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Abstract
This paper presents a novel ensemble learning method based on evolutionary algo-
rithms to cope with different types of concept drifts in non-stationary data stream
classification tasks. In ensemble learning, multiple learners forming an ensemble are
trained to obtain a better predictive performance compared to that of a single learner,
especially in non-stationary environments, where data evolve over time. The evolution
of data streams can be viewed as a problem of changing environment, and evolution-
ary algorithms offer a natural solution to this problem. The method proposed in this
paper uses random subspaces of features from a pool of features to create different
classification types in the ensemble. Each such type consists of a limited number of
classifiers (decision trees) that have been built at different times over the data stream.
An evolutionary algorithm (replicator dynamics) is used to adapt to different concept
drifts; it allows the types with a higher performance to increase and those with a lower
performance to decrease in size. Genetic algorithm is then applied to build a two-layer
architecture based on the proposed technique to dynamically optimise the combination
of features in each type to achieve a better adaptation to new concepts. The proposed
method, called EACD, offers both implicit and explicit mechanisms to deal with
concept drifts. A set of experiments employing four artificial and five real-world data
streams is conducted to compare its performance with that of the state-of-the-art algo-
rithms using the immediate and delayed prequential evaluation methods. The results
demonstrate favourable performance of the proposed EACDmethod in different envi-
ronments.
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1 Introduction

A considerable effort of recent research has focused on data stream classification
tasks in non-stationary environments (Gama et al. 2014). The main challenge in this
research area concerns the adaptation to concept drifts, that is, when the data distri-
bution changes over time in unforeseen ways. Concept drifts occur in different forms
and can be divided into four general types: abrupt (sudden), gradual, incremental and
recurrent (reoccurring). In abrupt (sudden) concept drifts, the data distribution at the
time t suddenly changes to a new distribution at the time t + 1. Incremental concept
drifts occur when the data distribution changes and stays in the new distribution after
going through some new, unstable,median data distributions. In gradual concept drifts,
the proportion of new probability distribution of incoming data increases, while the
proportion of data that belong to the former probability distribution decreases over
time. Recurring concept drifts happen when the same old probability distribution of
data reappears after some time of a different distribution.

Ensemble learning has proved superiority for stream classification in non-stationary
environments over other classification techniques (Gomes et al. 2017a; Krawczyk
et al. 2017). Ensemble learning is a machine learning approach, in which predictions
of individual classifiers are combined using a combination rule to predict incoming
instances more accurately. The advantage of using ensemble learning techniques in
non-stationary data stream classification lies in their ability to update swiftly according
to themost recent data instances. This is usually achievedby training the existing classi-
fiers in the ensemble and changing theirweights according to their performance: adding
new, better performing classifiers, and removing outdated, low performing classifiers.
Applications of classification in non-stationary data streams include spamfiltering sys-
tems, stock market prediction systems, fraud detection in banking networks, weather
forecasting systems, data analysis in Internet of Things (IoT) networks, traffic and
forest monitoring systems, among many others. The extensive range of applications
makes the task of non-stationary data stream classification even more challenging, as
various applications seek diverse purposes and have different conditions.

To propose a versatile yet robust ensemble approach in this context, the following
main features should be taken into consideration:

– Accuracy the main target of any approach is usually to achieve a minimum mis-
classification rate. Hence, the average accuracy rate of an approach should be
satisfactory in different evolving data streams.

– Efficiency in many applications, there are constraints on the system in terms of
time and memory usage. When the time calculating an output or the amount of
available memory is limited, the learning time and computational complexity of
an approach should be minimised.

– Adaptation when a concept drift happens in a data stream, the accuracy of the
ensemble decreases due to the changeof the data distribution and the target concept.
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It is important to minimise the rate of misclassification and the time of recovery
upon different types of concept drifts.

The majority of the existing ensemble methods are either focused on one or two
of the aforementioned factors, or concentrate on a specific type of data streams. For
instance, some approaches do not remove old classifiers (Elwell and Polikar 2011;
Ramamurthy and Bhatnagar 2007); hence, the number of classifiers is unbounded,
which can cause a low efficiency in terms of time andmemory usage. Other approaches
are designed to cope with recurring concept drifts only (Gonçalves Jr and De Barros
2013); therefore, such algorithms are only suitable for a limited number of applications
and environments.

To overcome these limitations, we propose a novel ensemble learning method for
data stream classification in non-stationary environments, called EACD, that uses
random selection of features and two evolutionary algorithms, namely, Replicator
Dynamics (RD) and Genetic algorithm (GA). We train an ensemble of different clas-
sification types that consist of randomly drawn features (subspaces) of the target data
stream. These randomly drawn subspaces are then optimised using GA to cope with
different concept drifts over time. Training of the proposed ensemble is performed
on sequential data blocks in the stream. The proposed ensemble technique allows a
dynamic set of classification types to take action over time. In addition, the number
of decision trees in a classification type (subspace) depends on the performance of
this type on the most recent data. Hence, well performing types increase in size, while
poorly performing types decrease in size.

In summary, our solution allows the ensemble to handle different types of concept
drifts by employing two different evolutionary techniques. RD is used to continuously
determine well and poorly performing types and expand or shrink them accordingly.
GA is used to compose new, improved types out of the existing ones by iterating over
the most recent data.

The rest of this paper is organised as follows. Section 2 presents an overview
of related research. Section 3 describes our proposed method in detail and provides
theoretical justification of the proposed method. Section 4 outlines the experimental
set up and the results of comparing the proposed approach to other state-of-the-art
methods. Section 5 comprehensively discusses the results of the experiments. Finally,
conclusions and future work are presented in Sect. 6.

2 Related work

2.1 Ensemble learning in non-stationary data streams

The majority of the existing data stream learning approaches to non-stationary envi-
ronments uses ensemble learning techniques for classification tasks (Chu and Zaniolo
2004a; Gama et al. 2014; Gomes et al. 2017a; Krawczyk et al. 2017), which are more
flexible and trustworthy compared to single classifier techniques that use only one
classifier for the task.
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The existing ensemble methods can be categorised into explicit and implicitmeth-
ods. Explicit methods use a concept drift detection mechanism and have an explicit
(immediate) reaction to a drift when it is detected, while implicit methods do not
have an immediate reaction to concept drifts, and as such, adapt to drifts implicitly by
updating the state of the ensemble according to the most recent instances.

Implicit methods

Online bagging (OzaBag) (Oza 2005) is an online version of bagging learning mech-
anism that can be used in data streams (as opposed to the standard bagging technique
that requires the training set to be available at once). It updates each classifier in the
ensemble with k copies of the newly received instances. The value of k comes from
the Poisson distribution Poisson(1).

Online boosting (OzaBoost) (Oza 2005) is an online version of the boosting learning
mechanism. In this method, every new example received by the ensemble is used
to update all classifiers in a sequential manner. In other words, the first classifier is
assignedwith the highest possibleweight for the newly received data,while theweights
assigned to the next classifiers are based on the outcome of the previous classifiers.

OSBoost (Chen et al. 2012) is an algorithm that uses online boosting and combines
weak learners by producing a connection between the online boosting and the batch
boosting algorithms. It is theoretically proved to achieve a small error rate, as long as
the number of weak learners and the number of examples are sufficiently large.

Dynamic Weighted Majority (DWM) (Kolter and Maloof 2007) is an implicit
approach, where data come in an online form and get classified immediately. If a
classifier misclassifies an instance after a predefined period (p instances), the weight
of this classifier is reduced by a constant value regardless of the ensemble’s output
and all weights are normalised. Then, the classifiers with the weights lower than a
predefined threshold (θ ) are removed from the ensemble. Finally, when the whole
ensemble misclassifies an instance, a new classifier is built and added to the ensemble.
All classifiers are trained incrementally with incoming samples.

The Accuracy Updated Ensemble (AUE) algorithm (Brzezinski and Stefanowski
2014b) incrementally trains all old classifiers and weights them based on their error
in a constant time and memory. In this algorithm, the incremental nature of Hoeffding
trees (Domingos and Hulten 2000a) is combined with a normal block-based weighting
mechanism. This approach does not remove any old classifiers; therefore, a threshold
for memory is assigned so that whenever it is met, a pruning method is used to reduce
the size of classifiers. An online version of this approach (OAUE) was introduced by
the same authors (Brzezinski and Stefanowski 2014a).

Anticipative Dynamic Adaptation to Concept Changes (ADACC) (Jaber 2013) is
an implicit method that attempts to optimise stability of the ensemble by recognising
incoming concept changes. This is achieved by establishing an enhanced forgetting
strategy for the ensemble. ADACC takes snapshots of the ensemble when a concept
is recognised as stable and uses them when there is instability in the system to cope
with concept drifts.

