
Design Automation for Embedded Systems
https://doi.org/10.1007/s10617-024-09283-1

Profiling with trust: systemmonitoring from trusted
execution environments

Christian Eichler1 · Jonas Röckl2 · Benedikt Jung3 · Ralph Schlenk3 · Tilo Müller4 ·
Timo Hönig1

Received: 14 July 2023 / Accepted: 24 January 2024
© The Author(s) 2024

Abstract
Large-scale attacks on IoT and edge computing devices pose a significant threat. As a promi-
nent example, Mirai is an IoT botnet with 600,000 infected devices around the globe, capable
of conducting effective and targeted DDoS attacks on (critical) infrastructure. Driven by the
substantial impacts of attacks, manufacturers and system integrators propose Trusted Exe-
cution Environments (TEEs) that have gained significant importance recently. TEEs offer an
execution environment to run small portions of code isolated from the rest of the system,
even if the operating system is compromised. In this publication, we examine TEEs in the
context of system monitoring and introduce the Trusted Monitor (TM), a novel anomaly
detection system that runs within a TEE. The TM continuously profiles the system using
hardware performance counters and utilizes an application-specific machine-learning model
for anomaly detection. In our evaluation, we demonstrate that the TM accurately classifies
86% of 183 tested workloads, with an overhead of less than 2%. Notably, we show that a
real-world kernel-level rootkit has observable effects on performance counters, allowing the

This manuscript is an extended version of the conference paper that appeared in https://doi.org/10.1109/
SBESC56799.2022.9964869.

B Christian Eichler
christian.eichler@rub.de

B Jonas Röckl
jonas.roeckl@fau.de

Ralph Schlenk
ralph.schlenk@nokia.com

Tilo Müller
tilo.mueller@hof-university.de

Timo Hönig
timo.hoenig@rub.de

1 Ruhr University Bochum, Bochum, Germany

2 FAU Erlangen-Nürnberg, Erlangen, Germany

3 Nokia Solutions and Networks GmbH & Co. KG, Nürnberg, Germany

4 Hof University of Applied Sciences, Hof, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10617-024-09283-1&domain=pdf
https://doi.org/10.1109/SBESC56799.2022.9964869
https://doi.org/10.1109/SBESC56799.2022.9964869

C. Eichler et al.

TM to detect it. Major parts of the TM are implemented in the Rust programming language,
eliminating common security-critical programming errors.

Keywords Trusted execution environment · Hardware performance counter · Machine
learning · Anomaly detection · Malware detection · Rust

1 Introduction

Recent forecasts estimate the number of 3.6 Internet of Things (IoT) devices per capita by
2023 [1].Moreover, by the end of 2030, a total number of 29.4 billion connected IoT devices is
expected [2]. At the same time, researchers observe an increasing threat from vulnerabilities
and malware [3]. Despite steady advances in security research and formal verification, it is
still unrealistic to build large software systems that are completely secure. Attackers are still
able to change the state of the running system by exploiting vulnerabilities. For example, a
privilege escalation vulnerability in the sudo binary has been unreported for more than ten
years [4]. Additionally, the Mirai [5] and the Hajime [6] botnets have hijacked a vast amount
of IoT devices.

Since it is unlikely for complex systems to parry every attack, the question arises if tam-
pering with the system state can be detected. A promising instrument for detecting state
anomalies is system monitoring. Once an anomaly is detected, it is possible to react accord-
ingly. However, system monitoring can only be beneficial as long as an adversary is not able
to disable or subvert the monitoring techniques. As a matter of principle, a monitoring tool
at the level of the operating system is susceptible to kernel-level attackers. This is because
the adversary is always able to disable the monitoring techniques (e.g., by removing the
corresponding code from the running operating system).

As a countermeasure, several hypervisor-based monitoring systems have been proposed
[7–9]. By leveraging Virtual Machine Introspection (VMI) [10], it becomes possible to
retrieve insights about the dynamic state of the virtual machine that potentially uncovers
intruders. In contrast to a host-based system, a hypervisor-based monitoring system has a
smaller Trusted Computing Base (TCB) [11] and can withstand a kernel-level attacker by
design.

In recent times, TEEs have seen widespread use in modern System on Chips (SoCs).
The ARMTrustZone, one of the most prevalent TEE implementations, introduces hardware-
based isolation between two system partitions, the normal world and the secure world. The
normal world hosts a feature-rich Operating System (OS), whereas the secure world runs a
stripped-down special-purpose OS focusing on security-related tasks. The secure OS runs
Trusted Application (TAs). Even if an attacker gains the highest privilege in the normal
world, the secure world is still not compromised. This design can provide protection from
strong system-wide adversaries: Even a kernel-level or hypervisor-level attacker is not able
to influence the code running in the secure world arbitrarily, and communication is only
possible via well-defined, lightweight interfaces.

The strong isolation properties of modern TEEs enable TEE-based system monitoring
while keeping the TCB small. In this paper, we present the Trusted Monitor (TM), a novel
approach for intrusion detection based on low-level system monitoring and artificial intel-
ligence. From within the ARM TrustZone, we continuously monitor the system’s state by
relying on hardware performance counters. The performance metrics are utilized to infer the
running process. We show that different applications have different footprints with respect

123

Profiling with trust: systemmonitoring from trusted…

to their performance metrics and demonstrate that the insertion of a kernel rootkit changes
the footprint of the running application.
Problem statement. This paper makes the case that high-end IoT devices are widespread and
connected to the internet but still lack the level of security needed for reliable online operation.
Existing IoT devices are insecure by (software) design (e.g., by using programming languages
susceptible to buffer overflows), and also miss the ability to detect a successful attack on the
system. The use of insecure languages, such as C, causes a variety of vulnerabilities (e.g.,
Ripple20 [12], AMNESIA:33 [13]) that cannot be avoided systematically without a rewrite
of the whole system.

Our TM tackles this challenge by providing a novel intrusion detection system that is
suitable for existing applications and will be presented in the following.
Contributions In summary, this paper makes the following contributions:

(1) To the best of our knowledge, we are the first to evaluate intrusion and anomaly detection
based on hardware performance counters and artificial intelligence directly out of the
ARM TrustZone TEE.

(2) We present a functional prototype as an extension to the Linux operating system. Major
parts of theTMare implemented in theRust programming language, eliminating common
security-critical programming errors.

(3) We evaluate the monitoring capabilities based on hardware performance counters and
show that the monitor correctly classifies 86% of the 183 evaluated workloads.

(4) We show the feasibility of our approach by analyzing the performance penalty in practice.
We measure an overhead below 2% with an interval of one second or more between the
system checks.

(5) We demonstrate that our trained model detects deviations in the hardware performance
counters when a real-world kernel-level rootkit is activated.

2 Related work

There are several streams of work related to our proposed system architecture.
Hypervisor-based system monitoring Hypervisor-based monitoring systems are a well-
researched field, and multiple security-focused thin hypervisors have been proposed [14].
For example,HIMA provides hypervisor-based integrity measurements for a VirtualMachine
(VM) as an extension of a general-purpose hypervisor [7]. SecVisor is a tiny hypervisor that
ensures that only trusted code can execute at the kernel level [8]. Sharif et al. focus on high
performance and design an in-VM monitoring system [9]. Chen et al. propose Overshadow,
a system to protect the integrity of application data even if the OS is compromised [15].
NumChecker is a hypervisor-based system for detecting control-flow deviations in the kernel
[16]. All of the systems rely on virtualization techniques and either require a hypervisor or
act as a hypervisor.
TEE-based systemmonitoring. In contrast, a TEE-based approach like the TM does not block
or occupy virtualization layers for system monitoring purposes. Further, a TEE-based design
allows for reducing the TCBby offloading software isolation directly to the hardware. Several
novel systems based on the ARM TrustZone have been proposed. For example, the ARM
TrustZone can be used to protect the kernel’s memory [17, 18]. Moreover, TrustDump allows
for dumping the RAM of the OS even after a crash or compromise [19]. Busch et al. designed
a TEE-based system that can monitor the configuration of peripherals for optical networks
[20]. These approaches selectively utilize TEE-based isolation to achieve security properties.

123

C. Eichler et al.

We align ourselves with these approaches and propose the TM, a TEE-based approach for
intrusion and anomaly detection. In this publication, we focus on the ARMv8-A architecture,
which is already in use for the magnitude of IoT and edge-computing devices as of today.
However, there are approaches fitted to Intel-based processors with Intel SGX enclaves as
well. For example, Nakano et al. propose a system that is capable of inspecting the memory
and storage of a target VM from within an SGX enclave [21]. Moreover, some works move
Snort, an open-source network-based intrusion detection system, to an SGX enclave [22, 23].
In contrast to these, we do not inspect storage, memory, or network traffic but utilize hardware
performance counters to profile the applications in the normal world. While the Intel SGX
TEE has been deprecated in the consumer sector [24, p. 57], the ARM TrustZone TEE is
continued with the upcoming ARMv9-A architecture [25], and we believe that the overall
architecture of the TM is also compatible with Keystone [26], an open TEE framework for
the RISC-V architecture.

