
Design Automation for Embedded Systems
https://doi.org/10.1007/s10617-024-09282-2

Novel adaptive quantization methodology for 8-bit
floating-point DNN training

Mohammad Hassani Sadi1 · Chirag Sudarshan2 · Norbert Wehn1

Received: 29 June 2023 / Accepted: 18 January 2024
© The Author(s) 2024

Abstract
There is a high energy cost associated with training Deep Neural Networks (DNNs). Off-chip
memory access contributes a major portion to the overall energy consumption. Reduction in
the number of off-chip memory transactions can be achieved by quantizing the data words
to low data bit-width (E.g., 8-bit). However, low-bit-width data formats suffer from a limited
dynamic range, resulting in reduced accuracy. In this paper, a novel 8-bit Floating Point (FP8)
data format quantized DNN training methodology is presented, which adapts to the required
dynamic range on-the-fly. Our methodology relies on varying the bias values of FP8 format
to fit the dynamic range to the required range of DNN parameters and input feature maps.
The range fitting during the training is adaptively performed by an online statistical analysis
hardware unit without stalling the computation units or its data accesses. Our approach is
compatiblewith anyDNNcompute coreswithout anymajormodifications to the architecture.
We propose to integrate the new FP8 quantization unit in the memory controller. The FP32
data from the compute core are converted to FP8 in the memory controller before writing
to the DRAM and converted back after reading the data from DRAM. Our results show that
the DRAM access energy is reduced by 3.07× while using an 8-bit data format instead of
using 32-bit. The accuracy loss of the proposed methodology with 8-bit quantized training
is ≈ 1% for various networks with image and natural language processing datasets.

Keywords Floating-point · Deep neural network training · DRAM · Adaptive number
system

1 Introduction

Deep Neural Network (DNN) models are rapidly evolving since the last decade to enable
complex context-sensitive learning capabilities. The training phase of DNNmodels involves
large datasets with GBs of memory footprint and high computation requirements [1]. DNN

B Mohammad Hassani Sadi
m.sadi@rptu.de

1 Microelectronic Systems Design Research Group, University of Kaiserslautern-Landau,
Kaiserslautern, Germany

2 Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-14), Jülich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10617-024-09282-2&domain=pdf

M. H. Sadi et al.

training on compute platforms such as GPU, TPU, and other hardware accelerators consumes
extremely high energy. For instance, training the GPT-3 model consumes 1287 megawatt-
hours (MWh) [2]. Many prior research works [3, 4] focused on reducing the DNN training
energy by optimizing the computation logic, but less attention is given to data access energy.
However, a major portion of the total energy is consumed by off-chip memory like DRAM
on the aforementioned compute platforms due to the memory-intensive nature of DNN tasks.
For example, a single 64bit GDDR6-DRAM transaction consumes 350–480pJ while a 32-
bit Floating-Point (FP32) multiplication only needs 1.31 pJ [5] in the latest 7nm technology.
Similar memory-computation energy gaps were observed for other technology nodes [5].
Neural network accelerators such as DaDINO [6], Cambricon-X [7], eBrain-II [8], and Neu-
roCube [9] published the memory energy consumption to be in the range of 50–90% of the
total energy. This memory energy overhead directly impacts the overall energy efficiency,
especially during training due to its high memory-intensive nature. Hence, this work focuses
on reducing the DRAM data access energy for the DNN training. One solution to reduce
data access energy and increase overall energy efficiency is Processing-in-Memory (PIM).
However, PIM accelerators are mainly focused on the inference part and DNN training is
predominantly confined to conventional platforms. Hence it is important to reduce the data
access energy in conventional Non-PIM platforms.

One of the recent emerging trends to reduce the data access energy and increase the
overall energy efficiency is to adapt the 8-bit Floating-Point (FP8) data format for DNN
training rather than the traditional FP32 format. The FP8 data format enables the packing of
more data words within a DRAM bus and thereby reduces the total number of transactions
by 4× in comparison to FP32. Therefore, it leads to reduced total data access energy and
increased computation throughput. The main challenge of using the FP8 data format is the
limited dynamic range compared to FP32. In many instances, FP8 format’s dynamic range
is not sufficient for training DNN models and results in accuracy loss. For example, the data
range required in the backward pass of Resnet18 (excluding the extreme outliers that are
less than 10−40 = almost zero) is between 10−9 and 10−1. This range is only sufficed by
FP32, BFloat16, AMD’s FP24, and TinyFloat, while 16-bit Floating-Point (FP16) and FP8
does not. Table 1 compares and summarizes the various data formats and their respective
range. To compensate for this limitation, there are two approaches in state-of-the-art. The
first approach [10, 11] involves multiplying the data by a scaling factor to shift the data to the
dynamic range of FP8. The second approach [12, 13] is to use a floating-point data format
with a variable bias.1 This approach shifts the dynamic range of FP8 to the desired data range
by changing the bias value. The advantage of the variable bias approach is it only requires
an additional INT8 adder for range shifting as compared to floating-point multiplications
in the case of the scaling factor approach. As of now, all the aforementioned publications
[10–14] have only demonstrated the possibility of training DNN models with FP8 format by
relying on an offline statistical analysis of the DNN parameters and feature map data which
is in FP32 format. In other words, the training is first computed in FP32 data format to log
all the DNN model-related data, and then by assessing this data a suitable scaling factor or
bias value is identified. This methodology is not suitable for real-world applications where
the data sets and DNN models are evolving continuously. Furthermore, the requirement of
performing training first with FP32 data format in offline-based approaches will effectively
not yield any net energy reductions. Hence online scaling factor or bias identification would
be very promising.

