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Abstract Analysis of temporal climate data is an active research area. Advanced
data mining methods designed especially for these temporal data support the domain
expert’s pursuit to understand phenomena as the climate change, which is crucial for
a sustainable world. Important solutions for mining temporal data are cluster tracing
approaches, which are used to mine temporal evolutions of clusters. Generally, clus-
ters represent groups of objects with similar values. In a temporal context like tracing,
similar values correspond to similar behavior in one snapshot in time. Each cluster can
be interpreted as a behavior type and cluster tracing corresponds to tracking similar
behaviors over time. Existing tracing approaches are for datasets satisfying two spe-
cific conditions: The clusters appear in all attributes, i.e., fullspace clusters, and the
data objects have unique identifiers. These identifiers are used for tracking clusters by
measuring the number of objects two clusters have in common, i.e. clusters are traced
based on similar object sets. These conditions, however, are strict: First, in complex
data, clusters are often hidden in individual subsets of the dimensions. Second, map-
ping clusters based on similar objects sets does not reflect the idea of tracing similar
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behavior types over time, because similar behavior can even be represented by clus-
ters having no objects in common. A tracing method based on similar object values
is needed. In this paper, we introduce a novel approach that traces subspace clusters
based on object value similarity. Neither subspace tracing nor tracing by object value
similarity has been done before.

1 Introduction

A key factor for a sustainable world is to weaken or even stop the ongoing climate
change, which can be observed in scientific domains including hydrology (Huntington
2006) and oceanography (Barnett et al. 2001; Brodeur et al. 1999; Hoegh-Guldberg
1999). For understanding the occurring phenomena, a detection and detailed charac-
terization of the occurring changes is crucial. To achieve this, the analysis of temporal
climate data, containing climate indices as precipitation, biomass, or ocean tempera-
tures, is a reasonable and reproducible method. For detecting climate change, we need
to find patterns that show a long-term evolution over time. Analyzing such temporal
properties of patterns is an active research area (Böttcher et al. 2008). In this article, we
present a general solution for detecting phenomena in temporal data that is applicable
in climate settings.

Clusters are a well known type of pattern: they correspond to similarity-based
groupings of the data. A set of clusters, called clustering, is thus a concise description
of a dataset. Cluster analysis in comparison to global approaches for data analysis,
e.g. Principal Component Analysis, has the benefit that it can detect more local phe-
nomena that only occur in a subset of the data. For analyzing the temporal behavior of
clusters, i.e. their evolutions, cluster tracing algorithms have been introduced (Kalnis
et al. 2005; Rosswog and Ghose 2008; Spiliopoulou et al. 2006). They find mappings
between clusterings of consecutive time steps corresponding to similar clusters. These
mappings describe the cluster evolutions over time. Understanding of cluster evolution
in climate data can be used in the development of methods to prevent further climate
change.

Cluster tracing algorithms go beyond time series clustering (Fu 2011; Liao 2005)
by allowing that objects are assigned to different clusters over time. Nevertheless, the
existing algorithms for cluster tracing have a severe limitation: Clusters are mapped if
the corresponding object sets are similar, i.e., the algorithms check whether the pos-
sibly matching clusters have a certain fraction of objects in common; they are unable
to map clusters of different objects, even if the objects have similar attribute values.
In climate data, however, we are only interested in clusters representing general phe-
nomena and not in clusters of specific individual objects. Therefore, and in contrast
to the existing methods, our novel method maps clusters only if their corresponding
object values are similar, independently of object identities. That is, we trace similar
behavior types, which is a fundamentally different concept. This is a relevant scenario,
as the following two examples illustrate.

Consider the relationship between the attributes temperature and a specific bio-
mass in the oceans, a relationship which can be represented by clusters. For example
that a specific temperature occurs together with a specific amount of biomass. The
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analyzed data are captured by sensors that are positioned at fixed grid cells in the
ocean or the data are the result of complex simulations. It is obvious that the detected
clusters representing the relationship evolve and that the observed values are recorded
at different grid cells as time progresses. Clusters found by time series clustering
approaches or sensor-identity-based tracing cannot express the evolutions we want to
analyze.

Another example is scientific data of the earth’s surface with the attributes temper-
ature and smoke degree. The latter correlates with forest fire probability. The attribute
values are recorded over several months. In this dataset, at some point in time a high
smoke degree and high temperatures occur in the northern hemisphere; sixth months
later the same phenomenon occurs in the southern hemisphere, as the seasons on the
hemispheres are shifted half-yearly to each other.

A cluster tracing algorithm should detect the presented phenomena. However, exist-
ing methods do not, since the observed populations, i.e., the sensors and the environ-
ment respectively, stay at the same place, and thus there are no shared objects between
clusters—only the behavior migrates.

With today’s complex data, patterns are often hidden in different subsets of the
dimensions; for detecting these clusters with locally relevant dimensions, subspace
clustering was introduced (Kriegel et al. 2009; Parsons et al. 2004). However,
despite that many temporal data sets are of this kind, e.g., gridded scientific data,
subspace clustering has never been used in a cluster tracing scenario. The existing
cluster tracing methods can only cope with fullspace clusters, and thus cannot exploit
the information mined by subspace clustering algorithms. Our novel tracing method
measures the subspace similarity of clusters and thus handles subspace clusters by
design.

Summarized, we introduce a method for tracing behavior types in temporal data;
the types are represented by clusters. The decision, which clusters of consecutive time
steps are mapped is based on a novel distance function that tackles the challenges of
object value similarity and subspace similarity. Our approach can handle the follow-
ing developments: emerging or disappearing behavior as well as distinct behaviors
that converge into uniform behavior and uniform behavior that diverges into distinct
behaviors. By using subspaces, we enable the following evolutions: Behavior can gain
or lose characteristics; i.e., the representing subspace clusters can gain or lose dimen-
sions over time, and clusters that have different relevant dimensions can be similar.
Varying behavior can be detected; that is, to some extent the values of the representing
clusters can change.

Figure 1 exemplifies the evolution of temperature and biomass measurements for
three consecutive time steps. The upper part of the figure shows the objects; the lower
part abstracts from the objects and illustrates possible clusterings of the databases
and tracings between the corresponding clusters. The three time steps do not share
objects, i.e., each time step corresponds to a different database; to illustrate this, we
used varying object symbols. A cell-based clustering paradigm is assumed, i.e., clus-
ters are defined by lower and upper bounds in each of the two dimensions, and in case
of subspace clusters, bounds are only given for the relevant dimensions. For example,
the cluster C1,2 at time step t = 1 is a fullspace cluster in which the temperature and
biomass measurements of the cluster’s objects are constrained to specific intervals;
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Fig. 1 Top: three consecutive time steps, with each time step corresponding to a different database. (We
used varying object symbols to illustrate that the time steps do not share objects.) Bottom: possible clus-
terings w.r.t. to a cell-based clustering paradigm (lower and upper bounds in relevant dimensions) and
exemplary cluster tracings

for the subspace cluster C1,1, only the temperature values are constrained to an inter-
val, while the biomass measures are scattered over the whole dimensional extent. An
example for behavior that gains characteristics is the mapping of cluster C1,1 to C2,1:
at time step t = 1 only the biomass measurements are positioned in a specific interval,
while at t = 2 also the temperature measurements can be constrained by an interval,
i.e., this cluster gains one dimension. Varying behavior is illustrated by the mapping
from C1,2 to C2,2; the values of the cluster have changed. If the two dimensions of
the databases were spatial, this could be interpreted as a movement. A behavior diver-
gence can be seen from time step t = 2 to t = 3: the single cluster C2,1 is mapped to
the two clusters C3,1 and C3,2.