Multiple recent works propose to use general machine-learning techniques (or at least
inference) in a TEE [27–32]. In particular, Bayerl et al. protect machine-learning models
from adversaries with a TEE [33]. The decryption of a model is bound to a TEE with the
corresponding key. Similar to us, they use TensorFlow Lite in the TrustZone to conduct
secure inference. However, we do not focus on protecting the model from adversaries but on
detecting system anomalies.
Monitoring based on hardware performance counters As input for our anomaly detection
framework, we rely on hardware performance counters, as provided by the Performance
Monitoring Unit (PMU) of recent ARMv8-A CPUs. Given the significant amount of related
work in this area, hardware performance counters are well-established for security purposes.
For example, Xia et al. detect control-flow discrepancies with performance counters [34],
Yuan et al. implement Eunomia, a detection framework for return-oriented programming
[35], and Aweke et al. design a system to detect Rowhammer attacks [36]. Similar to us,
Demme et al. use performance counters for the detection of runningmalware and identify that
applications have distinguishable footprints [37]. Tang et al. rely on hardware performance
counters and unsupervised machine learning for anomaly detection [38], while Bahador et al.
and Singh et al. use support vector machines and decision trees to classify applications [39,
40]. Kuruvila et al. focus on an explainable machine-learning model for intrusion detection
via hardware performance counters [41]. There are several approaches to detect CPU side-
channel attacks based on machine learning [42–44]. Neither of these approaches relies on a
TEE.

There are also limitations when using hardware performance counters for anomaly detec-
tion [45]. In particular, improper configuration can lead to indeterministic results, and
depending on the architecture, hardware performance counters are subject to overcount-
ing errors [46]. We share the opinion of Das et al. and Zhou et al. that hardware performance
counters are not eligible for security monitoring in every environment, i.e., an arbitrary
general-purpose device. We, however, focus on specialized devices executing monotonous
but CPU-intensive tasks instead of changing interactive user sessions. For example, we con-
sider high-end IoT or edge computing devices for video preprocessing or volumetric network
stream processing and encoding (see Sect. 4). In this context, we can address the indetermin-
ism and overcounting issues. One cause of overcounting lies in configuring the PMU in a
way that generates hardware interrupts to halt the running program repeatedly after a certain
number of recorded events. Both handling the interrupt and the interrupt skid cause over-
counting. The latter describes the fact that the PMU interrupt does not immediately halt the
CPU execution. Instead, an indeterministic amount of instructions is executed before the
asynchronous interrupt arrives at the CPU. To mitigate this, our system does not rely on

123

Profiling with trust: systemmonitoring from trusted…

PMU interrupts. Instead, we regularly sample the hardware performance counters from the
secure world.While we deliberately do not offer per-process monitoring, we assume amono-
tonic CPU-intensive workload as the normal state and focus on detecting deviations from it.
Moreover, we prevent the normal world from accessing the performance counter registers,
impeding direct counter manipulations by an attacker. To the best of our knowledge, we
are the first to propose a system monitoring framework that relies on hardware performance
counters and uses machine learning techniques directly within the ARM TrustZone TEE.
Memory-safe and type-safe TEEs/TAs The memory-safe and type-safe Rust programming
language has gained popularity. Thus, implementing system software in Rust is evident [47–
49]. Cerdeira et al. show that contemporary TEEs/TAs are typically written in C and contain
vulnerabilities [50]. RustZone [51] demonstrates the practical feasibility of developing TAs
using memory-safe Rust code for the first time. With RusTEE [52], a Software Development
Kit (SDK) for building TAs for ARM TrustZone is now publicly available. Using Rust for
building TAs can be likewise found for other TEEs than the TrustZone. For example, Rust-
SGX [53] and Fortanix Rust EDP [54] enable the use of Rust for the Intel SGX TEE.

Contrary to existing approaches, we combine and consolidate multiple ideas into one
system architecture: Running within the ARMTrustZone TEE, our TM continuously collects
performance metrics of the normal world by means of hardware performance counters. We
then use a machine-learning model directly in the TEE to infer the running process. To
prevent critical vulnerabilities (e.g., memory corruptions and type confusions) in the TCB,
we implement major parts of our system in Rust.

3 Threat model

We consider an attacker who leverages remote communication channels to gain unauthorized
access to the device. The adversary’s goal is to gain control over the device to run malicious
workloads. For example, the attackermight utilize the device forDistributedDenial of Service
(DDoS) attacks [5, 6] or cryptomining [55].We assume that the hardware works according to
the specification of the manufacturer. Side-channel attacks on the secure world [56] are out of
scope, as well as all forms of physical attacks on the device. Based on a hardware-protected
Root of Trust (RoT), the integrity of the software components is ensured during boot time
(secure boot), and a Chain of Trust (CoT) is formed, i.e., each software component ensures
the integrity of the next component in the boot order. However, once the system is completely
booted, no dynamic integrity measurement takes place. While initially benign, the normal
world and its software are assumed to be vulnerable to attacks. For example, the attacker
might exploit vulnerabilities in the system’s network stack to take over the system [12, 13].

Our TCB consists of all software components in the secure world (see Sect. 4). Any
other software (e.g., the operating system in the normal world) is untrusted and potentially
compromised. This is a common threat model for TEE-based architectures.

To deceive a detection system based on hardware performance counters (like our TM),
an attacker can attempt to mimic the performance metrics of a legitimate application (see
Sect. 2). However, for this attack vector to be successful, the attacker requires extensive
knowledge of the system, which we believe is challenging to acquire without affecting the
system’s behavior in a manner that would trigger TM’s detection mechanisms in the first
place. Furthermore, we expect the development of malware that matches the performance
profile of a legal application to be highly complex, unstable, and error-prone.

123

C. Eichler et al.

Fig. 1 Overview of the functionality of Trusted Monitor

4 TrustedMonitor

We first provide an overview of our proposed system architecture in Sect. 4.1. Subsequently,
we outline a device model and usage profile in which TM can be deployed (see Sect. 4.2).
We address the neural network architecture in Sect. 4.3 and explain the system components
in-detail in a bottom-up approach (see Sect. 4.4).

4.1 Overview

Figure1 gives an overview of the functionality of the TM. From a high-level perspective, the
TM configures the PMU to continuously collect performance metrics of the normal world
(1©). We refer to this process as secure PMU sampling since the TM configures the PMU
in a way that the normal world cannot interfere with or access the PMU (see Sect. 4.4). The
collected performance metrics are fed into a machine-learning model (2©). Like the PMU
sampling, the machine learning model is executed directly in the secure world to prevent any
influence from the normal world. We assume that it is possible to subdivide an application
into a finite set of behavior phases (e.g., initialization phase and operative phase) [57, 58].
Thus, we train the model to detect the current application phase and infer the running process
(3©). If an unexpected system state is detected, we assume tampering with the system and
raise an alarm. For example, if the TM detects the execution of an unknown application
(e.g., malware), an administrator might get notified, or the system might be reset. The TM
employs a machine-learning model to detect the current application phase and infer the
running process. If an unexpected system state is detected, we assume tampering with the
system and raise the alarm.

4.2 Device model

Because of indeterminism and overcounting issues, hardware performance counters are not
applicable for security purposes in every environment (see Sect. 2). For this reason, we do not
consider general-purpose computing systems. Instead, the main focus of our work is high-
end IoT and edge computing devices with a comparably powerful CPU yet simple system
behavior,which can be described as executingmonotonous butCPU-intensive tasks instead of
changing interactive user sessions on the device. Thus, we expect a weakly utilized scheduler,
that is, a system with a comparably low number of processes and a prioritized, dominant
process on each core. As a practical use case, we consider IoT devices that pre-process
video streams. For example, modern surveillance equipment relies on visual computing
and machine learning to automatically segment video streams [59, 60]. Another example is

123

Profiling with trust: systemmonitoring from trusted…

Fig. 2 Structure of the neural
network model

Input Layer
6 nodes

Hidden Layer
M nodes

[ReLU]

Output Layer
N nodes

[Softmax]

PC1

PC2

PC3

PC4

PC5

PC6

PApp1

PApp2

PApp3

PApp4

PAppN

network appliances and edge computing devices that continuously handle volumetric network
streams can provide a suitable environment for our system. In particular, the widely-used
DPDK offers a collection of data plane libraries and network interface controller polling-
mode drivers that allow for high-speed packet processing of network packets directly in
user-space processes. The toolkit enables telecommunication network providers to migrate
performance-critical services, such as the backbone for mobile networks, to the cloud [61].
While the active polling for received packages reduces network latencies, it significantly
increases CPU utilization, thereby facilitating an environment that is suited for the TM.