1 floating-point bias, not DNN bias.

123

Novel adaptive quantization methodology...

Table 1 Comparison of Bit-width, Exponent, Mantissa, and Dynamic Range of various data format

Format Bit Width Exponent Mantissa Dynamic range (±)

FP32 32 8 23 1.40e−45 - 3.4e38

FP16 16 5 10 5.96e−5 - 6.5e4

BFlot16 16 8 7 1.18e−38 - 3.4e38

AMD FP24 24 7 16 3.30e−24 - 9.22e18

TinyFloat 12 7 4 1.35e−20 - 8.64e18

FP8(1,5,2) 8 5 2 3.05e−5 − 1.13e5

FP8(1,4,3) 8 4 3 7.81e−3 − 4.7e2

In September 2022NVIDIA introduced the first GPU [1] (H100Hopper) that is capable of
performing the DNN training in FP8 format with builtin module for detecting the appropriate
scaling factor using an online statistical unit. NVIDIA’s statistical unit is capable of online
computing the scaling factor at a tensor level (i.e. one scaling factor per tensor) based on
the history of maximum values of previous iterations. However, there are some open issues
in this context: (1) In H100 GPU the DRAM data access energy reduction advantage is
only applicable if the DNN training is computed on the specialized FP8 tensor core and is
not compatible with other cores. (2) NVIDIA neither present the hardware design of their
statistical unit nor the results such as area, latency, and energy overhead, which limits the
research and open source communities to incorporate the advantages of FP8 data type to
their DNN training accelerator architectures. Furthermore, the exact methodology for online
range analysis is also not made publicly available by NVIDIA, except for a brief description.
(3) None of the state-of-the-art has investigated variable bias approach in combination with
online statistical analysis for FP8 training.

In this work, we present a new online statistical analysis-based methodology to reduce
the DRAM data access energy with FP8 data format and variable bias. In order to make our
approach generic and compatible with any compute core without major architectural modi-
fications, we propose to integrate the online statistical analysis unit in the DRAM memory
controller. During the first few initial epochs of training all data is stored in DRAM in origi-
nal format(i.e. 32-bit or 16-bit). These transactions are sampled by statistical analysis unit to
compute the suitable bias value. The identified bias value is then employed in the rest epochs
to store the DRAMdata in FP8 format during the write operation and reconvert to the original
format (i.e. 32-bit or 16-bit) during the read operation. Thereby reducing the overall DRAM
data access energy. It is highly possible that DNN data contain extreme outlier samples. This
problem is mitigated in our methodology by computing the bias value using the median as
a statistical metric, which is robust to outliers in comparison to other statistical metrics like
minimum, maximum, and mean values. The statistical unit in the memory controller should
also ensure that no added latency is introduced to the memory transactions. There is energy
overhead for bias calculation and conversion of data to FP8 and backward. This is especially
a concern for the online calculation of the median value, which requires large buffers and
many cycles. To maintain a low area and energy overheads, we present a novel approximate
online median calculation unit. This unit is designed to operate in the background without
stalling the compute core or memory data accesses (i.e. no additional latency). Furthermore,
our approximate unit does not require any additional DRAMmemory accesses for statistical
analysis or large internal buffers. It has an area overhead of 6.3% compared to the memory

123

M. H. Sadi et al.

controller area in a 22nm FD-SOI technology and a low power of 0.864mW. Our methodol-
ogy reduces the total DRAM access energy by 3.07× compared to FP32, while the training
accuracy loss is≈ 1%. All our evaluation results are based on a large number of experiments
with various datasets, DNN networks, and DRAM types.

Summarized new contributions of this work are:

• A new online statistical analysis based methodology to reduce the DRAM data access
energy with FP8 data format and variable bias in the DNN training phase. Our approach
is generic and compatible with any compute core as we propose to integrate the online
statistical unit in the DRAM memory controller.

• A novel approximate, low area, and low power online median calculation unit for FP8
bias identification that does not introduce added latency to the memory transactions.

• Through investigation of our methodology with various datasets and networks. We also
present the detailed design of our statistical unit and present all the hardware results in
addition to the accuracy results.

The rest of the paper is organized as follows: Sect. 2 presents the proposed newmethodol-
ogy for online adoption of FP8 data format for reduced data accesses energy during training.
The hardware implementation is presented in Sect. 3. The experimental setup and all the
associated results are presented in Sect. 4 and Sect. 5, respectively.Sect. 6 presents the state-
of-the-art works. The paper is finally concluded in Sect. 7.

2 Methodology

State-of-the-art DNN training is computed using floating-point format. A standard floating-
point number is represented using Eq.1. The bias value is given by Eq.2. The state-of-the-art
format for DNN training is IEEE-754 FP32. Recently, DNN training with 16-bit (BFloat16)
and 12-bit (TinyFloat12) formats [15, 16] also achieved similar accuracy as 32-bit. The
current trend is to target 8-bit floating point number system for DNN training. There are
two popular FP8 configurations i.e. (1,4,3) and (1,5,2), where (1,4,3) means 1-bit sign, 4-bit
exponent and 3-bit mantissa [10, 11]. In [10, 11], (1,4,3) format is used for forwards pass of
the training and (1,5,2) format for backward pass. Furthermore, [10] also showed that it is
not feasible to use (1,4,3) format for the backward pass. In this work, our aim is to employ
the same data format for forward and backward pass. Hence, we adopted (1,5,2) format for
our FP8.