Summarized, our contributions are:

– We introduce a novel tracing approach for evolving subspace clusters in high
dimensional temporal data, which often occurs in the climate domain. Subspace
clusters correspond to behavior types and are traced based on similar object values
and not based on object sets.

– We explicitly distinguish several kinds of behavior development for our tracing
approach, i.e., clusters can emerge, disappear, diverge, or converge.

– We measure the degree of evolution between two subspace clusters with our novel
distance function based on subspace similarity and value similarity.

– We propose a method for information transfer between time steps, to avoid unsta-
ble clusterings and to achieve higher quality clusterings. Tracing effectiveness is
therefore improved, as it depends on the input clusterings.

This article is structured as follows: Section 2 discusses the related work. Section 3
introduces our new model for tracing subspace clusters. The effectiveness is shown in
Sects. 4 and 5 concludes the article.
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2 Related work

Several temporal aspects of data are regarded in the literature (Böttcher et al. 2008).
In stream clustering scenarios, clusters are adapted to reflect changes in the observed
data, i.e., the distribution of incoming objects changes (Aggarwal et al. 2003; Cao
et al. 2006). A special case of stream clustering is for moving objects (Jensen et al.
2007; Li et al. 2004), focusing on spatial attributes. Stream clustering in general,
however, gives no information about the actual cluster evolution over time (Böttcher
et al. 2008). For this, cluster tracing algorithms were introduced (Kalnis et al. 2005;
Kremer et al. 2010; Rosswog and Ghose 2008; Spiliopoulou et al. 2006); they rely
on mapping clusters of consecutive time steps. As already mentioned, these methods
map clusters if the corresponding object sets are similar, i.e. they are based on shared
objects. We, in contrast, map clusters only if their corresponding object values are
similar, independently of shared objects.

Time series clustering (Boriah et al. 2008; Fu 2011; Liao 2005; Steinbach et al.
2003) or trajectory clustering (Gaffney and Smyth 1999; Vlachos et al. 2002) can be
seen as even more limited variants of similar-object-set-based cluster tracing, since the
obtained clusters have constant object sets that do not change over time. Accordingly,
these methods search for groups of objects that have a similar behavior over the whole
time extent. There is no possibility of detecting that a behavior reflected by one time
series cluster is occurring in a different cluster after some time.

Approaches for analyzing climate patterns in multivariate data such as (Hoffman
et al. 2005) do not actually track the clusters; they cluster the time series of all points in
time altogether, neglecting the temporal information. Afterwards, the resulting clusters
are remapped to their temporal extension. By this, however, highly evolving patterns
get lost, because they are not considered as one cluster.

The work in Aggarwal (2005) analyzes multidimensional temporal data based on
dense regions that can be interpreted as clusters. The approach is designed to detect
substantial changes of dense regions; however, tracing of evolving clusters that slightly
change their position or subspace is not possible.

The research area of comparing clusterings, e.g., for evaluating how good an
obtained clustering reflects a given ground truth clustering (Kremer et al. 2011; Zhou
et al. 2005), is related to cluster tracing since clusters of two given clusterings need
to be mapped. These approaches are designed for another purpose and thus there
is no consideration of several time steps and more importantly, no consideration of
evolutions as emerging or disappearing clusters.

A further limitation of existing cluster tracing algorithms is that they can only
cope with full space clusters. Full-space clustering models use all dimensions in the
data space (Ester et al. 1996). Due to the effects of high dimensionality (Hinneburg
et al. 2000), i.e., irrelevant dimensions obfuscate the clustering structure and dis-
tances between objects grow alike, these approaches do not find meaningful clusters.
Global dimensionality reduction approaches like PCA tend to mitigate these effects,
but locally relevant clusters are missed. Therefore, for finding clusters with locally
relevant dimensions, subspace clustering was introduced (Agrawal et al. 1998). An
overview of different subspace clustering approaches can be found in Kriegel et al.
(2009) and Parsons et al. (2004). In Müller et al. (2009), the differences between
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recent subspace clustering approaches are analyzed and thoroughly evaluated. A con-
clusion of this evaluation is that cell-based approaches (Procopiuc et al. 2002; Yiu
and Mamoulis 2003) have shown to be very efficient and subspace clusterings of high
quality are generated. Until now, subspace clusters were only applied in streaming sce-
narios (Aggarwal et al. 2004), but never in cluster tracing scenarios; deciding whether
subspace clusters of varying dimensionalities are similar is a challenging issue. Our
algorithm is designed for this purpose.

3 A novel tracing model

Our main objective is to trace behavior types and their developments over time. This is
formalized in the following section. First, some basic notations: For each time step t ∈
{1, . . . , T } of our temporal data we have a D-dimensional database DBt ⊆ R

D . We
assume the data to be normalized between [0, 1]. A subspace cluster Ct,i = (Ot,i , St,i )

at time step t is a set of objects Ot,i ⊆ DBt along with a set of relevant dimensions
St,i ⊆ {1, . . . , D}. The objects are similar within these relevant dimensions. The set
of all subspace clusters {Ct,1, . . . , Ct,k} of the same time step t is denoted as subspace
clustering Clust . Our approach is independent of a specific clustering model. For
illustration, we assume a cell-based clustering paradigm in the following, i.e. clusters
are described by intervals (lower and upper bounds) in the relevant dimensions.

Each subspace cluster of our clusterings represents a behavior type. In our cell-
based clustering paradigm, this could for example be a set of sensor readings express-
ing the relationship between biomass and temperature: the temperatures and biomass
measured by many sensors are contained in a specific interval. The terms behavior,
behavior type, and cluster are used interchangeably. In Sect. 3.1 we introduce how to
trace a behavior over time and which temporal developments are possible. For tracing
it is necessary to measure the similarity between behavior types; the formalization
of this step is presented in Sect. 3.2. In Sect. 3.3 the clustering process in the sin-
gle time steps is improved by incorporating temporal information, avoiding unstable
clusterings and achieving higher quality clusterings. We conclude in Sect. 3.4 with a
complexity analysis of our method.