4.3 Neural networkmodel

The TM conducts secure inference based on an Artificial Neural Network (ANN) directly
fromwithin the secureworld.The conceptual process is as follows:Wefirst train themodel in a
trusted environment. To do so, we collect and store performancemetrics from the applications
with their respective behavior phases that are meant to run on the device [57, 58]. With the
collected performance metrics, we then use the machine-learning framework TensorFlow
[62] for offline training of an ANN.
Neural-network structure Figure2 shows the structure of the ANN used by the TM. On
our evaluation platform (see Sect. 4.4), the PMU can monitor a maximum of six counters
at a time. Thus, the input to the model is a <1x6> tensor consisting of the (normalized)
performance counters PC1 to PC6. As our input is one-dimensional, we choose a multi-
layer perceptron with a single fully connected hidden layer (<6xM>). The number of hidden
neurons M is selected to be between the size of the input layer (6) and the size of the output
layer (N). In the hidden layer, we use a Rectified Linear Unit (ReLU) activation function
to mitigate vanishing gradients in the network. By contrast, we apply a Softmax activation
function in the fully connected output layer (<MxN>). It converts the output to values that
can be interpreted as probabilities. After applying the Softmax function, the elements of the
output tensor (<1xN>) are in the range from zero to one and sum up to one. Each entry
PApp1 to PAppN can be interpreted as the probability that one of the N trained application
phases or processes is running in the normal world. We assume that the application with the
highest probability runs in the normal world and do not use an unknown class that catches
previously unseen applications. To evaluate TM (see Sect. 5), we rely on a training set with
183 application phases. Thus, we choose N = 183 and M = 128.

123

C. Eichler et al.

Fig. 3 System components of the Trusted Monitor

Training process The TM’s ANN is trained using a supervised-learning approach that
requires a large set of input data for the training process. To obtain the required data for
training, the applications’ behaviors and their performance metrics are recorded using the
TMmechanisms while the system is still in a trustworthy environment. Each application that
may legally run on the system is recorded for 100 s, resulting in the required amount of data
that is used for the training of the model using TensorFlow running on a host machine with a
powerful processor. Based on the recorded data, the model is trained for several epochs until
the epoch accuracy is sufficiently high and the epoch loss is acceptably low enough to avoid
overfitting to the data.

To conduct secure machine learning inference from within the secure world, we use an
adjusted version of TensorFlow Lite for Microcontrollers [63] and include it as a building
block in our system architecture.

4.4 System components

We implement the TM on aMarvell OCTEON TX2 CN913X development board, which has
four Cortex-A72 ARMv8-A Central Processing Unit (CPUs), native support for the ARM
TrustZone TEE, secure boot, and a PMU. Each of the ARM Cortex-A72 CPUs includes
a PMU. The normal world is untrusted, whereas the secure world is part of the TCB. We
extend standard software for the ARMv8-A architecture with custom components for the
TM. In this Section, we refine the previously given overview of the TM. Figure3 visualizes
the components. Components in bold font extend the default software stack to implement
the TM. We explain the system architecture in detail in a bottom-up approach.

An ARMv8-A CPU supports multiple hardware privilege layers, which are referred to as
Exception Levels (ELs). EL3 is the most-privileged EL, and EL0 has the least privileges.
Higher ELs can preempt the execution and access the data of less-privileged ELs. EL3 hosts
the so-called securemonitor,whichmanages the context switches fromand to the secureworld
OS.WedeployTrusted Firmware-A (TF-A), an open-source reference implementation for the
secure monitor, to EL3 [64]. In the normal world, we use Linux as an OS. As a secure world
OS, we use Open Source TEE (OP-TEE) [65] together with the RusTEE [52] extensions.
OP-TEE allows implementing TAs which expose a function-based interface to the normal

123

Profiling with trust: systemmonitoring from trusted…

world. Via the EL3 firmware, normal-world applications can issue a context switch to execute
the exposed TA functions. In addition to that, RusTEE enables developers to implement TAs
using the memory-safe and type-safe Rust programming language.

To reduce the risk caused by memory corruptions, null-pointer dereferences, and use-
after-free vulnerabilities, we implement the TM as a Rust TA running on OP-TEE with the
RusTEE extensions. The TMTA consists of 300 lines of customRust code, the Rust standard
library, the Rust libc wrapper, and the RusTEE wrapper for the system call API towards
OP-TEE. To allow for secure inference, we also build TensorFlow Lite for Microcontrollers,
including our model as a static library, which we link against the Rust TA. Finally, we
implement a small wrapper that allows us to call our ANN model from within the Rust code
of the TA. Overall, the TM continuously reads out the PMU hardware performance counters,
profiling the normal world. The retrieved values are fed into our ANN model to predict the
application phase that is currently executing. If we detect a deviation in the workload over
a user-configurable time, we raise an alarm. To implement the TM, we had to face several
challenges, which are described in the following.
Scheduling the TM TA Traditionally, the secure world operating system does not contain a
scheduler. Instead, the secure world is passive and only activated if the normal world issues
the execution of a function that is exposed by a TA. We, however, depend on continuously
executing the TM TA to sample the PMU hardware performance counters. To do so, we
implement the TM agent, a Linux application, that regularly calls the TM TA (dashed arrow,
Fig. 3). Since the TM agent is part of the normal world, it may be subject to compromise.
Therefore, we need to assume that an adversary can influence the TM agent arbitrarily. To
keep the attack surface small, we thus limit the interface between the TM agent and the TM
to a single exposed function. Still, the attacker might try to prevent the execution of the TM
completely (e.g., by killing the TM agent). For this reason, we rely on a mechanism based
on hardware watchdogs.
Hardware watchdog Hardware watchdogs are widespread on IoT devices and are an estab-
lished mechanism to react to a critical event. We force the normal world to schedule the
TM TA indirectly [66–69]. Whenever the TM TA is called, the watchdog is reset, i.e., the
pending system restart is deferred. However, if an attacker in the normal world prevents the
scheduling of the TM, the watchdog expires and restarts the system. This requires that the
normal world has no access to the watchdog. Therefore, we assign a hardware watchdog to
the secure world, limiting access to software in the secure world only. Moreover, access to
peripherals is, by design, not possible from a TA in OP-TEE. Thus, we extend OP-TEE with
a driver for the hardware watchdog and extend OP-TEE with a new system call to expose the
watchdog to the TMTA (dotted arrows, Fig. 3). Finally, the watchdog needs to be initially set
up. The TM agent calls the TM TA for the first time when the normal world is fully booted.
However, this also means that an attacker could try to prevent the start of the TM TA in the
first place. Since the watchdog might not yet be enabled, the attacker would be able to take
over the device indefinitely. To parry such attacks, the watchdog is initialized directly after a
device reset. To do so, we add a watchdog setup routine to TF-A, which is executed before
any normal-world system software.
PMU driver Similar to the hardware watchdog, directly accessing the PMU from an OP-TEE
TA is not possible. Thus, we extend OP-TEE with a PMU driver and implement a system call
that allows the TMTA to retrieve the PMU performance counter values (solid arrows, Fig. 3).
In total, we add around 400 lines of PMU driver code to OP-TEE. By default, TF-A at EL3
saves and restores the PMU registers during a context switch from the normal world to the
secure world and vice versa. This, however, hinders our approach that relies on extracting the

123

C. Eichler et al.

hardware performance counters of the normal world. Therefore, we also adjust TF-A such
that the PMU registers are left untouched during a context switch.
Secure PMU We design our system with the idea that the PMU cannot be accessed from the
normal world. However, restricting access to the PMU has proven to be challenging. There
are two interfaces to the PMU. The first option is to directly access the PMU configuration
registers (e.g., PMUSERENR_EL0 [70]). Alternatively, the PMU is mapped in the physical
address space and can be accessed with standard memory operations [71]. To implement the
TM, the normal world must not be able to access the PMU configuration, neither via system
registers nor the memory-mapped interface.

In the first step, we configure the system in a way that any normal world access to the PMU
system registers raises an exception that is taken to EL3, which is part of the secure world
(MDCR_EL3.TDA [72]). In the corresponding secure world handler, we avert the register
access. Normal world software is neither able to prevent the trap nor overwrite the secure
world handler. This is because it runs on secure world memory that is inaccessible from the
normal world.

Restricting normal world accesses to the memory-mapped PMU interface is more chal-
lenging. This is because the operating system in the normal world can, in the first instance,
map any address in the physical address space, depending on its own MMU configuration.
Whether the normal world access to a physical address is successful depends on whether the
address resolves to RAM or a memory-mapped peripheral. The TrustZone Address Space
Controller (TZASC) enables partitioning RAM into secure and normal regions, prevent-
ing normal-world access to secure regions. Similarly, the TrustZone Protection Controller
(TZPC) allows assigning peripherals to one of the worlds [73]. Since the memory-mapped
PMU interface is not located in RAM, we cannot rely on the TZASC to protect them [71].
Despite not being supported by all hardware platforms, the memory-mapped PMU interface
can be configured to be only accessible from the secure world through the TZPC. If the
hardware platform supports it, we propose to configure the memory-mapped PMU interface
as secure-world only. In combination with trapping normal world PMU register access, the
PMU is now exclusive to the secure world, which is an important building block for our
system architecture.

If the TZPC on a platform does not allow to restrict memory-mapped PMU access, there
is an additional protection primitive we can rely on. The Platform Partition Controller (PPC),
available on most off-the-shelf hardware of big manufacturers (e.g., NXP, Xilinx, Nvidia,
Qualcomm, Broadcom, and Samsung), allows intercepting all requests on the system bus for
configurable regions, regardless of theworld the request originates from [74].We thenpropose
to dynamically configure the PPC to disallow any access to the memory-mapped PMU
interface before entering the normal world and, respectively, allow access upon switching
to the secure world. For a secure TM implementation, we require a platform that allows
exclusively assigning the PMU to the secure world.