Social Adaptive Ensemble (SAE) (Gomes and Enembreck 2013) is a method that
has the same learning strategy as the DWM algorithm. It maintains an ensemble
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that is arranged as a network (undirected graph) of classifiers. Two classifiers are
connected to each other when they produce similar predictions. These connections are
weighted according to a similarity coefficient equation. The ensemble is updated after
a predefined number of instances. The same authors extended their method to SAE2
approach (Gomes and Enembreck 2014).

The main issue with implicit methods is that in most cases adaptation to a new
concept takes a long time due to their implicit behaviour. Furthermore, concept drifts
are not identified immediately with such approaches.

Explicit methods

Adaptive Boosting (Aboost) (Chu and Zaniolo 2004a) is one of the approaches that
uses a concept drift detection method. It builds one classifier per every block of data
that is received from the stream and classifies the instances. Then, it evaluates the
ensemble’s output and updates the weights of all classifiers based on whether or not
an instance is classified correctly by the ensemble, as well as the classifier itself.
Whenever a concept drift is detected, the weight of each classifier in the ensemble is
reset to one. Finally, once the size of the ensemble is exceeded, the oldest classifier is
removed from it.

Adwin Bagging (AdwinBag) (Bifet et al. 2009) is an approach that uses Oza’s
online bagging algorithm (Oza 2005) for its learning mechanism and adds a concept
drift detector called ADaptive WINdowing (ADWIN) (Bifet and Gavalda 2007) to
specify when a new classifier is required. AdwinBag is enhanced in the Leveraging
Bagging (LevBag) algorithm (Bifet et al. 2010b) by the same authors. LevBag aims to
add randomisation to the input and the output of the classifiers and increase the extent
of re-sampling in the bagging technique. The re-sampling rate in LevBag is changed
from Poisson(1) to Poisson(λ), where λ is a user defined parameter.

Yet another explicit approach is Recurring Concept Drift (RCD) (Gonçalves Jr and
De Barros 2013). It uses a buffer to store the context of each data type in the stream.
This framework contains a two-phase concept drift detection mechanism. First, a
new classifier is created and trained alongside a new buffer when the drift detection
mechanism signals a warning. If it then signals a drift, which means the concept drift
is approved, the system checks whether or not the new concept is similar to another
concept that has been previously stored in the buffer. If there has been a recurring
concept drift, RCD uses the classifier created with that concept drift to classify the
incoming data and then starts training the classifier. If no similar concept drift is found
in the buffer, RCD stores the newly trained buffer and the classifier in the system and
uses them to classify the incoming instances. If the system does not get the drift signal
to approve the drift, it assumes it to be a false alarm; the system ignores the stored
data and continues to classify using the current classifier. Note, only one classifier is
activated at a time in this approach, while the rest are deactivated, unless the same
data concept happens again.

Adaptive Random Forest (ARF) (Gomes et al. 2017b) is an explicit ensemble
learning technique, which is an adaptation of the classical Random Forest algorithm
(Breiman 2001) that grows decision trees by training them on re-sampled versions
of the original data and by randomly selecting a small number of features that can
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be inspected at each node for split. ARF is based on a warning and drift detection
scheme per tree, such that after a warning has been detected for one tree, another one
(background tree) starts growing in parallel and replaces the original tree only if the
warning escalates to a drift.

In summary, the main issue with explicit methods is their sensitivity to false alarms
(noise). Therefore, accuracy of the system using such methods can be degraded
severely by a wrongly detected concept drift. Furthermore, employing a good drift
detection mechanism that can recognise different types of concept drifts (gradual,
recurring, abrupt and incremental) (Gama et al. 2014) is a difficult task. In this sce-
nario,RDoffers a smoothyet effectiveway to improve theperformanceof the ensemble
by increasing or reducing the number of trees in classification types. Furthermore, the
main issue with implicit algorithms is their slowness in coping with concept drifts as
they do not have an immediate reaction to drifts. This is the reason for using a concept
drift detection algorithm along with GA to immediately react to concept drifts and to
optimise the combination of the features in classification types. Overall, by combining
RD with concept drift detection methods and GA, it is feasible to have the advantages
of explicit and implicit methods alongside in the ensemble.

2.2 Evolutionary algorithms in non-stationary data streams

Evolutionary algorithms cannot be applied in their original state to the problems in
streaming applications since the whole set of instances is not accessible to the stream
processing system. However, such algorithms can be adapted to streaming data in
different ways, e.g. the following algorithms are proposed in the literature for non-
stationary data stream classification.

The StreamGP algorithm (Folino et al. 2007) builds an ensemble of classifiers
using Genetic Programming along with the boosting algorithm to generate decision
trees, each trained on different parts of the data stream. This algorithm is an explicit
algorithm that uses a concept drift detection mechanism. Whenever a concept drift
is detected, a new classifier is created using CGPC (Folino et al. 2006), which is a
cellular genetic programmingmethod that generates a classifier as a decision tree. Each
population in this algorithm is a set of individual data blocks (nodes) that initially is
drawn randomly. The newly created classifier is then added to the ensemble and all
classifiers are boosted by updating their weights. This algorithm is different from our
proposed algorithm in that in StreamGP, the aim of the optimisation technique is to find
the best set of data blocks to create a new classifier. In EACD however, the aim of GA
is to find the best combination of features to create new classification types. Unlike our
method, the problem with StreamGP is that no new classifier is created by the system
unless a concept drift is detected. This might negatively affect the performance upon
incremental and gradual concept drifts that are hard to detect.

Online Genetic Algorithm (OGA) (Vivekanandan and Nedunchezhian 2011) is a
rule-based learning algorithm that builds and updates a set of candidate rules for a data
stream based on the evolution of the data stream itself. In this algorithm, the rules are
initially set randomly, and after fully receiving a new data block, an iteration of GA is
performed to search for new (better) candidate rules for all classes in the received data
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block. This process is repeated until the end of the stream. The differences between
OGA and our proposed algorithm are as follows. Primarily, OGA is a rule-based
learning algorithm, whereas EACD is an ensemble learning algorithm. The aim of
GA in OGA is to create new rules or update the current rules, whereas the aim of
GA in EACD is to optimise the classification types inside the ensemble. Furthermore,
the iterations in OGA are performed over different data blocks (an iteration per each
data block) and GA never stops its iterations (the maximum number of generations is
unlimited), whereas in EACD, the iterations are performed over the same fixed data in
the buffer for each round of GA, and the number of generations is limited. The main
issue with OGA is the long time it takes to adapt to new concept drifts since GA takes
only one data block at each iteration, potentially requiring a large number of iterations
to completely cope with a concept drift.

3 Proposedmethod

3.1 Replicator dynamics: an overview

RD is a simplemodel of evolution and prestige-biased learning in game theory (Bomze
1983; Hofbauer and Sigmund 2003). It provides a solution for selecting useful types
fromapopulation of diverse types. In thismodel, the act of selection happens at discrete
times and ‘the population of each type in the next selection is given by the replicator
equation as a function of the type’s payoff and its current proportion in the population’
(Fawgreh et al. 2015). In other words, a type’s expected payoff is determined by
the payoff matrix, and hence, the population of each type is determined according
to its expected payoff. The types that score above the average payoff increase in
population, while the types that score below the average payoff decrease in population.
The Replicator Equation is represented by the following formula:

ẋi = xi [(Wx)i − xT Wx], (1)

where (Wx)i is the expected payoff for an individual and xT Wx is the average payoff
in the population state x .

In our proposedmethod, a type (classification type) is a subspace of the total number
of features of the target data stream that initially is drawn randomly and then is being
optimised using GA. A type’s payoff is the average accuracy of the classifiers that
have been built using the specified type (subspace of features). The expected payoff
is the average accuracy of all classifiers in the ensemble.

3.2 Genetic algorithm: an overview

GA is ameta-heuristic algorithm inspired by the process of natural selection, which is a
subset of a bigger class of algorithms called evolutionary algorithms. Such algorithms
are commonly used to generate high-quality solutions to optimisation and search
problems relying on bio-inspired operators such asmutation, crossover and selection.
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The reason for using GA in the proposed method is that GA is superior to other
optimisation methods when there are a relatively large number of local optima (Elyan
and Gaber 2017), which is the case in this problem, where numerous subspaces of
features likely to form ‘types’ can form local optima.

The typical GA works as follows. A population is created from a group of individ-
uals randomly. The individuals in the population are then evaluated. The evaluation
function is provided by the programmer and gives the individuals a score based on
how well they perform at the given task. Some individuals are then selected based
on their fitness; the higher the fitness, the higher the chance of being selected. These
individuals then reproduce to create one or more offspring, after which the offspring
are mutated randomly. This continues until a suitable solution is found or the max-
imum number of generations is reached (Mantri et al. 2011). Figure 1 demonstrates
how such a typical GA works. In our proposed method, the Initial Population is a
random subspace of features (types) that have been drawn earlier, and the evaluation
is performed by calculating the average accuracy of each subspace (type). Selec-
tion, Crossover and Mutation, as employed in our method, are discussed later in
Sect. 3.3.