As mentioned in Sect. 1, this paper targets adaptively adjusting FP8 range by statistical
analysis. As per Eq.2, for a standard case, the bias value is 15 and the dynamic range of
FP8 is ±3.05 × 10−5 to ±1.13 × 105. This range is not sufficient for all the training tasks.
Varying the bias is one way to adjust the FP8 data format range to the required range. The
key question is how to calculate Bias without causing range errors, especially for adaptively
adjusting the FP8 range using online statistical analysis, which we answer in this section.

FP Value = (−1Sign) ∗ 1.Mantissa ∗ 2(Exponent−Bias) (1)

Bias = 2(Exponent Si ze−1) − 1 (2)

Our methodology is focused on DRAM memory, but the methodology is applicable to
any level in the memory hierarchy. The details of our methodology are as follows. The data
access from the DRAM in the initial ’e’ epochs of training out of the total ’E’ epochs, where
e<<E, are performed in FP32. The FP32 data that are read and written to the DRAM are
sampled by a statistical analysis unit to identify a suitable bias value by analyzing the data

123

Novel adaptive quantization methodology...

distribution. After identification of a suitable bias value, DRAM write requests from the
compute core are quantized to FP8. This enables a linear reduction of the total number of
DRAM accesses since more data words can be packed in each transaction. Similarly, the read
data are dequantized to FP32 in the memory controller before forwarding it to the core. The
procedure for Quantization and Dequantization of FP32 number to/from FP8 is detailed in
Algorithm 1. In this algorithm, we ignore subnormal and special numbers of FP32 and only
consider normalized numbers. For more details, please refer to chapter 17 of [17].

Algorithm 1 Quantization and Dequantization of FP32 number to/from FP8
procedure Quantization ()

input:FP32_number, selected_FP8_bias
output:FP8_number (1,5,2)
FP32_sign = FP32_number[31]
FP32_exponent = FP32_number[30:23]
FP32_mantissa = FP32_number[22:0]
FP32_bias = 127
new_exponent = FP32_exponent - FP32_bias
if − selected_FP8_bias <= new_exponent <= 32 − selected_FP8_bias then

5bit_FP8_exponent = new_exponent + selected_FP8_bias
else

if new_exponent < −selected_FP8_bias then
5bit_FP8_exponent = 0

else
5bit_FP8_exponent = 31

end if
end if
2bit_FP8_mantissa = Round(FP32_mantissa)
1bit_FP8_sign = FP32_sign

end procedure

procedure Dequantization ()
input:FP8_number, selected_FP8_bias
output:FP32_number (1,8,23)
FP8_sign = FP32_number[7]
FP8_exponent = FP32_number[6:2]
FP8_mantissa = FP32_number[1:0]
FP8_bias = selected_FP8_bias
FP32_bias = 127
new_exponent = FP8_exponent - FP8_bias
8bit_FP8_exponent = AppendZerosToLeft(new_exponent + FP32_bias)
23bit_FP8_mantissa = AppendZerosToRight(FP8_mantissa)
1bit_FP32_sign = FP8_sign

end procedure

In our methodology, we calculate four bias values, one for each type of training data:
forward pass activations, backward pass error, weight gradients, and weights (refer Figure 2
of [10] for definitions). This is because the data range for each phase of training varies.
Please note that in residual networks the residual connections have the same dynamic range
as activations as a result we have utilized the same bias value for both. Fig. 1 shows the top-
level architectural view of our approach. The online statistical analysis unit is integrated in
the memory controller to enable our approach to be compatible with any DNN compute core
without major modifications. The online statistical analysis unit includes three key blocks,
i.e., quantizer, dequantizer, and bias estimator units. At a memory controller level, it is not

123

M. H. Sadi et al.

Fig. 1 High-level architecture

possible to differentiate the type of data, (i.e. forward pass activations or backward pass errors
or weights or gradient), which is required to select the appropriate bias value among the four.
Hence, our approach requires the compute core to indicate the type of accessed data via the
user signals of the AXI interface along with the data read/write requests. The user signals of
AXI interface are also used to differentiate between the DNN data and other compute-related
instructions. These compute-related instruction accesses are bypassed and retained in their
original format. The additional information that is to be sent via AXI user interface can be
extracted by the memory management unit with minimal modifications if each of the four
types of data and instructions are separated based on address space.

2.1 Bias estimator

The online statistical analysis unit has to fulfill the following requirements (1) capability to
compute the statistical results in the background, (2) streamline processing of the datawithout
stalling or increasing the latency of the compute core or memory transactions, (3) avoiding
any additional DRAM accesses for the statistical analysis, and (4) minimal area/energy over-
head. The bias estimator is the most important block and should suffice the aforementioned
requirements, while the quantizer and dequantizer blocks have low complexity once the bias
value is known. One possiable metric can be theminimum (min) andmaximum (max) values.
Calculating the min-max value requires only two FP32 comparators and can be calculated in
a streamline fashion. Mean is another low-complexity metric that is also suitable for stream-
line processing of the incoming data and can be implemented with a set of accumulators.
However, neithermean, normin–max are robust statistics since a single outlier can drastically
impact the value of these metrics. For example, an extreme sample at ±10−42 in a single
epoch during bias calculation will result in wrong bias selection. Similarly, a long tail of data
samples on the histogram would also shift the mean. Other complex statistics like standard
deviation and probability distribution of data introduce the large area and energy overhead
with long stalling of computation.