Our evaluation platform, the Marvell OCTEON TX2, does not support restricting access
to the memory-mapped TM interface via the TZPC or the PPC and, thus, is susceptible to an
attacker with knowledge about the existence and the internals of the TM to manipulate the
performance counters and the PMUconfiguration systematically and, thus, trick the TM. This
hardware limitation, however, does neither invalidate the concept of TM nor the platform’s
use as an evaluation platform. If suitable hardware is available (e.g., Boundary Device’s
Nitrogen8M board [75]), a secure implementation is possible.

123

Profiling with trust: systemmonitoring from trusted…

5 Evaluation

In this Section, we evaluate the capabilities and the performance of the TM. At first, we
compare the performance-counter values obtained from Linux’s perf tool against the values
from the TM to underline the validity of system-wide performance monitoring compared to
process-level monitoring. Subsequently, we discuss the selection of performance counters, as
hardware-based performance-monitoring units (such as the ARM PMU) can only monitor a
limited number of performance counters simultaneously. Based on the selected performance
counters, we evaluate the TM’s ability to detect a real-world Linux rootkit. Finally, we
conclude with an evaluation of the runtime overhead of the TM.

5.1 Evaluation setup

Training data To demonstrate the monitoring capabilities, we train our model to classify
stress-ng stressors [76] that put stress on various system components (e.g., CPU or mem-
ory). In a production setup, the model would be trained to classify the applications running
on the device instead. Several of the 200+ stress-ng stressors are not compatible with our
platform (e.g., bigheap and brk), yielding 183 available stressors. To gain data for these,
we execute the stressors individually while we collect the performance-counter values. For
simplification, only one stressor runs simultaneously, with exactly one worker thread.
Performance counters In the following evaluations, we present measurements for several
performance counters. The counter names used throughout the rest of the paper are taken
from the ARM PMU documentation [77]. Different names used by, for instance, the perf tool
have been mapped to the corresponding name from the PMU documentation.
Structure of the boxplots Unless stated otherwise, the structure of the boxplots is as fol-
lows: The box indicates the first and third quartiles; the pink line marks the median. The
whiskers extend to the last performance-counter value greater/smaller than the first/third
quartile minus/plus 1.5 times the interquartile range. The green markers show the individual
outliers.

5.2 System and process monitoring

A system monitor like the TM observes all processes in the system, while a process monitor
is scoped to a single process. Generally speaking, performance measurements from a system
monitor have a higher mean variation since the OS and other running processes influence
the measurements (see Sect. 2). Compared to a process monitor, a system monitor is less
dependent on the operating system in the normal world and its internal data structures,
which fosters stability during system updates. We claim that in an environment suitable for
the TM, i.e., monotonous but CPU-intensive tasks (see Sect. 4), a process monitor yields
results comparable to a system monitor. To assess this claim, we compare the measurement
results from the TM and the perf tool, which is a process monitoring tool provided by the
Linux kernel. We conduct two experiments to compare the performance-counter values for a
comparably long-running application (100s) and a short-running application (one second).

In the first experiment, thecpu stressor from stress-ng runs for 100swhile the TMcollects
the performance counters every second. Afterward, we again run the cpu stressor for 100s
while measuring the counters using the perf tool. We average the output per second. For
better clarity, only four representative hardware performance counters are illustrated. The
counter inst_retired describes the number of instructions architecturally executed, inst_spec

123

C. Eichler et al.

(a) inst retired, inst spec, and bus cycle (1 × 100 s) (b) inst retired, inst spec, and bus cycle (100 × 1 s)

(c) exc taken (1 × 100 s) (d) exc taken (100 × 1 s)

Fig. 4 Comparison of performance-counter values of an application that runs 100 s and one that runs 100 ×
1s. For each application, we obtain performance-counter values from Linux’s perf tool (process monitoring)
and our TM (system monitoring). Each marker represents a single measurement value

refers to the number of instructions speculatively executed, bus_cycles counts the number of
bus cycles, and exc_taken is the number of interrupts. Figure4 shows that the performance-
counter values measured by the TM and the perf tool are comparable. Figure4c shows the
measurement for taken exceptions to accommodate for different value ranges and thus scales.
The values differ slightly because the TMmonitors thewhole system and is, therefore, subject
to variations caused by the OS. Thus, it is reasonable that the values from the TM are slightly
higher. The values reported by perf are averaged, so they resemble a horizontal line.

In the second experiment, the cpu stressor runs 100 times for one second. The results of
these measurements are shown in Figs. 4b and 4d. This time, the perf data is not averaged
but sampled each second, like the TM data. We can see that the performance counters of the
TM and perf differ slightly. However, the fluctuation of the TM values is less pronounced.
Regarding the exc_taken counter, we recognize higher values when monitored with the TM
and compared to the perf values. Interestingly, the counted exceptions differ from the number
of exceptions when executing the long-running application. We assume that this is due to
the higher amount of administrative tasks linked to repeatedly spawning the short-running
process on the system: In case the application runs for 100s, the code that interprets the
arguments initializes the worker and exits the tool is executed only once. When executing
the application 100 times for one second, all the surrounding tasks are also run through 100
times.

To sum up, the results from the two monitoring types are still very similar and differ
only slightly. Thus, we use the user-friendly tool perf for a simplified data gathering for all
performance counters to get an overview of the behavior of different performance counters
for different stressors.

5.3 Selection of the performance counters

Given that our development board can monitor a maximum of six hardware performance
counters at once, this Section focuses on the selection of a set of counters. Therefore, we
compare three different sets of randomly chosen performance counters. To assess the different

123

Profiling with trust: systemmonitoring from trusted…

Fig. 5 Performance-counter values for all 183 stressors from stress-ng for all three sets. Each dot represents
the performance-counter value for a single benchmark, the box indicates the first and third quartiles; the pink
line marks the median. The whiskers extend to the last performance-counter value greater/smaller than the
first/third quartile minus/plus 1.5 times the interquartile range

counters, all stressors are measured with the perf tool in time-based multiplexing mode. In
multiplexingmode, perf reconfigures the event countersmultiple times using the performance
measuring framework of the Linux kernel. The kernel keeps track of measurement phases
for each counter and finally interpolates the measurement values. For this evaluation, we
sequentially execute all stress-ng stressors for 100s.

Figure 5 illustrates the performance counters, grouped by the three sets, along with their
observed values for all benchmarks from stress-ng. Each marker represents a single stressor;
some remarkable stressors are discussed in the following.

The first set comprises the number ofwrite accesses to the bus (bus_access_st), bus_cycles,
exc_taken, the number of level 1 data-cache writebacks (l1d_cache_wb), the number of
level 1 instruction-cache accesses (l1i_cache), and the number of architecturally executed
writes the translation table base (ttbr_write_retired). The second set also includes the coun-
ters bus_access_st, exc_taken, and ttbr_write_retired. In addition, three other performance
counters, the number of level 1 instruction TLB refills (l1i_tlb_refill), level 1 data-cache
refills (l1d_cache_refill), and level 1 data-cache refills on writes (l1d_store_misses), are
used. The third set contains the number of bus_cycles and the number of exc_taken already
used in the first set. In addition, the number of exceptions returned (exc_return) is observed.
Further, the third set includes inst_retired, inst_spec, and the number of level 1 data-cache
accesses (l1d_cache).

Overall, all counters used show diverse values in comparatively large value ranges for
different stressors. In some cases, however, the values for a single stressor or performance
counter deviate for one or more stressors:
bus_access_st The number of bus write accesses exhibits high variations between 5 ·
104 (sigio) and 4.9 · 1010 (numa).
bus_cycles In comparison to the number of bus write accesses, the number of bus cycles is
higher and visually denser, ranging from 8 · 108 (sigio) to 2.2 · 1011 (mmapfork).
exc_taken The number of exceptions taken (i.e., the number of issued interrupts) is identical
to the number of exceptions returned (assuming a normal system function) and ranges from
1.4 · 104 (copy-file) to 4.3 · 108 (personality).
inst_spec & inst_retired Both instruction-related performance counters exhibit high values
for all stressors, ranging from 8 · 108 / 5 · 108 (sigio) to 5.6 · 1011 (shellsort).

123

C. Eichler et al.

Fig. 6 Histogram over detection rates in 10% steps for all 183 stressors for all three sets. The detection rate
is the ratio of correct predictions of a running stressor to the number of total predictions

l1d_cache Regarding the l1d_cache, the stressor nop has by far the lowest count of around
9.7 · 107.
l1d_cache_refill Some stressors are outstanding when looking at the number of level 1 data-
cache refills, such as matrix and lockf, which both have very high counts of level 1
data-cache refills of around 18 ·109 and 14 ·109. kill has the third most refills, with a count
of 7.3 · 109.
ttbr_write_retired Regarding the number of writes to the translation table base, the stressors
can be subdivided into roughly three groups: For the stressors sigpipe, sigpending,
nice, and others, the number of counted events is below 150, often 0. Stressors like
tlb-shootdown, lockf, lockofd, and zombie are in the range between 2 000 and
3.5 · 105. Others like sockmany, tee, and sigrt exhibit high values in the range of
1.3 · 106 to 9.1 · 107.