Fig. 1 An illustration of a typical genetic algorithm
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3.3 EACD: evolutionary adaptation to concept drifts

We propose a novel ensemble learning algorithm that is suitable for non-stationary
data stream classification. In this algorithm, the data come as continuous data blocks.
In this paper, each data block consists of 1000 samples that are selected arbitrarily;
however, it can be set to any other values as required. The algorithm comprises of
two different layers called the base layer and the genetic layer. Each layer has a set
of classifiers that classify the incoming data independently. The base layer is always
active, whereas the genetic layer is only active when GA has made its generations and
the types are mature enough. The classifiers that comprise the second (genetic) layer
have more weight than the classifiers comprising the base layer to achieve optimality
of the types.

The base layer is built using random selection of features and gets extended using
RD. The genetic layer is built by applying the GA optimisation technique to the set of
features randomly selected from thebase layer and introduces a newset of classification
types that gets optimised by the recent instances stored in the buffer. Both the base
and the genetic layers are detailed in the following subsections. In addition, Fig. 2
illustrates how the proposed algorithm works.

The rationale behind the proposed architecture is as follows. The main problem
with the aforementioned explicit methods (the ones that use a concept drift detection
mechanism) is their sensitivity to false alarms. In addition, detecting some types of
concept drifts (especially gradual and incremental) is a hard task; hence, the employed
detection mechanisms might not detect such drifts or detect them with a delay. In
this scenario, RD offers a smooth yet effective way to improve the performance of
the ensemble by increasing and reducing the number of trees in the classification
types. Furthermore, the main problem with the implicit algorithms (the ones without a
concept drift detection mechanism) is their slowness in coping with concept drifts as
they do not have an immediate reaction to drifts. This is the reason for using a concept
drift detection algorithm along with GA to immediately react to concept drifts and
optimise the combination of the features in classification types. Overall, by combining
RD with concept drift detection methods and GA, it is feasible to have the advantages
of explicit and implicit methods alongside in the ensemble, as previously discussed in
Sect. 2.

3.3.1 Base layer

As shown in Fig. 2, the base layer uses a random selection of features (subspaces) to
create a variety of classification types in the ensemble, which ensures the ensemble
diversity. RD is then applied to make the proposed method compatible with non-
stationary environments and to seamlessly adapt to the most current types of data
and concepts. In other words, RD is used to increase the number of well-performing
classification trees and reduce the number of unhelpful ones.

The base layer is built using the following steps. First, p percent of all features are
randomly selected from the pool of data features (attributes) of the target data stream.
This phase is called random subspace. In other words, the total number of features
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Fig. 2 Architecture of the proposed EACD algorithm

that is to be selected randomly from the pool of features is established as:

n = p

100
× f , (2)

where n is the total number of features that needs to be selected, p is an arbitrary
number (0 < p < 100) that shows the percentage of the features that should be
selected randomly and f is the total number of features of the target data stream. Each
iteration of this step produces a set of randomly selected features (subspace) from the
pool of features that we call a type. This step is repeated m times; hence, there are m
independent classification types at the end of this step. Note that m is a parameter of
our proposed model for the total number of classification types in the ensemble and
is chosen depending on the total number of features of the target stream; there should
be a balance between the number of types (m) and the number of features in each type
(p × f ).

Next, a decision tree is built per every classification type (subspace) when the
first block of data (samples) is received by the system. Given the maximum number of
classifiers for each type max , this step is repeated for the first max

2 data blocks received
by the system for the types to shape and reach a specific maturity level. This phase
is called the initial training, during which, an average number of classifiers for every
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type in the ensemble is built. Note that for every data block received by the ensemble,
all decision trees classify the instances and the majority voting then determines the
ensemble’s output. This is called the voting step.

Once the initial training phase is completed, each decision tree is evaluated after
classifying incoming instances. The accuracy (a) of each decision tree in a type is
calculated as:

ai = ci
db

, (3)

where ci is the number of correctly classified instances in i th data block and db
is the total number of instances in each data block. Accuracy of each type is the
average accuracy of its related decision trees. Accuracy of the whole ensemble can be
determined similar to Eq. 3. This phase is called the evaluation phase.

Next, the RD stage is applied. This is when each type’s accuracy (the average
accuracy of all related trees) is taken into consideration and assessed with an expected
payoff (explained previously in Sect. 3.1). The expected payoff in this paper is set to
the average accuracy of all types in each data block. However, it can be determined
in any other way, such as assigning a fixed number. The types with a higher payoff
(accuracy) than the expected payoff get a new decision tree (i.e. a new decision tree is
built for such data types based on the last block’s samples), whereas the types with a
lower payoff (accuracy) than the expected payoff lose a decision tree. In other words,

⎧
⎪⎨

⎪⎩

a(ti ) ≥
∑m

i=1 a(ti )
m ⇒ grow

a(ti ) <

∑m
i=1 a(ti )
m ⇒ shrink

, (4)

where a(ti ) is the accuracy of the i th type and m is the total number of types.
Finally, every decision tree in the ensemble is trained with the samples from a

newly received data block in the retraining phase. The purpose of this phase is to have
a more updated ensemble, especially when a concept drift happens. In this situation,
retraining can lead to a fast adaptation since all classifiers are trained with the newly
evolved data.

To limit the size of the ensemble, an upper bound for the number of decision trees
(classifiers) in a type is assigned. When the maximum size of a type is exceeded, the
least performing decision tree of that specific type is removed. The upper bound (max)
for the number of classifiers in this paper is set to the arbitrary value of max = 20.
Furthermore, a lower bound (min) is assigned to all types to prevent the types from
complete removal. In this paper, the minimum size of all types is set to min = 1.
Hence, a tree is not removed upon poor performance if it is the only one decision tree
related to a type left.

Algorithm 1 shows how the base layer is built and works. In this algorithm, t j is
the jshowshowthe type of the ensemble (1 ≤ j ≤ m) and a(t j ) is the accuracy of
this type. The following functions are used in the presented algorithm:

– Classify(): the ensemble classifies data using the majority voting;
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– Evaluate(): evaluate the accuracy of all types in the ensemble using Eq. 3;
– Grow(): add a new classifier (decision tree) to the specified type (if Eq. 4 stands);
– Shrink(): remove one classifier (decision tree) from the specified type based on
the ensemble’s removal mechanism (if Eq. 4 stands); if this type has only one
classifier, then do nothing;

– Train(): train all classifiers using the samples from the newly received data block.

Algorithm 1: EACD Base Layer
Input: A continuous block of data, DB ={db1,db2,..,dbn}
n: number of features that should be selected in each type
m: total number of types
max : maximum number of classifiers in each type.
Output: Classified Samples

1 i := 1
2 for t := 1 to t := m do
3 Randomly select n features

4 while data stream is not empty do
5 if i ≤ max

2 then
6 Classify(dbi )
7 Grow(T) for all the types

8 else
9 Classify(dbi )

10 Evaluate()

11 if a(t j ) ≥
∑n

j=1 a(t j )
m then

12 Grow(t j )

13 else
14 Shrink(t j )

15 Train()
16 i := i + 1

In the presented algorithm, lines 2 and 3 refer to the random subspace phase. Lines 5,
6 and 7 are the initial training phase. The evaluation phase is implemented in line 10,
theRD phase is in lines 11 to 14, and finally, the retraining phase is in line 15. Decision
trees are removed based on their performance; the tree that performs the worst in the
specified type is removed.

3.3.2 Genetic layer

As demonstrated in Fig. 2, this layer is built using the existing classification types of
the base layer. GA takes all randomly drawn classification types (subspaces) as its
input and tries to form the best possible combination of the features in each type. This
is achieved by iterating over a fixed data that has been received by the system recently
(buffer). The genetic layer is different from the base layer only in this part (i.e. the
combination of classification types), whereas the classification, training and updating
mechanisms are the same as explained for the first layer.
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Algorithm 2 shows how the genetic layer is being built. First, the set of randomly
drawn subspaces is taken from the base layer and considered as the first GApopulation.
Note that in this algorithm, each classification type is considered as an individual in
GA, and each feature inside a type is a chromosome of this individual.

The buffer always keeps themost recently labelled instances received by the system.
It serves as a search space for theGAoptimisation task.WheneverGA starts or restarts,
it copies the data inside the buffer into the memory and uses them for its procedures,
i.e. the selection stage and the fitness function.

Selection stage for every GA iteration, the classification types that have a better
accuracy than the overall average accuracy of all types over the search space are
selected for the crossover stage. Hence, the GA fitness function is the types’ average
accuracy over the search space. Algorithm 2 refers to this part with “Selection()”
function.

Crossover stage the types selected in the selection stage are chosen for GA breeding
purposes. This lets the types with a better accuracy to pair with other well performing
types to make offspring. Algorithm 2 refers to this part with “Crossover()” function.