3.1 Tracing of behavior types

In this section, we are interested in whether a typical behavior in time step t continues
in t + 1. In ocean data, for example, a cluster detected in a set of sensor readings at
one time step can be rediscovered (i.e., having similar values) in the next time step
in a different set of sensor readings, and these sensor readings can be obtained by a
different set of sensors. Other kinds of temporal developments are the disappearance
of a behavior or a split-up into different behaviors. We have to identify these temporal
developments for reasonable tracing of behaviors. Formally, we need a mapping func-
tion that maps each cluster at a given time step to a set of clusters in the next time step;
we denote these successors as temporal continuations. Two clusters Ct,i and Ct+1, j

are mapped if they are identified as similar behaviors. We use a distance function for
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Fig. 2 Example for a mapping
graph with edge weights. The
first 3 time steps correspond to
the clusters and mappings
illustrated in Fig. 1
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clusters to measure these similarities. If the distance is small enough the mapping is
performed.

Definition 1 Mapping function. Given a distance function dist for two subspace
clusters, the mapping function Mt : Clust → P(Clust+1) that maps a cluster to its
temporal continuations is defined by

Mt (Ct,i ) = {Ct+1, j | dist (Ct,i , Ct+1, j ) < τ }

A cluster can be mapped to zero, one, or several clusters (1:n). We can map several
clusters to the same cluster (m:1). We do not enforce (1:1) mappings. These properties
are needed, so that disappearance or convergence of behaviors can be detected. We
describe all pairs of mapped clusters between two consecutive time steps by a binary
relation:

Rt = {(Ct,i , Ct+1, j ) | Ct+1, j ∈ Mt (Ct,i )} ⊆ Clust × Clust+1

Each tuple corresponds to one cluster mapping, i.e., for a behavior type in t we
have identified a similar one in the next time step t + 1. These mappings as well
as the corresponding clusters can be represented by a mapping graph. Reconsider
that it is possible to map a behavior to several behaviors in the next time step (cf.
Fig. 1, t = 2 → t = 3). All these behaviors, however, are not equally similar to the
original behavior. We represent this by using edge weights within the mapping graph;
the weights indicate the strength of the temporal continuation. We measure similarity
based on distances, and therefore small weights denote a strong continuation while
high weights reflect a weaker continuation.

Definition 2 Mapping graph. A mapping graph G = (V, E, w) is a directed and
weighted graph with the following properties:

– Nodes represent clusters, i.e., V =⋃T
i=1 Clust

– Edges represent cluster mappings, i.e., E =⋃T−1
i=1 Rt

– Edge weights indicate the strength of the temporal continuations, i.e.,
∀(Ci , C j ) ∈ E : w(Ci , C j ) = dist (Ci , C j )

In Fig. 2 an exemplary mapping graph with edge weights is illustrated. A mapping
graph allows us to categorize different kinds of temporal developments.

Definition 3 Kinds of temporal developments. Given a mapping graph
G = (V, E, w), the behaviors represented by clusters C ∈ V can be categorized:
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– a behavior disappears, if outdegree(C) = 0
– a behavior emerges, if indegree(C) = 0
– a behavior diverges, if outdegree(C) > 1
– different behaviors converge to a single behavior, if indegree(C) > 1

In Fig. 2 for example, the cluster C3,1 corresponds to a disappearing behavior and
the cluster C4,1 is an emerging one. While the cluster C2,1 diverges to several different
behaviors, the cluster C4,2 results from converging behaviors.

The kinds of temporal developments show whether a behavior appears in similar
ways in the subsequent time step. However, it is also important to trace a behavior over
several time steps. It should be noted that the characteristics of a behavior can naturally
change over this time period. Thus, we denote the tracing of a single behavior over a
specific period as an evolving cluster. Formally, an evolving cluster is described by a
single path through the mapping graph. Based on the mapping graph in Fig. 2 we are
able to trace the evolving cluster C1,1 → C2,1 → C3,2 → C4,2.

To ensure that the evolving clusters are correctly identified, we have to account for
several evolution criteria to be included in our distance function. These criteria are
presented in the following section.

3.2 Cluster distance measure

Our objective is to identify similar behaviors. Technically, a distance measure is needed
to formally determine the similarity of two given clusters. Keep in mind, that mea-
suring the similarity based on the fraction of shared objects is not meaningful in our
approach. Even totally different populations can show up with a similar behavior in
consecutive time steps.

We have to distinguish two kinds of evolution: First, a cluster can gain or lose
characteristics, i.e., the relevant dimensions of a subspace cluster can evolve. Sec-
ond, within the relevant dimensions the values can change over time. Both aspects
have to be considered by our distance function for effective similarity measurement
of evolving clusters.

Similarity based on subspaces. Each cluster represents a behavior type, and because
we are considering subspace clusters, the characteristics of a behavior are restricted to
a subset of the dimensions. If a behavior remains stable over time, its subspace remains
also unchanged. The relevant dimensions of the underlying clusters are identical. Let
us consider the clusters Ct,i = (Ot,i , St,i ) and Ct+1, j = (Ot+1, j , St+1, j ) of the time
steps t and t + 1. The represented behaviors are very similar if the dimensions St,i are
also included in St+1, j .

On the other hand, it is possible that a behavior loses some of its characteristics
over time. In Fig. 1, for example, the attribute biomass is no longer relevant in time
step t = 3 for the behavior depicted on the bottom. Accordingly, a distance measure
is meaningful if behavior types are rated as similar, even if they lose some relevant
dimensions. That is, the smaller the term 1 − |St,i∩St+1, j |

|St,i | , the more similar are the
clusters.
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This formula alone, however, would prevent an information gain: If a cluster Ct,i

evolves to Ct+1, j by spanning more relevant dimensions, this would not be assessed
positively. We would get the same distance for a cluster with the same shared dimen-
sions like Ct,i , but without additional relevant dimensions like Ct+1, j . Since more
dimensions mean more information, we do consider this. Consequently, the smaller
the term 1− |St+1, j\St,i |

|St+1, j | , the more new information is obtained.
Usually it is more important for tracing that we retain relevant dimensions. Few

shared dimensions and many new ones normally do not indicate similar behavior.
Thus, we need a trade-off between retained dimensions and new (gained) dimensions.
This is achieved by a linear combination of the two introduced terms:

Definition 4 Distance w.r.t. subspaces. The similarity w.r.t. to subspaces between
two clusters Ct,i = (Ot,i , St,i ) and Ct+1, j = (Ot+1, j , St+1, j ) is defined by

S(Ct,i , Ct+1, j ) = α ·
(

1− |St,i ∩ St+1, j |
|St,i |

)

+ (1− α) ·
(

1− |St+1, j\St,i |
|St+1, j |

)

with trade-off factor α ∈ [0, 1]. In this definition, only the sets of relevant dimensions
St,i are compared, ignoring the object sets Ot,i .

By choosing α � 1 − α we achieve that the similarity between two behaviors is
primarily rated based on their shared dimensions. In the best case Ct+1, j retains all
dimensions and covers many additional ones (distance of 0). In the worst case we have
nearly no shared dimensions and no additional ones (distance of 1).