We used median value in our statistical analysis to maintain a balance between numeri-
cal robustness and implementation complexity. Median is known for its robustness against
outliers [18] and it has a low complexity compared to standard deviation or probability dis-
tribution. Median represents the middle number within the given data samples after sorting

123

Novel adaptive quantization methodology...

Table 2 Reference table for mapping median value to Bias

Reference median value Bias Reference median Bias Reference median Bias

64 10 2 15 0.0625 20

32 11 1 16 – –

16 12 0.5 17 – –

8 13 0.25 18 – –

4 14 0.125 19 5.960E-8 40

(refer Sect. 3 for implementation details). Our approach calculates the median of DNN data
which is in FP32 format. Afterward, we find the nearest reference median value from Table 2
to which the computedmedian valuematches. The referencemedian values of the FP8 format
listed in Table 2 is the middle number of the FP8 data range for a given bias value which
is calculated using use Eq.3. The selected bias as a function of the median is then used for
quantizing memory access to FP8.

Reference Median Value = 1.0 ∗ 2(16−Bias) (3)

Please note, this reference table is stored as a look-up-table in the bias estimator hardware
unit. Figure 2 shows an example of adjusting FP8 range based on the median of DNN data.
The histogram of backward pass error data for epoch 2 ofMobileNet-V2 network trainedwith
TinyImagenet dataset is shown in the top graph of this figure. The median of this histogram is
marked as a red dashed line, which is at value 4.18* 10−5. This median value is used to find
the nearest median value within the reference table (i.e. Table 2), thereby selecting the bias
value as 31. As shown in the middle graph of Fig. 2, the data range of the FP8 format with
bias 31 fits most of the data samples of the distribution with an exception of a few extreme
samples that are less than ±10−40 and are almost considered as zero by the network. We will
show in the results section (i.e. Sect. 5) that the impact of this on the DNN training accuracy
of various networks and datasets is negligible. Finally, we also present the data range of FP8
data format with the standard bias value 15 in the bottom graph of Fig. 2, which results in a
large data range error.

2.2 Median variation and ’e’ identification

As already stated, our methodology uses the initial ’e’ epochs with FP32 data transaction
for bias value identification, which is used for the data quantization in the remaining epochs.
Hence, it is important to analyze the variation of the median value across the epochs, as the
bias is calculated using the median. Figure 3 shows the median variation across the epochs of
MobileNet-V2 and GoogleNet. Respective bias boundaries computed using Table 2 are also
presented. As we can observe, the median variation is nominal and the maximum change in
the bias value is two. For example, the required bias value in epoch 1 is 24 and in epoch 28 is
26 for gradient data of MobileNet training. This error of 2 in the bias value has a low impact
on the range of FP8 where the data range is from ±5.9 × 10−8 to ±2.24 × 102 for bias 24
and from ±1.49 × 10−8 to ±5.6 × 101 for a bias value of 26. Due to the high overlapping
of range, the impact on DNN accuracy is minimal (refer Sect. 5). We validated the nominal
variation of median for other networks and other datasets as well, whose results are shown
in Table 3. A similar trend is also observed in the histograms presented in Figure 3 of [19]

123

M. H. Sadi et al.

10−46 10−39 10−32 10−25 10−18 10−11 10−4 103
101

102

103

104

105

106
D
en

si
ty

Histogram of MobileNet Backward Pass Errors

median

10−46 10−39 10−32 10−25 10−18 10−11 10−4 103

Representable Range of FP8 with bias = 31

median

10−46 10−39 10−32 10−25 10−18 10−11 10−4 103

Representable Range of FP8 with bias = 15

median

Fig. 2 Fitting the FP8 data format range to theMobileNet-V2 backward pass errors histogram. The data points
shown in this histogram are excluding the sign

and Figure 2 of [20], which show the distribution of DNN parameters to be consistent across
the epochs and thereby the resulting median has nominal variation. Furthermore, we also
validated if a similar trend is observed when the weight initialization is set to all zeros, refer
Table 3 Zero initialization. In all the cases, the median and resulting bias variation are very
minimal. Based on these experimental results, the ’e’ in our methodology can be set to two,
i.e. the DRAM transactions in the first two epochs are in FP32 to identify the bias value,
which is used for the rest of the epochs to quantize and dequantize the DRAM transactions
to and from FP8 format. However, we will show in Sect. 3 that our approximate median
calculator will require an additional 2 epochs, making ’e’ a total of 4.

Thebias estimator that is integrated in thememory controller has lowmedian variation only
if all the data are passed through the DRAM memory controller at least once. In a typical
DNN training compute platform for large networks, most of the forward pass activation
and backward pass error data are stored in DRAM due to batch normalization and their
requirement for later stage computations like gradient calculation. Furthermore, the weights
and the gradients are also stored in the DRAM due to their large parameter size. We also
evaluated themedian calculationwith a limited number of samples to verify the casewhere the
whole data samples of forward, backward, weights, or gradient are not stored. We calculated
the median with 30% of the total samples, and the median variation resulted in a maximum
bias change of one.