In summary, the three presented sets of events are made up of performance counters with
large value ranges for different stressors. For each performance counter, different stressors
show particular behavior, indicating that different applications can be distinguished by their
performance-counter values, as will be shown in the following.

5.4 Distinguishability of stressors

In this section, we evaluate the detection rates for all 183 stressors. Each stressor is executed
for 100s, and the TM conducts the inference process every second. After conducting the
inference process, theTM logs the inferred stressor to the normalworld via the serial interface.
As a performance metric, we rely on a simple detection rate: We calculate the ratio of correct
predictions to the number of total predictions. For instance, the detection rate of a stressor
is 98.98% if it is recognized 98 times out of 99 triggers of the TM. On the other hand, if all
decisions during a run of a specific stressor fail to log the correct application, the detection rate
is 0.00%. Since there is no unknown class, the classic machine-learning metrics (precision
and recall) cannot be determined meaningfully. Figure6 shows a histogram of the detection
rate for all stressors in 10% steps. From the three sets we analyzed, set 3 correctly (i.e., with
an accuracy of above 90%) classifies 157 out of our 183 evaluated stressors (86%), while
the other sets have slightly lower accuracy (72% for set 1, 59% for set 2). The histogram
illustrates that the detection rate for each stressor is either very high (in the bin [90; 100]) or
very low (in the bin [90; 100], 0% in most cases).

123

Profiling with trust: systemmonitoring from trusted…

Fig. 7 Detection rates for a selection of 48 stressors and the three sets of performance counters (see Fig. 5).
The detection rate is the ratio of correct predictions of a running stressor to the number of total predictions

In many of the instances with very low detection rates, this is caused by the high similarity
between two stressors. Hence, the counted events for both tasks do not differ, and the TM
has no means to distinguish them.

Figure 7 shows the individual detection rates for running a selection of 48 running stressors,
including several noticeable stressors that will be detailed in the following. Subsequent to
an introduction to our evaluation setup, we analyze the TM’s behavior for two outstanding
stressors locka and mlock:
locka The stressor locka has a detection rate of almost zero. Instead, the TM consis-
tently classifies a running locka stressor as lockofd. locka and lockofd are very
similar; both concurrently lock and unlock regions of a file using different locking mech-
anisms (POSIX advisory locking vs. Linux open file description locks, see fcntl(2)). Their
similarity is also reflected in their runtime behavior: locka and lockofd exhibit simi-
lar performance-counter values with overlapping ranges. This makes reliable differentiation
between locka and lockofd impossible.

While most of the stressors either are detected reliably (close to 100%) or not at all (close
to 0%), the stressor mmap stands out with a detection rate of 86%. Sometimes, the TM
classifies mmap as either zero or urandom; the detection rate for the stressors urandom
and zero is 100%, excluding transition periods.

Figure 8 visualizes the performance counters while the mmap stressor is running: For
every performance counter, the observed values for all three stressors are in a similar value
range, and for most counters, the dense value ranges for zero and urandom overlap the
relatively broad range for mmap. This relatively high fluctuation of counter values for mmap
hinders reliable detection on the basis of a single measurement. The low variation of counter
values for zero and urandom, on the other hand, facilitates a reliable detection of these
stressors.

Overall, we observe a very high detection rate of the currently running application that
varies depending on the chosen set of performance counters. For the best-performing set 3,
157 out of 183 (86%) stressors have been detected with an accuracy of almost 100%, while

123

C. Eichler et al.

Fig. 8 Performance-counter values for the stressors mmap, zero, and urandom. Each dot represents the
performance-counter values for a single benchmark, the box indicates the first and third quartiles; the pink
line marks the median. The whiskers extend to the last performance-counter value greater/smaller than the
first/third quartile minus/plus 1.5 times the interquartile range

Fig. 9 Performance-counter values for stressor dir and stressor getdent without active rootkit (base) and
with the Diamorphine rootkit activated (rk). The activation of the rootkit significantly influences the observed
performance-counter values or variances

many of the non-detected stressors have an almost identical twin that hardly differs in terms
of performance-counter values.

5.5 Rootkit detection

We use TM to indirectly detect the presence of Diamorphine [78], a Linux-kernel–module
rootkit, based on deviations in the performance-counter values. For this evaluation, we use
the performance counters from set3 (due to their high rate of distinguished stressors). The
Diamorphine rootkit finds and modifies the OS’s syscall table and can become invisible (to
the user), hide or unhide any process, grant any user root rights, and hide files. We analyze
the rootkit’s effect on the performance-counter values. Once no stressor or a non-expected
stressor is detected, the TM classifies the system as being compromised.
dir and getdent The stressorsdir and getdent both use the file systemAPI that ismodified
byDiamorphine to hide files and directories.dir creates and removes directories usingmkdir
and rmdir, getdent recursively reads the directories /proc, /dev, /tmp, /sys, and /run using
getdents and getdents64 [76]. dir, without an active rootkit, is recognized with a rate of
99%. With Diamorphine running, dir behaves differently w.r.t. the performance counters
and thus has a detection rate of 0%. We observe similar behavior for getdent, whose
detection rate declines from 99% (96/97) to 0% (0/97).

To reason the detection rates dropping to zero, Fig. 9 shows the measurement results for
the baseline dir and getdent applications, as well as the applications with the rootkit
running: When comparing the non-rootkit baselines with their values while the rootkit is
running, all monitored performance counters show noticeable changes in the observed values
or variances.

123

Profiling with trust: systemmonitoring from trusted…

Fig. 10 Performance-counter values for stressor fork and stressor chroot without active rootkit (base)
and with the Diamorphine rootkit activated (rk). fork and chroot overlap in the number of retired and
speculated instructions

fork and chroot The fork stressor stands out because the detection rate of the TM goes down
from almost 100%without the rootkit to nearly 0%with the rootkit enabled.When the rootkit
is enabled, the TM mixes the fork stressor up with the chroot stressor. Figure10 shows
a comparison of the performance-counter values of fork and chroot: The number of bus
cycles is similar for all four cases (fork and chroot with and without rootkit) and barely
allows any conclusion regarding the running application. The number of exceptions taken and
returned is slightly influenced by the rootkit for both stressors, but the value ranges for both
stressors are still easily distinguishable. The number of retired and speculated instructions
each are in a similar range, both with and without rootkit for both stressors, while the rootkit
consistently reduces the observed values. The same applies to the number of level 1–data-
cache accesses. These overlaps in the value range eventually lead to the model classifying
fork as chroot.

The weights of the trained model seem to give higher precedence to the very good fit of
the speculated instructions curve of the chroot stressor and the fork stressor with rootkit
enabled. This is the case compared to the less good fits for the cache references and retired
instructions.

To sum up, the enabled Diamorphine rootkit impacts multiple of the counted events.
Depending on the running stressor, the rootkit can be detected with higher or lower accuracy.
Stressors that do not use syscalls that have been modified by the rootkit are not impacted
at all. This makes it challenging to predict how an attack, such as a rootkit, influences the
system behavior and the performance-counter values in general. Still, we demonstrate that
the TM is able to detect deviations from the normal application behavior and, in an indirect
manner, the presence of a kernel-level rootkit.

5.6 Overhead

As the last evaluation of our TM, we evaluate the overhead of the periodic execution of the
performance-counter collection and process inference. For the evaluation of the rootkit detec-
tion, the TMwas configured to use a measurement interval of 1 s. However, the classification
benefits from a higher measurement frequency, both due to the higher resolution and the
reduced impact of task switching during a sampling period. A higher execution frequency,
on the other hand, leads to an increased number of interruptions of the workload and thus
increases the overhead.

Weevaluate the overhead ofmultiplemeasurement frequencies bymeasuring the reduction
in CPU performance for a 10s workload. We determine the CPU performance by running
the CPU stressor of stress-ng. The result is given in so-called Bogus Operations per Second
(bogo), i.e., executed iterations of aCPU-intensiveworkload.Our baseline is a systemwithout

123

C. Eichler et al.

Fig. 11 CPU overhead of the TM for different measurement intervals in the range [5ms; 1 s]. A lower interval
leads to an increased number of context switches to the secure world, which reduces the CPU time for other
tasks

the TM. Figure11 illustrates the overhead for TM intervals between 5ms and 1000ms: For
the interval of 1000ms, the overhead is only 2% compared to the system without the TM
being initialized. stress-ng reports 1534 bogo without TM and 1506 bogo with TM when
running the CPU stressor for ten seconds. For an interval of 200ms, the CPU performance
is reduced by 5.5%, which might still be acceptable for some systems. A further reduction
of the interval results in a noticeable performance reduction, reaching an overhead of 42%
at an interval of 5ms.
Summary Our evaluation shows that the TM correctly classifies 86% of the 183 stress-
ng stressors, even though some of the stressors cannot be distinguished due to their similar
runtime behavior (e.g., locka and lockofd). Because of its nature (see Sect. 4), we expect
that an embedded application can be typically represented with considerably less than 183
stressors. During the evaluation, the TM was not only used to identify the currently running
application but also to detect the kernel-level rootkit Diamorphine with high detection rates.
The overhead induced by the systemmonitoring depends on the sampling frequency but stays
below 2% for the configuration used during our evaluations.