Mutation stage: the mutation rate of 5% applies upon breeding of the types. Hence,
there is a 5% chance for an offspring to get a random feature from the pool of features
instead of getting all of them from its parents. Algorithm 2 refers to this part with
“Mutation()” function.

When the maximum number of generations is achieved, the resulting classification
types form a new set of classifiers that starts to be trained and evaluated with incoming
data. The new ensemble model is said to be mature enough when its performance
on the latest data block is better than the average performance of the algorithm. As
mentioned before, the base layer is always active, whereas the genetic layer is active
when theGAhas done its job and the layer has reached itsmaturity level. All classifiers
inside the base layer of the proposed algorithm are given the arbitrary weight of one
(Wb = 1), whereas all classifiers inside the genetic layer are given the arbitrary weight
of two (Wg = 2). This intensifies the effect of the genetic layer on the algorithm given
the optimality of the types.

Once a new data block is received by the system, it goes to both layers, and the
classifiers inside each layer classify the instances and send their predictions to the
decision making part of the algorithm independently (as illustrated in Fig. 2). The
decision maker then considers all the received predictions from the active classifiers
and performs the voting procedure according to the weight of each prediction. This
decision maker also tracks and keeps the average accuracy of each layer in the algo-
rithm. Whenever GA is due to restart its procedures, the genetic layer is deactivated
and cleared to make room for the new set of types. To determine when to start a
new set of GA generations (i.e. reset the genetic layer), one implicit and one explicit
mechanisms are proposed in this paper.

In the implicit mechanism, GA starts resetting the genetic layer when the base layer
has proved to have the better average accuracy over the last arbitrarily set number of
data blocks (we used 10 data blocks). This evaluation part is calculated continuously by
the decision maker part mentioned previously in this section. In the implicit variants,
the buffer inside the genetic layer stores the last data block received by the system. In
the explicit mechanism, a concept drift detection method is utilised to specify when
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to reset the genetic layer. When the concept drift detector signals a drift, GA starts
to rebuild its layer. In this paper, we used the early drift detection method (EDDM)
(Baena-Garcia et al. 2006) as the explicit mechanism; however, any concept drift
detection method can be used as the drift detector. EDDM is especially designed to
improve the detection in presence of gradual concept drifts compared to other drift
detection methods. The basic idea of EDDM is to consider the distance between two
errors instead of considering only the number of errors in the classification process.
In the explicit variants of the proposed method the buffer inside the genetic layer
starts storing the instances once the concept drift detector signals a warning. Hence,
when the drift detector signals a drift, the instances inside the buffer represents the new
concept. Algorithm 2 refers to theConcept Drift Detection part with ”DriftDetector()”
function.

Algorithm 2: EACD Genetic Layer
Input: Buffer
g: Maximum number of generations
Resetting mechanism: [implicit/explicit]
Randomly drawn subspaces (types) from the base layer, TB ={t1,t2,..,tm}
Output: New set of classification types, TG ={t1,t2,..,tm ′}

1 for i := 1 to i := g do
2 Selection()
3 Crossover()
4 Mutation()

5 if Resetting mechanism=Implicit then
6 repeat
7 Evaluate(TB ) /*Evaluates base layer over the last 10 data blocks*/
8 Evaluate(TG ) /*Evaluates genetic layer over the last 10 data blocks*/
9 until Average accuracy (TG) ≤ Average accuracy (TB)

10 Reset(GA) /*Clear the genetic layer and restart GA*/

11 else
12 repeat
13 DriftDetector()
14 until DriftDetector() = Drift /*when the detector signals a drift*/
15 Reset(GA) /*Clear the genetic layer and restart GA*/

3.4 Theoretical justification

In the literature ofmining non-stationary data streams, there is no deterministicmethod
that can guarantee to find the global optima. This is due to the evolving nature of the
data that come in the form of a stream. Hence, a single classifier of a data stream
that is optimal in a specific environment can become the worst classifier once the
data has evolved in the same data stream. By adding randomisation to create different
classification types in the first layer of the proposed method, it is feasible to have a
variety of classifiers in the ensemble. This leads to a diverse set of available solutions to
quickly cope with an occurring concept drift. However, having different classification
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types can also cause problems such as degrading the accuracy in case of using one or
more poor types. This problem is tackled by employing RD to increase the number
of well-performing types and reduce the number of low-performing ones in the base
layer of the proposed algorithm.

Furthermore, “stochastic search and optimisation pertains to problems where there
is random noise in the measurements provided and/or there is injected randomness
in the algorithms itself” (Spall 2005). Hence, GA is used in the second (genetic)
layer to create new classification types to optimise the combination of features of the
random types used in the first (base) layer. GA is a powerful and broadly applicable
stochastic optimisation technique (Gen and Cheng 2000) that can be used in dynamic
environments (e.g. data streams) after adding a few changes to its mechanism, as was
proposed in this paper.

4 Experimental study

To evaluate the proposed algorithm, a set of experiments is conducted using nine
datasets comprising of four artificial (synthetic) data stream generators and five real-
world data streams. We compare the EACD algorithm to the state-of-the-art ensemble
methods for non-stationary data stream classification that have shown a good perfor-
mance and reliable results (Brzezinski and Stefanowski 2014a; Gomes et al. 2017b),
including Dynamic Weighted Majority (DWM) (Kolter and Maloof 2007), Online
Accuracy Updated Ensemble (OAUE) (Brzezinski and Stefanowski 2014a), OSBoost
(Chen et al. 2012), Leveraging Bag (LevBag) (Bifet et al. 2010b) and Adaptive Ran-
dom Forest (ARF) (Gomes et al. 2017b).

EACD is developed in Java programming language using theMassive Online Anal-
ysis (MOA) API (Bifet et al. 2010a). All other algorithms are already included in the
MOA framework (Bifet et al. 2010a), which is used as the experimental environment
here. MOA is an open source framework for data stream mining in evolving envi-
ronments. When running LevBag, ARF, DWM, OAUE and OSBoost, their default
parameters as set in MOA are used, while the parameters for running the proposed
algorithm are listed in Sect. 4.2.

To have a thorough set of experiments with precise results, 10 different variants
for every artificial data stream are generated and each method is tested on all variants.
These variants are generated by changing different parameters in all artificial streams.
The selected parameters for each data stream generator are specified later in Sect. 4.1.
For every real-world data stream, each experiment is repeated 10 times over the same
data stream.

There are two different evaluation runs for each experiment. The first run involves
passing one of the chosen datasets through a specific algorithm using the prequential
evaluation technique with an immediate access to the real labels of the instances
that have been assigned by the system. This evaluation run is called the immediate
setting. The second run also involves passing each dataset through a specific algorithm
using the prequential evaluation; however, the real labels of the instances are accessed
with a delay. This evaluation technique, called the delayed setting, can provide more
realistic experiments, since the actual labels of streaming data are usually not available
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immediately in the real world. The classification performance estimates are calculated
in the same way for both the immediate and the delayed settings. For the delayed
setting, the parameter of delay is set to an arbitrary value of 1, 000; hence, the label
of each instance is revealed after passing 1,000 instances. The window size (width) of
the experiments is set to 1,000 for both the immediate and the delayed settings.

Hoeffding trees are used in the experiments as the base classifiers (decision trees).
Hoeffding tree, also known as theVery Fast Decision Tree (VFDT)method (Domingos
andHulten 2000a), is an incremental decision tree algorithm that is capable of learning
from massive data streams.

The experiments were performed on a machine equipped with an Intel Core i7-
4702MQ CPU @ 2.20GHz and 8.00 GB of installed memory (RAM).

4.1 Datasets

4.1.1 Artificial data streams

The following four artificial data stream generators are employed to simulate data for
the experiments: the SEA generator, the Hyperplane generator, the Random Tree (RT)
generator and the LED generator. Ten different stream variants are created for each
of the considered data generators using their respective parameters to examine the
performance of the tested algorithms depending on the type of the concept drifts. In
case of the SEA generator, the variants are built by changing the random seed along
with the type ofmanually added concept drifts. For theHyperplane generator, different
variants are built by tweaking the number of drifting attributes and the magnitude of
changes in data. For the RT generator, the random seed number along with the number
of attributes and classes are changed. Finally, for the LED generator, different variants
are built by tweaking the number of drifting attributes and the random seed number.

SEA generator

TheSEAgenerator (Street andKim2001) is a synthetic data streamgenerator that aims
to simulate concept drifts over time. It generates random points in a three-dimensional
feature space; however, only the first two features are relevant.