123

Novel adaptive quantization methodology...

Fig. 3 Median variation across epochs for training data of a MobileNet-V2 with TinyImagenet dataset and b
GoogleNet with Cifar100 dataset. The graph also shows the nearest bias value for the given median

123

M. H. Sadi et al.

Ta
bl
e
3

M
ed
ia
n/
B
ia
s
va
ri
at
io
n
vs

ep
oc
h
fo
r
va
ri
ou
s
w
ei
gh
ts
in
iti
al
iz
at
io
n
st
ra
te
gi
es
,n

et
w
or
ks

an
d
da
ta
se
ts

M
od

el
Ty

pe
G
lo
ro
ti
ni
tia

liz
at
io
n
[2
1]

Z
er
o
in
iti
al
iz
at
io
n

2n
d
E
po

ch
50

th
E
po

ch
2n

d
E
po

ch
50

th
E
po

ch

V
G
G
16

C
if
ar
10

0
F

0.
31

(1
8)

0.
25

2(
18

)
0.
29

1(
18

)
0.
24

8(
18

)

B
0.
70

1E
-0
6(
31

)
1.
10

E
-0
6(
31

)
0.
52

1E
-0
6(
31

)
1.
43

E
-0
6(
31

)

W
0.
40

1E
-0
2(
24

)
0.
08

71
E
-0
2(
26

)
0.
42

E
-0
2(
24

)
0.
26

E
-0
2(
25

)

G
0.
20

E
-0
3(
28

)
0.
32

E
-0
3(
28

)
0.
35

5E
-0
3(
28

)
0.
38

1E
-0
3(
27

)

R
es
N
et
18

C
if
ar
10

0
F

0.
55

6(
17

)
0.
40

4(
17

)
0.
71

(1
7)

0.
40

(1
7)

B
1.
23

E
-0
5(
31

)
0.
91

E
-0
5(
31

)
0.
98

E
-0
5(
31

)
1.
08

E
-0
5(
31

)

W
0.
46

E
-0
2(
24

)
0.
39

E
-0
2(
24

)
0.
62

E
-0
2(
23

)
0.
50

1E
-0
2(
24

)

G
0.
63

E
-0
3(
27

)
0.
91

E
-0
3(
26

)
0.
71

E
-0
3(
26

)
0.
11

E
-0
2(
25

)

R
es
N
et
18

T
in
yI
m
ag
eN

et
F

0.
82

1(
16

)
0.
40

9(
17

)
0.
61

(1
7)

0.
36

(1
7)

B
7.
09

E
-0
6(
31

)
9.
16

E
-0
6(
31

)
3.
01

E
-0
6(
31

)
7.
42

E
-0
6(
31

)

W
0.
01

62
(2
2)

0.
02

04
(2
2)

0.
01

58
(2
2)

0.
01

90
(2
2)

G
0.
60

1E
-0
3(
27

)
0.
90

4E
-0
3(
26

)
0.
50

4E
-0
3(
27

)
0.
60

6E
-0
3(
27

)

R
ep
re
se
nt
at
io
n
=
M
ed
ia
n(
B
ia
s)

F
=
Fo

rw
ar
d
pa
ss

ac
tiv

at
io
n,

B
B
ac
kw

ar
d
pa
ss

er
ro
r,
W

=
W
ei
gh
ts
,G

=
G
ra
di
en
ts

123

Novel adaptive quantization methodology...

Ta
bl
e
4

M
ed
ia
n/
B
ia
s
va
ri
at
io
n
fo
r
di
ff
er
en
tn

et
w
or
ks

an
d
T
in
yI
m
ag
e
da
ta
se
t

Ty
pe

R
ea
ld

at
a
sa
m
pl
es

R
ea
ls
am

pl
es

w
ith

sy
nt
he
tic

ou
tli
er
s

A
ct
ua
l

Pr
op
os
ed

ap
pr
ox
im

at
e

Pr
op
os
ed

ap
pr
ox
im

at
e

M
ob

ile
N
et
-V

2
T
in
yI
m
ag
eN

et
F

0.
05

3(
20

)
0.
31

(1
8)

0.
32

(1
8)

B
3.
18

E
-0
5(
31

)
9.
00

9E
-0
5(
31

)
4.
0E

-0
5(
31

)

W
0.
01

8(
22

)
0.
04

1(
21

)
0.
04

09
(2
1)

G
0.
11

E
-0
2(
26

)
0.
84

E
-0
3(
26

)
0.
41

E
-0
2(
24

)

R
es
N
et
18

C
if
ar
10

0
F

0.
59

4(
17

)
0.
34

(1
8)

0.
35

0(
18

)

B
0.
13

E
-0
5(
31

)
0.
62

E
-0
5(
31

)
0.
64

2E
-0
5(
31

)

W
0.
80

2E
-0
2(
23

)
0.
40

2E
-0
2(
24

)
0.
49

E
-0
2(
24

)

G
0.
53

E
-0
3(
27

)
0.
58

E
-0
3(
27

)
0.
40

0E
-0
3(
27

)