6 Conclusion

With the widespread use of IoT devices, their security has become increasingly important.
In this paper, we propose the TM, an anomaly-detection approach based on low-level system
monitoringwith hardware performance counters. Our approach relies on a TEE to be securely
isolated from both applications and the operating system. This isolation prevents tampering
with the TM, even if the untrusted operating system is compromised. Circumventing the
TM is highly unlikely due to the potential attack’s influence on the system behavior. Once
deviations from the expected performance-counter values are detected, our TM reveals the
attack and activates countermeasures (e.g., a system reset).

In our evaluation, we show that hardware performance counters characterize the system
behavior and can be used to detect unwanted deviations. Using the example of the stress-ng
stressors, we can infer the currently running application from within the TM. Our evaluation
further demonstrates that our TM is able to detect the impact of the open-source rootkit
Diamorphine on the system. The trained ANN model reliably detects unexpected deviations
in the system performance counters when the rootkit is activated.

123

Profiling with trust: systemmonitoring from trusted…

The overhead induced by our TM stays below 2% in the configuration used during our
evaluation, yet the TM correctly classifies the current application with a high detection rate.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project numbers 465958100
(“NEON”); 502228341 (“Memento”) and by the Bundesministerium für Bildung und Forschung (BMBF)
for the project AI-NET-ANTILLAS 16KIS1305, 16KIS1314, and 16KIS1315.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this
article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Cisco (2020) Annual internet report. https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html. Accessed 16 June 2021

2. Transforma Insights (2022) Number of IoT connected devices worldwide 2019–2021, with forecasts to
2030. https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/. Accessed 16 June
2023

3. McAfee Labs threats report (2021). https://www.mcafee.com/enterprise/en-us/assets/reports/rp-
quarterly-threats-apr-2021.pdf. Accessed 17 June 2021

4. CVE-2021-3156 (2021). https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3156. Accessed
16 June 2021

5. Antonakakis M et al (2017) Understanding the Mirai botnet. In: Proceedings of the 26th USENIX
security symposium (USENIX Security ’17), pp 1093–1110. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis

6. Edwards S, Profetis I (2016) Hajime: analysis of a decentralized internet worm for IoT devices. https://
www.cs.umd.edu/class/spring2021/cmsc614/papers/hajime-rapidity.pdf. Accessed 4 Dec 2022

7. Azab A, Ning P, Sezer E, Zhang X (2009) HIMA: a hypervisor-based integrity measurement agent. In:
Proceedings of the 2009 annual computer security applications conference (ACSAC ’09), pp 461–470.
https://doi.org/10.1109/ACSAC.2009.50

8. Seshadri A, Luk M, Qu N, Perrig A (2007) SecVisor: a tiny hypervisor to provide lifetime kernel code
integrity for commodity OSes. In: Proceedings of the 21st ACM symposium on operating systems prin-
ciples (SOSP ’07), pp 335–350. https://doi.org/10.1145/1294261.1294294

9. Sharif MI, Lee W, Cui W, Lanzi A (2009) Secure in-VM monitoring using hardware virtualization. In:
Proceedings of the 16th ACM conference on computer and communications security (CCS ’09), pp
477–487. https://doi.org/10.1145/1653662.1653720

10. Garfinkel T, RosenblumM (2003) A virtual machine introspection based architecture for intrusion detec-
tion. In: Proceedings of the network and distributed system security symposium (NDSS ’03). https://www.
ndss-symposium.org/ndss2003/virtual-machine-introspection-based-architecture-intrusion-detection/

11. Dunlap GW, King ST, Cinar S, Basrai MA, Chen PM (2002) ReVirt: enabling intrusion analysis through
virtual-machine logging and replay. In: Proceedings of the 5th symposium on operating system design
and implementation (OSDI ’02). http://www.usenix.org/events/osdi02/tech/dunlap.html

12. Kol M, Oberman S (2020) Ripple20. https://www.jsof-tech.com/wp-content/uploads/2020/06/JSOF_
Ripple20_Technical_Whitepaper_June20.pdf. Accessed 21 Apr 2023

123

http://creativecommons.org/licenses/by/4.0/
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-apr-2021.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-apr-2021.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3156
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.cs.umd.edu/class/spring2021/cmsc614/papers/hajime-rapidity.pdf
https://www.cs.umd.edu/class/spring2021/cmsc614/papers/hajime-rapidity.pdf
https://doi.org/10.1109/ACSAC.2009.50
https://doi.org/10.1145/1294261.1294294
https://doi.org/10.1145/1653662.1653720
https://www.ndss-symposium.org/ndss2003/virtual-machine-introspection-based-architecture-intrusion-detection/
https://www.ndss-symposium.org/ndss2003/virtual-machine-introspection-based-architecture-intrusion-detection/
http://www.usenix.org/events/osdi02/tech/dunlap.html
https://www.jsof-tech.com/wp-content/uploads/2020/06/JSOF_Ripple20_Technical_Whitepaper_June20.pdf
https://www.jsof-tech.com/wp-content/uploads/2020/06/JSOF_Ripple20_Technical_Whitepaper_June20.pdf

C. Eichler et al.

13. Forescout Research Labs (2020) How TCP/IP Stacks Breed Critical Vulnerabilities in IoT, OT
and IT Devices. https://www.forescout.com/company/resources/amnesia33-how-tcp-ip-stacks-breed-
critical-vulnerabilities-in-iot-ot-and-it-devices/. Accessed 21 Apr 2023

14. Bauman E, Ayoade G, Lin Z (2015) A survey on hypervisor-based monitoring: approaches, applications,
and evolutions. ACM Comput Surv CSUR 48:1–33. https://doi.org/10.1145/2775111

15. Chen X et al (2008) Overshadow: a virtualization-based approach to retrofitting protection in commodity
operating systems. In: Proceedings of the 13th international conference on architectural support for pro-
gramming languages and operating systems (ASPLOS ’08), pp 2–13. https://doi.org/10.1145/1346281.
1346284

16. WangX,Karri R (2013)NumChecker: detecting kernel control-flowmodifying rootkits by using hardware
performance counters. In: Proceedings of the 50th annual design automation conference 2013 (DAC ’13),
pp 79:1–79:7. https://doi.org/10.1145/2463209.2488831

17. Guan L et al (2017) TrustShadow: secure execution of unmodified applications with ARM TrustZone. In:
Proceedings of the 15th annual international conference on mobile systems, applications, and services
(MobiSys ’17), pp 488–501. https://doi.org/10.1145/3081333.3081349

18. Azab AM et al (2014) Hypervision across worlds: real-time kernel protection from the ARM TrustZone
secure world. In: Proceedings of the 2014 ACM SIGSAC conference on computer and communications
security (CCS ’14). https://doi.org/10.1145/2660267.2660350

19. Sun H, Sun K,Wang Y, Jing J, Jajodia S (2014) TrustDump: reliable memory acquisition on smartphones.
In: Proceedings of the 19thEuropean symposiumon research in computer security (ESORICS ’14). https://
doi.org/10.1007/978-3-319-11203-9_12

20. Busch M, Schlenk R, Heckel H (2019) TEEMo: trusted peripheral monitoring for optical networks and
beyond. In: Proceedings of the 4th workshop on system software for trusted execution (SysTEX’19), pp
7:1–7:6. https://doi.org/10.1145/3342559.3365339

21. NakanoT,KouraiK (2021) Secure offloading of intrusion detection systems fromVMswith Intel SGX. In:
Proceedings of the 14th IEEE international conference on cloud computing (CLOUD ’21), pp 297–303.
https://doi.org/10.1109/CLOUD53861.2021.00043

22. Kuvaiskii D, Chakrabarti S, Vij M (2018) Snort intrusion detection system with Intel Software Guard
Extension (Intel SGX). arXiv:1802.00508

23. ShihM, KumarM, KimT, Gavrilovska A (2016) S-NFV: securing NFV states by using SGX. In: Proceed-
ings of the ACM international workshop on security in software defined networks & network function
virtualization (SDN-NFV ’16), pp 45–48. https://doi.org/10.1145/2876019.2876032

24. Intel (2022) 12th generation Intel Core processors datasheet. https://www.intel.com/content/www/us/en/
products/docs/processors/core/core-technical-resources.html. Accessed 22 June 2022

25. ARM Limited (2021) ARM’s solution to the future needs of AI, security and specialized com-
puting is v9. https://www.arm.com/company/news/2021/03/arms-answer-to-the-future-of-ai-armv9-
architecture. Accessed 22 June 2022

26. Lee D, Kohlbrenner D, Shinde S, Asanović K, Song D (2020) Keystone: an open framework for archi-
tecting trusted execution environments. In: Proceedings of the 15th European conference on computer
systems (EuroSys ’20). https://doi.org/10.1145/3342195.3387532