Similarity based on statistical characteristics. Besides the subspace similarity, the
actual values within these dimensions are important. For example, solely because two
clusters share a dimension like ’temperature’, their values can differ extremely (high
vs. low temperature); these behaviors should not be mapped. A small change in the
values, however, is possible for evolving behaviors. Considering a spatial dimension,
this change corresponds to a slight cluster movement.

Given a cluster C = (O, S), we denote the set of values in dimension d with
v(C, d) = {o[d] | o ∈ O}. The similarity between two clusters Ct,i = (Ot,i , St,i )

and Ct+1, j = (Ot+1, j , St+1, j ) is thus achieved by analyzing the corresponding sets
v(Ct,i , d) and v(Ct+1, j , d). In many applications, normal distributions are well suited
to model the values a cluster follows; this is often exploited, for example by clustering
based on maximizing the data’s likelihood assuming a mixture of normal distribu-
tions (Dempster et al. 1977). Thus, without losing much information, we can repre-
sent the sets v(Ct,i , d) and v(Ct+1, j , d) by two normal distributions Xd and Yd with
means μx , μy and variances σx , σy . The similarity can now be measured by compar-
ing these distributions. We use the information theoretic Kullback-Leibler divergence
(KL). Informally, we calculate the expected number of bits required to encode a new
distribution of values at time step t + 1 (Yd ) given the original distribution of the
values at time step t (Xd ). By using our cluster approximations μx , μy , σx , σy , we
can calculate the KL via a closed-form expression:

KL(Yd‖Xd) = ln(
σx

σy
)+ σ 2

y + (μy − μx )
2

2σ 2
x

− 1

2
=: KL(Ct,i , Ct+1, j , d)
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Fig. 3 Exemplary contour lines
for the K L distance between
normal distributions A, B with
constant μA − μB ; the
corresponding variances are
plotted on the x- and y-axis; it
holds a > b > c > d > e

A

KL(A,B)=a

B

KL(A,B)=b

KL(A,B)=c

KL(A,B)=d

KL(A,B)=e

The KL is not a symmetric measure; therefore it is suitable for a temporal tracing
model, in which time progresses in one direction. By using the KL, we do not just
account for the absolute deviation of the means, but we have also the advantage of
including the variances. A behavior with a high variance in a single dimension allows
a higher evolution of the means for successive similar behaviors. A small variance of
the values, however, only permits a smaller deviation of the means. This is illustrated
in Fig. 3.

We use the KL to calculate the similarity per dimension, and the overall similarity is
attained by cumulating over several ones. Apparently, we just have to use dimensions
that are in the intersection of both clusters. The remaining dimensions are non-relevant
for at least one cluster and hence are already penalized by our subspace distance func-
tion. Our first approach for computing the similarity based on statistical characteristics
is

V (Ct,i , Ct+1, j , I ) =
∑

d∈I KL(Ct,i , Ct+1, j , d)

|I | (1)

with I = St,i ∩ St+1, j for averaging.
In a perfect scenario this distance is a good way to trace behaviors. In practice,

however, we face the following problem: Consider the example in Fig. 4 (note the
7-dim. space). With our clustering we identify the cluster C1,2 at time step t = 1 and
the cluster C2,2 with the same relevant dimensions in t = 2. However, C2,2 is shifted
in dimensions d1 and d2; the distance function proposed above (Eq. 1) would deter-
mine a very high value and hence the behaviors would not be mapped. A large part
{d3, ..., d7} of the shared relevant dimensions {d1, ..., d7}, however, show nearly the
same characteristics in both clusters. The core of the behaviors is completely identical,
and therefore a mapping is reasonable; this is illustrated by the mapping of C1,2 to
C2,2 in the lower part of Fig. 4. Consider another example: The core of two clusters
detected in the oceans is identical, e.g., their biomass and temperature are similar.
However, the clusters are located on different hemisphere so that their ocean currents
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Fig. 4 Example for the concept of core dimensions in a 7-dimensional space

are different. These additional, non-core, dimensions provide us with further infor-
mations about the single clusters at their current time step. They are mainly induced
by the individual populations and are technically resulted by the method of subspace
clustering. For the continuation of the behavior, however, these dimensions are not
important. Note that non-core dimensions are a different concept than non-relevant
ones; non-core dimensions are shared relevant ones with differing values.

An effective distance function between clusters has to identify the core of the
behaviors and incorporate it into the distance. We accomplish this by using a subset
Core ⊆ St,i∩St+1, j for comparing the values in Eq. 1 instead of the whole intersection
St,i ∩ St+1, j . Unfortunately, this subset is not known in advance, and it is not reason-
able to choose a fixed threshold that excludes some dimensions from the distance
calculation if the corresponding dissimilarity is too large. Thus, we develop a variant
that automatically determines the core. The idea is to choose the ’best’ core among all
possible cores for the given two clusters. That is, for each possible core we determine
the distance w.r.t. their value distributions, and we additionally penalize dimensions
that are not included in the core. The core with the smallest overall distance is selected,
i.e. we trade off the size of the core against the value V (Ct,i , Ct+1, j , Core):

Definition 5 Core-based distance function for values. The core-based distance
function w.r.t. values for two clusters Ct,i = (Ot,i , St,i ) and Ct+1, j = (Ot+1, j , St+1, j )

is defined by

V (Ct,i , Ct+1, j ) =
min

Core⊆St,i∩St+1, j
∧|Core|>0

{
β · |NonCore|
|St,i ∩ St+1, j | + (1− β) · V (Ct,i , Ct+1, j , Core)

}

with the penalty factor β ∈ [0, 1] for the non-core dimensions NonCore = (St,i ∩
St+1, j )\Core.
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By selecting a smaller core, the first part of the distance formula gets larger. The sec-
ond part, however, gets the possibility of determining a smaller value. The core must
comprise at least one dimension; otherwise, we could map two clusters even if they
have no dimensions with similar characteristics.

Overall distance function. To correctly identify the evolving clusters in our tem-
poral data we have to consider evolutions in the relevant dimensions as well as in
the value distributions. Thus, we have to use both distance measures simultaneously.
Again, we require that two potentially mapped clusters share at least one dimension;
otherwise, these clusters cannot represent similar behaviors.

Definition 6 Overall distance function. The overall distance function, comprising
subspace and core-based value similarity, for two clusters Ct,i = (Ot,i , St,i ) and
Ct+1, j = (Ot+1, j , St+1, j ) with |St,i ∩ St+1, j | > 0 is defined by

dist (Ct,i , Ct+1, j ) = γ · V (Ct,i , Ct+1, j )+ (1− γ ) · S(Ct,i , Ct+1, j )

with γ ∈ [0, 1]. In the case of |St,i ∩ St+1, j | = 0, the distance is set to∞.