In case of the SEA generator, each variant includes one million instances. In addi-
tion, different concept drifts are manually chosen to happen in the instance numbers
200K, 400K, 600K and 800K. For the first five variants, two abrupt concept drifts
with a width (width of concept drift change) of one are added at the instance numbers
200K and 400K, and two recurrent concept drifts with the same width are added at
the instance numbers 600K and 800K. For the remaining five variants, two gradual
concept drifts with a width of 10,000 are added at the instance numbers 200K and
400K, and two recurrent concept drifts with the same width are added at the instance
numbers 600K and 800K.
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Table 1 The number of drifting attributes and themagnitude of change selected for different stream variants
based on the Hyperplane generator

Variant No. of drifting att. Mag. of change Variant No. of drifting att. Mag. of change

1 2 0.01 2 2 0.02

3 3 0.01 4 3 0.02

5 4 0.01 6 4 0.02

7 5 0.01 8 5 0.02

9 6 0.01 10 6 0.02

Table 2 Total number of attributes, number of classes and random seed number of different stream variants
based on the RT generator

Variant Attributes Classes Seed no. Variant Attributes Classes Seed no.

1 10 2 1 2 10 2 2

3 12 3 1 4 12 3 2

5 14 4 1 6 14 4 2

7 16 5 1 8 16 5 2

9 18 6 1 10 18 6 2

Hyperplane generator

The Hyperplane generator (Hulten et al. 2001) is an artificial data stream with drifting
concepts based on hyperplane rotation. It simulates concept drifts by changing the
locationof the hyperplane.The smoothness of driftingdata canbe changedby adjusting
the magnitude of the changes.

In the presented experiments, the number of classes and attributes are set to two and
ten, respectively, and the number of drifting attributes and the magnitude of changes
are set as indicated in Table 1. The number of instances in each stream is set to one
million.

Random tree generator

The RT generator (Domingos and Hulten 2000a) builds a decision tree by randomly
selecting attributes as split nodes and assigning random classes to them. After the tree
is built, new instances are obtained through the assignment of uniformly distributed
random values to each attribute. The leaf reached after a traverse of the tree determines
its class value according to the attribute values of an instance. The RT generator allows
customising the number of nominal and numeric attributes, as well as the number of
classes. In the experiments, the number of classes, the number of features and the
random seed number are chosen as indicated in Table 2.
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LED generator

LED (Breiman et al. 1984) is a well-known data stream generator. The goal here is
to predict the next digit to be displayed on the LED display. The generator contains
24 Boolean features, 17 of which are irrelevant and the remaining seven features
correspond to each segment of a seven-segment LED display. Each feature has a 10%
chance of being inverted. In this paper, the LED generator is used to simulate concept
drifts by swapping four of its features resulting in ten different stream variants. For
the first five variants, the number of drifting attributes are chosen to be 1, 2, 3, 4 and
5, respectively. For the next five variants, only the random seed is changed, while the
drifting attributes remain the same as in the first five variants.

4.1.2 Real world data streams

Forest cover-type dataset

The Forest Cover-type data stream (Blackard and Dean 1999) is a real world dataset
from the UCI Machine Learning Repository.1 It contains the forest cover type of
30×30meter cells obtained from theUS Forest Service (USFS). It consists of 581,012
instances and 54 attributes. The goal in this dataset is to predict the forest cover type
from cartographic variables.

Electricity dataset

Electricity is a widely used dataset by Harries and Wales (1999) collected from the
Australian New South Wales electricity market. In this market, prices are not fixed
and affected by demand and supply. The Electricity dataset contains 45,312 instances.
Each instance contains eight attributes, and the target class specifies the change of the
price (whether it goes up or down) according to its moving average over the last 24
hours.

Airlines dataset

Airlines2 is a regression dataset. The task is to predict whether a flight will be delayed
providing the information on its scheduled departure. This dataset has two classes
(whether a flight is delayed or not) and contains 539,383 records with seven attributes
(three numeric and four nominal).

Poker-hand dataset

The Poker-Hand dataset from the UCI Machine Learning Repository3 consists of
1,000,000 instances and 11 attributes. Each record of the Poker-Hand dataset is an

1 http://archive.ics.uci.edu/ml.
2 http://kt.ijs.si/elena_ikonomovska/data.html.
3 https://archive.ics.uci.edu/ml/datasets/Poker+Hand.
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example of a hand consisting of five playing cards drawn from a standard deck of 52.
Each card is described using two attributes (suit and rank), with a total of 10 predictive
attributes. There is one class attribute that describes the “poker hand”.

KDDcup99

KDDcup99 (Cup 1999) is the dataset used in the “Third International Knowledge
Discovery and Data Mining Tools Competition”. The competition task was to build
a network intrusion detector—a predictive model capable of distinguishing between
“bad” connections (intrusions or attacks) and “good” (normal) connections. KDD-
cup99 contains a standard set of data to be audited, which includes a wide variety
of intrusions simulated in a military network environment. This dataset contains 41
attributes and 23 classes.

4.2 EACD variations

Eight different variations of the proposed algorithm are implemented and compared
in the experiments to evaluate the impact of each EACD characteristic and discuss the
effect of employing different parameters in the EACD algorithm. The base variations
only use the base layer of the proposed algorithm, while GA optimisation is not
applied; only base4 variation uses the concept drift detector to restart the layer upon
drifts. The implicit (Imp) variations use an implicit mechanism, whereas the explicit
(Exp) variations use an explicit mechanism to specify when the genetic layer should
be restarted (as explained in Sect. 3.3.2). The specific parameters of the eight proposed
variations are as follows:

– E ACDbase: p = 60% and m = 0.6 × f ;
– E ACDbase2: p = 30% and m = 0.3 × f ;
– E ACDbase3: p = 60% and m = 0.3 × f ;
– E ACDbase4: p = 60%, m = 0.6 × f and restarting the ensemble upon drifts;
– E ACDImp: g = 15, z = 5%, p = 60% and m = 0.6 × f ;
– E ACDImp2: g = 15, z = 5%, p = 60%, m = 0.6 × f ;
– E ACDExp: g = 15, z = 5%, p = 60%, m = 0.6 × f ;
– E ACDExp2: g = 15, z = 0%, p = 60%, m = 0.6 × f ,

where p is the number of features in each classification type, m is the number of
classification types in the layer, f is the total number of features in the data stream, g
is the total number of generations for each GA iteration and z is the mutation rate of
GA.

4.2.1 Computational complexity

Assuming the number of classes c, the number of attributes in each classification type
p, the values per attribute v and the maximum number of trees in the ensemble k,
no more than p attributes are considered in a single Hoeffding tree (Domingos and
Hulten 2000a). Each attribute at a node requires computing v values. Since calculating
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information gain requires c arithmetic operations, the cost of k Hoeffding trees at each
time-step in the worst case scenario is O(kcpv). Given the number of classification
types in the ensemblem and the fact that RD usesm arithmetic operations to calculate
payoffs, the cost of applying RD to the ensemble is only O(m). Hence, the time
complexity of deploying the base variations of the proposed method (E ACDbase,
E ACDbase2 and E ACDbase3) is O(m + (kcvp)).

Assuming the size s of the GA population and the total number of generations g,
the cost of GA optimisation is O(sg) at each time when the genetic layer needs to
be restarted. Hence, the time complexity of deploying the implicit variations of the
proposed method (E ACDImp and E ACDImp2) is O(m + (kcvp) + (sg)).

Finally, given d as the number of instances in each data block and f as the total num-
ber of features in the dataset, the EDDMdrift detection method, which uses J48 (C4.5)
decision tree as its learningmechanism, requires O(d f 2) of time. Hence, the time com-
plexity of deploying the explicit variations of the proposed method (E ACDExp and
E ACDexp2) is O(m + (kcvp) + (sg) + (d f 2)). Note that the cost of running evolu-
tionary methods is minimised providing the variations applied to EACD as previously
discussed.

4.3 Results

The considered algorithms are compared using standard criteria, including the clas-
sification accuracy and the overall time. There are two settings for each experiment
(immediate and delayed) as explained previously in this section.

Tables 3 and 4 show the average accuracy for the proposed EACD variations over
thementioned nine datasets in the immediate and the delayed settings, respectively. As
can be seen from the tables, E ACDExp has the best average accuracy over the Hyper-
plane, the LED, the SEA, the Airlines, the Electricity and the Poker-Hand datasets.
It also has the best overall average accuracy in both the immediate and the delayed
settings. E ACDImp has the best average accuracy over the Forest Cover-type and the
RT datasets, wheras E ACDExp2 has the best average accuracy over the KDDcup99
dataset.

As the difference between E ACDImp and E ACDImp2 is in their number of gen-
erations used in each GA iteration, their accuracy is not significantly different, and
E ACDImp, which has a higher number of generations (15), performs better over
all datasets. It is clear that the evaluation time of E ACDImp2 is less than that of
E ACDImp since GA performs faster on 10 generations compared to 15 generations.
Similarly, as the difference between E ACDExp and E ACDExp2 is in their GA muta-
tion rate parameter, they both have comparable accuracy and execution time, and only
E ACDExp accuracy is slightly better for the majority of the datasets.