27. Mohassel P, RosulekM, Trieu N (2020) Practical privacy-preserving K-means clustering. In: Proceedings
of the privacy enhancing technologies (PoPETs ’20), pp 414–433. https://doi.org/10.2478/popets-2020-
0080

28. Corrigan-Gibbs H, Boneh D (2017) Prio: private, robust, and scalable computation of aggregate statistics.
In: Proceedings of the 14thUSENIX symposiumon networked systems design and implementation (NSDI
’17), pp 259–282. https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-
gibbs

29. Hunt T, Song C, Shokri R, Shmatikov V, Witchel E (2018) Chiron: privacy-preserving machine learning
as a service. arXiv preprint arXiv:1803.05961

30. Melis L, Song C, De Cristofaro E, Shmatikov V (2019) Exploiting unintended feature leakage in col-
laborative learning. In: Proceedings of the 40th IEEE symposium on security and privacy (S&P ’19), pp
691–706. https://doi.org/10.1109/SP.2019.00029

31. Ohrimenko O et al (2016) Oblivious multi-party machine learning on trusted processors. In: Proceedings
of the 25th USENIX security symposium (USENIX security ’16), pp 619–636. https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/ohrimenko

32. Kumar N et al (2020) CrypTFlow: secure TensorFlow inference. In: Proceedings of the 41st IEEE sym-
posium on security and privacy (S&P ’20), pp 336–353. https://doi.org/10.1109/SP40000.2020.00092

33. Bayerl SP et al (2020) Offline model guard: secure and private ML on mobile devices. In: Proceedings of
the 2020 design, automation & test in Europe conference & exhibition (DATE ’20), pp 460–465. https://
doi.org/10.23919/DATE48585.2020.9116560

123

https://www.forescout.com/company/resources/amnesia33-how-tcp-ip-stacks-breed-critical-vulnerabilities-in-iot-ot-and-it-devices/
https://www.forescout.com/company/resources/amnesia33-how-tcp-ip-stacks-breed-critical-vulnerabilities-in-iot-ot-and-it-devices/
https://doi.org/10.1145/2775111
https://doi.org/10.1145/1346281.1346284
https://doi.org/10.1145/1346281.1346284
https://doi.org/10.1145/2463209.2488831
https://doi.org/10.1145/3081333.3081349
https://doi.org/10.1145/2660267.2660350
https://doi.org/10.1007/978-3-319-11203-9_12
https://doi.org/10.1007/978-3-319-11203-9_12
https://doi.org/10.1145/3342559.3365339
https://doi.org/10.1109/CLOUD53861.2021.00043
http://arxiv.org/abs/1802.00508
https://doi.org/10.1145/2876019.2876032
https://www.intel.com/content/www/us/en/products/docs/processors/core/core-technical-resources.html
https://www.intel.com/content/www/us/en/products/docs/processors/core/core-technical-resources.html
https://www.arm.com/company/news/2021/03/arms-answer-to-the-future-of-ai-armv9-architecture
https://www.arm.com/company/news/2021/03/arms-answer-to-the-future-of-ai-armv9-architecture
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.2478/popets-2020-0080
https://doi.org/10.2478/popets-2020-0080
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
http://arxiv.org/abs/1803.05961
https://doi.org/10.1109/SP.2019.00029
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://doi.org/10.1109/SP40000.2020.00092
https://doi.org/10.23919/DATE48585.2020.9116560
https://doi.org/10.23919/DATE48585.2020.9116560

Profiling with trust: systemmonitoring from trusted…

34. Xia Y, Liu Y, Chen H, Zang B (2012) CFIMon: detecting violation of control flow integrity using per-
formance counters. In: IEEE/IFIP international conference on dependable systems and networks (DSN
’12), pp 1–12. https://doi.org/10.1109/DSN.2012.6263958

35. Yuan L, Xing W, Chen H, Zang B (2011) Security breaches as PMU deviation: detecting and identifying
security attacks using performance counters. In: Proceedings of the Asia Pacific workshop on systems
(APSys ’11), pp 1–5. https://doi.org/10.1145/2103799.2103807

36. Aweke ZB et al (2016) ANVIL: software-based protection against next-generation row hammer attacks.
In: Proceedings of theACMconference on architectural support for programming languages and operating
systems (ASPLOS ’16), pp 743–755. https://doi.org/10.1145/2872362.2872390

37. Demme J et al (2013) On the feasibility of online malware detection with performance counters. In:
Proceedings of the 40th annual international symposium on computer architecture (ISCA ’13), pp 559–
570. https://doi.org/10.1145/2485922.2485970

38. Tang A, Sethumadhavan S, Stolfo SJ (2014) Unsupervised anomaly-based malware detection using hard-
ware features. In: Proceedings of the 17th international symposium on research in attacks, intrusions and
defenses (RAID ’14), pp 109–129. https://doi.org/10.1007/978-3-319-11379-1_6

39. BahadorMB,AbadiM, TajoddinA (2014) HPCMalHunter: behavioral malware detection using hardware
performance counters and singular value decomposition. In: 4th international conference on computer
and knowledge engineering (ICCKE ’14), pp 703–708. https://doi.org/10.1109/ICCKE.2014.6993402

40. Singh B, Evtyushkin D, Elwell J, Riley R, Cervesato I (2017) On the detection of kernel-level rootkits
using hardware performance counters. In: Proceedings of the ACM Asia conference on computer and
communications security (AsiaCCS ’17), pp 483–493. https://doi.org/10.1145/3052973.3052999

41. Kuruvila AP, Meng X, Kundu S, Pandey G, Basu K (2022) Explainable machine learning for intru-
sion detection via hardware performance counters. IEEE Trans Comput Aided Des Integr Circuits Syst
41:4952–4964. https://doi.org/10.1109/TCAD.2022.3149745

42. Mushtaq M et al (2018) NIGHTs-WATCH: a cache-based side-channel intrusion detector using hardware
performance counters. In: Proceedings of the 7th international workshop on hardware and architectural
support for security and privacy (HASP ’18), pp 1:1–1:8. https://doi.org/10.1145/3214292.3214293

43. Li C, Gaudiot J (2022) Detecting Spectre attacks using hardware performance counters. IEEE Trans
Comput 71:1320–1331. https://doi.org/10.1109/TC.2021.3082471

44. Zhang Y, Makris Y (2020) Hardware-based detection of spectre attacks: a machine learning approach.
In: Proceedings of the Asian hardware oriented security and trust symposium (AsianHOST ’20), pp 1–6.
https://doi.org/10.1109/AsianHOST51057.2020.9358255

45. Zhou B, Gupta A, Jahanshahi R, Egele M, Joshi A (2018) Hardware performance counters can detect
malware: myth or fact? In: Proceedings of the Asia conference on computer and communications security
(AsiaCCS ’18), pp 457–468. https://doi.org/10.1145/3196494.3196515

46. Das S, Werner J, Antonakakis M, Polychronakis M, Monrose F (2019) SoK: the challenges, pitfalls, and
perils of using hardware performance counters for security. In: 2019 IEEE symposium on security and
privacy (S&P ’19), pp 20–38. https://doi.org/10.1109/SP.2019.00021

47. Levy A et al (2017) The case for writing a kernel in rust. In: Proceedings of the 8th Asia-Pacific workshop
on systems (APSys ’17), pp 1:1–1:7. https://doi.org/10.1145/3124680.3124717

48. Levy AA et al (2015) Ownership is theft: experiences building an embedded OS in rust. In: Proceedings
of the 8th workshop on programming languages and operating systems (PLOS ’15), pp 21–26. https://
doi.org/10.1145/2818302.2818306

49. LevyA et al (2017)Multiprogramming a 64kB computer safely and efficiently. In: Proceedings of the 26th
symposium on operating systems principles (SOSP ’17), pp 234–251. https://doi.org/10.1145/3132747.
3132786

50. Cerdeira D, SantosN, Fonseca P, Pinto S (2020) SoK: understanding the prevailing security vulnerabilities
in TrustZone-assisted TEE systems. In: Proceedings of the 41st IEEE symposium on security and privacy
(S&P ’20), pp 1416–1432. https://doi.org/10.1109/SP40000.2020.00061

51. Evenchick E (2018) RustZone: writing trusted applications in rust. https://github.com/ericevenchick/
rustzone. Accessed 23 May 2021

52. Wan S, Sun M, Sun K, Zhang N, He X (2020) RusTEE: developing memory-safe ARM TrustZone
applications. In: Proceedings of the 2020 annual computer security applications conference (ACSAC
’20), pp 442–453. https://doi.org/10.1145/3427228.3427262

53. Wang H et al (2019) Towards memory safe enclave programming with Rust-SGX. In: Proceedings of the
2019 ACM SIGSAC conference on computer and communications security (ACM CCS’19), pp 2333–
2350. http://dx.doi.org/10.1145/3319535.3354241

54. Fortanix (2019) Enclave development platform. https://edp.fortanix.com. Accessed 23 May 2021
55. Ngo Q, Nguyen H, Le V, Nguyen D (2020) A survey of IoT malware and detection methods based on

static features. Inf Commun Technol ICT Express 6:280–286. https://doi.org/10.1016/j.icte.2020.04.005