3.3 Clustering for improved tracing

In the previous sections we assume a given clustering per time step such that we
can determine the distances and the mapping graph. In general, our tracing model
is independent of the underlying clustering method; it can flexible be chosen based
on the current application. However, since there are temporal relations between con-
secutive time steps, we develop a clustering method whose accuracy is improved by
these relations and that avoids unstable clusterings (i.e., totally different clusterings in
consecutive time steps). Our subspace clustering definition adapts the cell-based clus-
tering paradigm (Procopiuc et al. 2002; Yiu and Mamoulis 2003), because approaches
from this paradigm show high quality results and are efficiently computable (Müller
et al. 2009). A benefit of cell-based algorithms is that the representing cells can be
positioned flexible in space, i.e. there is no fixed grid as in other approaches. Basically,
we approximate clusters by hypercubes in the data space. The extent of a hypercube
is restricted to w in the relevant dimensions of a cluster and unrestricted in the non-
relevant ones. Thus, the values of the objects vary to at most w within the relevant
dimensions and hence we have identified a meaningful grouping. Additionally, we
require that a valid cluster summarizes at least minSup many objects.

Definition 7 Hypercube and valid subspace cluster. A hypercube HS with the rel-
evant dimensions S is defined by lower and upper bounds

HS = [low1, up1] × [low2, up2] × . . .× [lowD, upD]

with upi − lowi ≤ w ∀i ∈ S and lowi = −∞, upi = ∞ ∀i �∈ S. The mean of
HS is called m HS . The hypercube HS represents all objects Obj(HS) ⊆ DB with
o ∈ Obj (HS) ⇔ ∀d ∈ {1, . . . , D} : lowd ≤ o[d] ≤ upd . A subspace cluster C =
(O, S) is valid iff there exists a hypercube HS with Obj (HS) = O and |Obj (HS)| ≥
minSup.
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In the next paragraphs we introduce how temporal relations between time steps can
be exploited to improve the tracing accuracy and to avoid unstable clusterings.

Predecessor information. We assume that the initial clustering at time step t = 1
is known. (We discuss this later.) Caused by the temporal aspect of our data, clusters
at a time step t occur with high probability also in the next time step—not identical,
but similar. Consequently, given a cluster and the corresponding hypercube HS at time
step t , we try to find a cluster at the subsequent time step in a similar region. This is
achieved by a Monte Carlo approach, i.e., we draw a random point mt+1 ∈ R

D that
represents the initiator of a new hypercube and that is located nearly to the mean m HS

of HS .

Definition 8 Initiator of a hypercube. A point p ∈ R
D , called initiator, together

with a width w and a subspace S induces a hypercube Hw
S (p) that is defined by

∀d ∈ S : lowd = p[d] − w
2 , upd = p[d] + w

2 and ∀i �∈ S : lowi = −∞, upi = ∞.

Accordingly, by using this initiator concept, we apply the cell-based clustering para-
digm. After inducing a hypercube by an initiator, we check if the corresponding cluster
is valid. Formally, the initiator mt+1 is drawn from the region H2w

S (m HS ); that is, we
permit a change of the cluster. The new hypercube is then induced by mt+1, i.e., the
generated cluster is Hw

S (mt+1).
With this method we detect changes in the values; however, also the relevant dimen-

sions of a cluster can change: The initiator mt+1 can induce different hypercubes for
different relevant dimensions S. For example, all or just one dimension of the hyper-
cube could be restricted to the maximal extent w. Therefore, beside the initiator mt+1,
we additionally have to determine the relevant subspace of the new cluster. We discuss
both issues in the following.

Determining the best cluster. A first possible approach is to use a quality function
(Procopiuc et al. 2002; Yiu and Mamoulis 2003; Günnemann et al. 2010): μ(HS) =
Obj (HS) · k|S|. The more objects or the more relevant dimensions are covered by the
cluster, the higher is its quality. These objectives are contrary; therefore a trade-off is
realized with the constant parameter k. In time step t + 1 we could simply choose the
subspace S such that the hypercube Hw

S (mt+1) maximizes μ(Hw
S (mt+1)).

This method, however, optimizes the quality of each single cluster; it is not intended
to find good tracings. Possibly, the distance between each cluster from the previous
clustering Clust and our new cluster is large, and we would find no similar behaviors.
Thus, we directly integrate the distance function dist into the quality function, i.e.
we want to prefer clusters leading also to small mapping distances. Consequently,
we choose the subspace S such that the hypercube Hw

S (mt+1) maximizes our novel
distance based quality function.

Definition 9 Distance based quality function. Given the hypercube HS in subspace
S and a clustering Clust , the distance based quality function is

q(HS) = μ(HS) · (1− min
Ct∈Clust

{dist (Ct , CS)})

where CS indicates the induced subspace cluster of the hypercube HS .
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We enhance the quality of the clustering by selecting a set of possible initiators M
from the specified region; this is also important as the direction of a cluster change is
not known in advance. From the resulting set of potential clusters, we select the one
that has the highest quality.

Overall we realize that for each cluster C ∈ Clust a potential temporal continu-
ation is identified in time step t + 1. Nonetheless it is also possible that our method
identifies no valid hypercube for a single cluster C ∈ Clust , e.g., because too few
objects are located around the selected initiator. This indicates that a behavior type
has disappeared in the current time step.

method: main(databases DB1, . . . , DBT )

1 G = (V, E, w) // mapping graph, empty at beginning
2 Clus0 = ∅, . . . , ClusT = ∅ // no clusters determined
3 for t = 1, . . . , T do
4 Remain = DBt // all objects unclustered
5 for C = (O, S) ∈ Clust−1 do // predecessor information
6 determine hypercube HS of C and its mean m HS

7 randomly draw a set M of initiators with m ∈ M ⇒ m ∈ H2w
S (m HS )

8 C∗ ← Cluster And MappingDetection(M, t)
9 if C∗ �= ⊥ then // let C∗ = (

O∗, S∗
)

10 Clust = Clust ∪ {C∗}
11 Remain = Remain\O∗

12 while Remain �= ∅ do // still unclustered objects
13 randomly draw initiators M ⊆ Remain
14 C∗ ← Cluster And MappingDetection(M, t)
15 if C∗ �= ⊥ then // let C∗ = (

O∗, S∗
)

16 Clust = Clust ∪ {C∗}
17 Remain = Remain\O∗
18 else // all clusters detected, next time step
19 break;

20 return G;

method: Cluster And MappingDetection(initiators M, time step t)
21 // —– calculate best cluster —–

22 (m∗, S∗) = arg max
(m,S)∈

M×P({1,...,D})

{
q(Hw

S (m)) if |Obj (Hw
S (m))| ≥ minSup

−1 else

23 if |Obj (Hw
S∗ (m

∗))| < minSup then return ⊥; // only invalid clusters
24 C∗ = (Obj (Hw

S∗ (m
∗)), S∗) // the novel cluster

25 // —– update mapping graph —–
26 V = V ∪ {C∗} // new node in mapping graph
27 for Ct−1 ∈ Clust−1 do
28 if dist (Ct−1, C∗) < τ then
29 E = E ∪ {(Ct−1, C∗)} // new edge in mapping graph