A
ct
ua
lm

ed
ia
n
@

ep
oc
h
4
ve
rs
us

ap
pr
ox
im

at
e
m
ed
ia
n
w
ith

ep
oc
h
1–
4
da
ta

R
ep
re
se
nt
at
io
n
=
M
ed
ia
n(
B
ia
s)

123

M. H. Sadi et al.

Fig. 4 Hardware architecture for median calculation

3 Hardware implementation

In this section, we present our novel hardware architecture for online median calculation,
which is the key function of the bias estimator. The architecture processes the incoming data
in a streamlined fashion, without stalling the compute core or requiring any additional DRAM
accesses. The proposed hardware architecture is shown in Fig. 4. It requires four iterations
to compute the median, where each iteration is equal to an epoch in our approach. This
approximate median calculation is based on the premise that the median variation between
the epochs is minimal (as shown in Fig. 3). In the first epoch, the Min/Max block compares
incoming FP32 data with the previous value to identify the minimum and maximum (min-
max) values. At the end of the first epoch, the min-max values are used to identify the data
range and divide the range into ’M’ bins by the range unit. In the second epoch, each incoming
FP32 data is compared against the bin ranges and the bin counters are incremented if the
data is within its range. At the end of the second epoch, the bin counter values are added
sequentially from lowest to highest to identify the bin at which the ’N/2’ crossing over occurs
(referred to as half-bin henceforth), where ’N’ is the total number of samples in that epoch.
The median unit uses a separate counter for counting ’N’ in the given epoch. The bin at
which this cross-over occurs is the bin with the median value, and the average of its range is
approximately equal to the median. For increased accuracy of the median value, the second

123

Novel adaptive quantization methodology...

Fig. 5 Error of proposed approximate median unit in comparison to the accurate median value for various
number of bins (M)

epoch’s half-bin range is further divided into ’M’ bins by range unit. In the third epoch, the
bin ranges are configured to the new values and the bin counting is repeated to fine-tune the
median value. Our methodology employs four epochs in total to identify the median with
low error.

The optimum value of M is obtained based on error analysis of the proposed approximate
median hardware. Figure5 shows the error of the approximate median hardware unit in
comparison to the accurate median for differed values of M. As shown, the error is reduced
by utilizing more number of bins. In this work, we aim to have the error value less than 10%,
as it will result in the same bias value as accurate median. Therefore, we set the value of
M to 20 which has an error value less than 10%. Higher values of M shows will improve
the accuracy of the median but at the cost of a higher hardware footprint. All calculations
related to median value in the memory controller are performed in the background and adds
a maximum of 40 cycles delay (i.e. 40ns for 1GHz clock frequency) for range division
and half-bin identification at the end of an epoch. The time period of one epoch computed
on a standard DNN accelerator of GPU varies from seconds to minutes depending on the
network, dataset, and computation speed. This additional latency per epoch is very minimal
when compared to the 360ns stall introduced by the memory controller during each DRAM
refresh operation that occurs at an interval of 7.8µs. As alreadymentioned, the bias estimator
calculates four bias values, one for each type of training data i.e. forward pass activation,
backward pass error, weight gradient, and weights. Bias estimator has individual min-max
block, range register, and bin counter registers for each training phase. The incoming FP32
data is separated and accordingly processed based on the user signal of AXI interface bits
that indicate the type of data.

Table 4 compares the actual median vs the approximatemedian at the end of the 4th epoch.
The resulting bias variation due to the approximate median is a maximum of two. The 4th
epoch approximate median in comparison to the 50th epoch’s actual median (refer Table 3)

123

M. H. Sadi et al.

also resulted in a bias variation of maximum two, which results in a low accuracy loss (refer
Fig. 5). Additionally, we synthetically introduced extreme data samples in the first epoch (i.e.
10−40 and 1010) to adversely impact the min-max value and compare the median error after
four epochs. The results shows that even with extreme outliers, bias variation maximum is
two.

4 Experimental setup

For evaluating the accuracy results,we use PyTorch andQPyTorch [22] libraries.Wemodified
the QPyTorch library to support Floating-Point data format with variable bias. After the bias
estimation epochs, the modified library is used to quantize the DNN data to FP8 based on the
calculated bias. Themedian calculation is performedusing a simulationmodel of the proposed
architecture. The hardware implementation of all the blocks of the online statistical analysis
unit i.e., bias estimator, quantizer, and deqauntizer, were designed in Verilog and Synthesized
in Synopsis’ Design Compiler using Global Foundry, FD-SOI, 22nm technology. In order
to calculate the DRAM energy and latency reduction of the FP8 data format, we employ the
following open-source tools. Firsts, SCALE-Sim [23], an open-source systolic array cycle-
accurate simulator, generates the data access requests to the DRAM memory controller for
various types of training data. SCALE-Sim’s topology configuration is configured as per
the training phase (i.e. forward pass or backpropagation) to obtain data access requests of
each type. Second, DRAMSys [24] and DRAMPower [25], a DRAM subsystem (memory
controller + DRAM) exploration framework, to obtain the energy and latency of DRAM
accesses. Our evaluations are performed for DDR3 and DDR4 DRAM memories.

5 Results

This section presents DNN accuracy results, area and power results of hardware units, and
DRAM data access energy.