Table 5 shows the overall evaluation time of the proposed EACD variations in
seconds. It is clear that E ACDbase2, which does not use the genetic layer and has
the lowest values of both p and m parameters, is the fastest variation. E ACDImp

and E ACDImp2 are slightly less time-consuming compared to E ACDExp and
E ACDExp2 because they do not use a concept drift detection algorithm. Finally, the
evaluation times of E ACDExp and E ACDExp2 variations are similar as their only
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Table 3 Average accuracy (%) of the EACD variations in the immediate setting

Dataset base base2 base3 base4 Imp Imp2 Exp Exp2

Hyper. 86.31 77.47 80.52 84.74 89.23 88.54 90.59 90.53

LED 68.78 63.05 64.12 67.75 74.78 74.02 75.45 75.42

RT 88.03 79.34 86.34 89.93 91.89 91.23 91.42 91.41

SEA 87.35 82.43 84.56 88.90 87.43 85.78 90.08 90.00

Airlines 62.97 60.09 61.78 62.08 64.37 63.98 66.61 66.60

Elec. 81.01 77.34 80.45 81.76 90.30 90.23 92.14 92.10

Forest 83.56 70.34 80.67 85.83 92.64 91.94 91.73 91.73

KDDcup 99.76 98.67 98.89 99.76 99.76 99.76 99.78 99.79

Poker 80.24 73.45 75.23 79.51 83.45 82.78 86.21 86.17

Overall average 82.00 75.80 79.17 82.25 85.98 85.36 87.11 87.08

Best results are given in bold

Table 4 Average accuracy (%) of the EACD variations in the delayed setting

Dataset base base2 base3 base4 Imp Imp2 Exp Exp2

Hyper. 84.35 75.34 78.23 83.40 88.43 88.05 90.02 89.98

LED 68.17 62.67 64.00 67.69 73.60 73.14 75.26 75.25

RT 87.16 79.02 84.23 87.92 91.24 90.20 91.05 91.01

SEA 85.94 80.56 82.43 87.38 87.06 85.24 89.22 89.20

Airlines 60.45 56.07 58.12 62.48 62.18 62.56 63.35 63.14

Elec. 74.35 73.67 84.35 75.01 83.32 84.35 85.03 84.97

Forest 79.45 70.34 79.23 80.05 85.90 85.34 84.83 84.80

KDDcup 99.76 98.67 98.84 99.75 99.75 99.76 99.76 99.77

Poker 77.92 70.78 73.37 76.90 78.03 77.45 80.21 79.24

Overall average 79.73 74.12 78.09 80.06 83.28 82.90 84.30 84.15

Best results are given in bold

difference is in the GA mutation rate, which does not affect the times severely. Note
that the evaluation times do not have significant difference in the immediate and the
delayed settings; hence, only the evaluation times of the immediate setting are shown
in this paper.

Tables 6 and 7 show the average, minimum and maximum accuracy along with the
standard deviation of the proposed E ACDExp method compared to the other state-
of-the-art methods over the nine datasets in the immediate and the delayed settings,
respectively. The best results for each datset are highlighted in bold. In the immediate
setting (Table 6), E ACDExp has the best average accuracy over four datasets, LevBag
performs the best over two datasets, while OAUE, OSBoost and ARF achieve the best
accuracy over one dataset. In the delayed setting (Table 7), E ACDExp has the best
average accuracy over five datasets, OAUE achieves the best performance over two
datasets, while OSBoost and LevBag achieve the best accuracy over one dataset.
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Table 5 Average evaluation time (in seconds) of executing the EACD variations

Dataset base base2 base3 base4 Imp Imp2 Exp Exp2

Hyper. 189 147 162 195 297 290 349 349

LED 183 143 149 186 419 417 423 420

RT 233 202 227 251 515 509 607 606

SEA 304 289 293 316 667 663 880 870

Airlines 228 216 220 232 665 659 657 651

Elec 5.80 4.67 5.08 6.00 9.54 9.54 10.45 10.40

Forest 756 547 694 756 887 860 935 917

KDDcup 305 291 303 319 435 430 536 536

Poker 240 205 225 273 319 317 346 346

Best results are given in bold

Table 8 shows the overall evaluation CPU-time of the proposed E ACDExp method
compared to the other methods. For the majority of the datasets, DWM and OSBoost
achieve the shortest evaluation time by far, while E ACDExp has the longest evaluation
time for the majority of the datasets.

Figure 3 demonstrates the behaviour of the proposed E ACDExp method alongwith
the othermethods over the SEAdata streamupon different concept drifts (abrupt, grad-
ual and recurrent) that have been added manually to different stages of the data stream
(instance numbers 200K, 400K, 600K and 800K) in both the immediate (Fig. 3a–c, g)
and the delayed (Fig. 3b, d, f, h) settings. In Fig. 3a, b, an abrupt concept drift centred
in the instance number 200K is added with a width of 1. In Fig. 3c, d, a recurrent con-
cept drift centred in the instance number 600K is added with a width of 1. In Fig. 3e,
f, a gradual concept drift centred in the instance number 400K is added with a width
of 10,000. And finally in Fig. 3g, h, a recurrent concept drift centred in the instance
number 800K is added with a width of 10,000.

4.4 Statistical analysis

The Friedman test (Friedman 1940) is a non-parametric statistical test similar to the
parametric repeated measures ANOVA (Analysis of Variance). It is used to detect
differences across several algorithms in multiple test attempts (datasets). For this test,
we need to demonstrate that the Null-hypothesis—stating that there is no significant
difference between different algorithms—is rejected (Demšar 2006).

The Friedman test is distributed according to Eq. 5 with k − 1 degrees of freedom:

χ2
F = 12N

k(k + 1)

[ k∑

j=1

R2
j − k(k + 1)2

4

]

, (5)

where R j is the rank of the j-th of k algorithms and N is the number of datasets.
Table 9 shows the average rank of each method included in the experiments in both
the immediate and the delayed settings.
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Table 6 Accuracy (%) of the methods compared in the immediate setting

Dataset Criteria ARF DWM LevBag OAUE OSBoost E ACDExp

Hyper. Ave. 88.17 89.64 91.03 91.42 85.85 90.59

σ 1.90 0.83 1.60 1.46 3.01 1.95

Min 85.96 88.45 88.92 89.66 81.80 87.67

Max 91.31 90.94 93.54 93.63 89.87 93.76

LED Ave. 74.05 75.05 74.22 73.99 74.15 75.45

σ 0.31 3.10 0.31 0.10 0.11 1.99

Min 73.58 73.86 73.93 73.89 74.05 71.04

Max 74.45 83.83 74.52 74.09 74.26 78.50

RT Ave. 78.35 59.35 90.78 88.88 93.40 91.42

σ 8.12 8.87 2.26 3.26 1.45 2.82

Min 65.86 48.26 87.38 83.39 90.63 86.31

Max 88.03 73.86 93.72 92.56 95.24 94.56

SEA Ave. 88.67 87.72 87.59 88.69 85.56 90.08

σ 0.58 0.57 1.67 0.58 0.35 2.94

Min 88.40 87.18 85.41 88.13 85.25 86.54

Max 89.55 88.26 89.28 89.25 85.86 93.74

Airlines Ave. 63.53 63.97 59.42 64.02 61.98 66.61

σ 1.23 0 0.73 0 0 3.10

Min 62.08 63.97 58.45 64.02 61.98 60.34

Max 65.46 63.97 60.62 64.02 61.98 70.23

Elec. Ave. 92.17 75.73 92.09 91.60 88.02 92.14

σ 0.94 0 1.48 0 0 1.76

Min 90.45 75.73 89.56 91.60 88.02 89.56

Max 93.19 75.73 93.70 91.60 88.02 94.72

Forest Ave. 93.57 83.75 92.73 90.70 84.45 91.73

σ 1.58 0 2.10 0 0 3.10

Min 91.11 83.75 89.45 90.70 84.45 88.34

Max 95.09 83.75 95.40 90.70 84.45 95.12

KDDcup Ave. 99.81 99.04 99.82 99.80 99.74 99.78

σ 0.06 0 0.01 0 0 0.10

Min 99.74 99.04 99.80 99.80 99.74 99.54

Max 99.91 99.04 99.83 99.80 99.74 99.85

Poker Ave. 84.19 74.37 88.52 80.74 84.31 86.21

σ 4.55 0 3.34 0 0 2.37

Min 80.08 74.37 84.67 80.74 84.31 82.34

Max 90.06 74.37 93.56 80.74 84.31 89.34

Best results are given in bold
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Table 7 Accuracy (%) of the methods compared in the delayed setting