30 return C∗;
Algorithm 1: Processing scheme of the subspace cluster tracing method
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Uncovered objects and the initial clustering. If behavior disappears or emerges,
there will be some objects of the current time step that are not part of any identified
cluster. In other words: if we denote the set of clusters generated so far by Clust+1,
the set Remaint+1 := DBt+1\⋃Ci=(Oi ,Si )

Ci∈Clust+1

Oi can still contain objects and therefore

clusters. Especially for the initial clustering at time step t = 1 we have no predeces-
sor information and hence Clus1 = ∅ at the start. To discover as many patterns as
possible, we have to check if the objects within Remaint+1 induce novel clusters. We
cannot infer the initiators of possible hypercubes based on previous clusters; instead,
we use the remaining objects itself as initiators for the hypercubes. We draw a set of
initiators M ⊆ Remaint+1, where each m ∈ M induces a set of hypercubes Hw

S (m)

in different subspaces. Finally, we choose the hypercube that maximizes our quality
function. If this hypercube corresponds to a valid cluster, we add it to Clust+1, and
thus the set Remaint+1 is reduced. This procedure is repeated until no valid cluster
is identified or the set Remaint+1 is empty. Note that our method has the advantage
of generating overlapping clusters. We select the initiators from the set Remaint+1;
the objects covered by the hypercubes, however, are a subset of the whole database.
Thereby we realize a meaningful non-partitioning clustering.

Summary. The overall processing scheme of our algorithm is illustrated in
Algorithm 1. For each point in time (line 3) we first perform clustering based on the
given predecessor information (lines 5–11), followed by our method to detect emerg-
ing clusters (lines 12–19). The actual clusters and corresponding mappings between
clusters are detected in lines 21–30, using our distance based quality function. Overall,
our clustering method specifically utilizes the advantages of temporal data to obtain
high quality temporal continuations by nesting mapping and clustering: We steer the
cluster identification to regions in the data space where good clusters are expected.
Thus, cluster tracing is no longer independent of the clustering but we integrate model
specific properties in this step.

3.4 Computational aspects

In the following we briefly analyze the computational complexity of our model. Essen-
tially, we can distinguish two phases within the method: the actual clustering of each
time step and the calculation of mapping distances. Since in general our model is inde-
pendent of the underlying clustering algorithm and thus any choice would be possible,
we focus on the second aspect. Anyhow we want to mention the exponential com-
plexity of many subspace clustering algorithms w.r.t. the dimensionality of clusters
hidden in the data. Thus, this clustering step is usually the determining factor for the
run times in practical applications of the method.

For determining a mapping graph consisting of T time steps, we have to calculate
the mapping distances between T − 1 many pairs of clusterings. For two succes-
sive clusterings Clust and Clust+1 we have to determine |Clust | · |Clust+1| distance
values according to Def. 6 in which the value based distance function is the more com-
plex summand, because the optimal core is identified by a minimization procedure
(cf. Def. 5). If the intersection between the relevant dimensions of two clusters has a
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cardinality of i , 2i − 1 potential cores have to be checked. Let k and l be the average
dimensionality for the clusters at time step t and t + 1 respectively. By assuming
that the relevant dimensions are randomly drawn from all dimensions {1, . . . , D}, the
number of cluster pairs whose intersection has a cardinality of i can be determined
by binomial coefficients. By averaging over all possible pairs, we get the expected
number of cores to be tested given two clusters with dimensionality k and l:

∑l
i=0(2

i − 1) · (k
i

) · (D−k
l−i

)

∑l
i=0

(k
i

) · (D−k
l−i

)

≤
∑min{k,l}

i=0 2i · (k
i

) · (D−k
l−i

)

(D
l

)

≤
min{k,l}∑

i=0

2i · ki · (D − k)l−i · ll

i i · (l − i)l−i · Dl
∈ O(2min{k,l})

Summarized, the overall number of cores to be tested and thus the overall number
of value based similarity calculations for all time steps is given by

T−1∑

t=1

|Clust | · |Clust+1| · O(2min{at ,at+1})

≤
[

(T − 1) · max
t∈{1,...,T }{|Clust |2}

]

· O(2amax )

with average dimensionality at := ∑
Ct,i∈Clust

|St,i |
|Clust | and maximal average dimen-

sionality amax := maxt=1,...,T {at }. Thus, our method scales linear with the number of
points in time but exponential with the cluster dimensionality.

As a proof of concept, we generate synthetic data comprising two time steps each
with 1,000 objects and 10 hidden clusters. In Fig. 5 we depict the runtime of our
method for an increasing number of relevant dimensions per cluster. While the run-
time of our approach increases exponentially w.r.t. the number of relevant dimensions,
the absolute runtime is still acceptable. Moreover, since in real world data the cluster
dimensionality is often much smaller than the data dimensionality, we believe that our
method is applicable to a broad range of data sets.

4 Experimental evaluation

4.1 Setup

To evaluate the tracing quality of our approach we use real world and synthetic data.
For real world data we use scientific grid data reflecting oceanographic characteristics
as temperature and salinity of the oceans1. It contains 20 time steps, 8 dimensions,

1 Provided by the Alfred Wegener Institute for Polar and Marine Research, Germany.
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Fig. 5 Scalability with respect to the cluster dimensionality

and 71,430 objects. The synthetic data covers 24 time steps and 20 dimensions. In
average, each time step contains 10 clusters with 5–15 relevant dimensions. Since we
hide all kinds of developments (emerge, converge, diverge, or disappear) and evolu-
tion (subspace and value changes) within this data, these values are slightly changed.
In our experiments we focus on the quality of our approach.In synthetic data sets the
correct mappings between the clusters are given. Based on the detected mappings
of our approach we calculate the precision and recall values: we check whether our
approach detects all but only the true mappings between clusters. For tracing quality
we use the F1 value corresponding to the harmonic mean of recall and precision. Our
approach tackles the problem of tracing clusters with varying subspaces and is based
on object-value-similarity. Even if we would constrain our approach to handle only
full-space clusters as existing solutions, such a comparison is only possible when we
artificially add object ids to the data (to be used by these solutions). Tracing clusters
based on these artificial object ids, however, cannot reflect the ground truth in the data.
Summarized, comparisons to other approaches are not performed since it would be
unfair. We use Opteron 2.3 GHz CPUs and Java6 64bit.