5.1 Accuracy

This section presents DNN training accuracy results of our methodology and compares it
against other state-of-the-art data formats such as IEEE-754 FP32, FP16, and BFloat16 [15].
Table 5 summarizes the accuracy results. Our evaluations are conducted on a wide range of
well-known DNN models such as LSTMs, Transformer, VGG-16, ResNet18, ResNet101,
MobileNet-V2,DenseNet, andGoogleNet. Furthermore, our evaluations consider six datasets
(i.e. Multi30K for English to German translation, IMDB review, PennTreeBank, Cifar-10,
Cifar-100, and TinyImageNet) that cover image classification and natural language pro-
cessing applications. We consider a wide range of training epochs between 15 and 250 to
demonstrate the feasibility of our methodology for a wide range of cases. For all the networks
our methodology resulted in minimal DNN training accuracy loss. For the image classifi-
cation applications, the resulting accuracy reduction of the FP8 format is on average 1%
lower compared to the reference FP32 format. The same is the case for LSTMs with the
IMDB review dataset. The accuracy of the LSTMs for PennTreeBank dataset is measured
in perplexity (PPL) score (lower value is better), and Transformer-base [26] for Multi30K
dataset is measured in BLEU score (higher value is better). In both the cases the accuracy of

123

Novel adaptive quantization methodology...

FP8 is almost close to FP32. For example, a BLEU score of 30-40 is considered "understand-
able to good translations", which the FP8, BFloat16, and FP32 data format achieve for the
Transformer-base [26] model considered in our experiments. We were unable to compare the
accuracy of our methodology vs NVIDIA’s FP8 methodology due to the non-availability of
the methodologies in the public platform. In the future, we will conduct our experiments on
the H100 board to obtain accuracy results and comparison to our methodology. It is important
to note that our approach has an edge over NVIDIA’s approach as it is compatible with any
compute core by integrating the statistical unit in the memory controller.

5.2 Online statistical analysis unit area and power

Table 6 shows the hardware implementation results of varies the blocks of our online
statistical analysis unit. The total area is 0.019mm2 in 22nm FD-SOI technology. The area
overhead of this unit in comparison to the memory controller digital logic area is 6.3%. The
area of memory controller digital logic is 0.890mm2 in 65nm technology [27] that is linearly
scaled to 22nm technology (0.301mm2). All the blocks are designed to operate at 1GHz
frequency to meet the compute core data access request frequency without adding additional
stalls. The bias estimator consumes the highest power of 10.8mW among the three blocks.
However, this unit is only active during initial epochs(e.g. 4 epochs) and for the rest of training
it is deactivated via clock gating. Hence, the average power of the bias estimator is 0.864mW
for 50 epochs, which is very low in comparison to the typical power consumption of a DDR4
DRAM device (i.e. 1–2W [28])

5.3 DRAM access analysis

Table 7 presents the DRAM energy consumption and elapsed time for the following number
of requests i.e. Forward = 13925992, Backward = 13862080, and Gradient = 13926181,
in different data widths. The data requests are generated from SCALE-Sim tool for one
single input image in ResNet18. The systolic array and the on-chip memory configurations
of SCALE-Sim are set as per the two well-known hardware accelerators, i.e., Google TPUv4
[5] and Qualcomm Cloud Al 100 [29]. The energy consumption of DRAM is first-order
linearly reduced with data width. For instance, in TPU-like accelerator with DDR4 DRAM
the forward pass energy is reduced from 5.35 to 1.53mJ. Our methodology with four epochs
in FP32 and 46 epochs in FP8 reduces the total DRAM energy by 3.07× compared to
conventional FP32 data format training for 50 epochs. In the future, we will extend our
experiments to other DRAM types like LPDDR4, LPDD5, DDR5, HBM2, and GDDR5.

6 Related works

The success of using low bit-width data format for inference of DNN [30–32], has increased
interest in utilizing low-precision data format for training. 16-bit data formats have gained
popularity as an energy-efficient alternative to FP32 forDNN training. IEEEFP16 data format
is one of the common 16-bit formats for training, which allocates 5-bits for the exponent and
10-bits for the mantissa. However, using FP16 for DNN training poses a challenge as the
reduced dynamic range as shown in table 1 due to the 5-bit exponent size can lead to accuracy
degradation. This is especially true for the gradients values in the backward pass of DNN
training which often requires a larger range. To overcome this challenge, NVIDIA proposed

123

M. H. Sadi et al.

Ta
bl
e
5

D
N
N
tr
ai
ni
ng

ac
cu
ra
cy

re
su
lts

co
m
pa
ri
so
n

A
pp
lic
at
io
n

D
at
aS
et

D
N
N
M
od
el

A
cc
ur
ac
y
M
ea
su
re
d
in

N
um

be
r
of

T
ra
in
in
g
E
po
ch
s

FP
32

FP
16

B
Fl
oa
t1
6

FP
8
(T
hi
s
W
or
k)