123

https://doi.org/10.1109/DSN.2012.6263958
https://doi.org/10.1145/2103799.2103807
https://doi.org/10.1145/2872362.2872390
https://doi.org/10.1145/2485922.2485970
https://doi.org/10.1007/978-3-319-11379-1_6
https://doi.org/10.1109/ICCKE.2014.6993402
https://doi.org/10.1145/3052973.3052999
https://doi.org/10.1109/TCAD.2022.3149745
https://doi.org/10.1145/3214292.3214293
https://doi.org/10.1109/TC.2021.3082471
https://doi.org/10.1109/AsianHOST51057.2020.9358255
https://doi.org/10.1145/3196494.3196515
https://doi.org/10.1109/SP.2019.00021
https://doi.org/10.1145/3124680.3124717
https://doi.org/10.1145/2818302.2818306
https://doi.org/10.1145/2818302.2818306
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1109/SP40000.2020.00061
https://github.com/ericevenchick/rustzone
https://github.com/ericevenchick/rustzone
https://doi.org/10.1145/3427228.3427262
http://dx.doi.org/10.1145/3319535.3354241
https://edp.fortanix.com
https://doi.org/10.1016/j.icte.2020.04.005

C. Eichler et al.

56. Zhang N, Sun K, Shands D, Lou W, Hou YT (2018) TruSense: information leakage from trustzone. In:
Proceedings of the 2018 IEEE conference on computer communications (INFOCOM ’18), pp 1097–1105.
https://doi.org/10.1109/INFOCOM.2018.8486293

57. Dhodapkar AS, Smith JE (2003) Comparing program phase detection techniques. In: Proceedings of
the 36th annual IEEE/ACM international symposium on microarchitecture (MICRO-36), pp 217–227.
https://doi.org/10.1109/MICRO.2003.1253197

58. Hamerly G, Perelman E, Lau J, Calder B (2005) Simpoint 3.0: faster and more flexible program phase
analysis. J Instr Level Parallelism 7:1–28

59. Ke R, Zhuang Y, Pu Z, Wang Y (2021) A smart, efficient, and reliable parking surveillance system with
edge artificial intelligence on IoT devices. IEEE Trans Intell Transp Syst 22:4962–4974. https://doi.org/
10.1109/TITS.2020.2984197

60. Ling X, Sheng J, Baiocchi O, Liu X, Tolentino ME (2017) Identifying parking spaces & detecting
occupancy using vision-based IoT devices. In: Proceedings of the 2017 global internet of things summit
(GIoTS ’17), pp 1–6. https://doi.org/10.1109/GIOTS.2017.8016227

61. DPDK Project—Linux Foundation, LLC (2023) About DPDK. https://www.dpdk.org/about/. Accessed
3 June 2023

62. Abadi M et al (2015) TensorFlow: large-scale machine learning on heterogeneous systems. https://www.
tensorflow.org/. Accessed 14 May 2021

63. TensorFlowDevelopers (2021) TensorFlow lite. https://www.tensorflow.org/lite/guide. Accessed 22May
2021

64. ARM Limited (2021) Trusted firmware-A. https://github.com/ARM-software/arm-trusted-firmware.
Accessed 1 Dec 2021

65. TrustedFirmware.org (2020) OP-TEE documentation. https://optee.readthedocs.io/en/latest/general/
about.html. Accessed 27 Apr 2021

66. Xu M et al (2019) Dominance as a new trusted computing primitive for the internet of things. In: Pro-
ceedings of the 40th IEEE symposium on security and privacy (S&P ’19), pp 1415–1430. https://doi.org/
10.1109/SP.2019.00084

67. Huber M, Hristozov S, Ott S, Sarafov V, Peinado M (2020) The Lazarus effect: healing compromised
devices in the internet of small things. In: Proceedings of the 15th ACM Asia conference on computer
and communications security (AsiaCCS ’20), pp 6–19. https://doi.org/10.1145/3320269.3384723

68. Suzaki K, Tsukamoto A, Green A, Mannan M (2020) Reboot-oriented IoT: life cycle management in
trusted execution environment for disposable IoT devices. In: Proceedings of the 2020 annual computer
security applications conference (ACSAC ’20), pp 428–441. https://doi.org/10.1145/3427228.3427293

69. Röckl J, Protsenko M, Huber M, Müller T, Freiling FC (2021) Advanced system resiliency based on vir-
tualization techniques for IoT devices. In: Proceedings of the 2021 annual computer security applications
conference (ACSAC ’21), pp 455–467. https://doi.org/10.1145/3485832.3485836

70. ARM Limited (2020) Armv8-A architecture registers: PMUSERENR-EL0. https://developer.arm.com/
documentation/ddi0595/2020-12/AArch64-Registers/PMUSERENR-EL0--Performance-Monitors-
User-Enable-Register. Accessed 2021-06-22

71. Ning Z, Zhang F (2017) Ninja: towards transparent tracing and debugging on ARM. In: Proceedings
of the 26th USENIX security symposium (USENIX Security ’17), pp 33–49. https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/ning

72. ARM Limited (2022) Armv8-A architecture registers: MDCR_EL3. https://developer.arm.com/
documentation/ddi0601/2022-03/AArch64-Registers/MDCR-EL3-Monitor-Debug-Configuration-
Register--EL3-?lang=en. Accessed 22 May 2023

73. Pinto S, Santos N (2019) Demystifying Arm TrustZone: a comprehensive survey. ACM Comput Surv
51:130:1-130:36. https://doi.org/10.1145/3291047

74. Cerdeira D, Martins J, Santos N, Pinto S (2022) Rezone: disarming TrustZone with TEE privilege reduc-
tion. In: Proceedings of the 31st USENIX security symposium (USENIX security ’22), pp 2261–2279.
https://www.usenix.org/conference/usenixsecurity22/presentation/cerdeira

75. Boundary Devices (2023) Nitrogen8M. https://boundarydevices.com/product/nitrogen8m/. Accessed 3
June 2023

76. Canonical Ltd (2017) stress-ng—a tool to load and stress a computer system. https://manpages.ubuntu.
com/manpages/artful/man1/stress-ng.1.html. Accessed 26 May 2021

77. Arm Limited (2016) ARM Cortex-A72 MPCore processor. https://developer.arm.com/documentation/
100095/0003/. Accessed 12 Apr 2021

78. m0nad (2021) Diamorphine. https://github.com/m0nad/Diamorphine. Accessed 26 May 2021

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1109/INFOCOM.2018.8486293
https://doi.org/10.1109/MICRO.2003.1253197
https://doi.org/10.1109/TITS.2020.2984197
https://doi.org/10.1109/TITS.2020.2984197
https://doi.org/10.1109/GIOTS.2017.8016227
https://www.dpdk.org/about/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/lite/guide
https://github.com/ARM-software/arm-trusted-firmware
https://optee.readthedocs.io/en/latest/general/about.html
https://optee.readthedocs.io/en/latest/general/about.html
https://doi.org/10.1109/SP.2019.00084
https://doi.org/10.1109/SP.2019.00084
https://doi.org/10.1145/3320269.3384723
https://doi.org/10.1145/3427228.3427293
https://doi.org/10.1145/3485832.3485836
https://developer.arm.com/documentation/ddi0595/2020-12/AArch64-Registers/PMUSERENR-EL0--Performance-Monitors-User-Enable-Register
https://developer.arm.com/documentation/ddi0595/2020-12/AArch64-Registers/PMUSERENR-EL0--Performance-Monitors-User-Enable-Register
https://developer.arm.com/documentation/ddi0595/2020-12/AArch64-Registers/PMUSERENR-EL0--Performance-Monitors-User-Enable-Register
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ning
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ning
https://developer.arm.com/documentation/ddi0601/2022-03/AArch64-Registers/MDCR-EL3-Monitor-Debug-Configuration-Register--EL3-?lang=en
https://developer.arm.com/documentation/ddi0601/2022-03/AArch64-Registers/MDCR-EL3-Monitor-Debug-Configuration-Register--EL3-?lang=en
https://developer.arm.com/documentation/ddi0601/2022-03/AArch64-Registers/MDCR-EL3-Monitor-Debug-Configuration-Register--EL3-?lang=en
https://doi.org/10.1145/3291047
https://www.usenix.org/conference/usenixsecurity22/presentation/cerdeira
https://boundarydevices.com/product/nitrogen8m/
https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
https://developer.arm.com/documentation/100095/0003/
https://developer.arm.com/documentation/100095/0003/
https://github.com/m0nad/Diamorphine

	Profiling with trust: system monitoring from trusted execution environments
	Abstract
	1 Introduction
	2 Related work
	3 Threat model
	4 Trusted Monitor
	4.1 Overview
	4.2 Device model
	4.3 Neural network model
	4.4 System components

	5 Evaluation
	5.1 Evaluation setup
	5.2 System and process monitoring
	5.3 Selection of the performance counters
	5.4 Distinguishability of stressors
	5.5 Rootkit detection
	5.6 Overhead

	6 Conclusion
	References