4.2 Tracing quality

In this section we analyze how the different parameters of our algorithm affect the
cluster tracing effectiveness. The influence of γ is evaluated in Fig. 6 for three different
values of τ using synthetic data. By γ we determine the trade-off between subspace
similarity and value similarity in our overall distance function. The objective of this
function is to allow that clusters can gain or lose dimensions, and also to allow that
cluster object values can slightly shift. Obviously we want to prevent extreme cases
for a meaningful tracing, i.e., subspace similarity with no attribute similarity at all
(γ → 0), or the other way round. This is confirmed by the figure, as the tracing qual-
ity highly degrades, if γ reaches 0 or 1 for all τ values. As γ = 0.3 enables a good
tracing quality for all three τ , we use this as default. Note that with the threshold τ

we can directly influence how many cluster mappings are created. The figure shows
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that τ = 0.1 is a good trade-off and is thus used as default. With a bigger τ the tracing
quality worsens: too many mappings are created and we cannot distinguish between
meaningful or meaningless mappings. The same is true for τ → 0: no clusters are
mapped and therefore the clustering quality reaches zero; thus we excluded plots for
τ → 0.

The core dimension concept is evaluated in Fig. 7. We analyze the influence on the
tracing quality (left axis) with a varying β on the x-axis; i.e., we change the penalty for
non-core dimensions. The non-core dimensions are those shared dimensions of two
compared clusters in which large changes are allowed. Remember, non-core dimen-
sions are a different concept than non-relevant ones; non-core dimensions are shared
relevant dimensions with differing values. The higher the penalty, the more dimen-
sions are included in the dimension core; i.e., more shared dimensions are used for the
value-based similarity. In a second curve, we show the absolute number of non-core
dimensions (right axis) for the different penalties: the number decreases with higher
penalties. Note that in this experiment the exact number of non-core dimensions in the
synthetic data is 10. We can draw the following conclusions regarding tracing quality:
A forced usage of a full core (all shared dimensions, β → 1) is a bad choice, as there
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can be some shared dimensions with different values. By lowering the penalty we
allow some dimensions to be excluded from the core and thus we can increase the
tracing quality. With β = 0.1 the highest tracing quality is obtained; this is plausible
as the number of non-core dimensions corresponds to the number that is existent in
the data. A too low penalty, however, results in excluding nearly all dimensions from
the core (many non-core dimensions, β → 0) and hence the quality drops for this
case. In the experiments, we use β = 0.1 as default.

The objective of our tracing approach is to map clusters of similar behavior, i.e., two
clusters are mapped if the corresponding object values are similar; thus, strong value
differences in core dimensions of two compared clusters should prevent a mapping.
This is evaluated in Fig. 8 with synthetic data. On the x-axis, the average cluster cen-
ter shift between consecutive time steps is plotted. The figure shows that with greater
shifts less clusters are mapped and thus the tracing quality degrades. It can also be
seen that this effect can be counterbalanced with a higher value of τ ; by this, greater
cluster center shifts are allowed.

The effect of input clustering quality on cluster tracing quality is evaluated in Fig. 9.
We analyze how mappings between clusters are affected in the case that hidden clusters
are incorrectly identified by the clustering algorithm. This is achieved by a varying
hypercube width in our clustering model. The figure shows that clustering quality
(measured via RNIA (Patrikainen and Meila 2006)) and tracing quality are highly
correlated; a decreasing clustering error results in an increasing tracing quality. Thus,
for meaningful cluster tracing a clustering algorithm providing high-quality clusters
is essential.

4.3 Detection of behavior developments

In the following, we analyze whether our model is able to detect the different behavior
developments. Up to now, we used our enhanced clustering method that utilizes the pre-
decessor information and the distance based quality function. Now, we additionally
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compare this method with a variant that performs clustering of each step indepen-
dently. Intuitively, this corresponds to the idea that each time step is the first one,
i.e. ,without preceding information. In Fig. 10 we use the oceanographic data set
and we determine for each time step the number of disappeared behaviors for each
clustering method. The experiment indicates, that the number of unmapped clusters
for the approach without any predecessor or distance information is larger than for
our enhanced approach. By transferring the clustering information between the time
steps, can map a larger amount of clusters from one time step to the next. We map clus-
ters over a longer time period; thus, yielding a more meaningful tracing of evolving
clusters.

The aim of tracing is not just to map similar clusters but also to identify differ-
ent kinds of evolution and development. In Fig. 11 we plot the number of clusters
that gain or lose dimensions and the four kinds of development cumulated over all
time steps. Beside the numbers our approach detects, we show the intended number
based on this synthetic data. The first four bars indicate that our approach is able to
handle dimension gains or losses; i.e., we enable subspace cluster tracing, which is
not considered by other models. The remaining bars show that also the developments
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can be accurately detected by our model. Overall, the intended transitions are found
by our tracing. In Fig. 12 we perform a similar experiment on real world data. We
report only the detected number of patterns because exact values are not given. On the
left we cumulate over all time steps. Again, our approach traces clusters with varying
dimensions. Accordingly, on real world data it is a relevant scenario that subspace
clusters lose some of their characteristics. Thus, it is mandatory to use a tracing model
that handle these cases, as our model does. The developments are also identified in
this real world data. To show that the effectiveness is not restricted to single time
steps, we analyze the detected patterns for each time step individually on the right.
Based on the almost constant slopes of all curves, we see that our approach performs
effectively.

4.4 Application scenario

To demonstrate that our tracing approach detects reasonable mappings on real world
data, a tracing result for the oceanographic grid data is shown in Fig. 13. In the figure,
different colors correspond to different clusters. Our method detects and traces sev-
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Fig. 13 Clusterings of oceanographic grid data for Jan and Feb and one mapping

Fig. 14 Tracing of a single cluster over a 1 year period; left illustrations of Jan., Apr., Jul., and Oct.; right
selection of the corresponding values per time step

eral of the oceanic provinces (Longhurst 1998). For example, a cluster similar to the
Pacific Equatorial Divergence Province is found in both time steps and our method
accomplishes a mapping between these clusters; we illustrate this mapping in the
figure.

Another traceable cluster is the cluster representing the low productivity regions of
the oceans located at the position of the subtropical gyres. We analyzed the temporal
behavior of this cluster over a time period of 1 year, and 4 months are illustrated in
Fig. 14 (left). A selection of the corresponding values per time step is given on the
right. Noticeable in this figure is the increase of chlorophyll, net primary production,
and silicate in September. This could indicate a connection to phytoplankton blooms
(Siegel 2002) occurring regularly in temperate and sub-polar water areas. In winter,
waters are well mixed and nutrients circulate up from bottom waters. As soon as the
ocean warms in late spring, the warm water will stay at the top of the water column as
it is less dense. At the same time light level increases and phytoplankton population
grows exponentially. In most cases the available nutrients are used up within weeks
or months. Sometimes a second bloom occurs at autumn.
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5 Conclusion

In this article, we proposed a model for tracing evolving subspace clusters in high
dimensional temporal data. In contrast to existing methods, we trace clusters based on
their behavior; that is, clusters are not mapped based on the fraction of objects they
have in common, but on the similarity of their corresponding object values. Therefore,
our approach is especially suited for climate data. An example are oceanographic data,
where values are recorded by sensors, which are positioned at fixed grid cells. For max-
imal flexibility, our tracing approach distinguishes several developments of behavior.
We enable effective tracing by introducing a novel distance measure that determines
the similarity between clusters; this measure comprises subspace and value similarity,
reflecting how much a cluster has evolved. In the experimental evaluation we showed
that high quality tracings are generated.