Dataset Criteria ARF DWM LevBag OAUE OSBoost E ACDExp

Hyper. Ave. 88.05 89.41 90.77 91.10 85.74 90.02

σ 2.02 0.95 1.71 1.59 3.06 2.01

Min 85.56 88.25 88.60 89.21 81.70 86.64

Max 91.35 90.86 93.37 93.55 89.78 92.95

LED Ave. 74.00 74.14 74.21 74.06 74.13 75.26

σ 0.40 0.16 0.15 0.14 0.04 1.33

Min 73.62 73.99 74.07 73.93 74.10 72.94

Max 74.49 74.30 74.36 74.19 74.17 77.04

RT Ave. 78.24 59.49 90.91 88.72 85.53 91.05

σ 8.06 8.67 2.48 5.13 2.90 3.75

Min 65.81 49.16 86.94 82.17 81.17 84.64

Max 87.92 73.73 93.69 93.47 88.70 94.56

SEA Ave. 88.94 87.48 88.70 88.54 85.31 89.22

σ 0.59 1.02 1.45 0.70 0.42 2.43

Min 88.28 86.01 86.89 87.81 84.92 86.04

Max 89.51 88.21 90.32 89.21 85.91 91.89

Airlines Ave. 61.42 60.57 58.49 62.73 61.80 63.35

σ 1.12 0 0.89 0 0 3.78

Min 61.22 60.57 57.03 62.73 61.80 59.06

Max 63.32 60.57 59.65 62.73 61.80 68.34

Elec. Ave. 83.51 67.43 81.78 80.20% 79.04 85.03

σ 1.19 0 0.88 0 0 2.50

Min 81.78 67.43 80.54 80.20 79.04 80.45

Max 84.80 67.43 83.00 80.20 79.04 88.85

Forest Ave. 85.65 74.93 86.22 86.84 74.47 84.83

σ 02.60 0 2.72 0 0 2.36

Min 83.67 74.93 84.30 86.84 74.47 81.45

Max 90.49 74.93 84.30 86.84 74.47 88.23

KDDcup Ave. 99.80 99.12 99.81 99.78 99.74 99.76

σ 0.07 0 0.01 0 0 0.11

Min 99.72 99.12 99.79 99.78 99.74 99.48

Max 99.90 99.12 99.83 99.78 99.74 99.84

Poker Ave. 67.95 59.31 76.78 73.81 81.23 80.21

σ 2.92 0 3.72 0 0 2.01

Min 64.94 59.31 70.51 73.81 81.23 76.35

Max 73.29 59.31 79.34 73.81 81.23 83.24

Best results are given in bold
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Table 8 Average evaluation time (in seconds) of executing the methods compared in the immediate setting

Dataset ARF DWM LevBag OAUE OSBoost E ACDExp

Hyperplane 208 130 144 107 93 349

LED 188 851 246 227 174 423

RT 394 195 207 148 1141 607

SEA 751 98 409 139 162 880

Airlines 495 66 531 366 74 657

Electricity 7.73 1.48 5.12 3.05 2.06 10.45

Forest 153 148 206 180 114 935

KDDcup99 56 581 130 204 138 536

Poker 167 46 81 66 64 346

Best results are given in bold

Note that for each setting, k = 6 and N = 9, as there are six methods and nine
different datasets. Providing the value of the Friedman test statistic is χ2

F = 12.49 for
the immediate setting and χ2

F = 17.38 for the delayed setting with 5 (k − 1) degrees
of freedom, and the critical value for the Friedman test given k = 6 and N = 9 is
10.78 at significance level α = 0.05, we can conclude that the accuracy values of the
studied methods are significantly different in both settings as their χ2

F values (12.49
and 17.38) are greater than the critical value (10.78).

Now that the Null-hypothesis is rejected, we can proceed with a post-hoc test. The
Nemenyi test (Nemenyi 1962) can be used when several classifiers are compared to
each other (Demšar 2006). The performance of two classifiers is significantly different
if their corresponding average ranks differ by at least the critical difference (CD).

The critical value in our experiments with k = 6 and α = 0.10 is q0.10 = 2.28.
As a result, the accuracy of the proposed E ACDExp method is significantly different
from that of DWMandOSBoost, whereas it is not significantly different fromLevBag,
ARF and OAUE. Figure 4 graphically represents the comparison of the methods in
both settings based on the Nemenyi test.

5 Discussion

As can be observed from Tables 3, 4 and 5, the average accuracy values of the explicit
variations (E ACDExp and E ACDExp2) are slightly better than that of the implicit
variations (E ACDImp and E ACDImp2). Furthermore, the accuracy values of the
variations that use the GA optimisation technique are significantly better than that of
the base variations for all datasets. By looking at the results of E ACDbase, E ACDbase4
and E ACDExp, it can be concluded that using a concept drift detection mechanism
alone cannot improve the results significantly, whereas using the concept drift detector
along with a stochastic optimiser (GA) improves the accuracy significantly.

Among the variations that use only the base layer of the proposed algorithm, those
that use a higher number of types and a higher number of features in each type
(E ACDbase4 and E ACDbase) are performing better compared to the other varia-
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Fig. 3 Behaviour of the methods compared upon different concept drifts added to the SEA dataset in the
immediate setting (left column; a, c, e, g) and the delayed setting (right column; b, d, f, h). The red boxes
indicate the location and the length of the added concept drifts

123



EACD: evolutionary adaptation to concept drifts in data streams 689

Table 9 Average rank of the methods compared

Setting ARF DWM LevBag OAUE OSBoost E ACDExp

Immediate 3.33 4.78 2.89 3.44 4.44 2.11

Delayed 3.78 5.11 2.67 3 4.44 2

Best results are given in bold

Fig. 4 Nemenyi test with 90% confidence level for a immediate and b delayed setting

tions in the majority of the experiments. This is because the former variations create
more classifiers on each time-step, with each classifier covering more features itself.
This also justifies why they are more time consuming compared to the other base-layer
variations. Furthermore, when using a concept drift detection mechanism along with
the base layer in E ACDbase4 variation, it fails to improve the accuracy significantly
compared to the variation with the same parameters but without using a concept drift
detector in E ACDbase (improving only by 0.25% in the immediate and by 0.33%
in the delayed setting). The explanation for this might be that while concept drift
detectors can be very helpful for achieving a fast reaction to evolving data, they can
also be destructive upon false alarms, especially when trained classifiers are removed
immediately upon concept drifts.

While the average accuracy of the explicit variations is significantly better than
that of the base variations, their execution time is significantly longer than that of the
base variations in all experiments. This is because the base variations use only the first
layer of the proposed architecture and not the genetic layer, unlike the implicit and
the explicit variations that use both layers. Furthermore, since the combination of the
features in random subspaces (types) in the base variations is not optimised during
the run, and only the number of classifiers in each subspace is changed, the overall
accuracy depends greatly on the initial selection of the features. In the implicit and
the explicit variations however, the combination of the features in each subspace is
reconstructed by GA when needed.

The difference between the implicit and the explicit variations of the proposed
method is the time it takes them to decide when to let GA start optimising a set of
subspaces using the buffer of recently stored instances. Since the average accuracy of
E ACDExp is about 1.13% higher than that of E ACDImp in the immediate setting and
1.02% higher in the delayed setting, we can conclude that one of the most challenging
parts of the proposed architecture is to decide when GA needs to reconstruct the
combination of classification types in the genetic layer.
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When looking at the values of the standard deviation for the real-world datasets
used in the experiments (Tables 6, 7), it can be noticed that DWM,OAUE andOSBoost
have the same standard deviation of zero for all real-world datasets, whereasRD3+GA,
LevBag and ARF have different standard deviation values. This is because the latter
algorithms use randomisation in their procedures, whereas the former do not. Since
the experiments over the real-world datasets are repeated 10 times over the same data,
the results obtained from all deterministic algorithms in all iterations are the same.

It can be further noticed from Tables 6 and 7 that for the artificial datasets, the
standard deviation values for OSBoost, OAUE and DWM vary greatly throughout the
experiments, reaching the value of about 8% for the RT dataset. At the same time,
the standard deviation values for LevBag, ARF and E ACDExp do not vary a lot,
hardly reaching the value of 3.78%. This might be because the first three methods
(OSBoost, OAUE and DWM) are implicit and do not use any concept drift detection
mechanisms, whereas the other methods (LevBag, ARF and E ACDExp) are explicit
and use concept drift detection mechanisms. As explicit methods have an immediate
reaction to concept drifts, their accuracy does not drop for a long time throughout the
experiments.

Form Table 8, it can be noticed that DWM has the lowest evaluation time over four
datasets, OSBoost—over three datasets, whereas ARF and OAUE—over one dataset.
Themain drawback of the E ACDExp variation of the proposed algorithm is its evalua-
tion time,which is the longest for themajority of the datasets (six out of nine). Themain
reason for this is that this variation uses two different evolutionary algorithms (RD and
GA) along with a concept drift detection method (EDDM). However, the other varia-
tions of the proposed algorithm offer slightly shorter evaluation times in E ACDImp

and E ACDImp2, and significantly shorter times in E ACDbase, E ACDbase2 and
E ACDbase3. This is because the implicit variations of the EACD algorithm use both
evolutionary algorithms but no concept drift detection method, while the base varia-
tions use only one evolutionary algorithm (RD) with no drift detection method.

