choice of strategy. To a lesser degree, this is also the case
for complete search, which on average is (much) slower, but this is caused by a small
fraction of very long runs (specifically involving 1-lbfa). CBSS is simply quite slow.

6 Conclusions and future work

This work systematically examined a host of SD strategies. These strategies differ
along a number of dimensions, and experiments were performed to gain insights into
the effects of different options within these dimensions. Choices were not evaluated
in isolation, but always in the context of other parameter settings, as this is required
to gauge real-world performance.

Most of the findings are not unexpected, for reasons pointed out in the sections
introducing each dimension. However, the fact that a single parameter choice would
show markedly different behaviour in the classification and regression target type
settingswas unforeseen. Furthermore, it is especially the scale atwhich some strategies
perform worse than others that is remarkable.

As a whole, this systematic evaluation both affirms some intuitions that, to the best
of our knowledge, have never been rigorously tested, and garnered new insights into
both existing strategies, and into how to improve future algorithm design. As such,
it is of value for those seeking information guiding an informed choice regarding the
analysis of real-world data. Additionally, its findings can be of benefit to researchers
and algorithm designers alike.

The experiments have shown that better performance is achieved by those settings
that finely tune the placement of the threshold (for example, fine and local). Thismeans
that local discretisation (choosing a threshold in the context of the subset currently
under investigation) is often preferred over global discretisation (discretising the data
prior to the discovery process), and fine granularity typically produces better results
than coarse discretisation. Additionally, the binaries representation consistently out-
performs the nominal one, and multiple candidates should be considered per numeric
attribute, rather than only the single best. There is hardly a difference in computation
time, and especially in the regression setting, 3-lbca performs really well. Experiments
with alternative quality measures, ranging in how they treat the size of the subgroups
found, indicate that the findings are mostly stable to the choice of measure. While
the findings are comparable between beam and heuristic search, much different con-
clusions can be drawn from the CBSS experiments. As CBSS values diversity above
accuracy of the subgroups, local, nominal and coarse strategies tend to be preferred.
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Future work Dealing with (multivariate) numeric datasets is about choosing thresh-
olds. In this regard, a number of improvements are possible.

First, run times indicate that the quadratic implementation of the BestInterval algo-
rithm (17-lxfb) is not a limiting factor, at least not for this target type, where the
model computation is cheap. Therefore, strategies evaluating the quadratic number of
intervals, both using all cut points or a discretised subset thereof, will be explored.

Also, more should be done within a search level, not less, the run times indicate
there is room to do so. A richer description language, and more extensive evaluation
within a level, yield better subgroups at lower depths. In turn, the search can be less
deep, and much of the combinatorial explosion of the search space is avoided.

This can often be achieved without increasing complexity. For example, the exact
same cut points need to be established for binaries, nominal, and a quadratic interval
implementation. Thereafter, the difference lies in how these are used to create descrip-
tions. In combination with beam search, the size of search space is kept under control
through the beam width.

Algorithms might also benefit from a better separation between which subgroups
are good for a result set, and which are useful candidates for refinement. Therefore, the
BestInterval algorithm will be extended to behave like the best strategies. Even when
the algorithm is unable to find a single valid subgroup for the result set, it could still
yield a useful candidate. Also, the technique uses a convex hull to select candidates,
likeMeeng et al. (2014), but the latter allowsmultiple, instead of just one, which offers
additional directions to explore. More sophisticated variants of the binaries strategies,
that select both small and large subgroups, are another direction to explore.

Another factor that limits the full exploitation of the richness of numeric datasets is
related to the greedy nature of many (heuristic) SD algorithms. Most do not consider
the joint distribution of numeric attributes when selecting thresholds. But, there is no
guarantee that an ‘optimal’ threshold at a particular depth is still ideal when further
refined.

In future work, the simultaneous optimisation of thresholds on numeric attributes
will receive attention. The work of Mampaey et al. (2015) already investigated com-
bined efficient optimisation of two thresholds on a single attribute, but considering
combinations of multiple attributes might be even more fruitful (Nguyen et al. 2014).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
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A Appendix

See Tables 12, 13, 14, 15 and 16.
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