As future work we plan to generate the mapping graph based on global optimization
considering all possible mappings and all possible points in time simultaneously. Until
now, the mappings between two successive points in time are independent of the other
time steps. Besides efficiency issues, global optimization has a second challenge: pre-
decessor information to increase tracing quality cannot be easily utilized since each
clusterings has to be given a-priori, before such an optimization. We also want to
investigate other statistical representations of clusters that inherently cope with the
temporal characteristics of data, for example based on dynamic Gaussian processes.
Possible challenges adapting such approaches include the handling of complex clusters
evolutions as emerging or disappearing clusters.

Acknowledgements We thank the Alfred Wegener Institute for Polar and Marine Research for provid-
ing the Oceanographic Grid Data. This article has been supported by the UMIC Research Centre, RWTH
Aachen University.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Aggarwal CC (2005) On change diagnosis in evolving data streams. IEEE TKDE 17(5):587–600
Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: VLDB,

pp 81–92
Aggarwal CC, Han J, Wang J, Yu PS (2004) A framework for projected clustering of high dimensional data

streams. In: VLDB, pp 852–863
Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional

data for data mining applications. In: ACM SIGMOD, pp 94–105
Barnett T, Pierce D, Schnur R (2001) Detection of anthropogenic climate change in the world’s oceans.

Science 292(5515):270
Boriah S, Kumar V, Steinbach M, Potter C, Klooster SA (2008) Land cover change detection: a case study.

In: ACM SIGKDD, pp 857–865
Böttcher M, Höppner F, Spiliopoulou M (2008) On exploiting the power of time in data mining. ACM

SIGKDD Explorations 10(2):3–11
Brodeur R, Mills C, Overland J, Walters G, Schumacher J (1999) Evidence for a substantial increase in

gelatinous zooplankton in the bering sea, with possible links to climate change. Fisheries Oceanograp
8(4):296–306

123



410 S. Günnemann et al.

Cao F, Ester M, Qian W, Zhou A (2006) Density-based clustering over an evolving data stream with noise.
In: SIAM SDM, pp 328–339, 2006

Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm.
J Royal Stat Soc. Series B, pp 1–38

Ester M, Kriegel H-P, JS, Xu X (1996) A density-based algorithm for discovering clusters in large spatial
databases with noise. In: ACM SIGKDD, pp 226–231

Fu T (2011) A review on time series data mining. Eng Appl Artif Intel 24(1):164–181
Gaffney S, Smyth P (1999) Trajectory clustering with mixtures of regression models. In: ACM SIGKDD,

pp 63–72
Günnemann S, Kremer H, Seidl T (2010) Subspace clustering for uncertain data. In: SIAM SDM,

pp 385–396
Hinneburg A, Aggarwal CC, Keim DA (2000) What is the nearest neighbor in high dimensional spaces?

In: VLDB, pp 506–515
Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs.

Marine Freshw Res 50(8):839–866
Hoffman F, Hargrove WJr, Erickson DIII, Oglesby R (2005) Using clustered climate regimes to analyze

and compare predictions from fully coupled general circulation models. Earth Interact 9(10):1–27
Huntington T (2006) Evidence for intensification of the global water cycle: Review and synthesis. J Hydrol

319(1-4):83–95
Jensen CS, Lin D, Ooi BC (2007) Continuous clustering of moving objects. IEEE TKDE 19(9):1161–1174
Kalnis P, Mamoulis N, Bakiras S (2005) On discovering moving clusters in spatio-temporal data. In: SSTD,

Springer, pp 364–381
Kremer H, Günnemann S, Seidl T (2010) Detecting climate change in multivariate time series data by novel

clustering and cluster tracing techniques. In: IEEE ICDM Workshops, pp 96–97
Kremer H, Kranen P, Jansen T, Seidl T, Bifet A, Holmes G, Pfahringer B (2011) An effective evaluation

measure for clustering on evolving data streams. In: ACM SIGKDD, pp 868–876
Kriegel H-P, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering,

pattern-based clustering, and correlation clustering. ACM TKDD 3(1):1–58
Li Y, Han J, Yang J (2004) Clustering moving objects. In: ACM SIGKDD, pp 617–622
Liao TW (2005) Clustering of time series data: a survey. Patt Recogn 38(11):1857–1874
Longhurst A (1998) Ecological geography of the sea. Academic Press, London
Müller E, Günnemann S, Assent I, Seidl T (2009) Evaluating clustering in subspace projections of high

dimensional data. In: VLDB, pp 1270–1281
Parsons L, Haque E, Liu H (2004) Subspace clustering for high dimensional data: a review. ACM SIGKDD

Explorations 6(1):90–105
Patrikainen A, Meila M (2006) Comparing subspace clusterings. IEEE TKDE 18(7):902–916
Procopiuc CM, Jones M, Agarwal PK, Murali TM (2002) A monte carlo algorithm for fast projective

clustering. In ACM SIGMOD, pp 418–427
Rosswog J, Ghose K (2008) Detecting and tracking spatio-temporal clusters with adaptive history filtering.

In: IEEE ICDM Workshops, pp 448–457
Siegel D, Doney S, Yoder J (2002) The North Atlantic spring phytoplankton bloom and Sverdrup’s critical

depth hypothesis. Science 296(5568):730
Spiliopoulou M, Ntoutsi I, Theodoridis Y, Schult R (2006) MONIC - modeling and monitoring cluster

transitions. In: ACM SIGKDD, pp 706–711
Steinbach M, Tan P-N, Kumar V, Klooster SA, Potter C (2003) Discovery of climate indices using clustering.

In: ACM SIGKDD, pp 446–455
Vlachos M, Gunopulos D, Kollios G (2002) Discovering similar multidimensional trajectories. In: IEEE

ICDE, pp 673–684
Yiu ML, Mamoulis N (2003) Frequent-pattern based iterative projected clustering. In: IEEE ICDM,

pp 689–692
Zhou D, Li J, Zha H (2005) A new mallows distance based metric for comparing clusterings. In: ICML,

pp 1028–1035

123


	Tracing Evolving Subspace Clusters in Temporal Climate Data
	Abstract
	1 Introduction
	2 Related work
	3 A novel tracing model
	3.1 Tracing of behavior types
	3.2 Cluster distance measure
	3.3 Clustering for improved tracing
	3.4 Computational aspects

	4 Experimental evaluation
	4.1 Setup
	4.2 Tracing quality
	4.3 Detection of behavior developments
	4.4 Application scenario

	5 Conclusion
	Acknowledgements
	References