In Fig. 3a, where an abrupt concept drift has occurred, the E ACDExp and ARF
methods coped with the drift better than the other methods with almost similar reac-
tions. The same can be observed in the delayed setting for the same drift (Fig. 3b);
however, the accuracy drop upon the drift is more drastic in ARF compared to
E ACDExp. The reason for this might be their explicit strategy allowing to detect
concept drifts as soon as they occur and use their recovery mechanism. In addition,
detecting abrupt concept drifts should be easier for the concept drift detectors as the
data distribution changes suddenly in such drifts. Furthermore, using different ran-
dom types in the base layer of E ACDExp can result in a more robust performance,
especially over drifting data, when the data distribution is not known in advance.
DWM, OAUE and LevBag cope with concept drifts more slowly compared to ARF
and E ACDExp, while OSBoost seems to fail to adapt to the introduced abrupt concept
drift in a good time.

In Fig. 3c, d, where a recurrent concept drift (with a width of one) occurred in
the instance number 600K, the accuracy of all methods dropped, with E ACDExp

taking less time to adapt to the new data distribution and gain its average accuracy
back again in both the immediate and the delayed settings. This might be because
the proposed method uses two different mechanisms to cope with new environments:
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one (RD) weights the classification types based on their performance, while the other
(GA) optimises the combination of the attributes of these types.

In Fig. 3e, f, where a gradual concept drift (with a width of 10,000 and centred
in the instance number 400K) occurred, it is clear that E ACDExp copes with this
concept drift in a more robust manner compared to the other methods in both settings.
In the situations when a concept drift happens gradually, the time of detecting the drift
plays an important role in how the drift is addressed, since the majority of the explicit
methods start their adaptation procedure at that time. Hence, failing to detect the drift
on time can cause the methods to suffer from the late adaptation. In the proposed
method however, adaptation to the drifts can be divided into two stages: (1) before the
drift is detected, when the algorithm tries to seamlessly adapt to the drift using RD;
and (2) after the drift is detected, when GA starts to optimise the combination of the
attributes in the genetic layer. This justifies the better performance of the proposed
method, especially upon gradual concept drifts.

In Fig. 3g, where a recurrent concept drift (with a width of 10,000) occurred in the
immediate setting, the accuracy of all methods droppedwithin the same rate. However,
E ACDExp took less time to adapt compared to the other methods. In Fig. 3h, where
the the same drift is shown in the delayed setting, the behaviour of all methods except
OSBoost is relatively similar; however, the accuracy of E ACDExp degrades less than
that of the other methods during the drifting period (shown by the red box). In both
settings, OSBoost fails to continue improving its performance for at least 14,000
instances from the instance number 805K. This behaviour of OSBoost is similar to its
results upon abrupt and gradual concept drifts, which shows that the method lacks a
sound adaptation mechanism over different types of concept drifts.

Overall, the main advantage of the proposed E ACDExp method is its accuracy;
it has the best average rank compared to the other state-of-the-art methods used
in the experiments (as shown in Table 9). It also proved to have the fastest reaction
over evolving data on most occasions, especially upon abrupt, gradual and recurrent
concept drifts, as shown in Fig. 3.

While the proposed method is specifically designed to cope with non-stationary
environments, it is possible to use it in stationary environments. However, the main
limitation in this case would be the unnecessary overhead that the algorithm puts on
the ensemble since the algorithm always builds classifiers over different time-stamps
of the target data stream, while there is no need to do that, when a data stream does
not evolve.

6 Conclusion and future work

In this paper, we proposed a novel method to seamlessly adapt to concept drifts in non-
stationary data stream classification. The Evolutionary Adaptation to Concept Drifts
(EACD) method has two layers with a set of classifiers in each layer. The first layer
(base layer) is constructed by creating randomly drawn set of subspaces (classification
types) from the pool of features of the target data stream. Each type is the basis for
building decision trees (classifiers) in a layer. To seamlessly adapt to concept drifts
in our approach, the replicator dynamics algorithm is used to increase or reduce the
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number of trees in each type according to their recent performance in the data stream.
The second layer (genetic layer) uses randomly drawn subspaces from the first layer
as the first population for Genetic Algorithm employed to optimise the classification
types with the most recent instances. Creating new classifiers and training the current
classifiers in this layer is the same as in the base layer. For the genetic layer, two
different mechanisms are proposed to determine when to restart Genetic Algorithm.
The first mechanism is based on comparing the performance of the two layers (implicit
EACD), whereas the second one uses a concept drift detection method to check when
a new concept drift occurs (explicit EACD).

To test the proposed method and its variations, a set of experiments with five real-
world and four artificial datasets was conducted. First, the performance of different
variations of the proposed method was compared; then, the best performing variation
was compared to the state-of-the-art methods proposed in the literature. All experi-
ments were conducted in two different settings: the immediate prequential and the
delayed prequential. The results showed that our method achieves the highest average
accuracy and the best average rank among all methods in both settings. However, the
overall evaluation time of the proposedmethod is the longest in six out of nine datasets,
which makes the evaluation time to be the main drawback of EACD.

Using the Friedman statistical test, it was shown that the accuracy values of the
studied methods are significantly different, and according to the Nemenyi test (which
is a post-hoc test of the Friedman test), the accuracy of the proposed E ACDexp method
is significantly different from that of DWM and OSBoost, while it is not significantly
different from that of ARF, LevBag and OAUE.

Thepresentedworkopens the door to newdevelopments that need to be theoretically
analysed and practically tested in the future. The following ideas are proposed, to
mention some.

– Detecting the classification types that have not been useful for a long time in
different environments to remove them and eventually make a room for new, better
performing types to be added.

– Using dynamic instead of static weights for the base and the genetic layers of the
method to have a potentially more robust weighting mechanism.

– Using a different removal mechanism when the maximum number of trees for a
classification type is reached and a classifier (decision tree) should be removed;
e.g. removing the oldest classifier inside the type instead of removing the worst
performing one, as it is proposed in this paper.

– Adding the good performing classification types that are produced in the genetic
layer to the base layer to keep them in the ensemble since the later layer can
be cleared after some time. This can help optimising the algorithm, especially
regarding the time criterion.

– Developing a pattern recognition system to track the usability of each type in
different environments. This can lead to knowing the types better and using such
information when data evolve, especially when a recurring concept drift occurs.

– Introducing a new concept drift detection system by analysing the behaviour of
the classification types.
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Krawczyk B, Minku LL, Gama J, Stefanowski J, Woźniak M (2017) Ensemble learning for data stream

analysis: a survey. Inf Fusion 37:132–156
Mantri A, Kendra SNS, Kumar G, Kumar S (2011) Proceedings of the high performance architecture and

grid computing: international conference, HPAGC 2011, Chandigarh, India, 19–20 July 2011 , vol
169. Springer

Nemenyi P (1962) Distribution-free multiple comparisons. In: Biometrics, vol 18, p 263. International
Biometric Society

Oza NC (2005) Online bagging and boosting. IEEE Int Conf Syst Man Cybernet 3:2340–2345
Ramamurthy S, Bhatnagar R (2007) Tracking recurrent concept drift in streaming data using ensemble

classifiers. In: Sixth international conference on machine learning and applications, ICMLA 2007, pp
404–409. IEEE

Spall JC (2005) Introduction to stochastic search and optimization: estimation, simulation, and control, vol
65. Wiley, London

Street WN, Kim YS (2001) A streaming ensemble algorithm (SEA) for large-scale classification. In: Pro-
ceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data
mining, pp 377–382. ACM

Vivekanandan P, Nedunchezhian R (2011) Mining data streams with concept drifts using genetic algorithm.
Artif Intell Rev 36(3):163–178

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	EACD: evolutionary adaptation to concept drifts in data streams
	Abstract
	1 Introduction
	2 Related work
	2.1 Ensemble learning in non-stationary data streams
	Implicit methods
	Explicit methods

	2.2 Evolutionary algorithms in non-stationary data streams

	3 Proposed method
	3.1 Replicator dynamics: an overview
	3.2 Genetic algorithm: an overview
	3.3 EACD: evolutionary adaptation to concept drifts
	3.3.1 Base layer
	3.3.2 Genetic layer

	3.4 Theoretical justification

	4 Experimental study
	4.1 Datasets
	4.1.1 Artificial data streams
	SEA generator
	Hyperplane generator
	Random tree generator
	LED generator
	4.1.2 Real world data streams
	Forest cover-type dataset
	Electricity dataset
	Airlines dataset
	Poker-hand dataset
	KDDcup99

	4.2 EACD variations
	4.2.1 Computational complexity

	4.3 Results
	4.4 Statistical analysis

	5 Discussion
	6 Conclusion and future work
	References