N
at
ur
al
L
an
gu

ag
e
Pr
oc
es
si
ng

M
ul
ti3

0k
T
ra
ns
fo
rm

er
-b
as
e

B
L
E
U

25
0

33
.2

29
.6

32
.8

30
.8

IM
D
B
re
vi
ew

L
ST

M
%

15
88

.2
0

85
.1
0

88
87

.3
1

Pe
nn

T
re
eB

an
k

L
ST

M
PP

L
35

10
4.
4

10
7.
7

10
4.
6

10
9.
2

Im
ag
e
C
la
ss
ifi
ca
tio

n
C
if
ar
10
0

D
en
se
N
et

%
65

80
.2
0

32
80

79
.1
0

R
es
N
et
18

%
65

71
.6
0

41
71

.5
0

71

R
es
N
et
10

1
%

65
79

.7
8

68
.1
0

79
.7
0

78
.8
0

V
G
G
16

%
65

68
.6
0

24
67

.7
0

67

G
oo

gl
eN

et
%

65
78

.1
0

75
78

77
.0
3

C
if
ar
10

R
es
N
et
18

%
10

0
93

.0
2

91
.8
0

93
93

V
G
G
16

%
10

0
93

.6
4

92
.1
0

93
.6
0

93
.2
5

G
oo

gl
eN

et
%

10
0

95
91

95
94

.6
0

R
es
N
et
10

1
%

10
0

95
.5
0

89
.4
0

95
.5
0

94
.8
0

T
in
yI
m
ag
eN

et
M
ob

ile
N
et
-V

2
%

50
52

.3
0

37
.2
0

52
51

.1
0

V
G
G
16

%
50

52
.1
0

45
.4
0

52
52

R
es
N
et
18

%
50

45
35

45
44

.6
0

G
oo

gl
eN

et
%

50
50

.7
0

12
50

.4
0

50

123

Novel adaptive quantization methodology...

Table 6 Hardware implementation results of online statistical analysis unit (post-synthesis)

Block OP Area Freq Power

Quantizer FP32toFP8 66µm2 1GHz 0.0033mW

DeQuantizer FP8toFP32 31µm2 1GHz 0.003mW

Bias Estimator Median Calc 18996µm2 1GHz 10.8mW

multiplying the gradient values to a scaling factor to shift the values into a dynamic range of
FP16. This approach achieves the same accuracy as the baseline FP32. Another well-known
data format for DNN training is BFloat16, which has an 8-bit exponent and a 7-bit mantissa
part. Since the BFloat exponent size is the same as that of FP32, all DNN training phases(i.e.
forward, backward,...) can be performed using BFloat16 without the need for scaling since
the dynamic range is almost covers similar range to FP32, as shown in Table 1. Recently,
researchers have attempted to train DNNs with sub 16-bit data formats. The authors of [16]
proposed a 12-bit data format called TinyFloat, with 7-bit exponent and 4-bit mantissa. This
data format achieves almost same accuracy as FP32 since the number of exponent bits is
close to the FP32 format. However, training DNNs with less than 12-bit width, such as 8-bit,
poses a significant challenge as it is not possible to provide sufficient range.

In 2019, IBM [10, 14] proposed the first hybrid FP8 based DNN training, which relied on
scaling factors to fit backward pass data within the dynamic range of FP8. Additionally, they
allocated different exponent sizes for forward and backward passes, resulting in different
computation units. NVIDIA, ARM, and Intel published a white paper [11] on employing
FP8 for a variety of DNN training tasks. Similar to IBM, their work also relied on the scaling
factor. Finding the scaling factor in [11] is based on offline heuristics experiments with model
parameters and intermediate layer data output. In [12] an FP8 format with variable bias is
presented to adjust the data format range to the application desired range. However, the
procedure for finding bias is offline, similar to other previous publications. NVIDIA recently
introduced Hopper 100 GPU [1] which supports FP8 data format with online identification
of scaling factor capability. NVIDIAs GPU by performing statistical analysis on each tensor
and the history of that tensor in the previous iteration detect the scaling factors. NVIDIA
does not reveal the details such as the hardware design of the statistical analysis unit which
limits the researchers utilizing the FP8 data type with online scaling factor detection to their
DNN training accelerators. NVIDIA’s approach is only compatible with their own custom
FP8 format and can not incorporate into other accelerators with data formats such as FP32
or FP16. None of the previous works have presented an online methodology so far to detect
the bias value for variable bias floating point format.

7 Conclusion

This paper presents a novel 8-bit quantization methodology to reduce DRAM energy con-
sumption ofDNN training. FP8 can not provide sufficient range forDNN training. By varying
the bias value of FP8 format, the range can be shifted to the application-required range. We
proposed an online statistical analysis approach to detect the suitable bias value for a given
DNNmodel without stalling training. The statistical metric employed in this work is median
due to its robustness towards outliers. notationOur experiments showed that themedian value
is consistent across the epochs. This enabled the identification of the bias valuewithin the first

123

M. H. Sadi et al.

Ta
bl
e
7

D
R
A
M

en
er
gy

re
su
lts

fo
r
pr
oc
es
si
ng

da
ta
re
qu
es
ts
fr
om

di
ff
er
en
tt
ra
in
in
g
ta
sk
s
of

R
es
N
et
18

SC
A
L
E
-S
im

C
on
fig

D
at
a
W
id
th

Ty
pe

D
D
R
3-
D
IM

M
D
Q
=
64
,D

at
aR

at
e=

18
66

D
D
R
4-
D
IM

M
D
Q
=
64
,D

at
aR

at
e=

21
33

T
im

e(
m
s)

E
ne
rg
y(
m
J)

T
im

e(
m
s)

E
ne
rg
y(
m
J)

T
PU

-l
ik
e
#M

A
C
s:
12
8×

12
8
on

-c
hi
p:
36

M
B

8-
bi
t

F
1.
16

2.
14

0.
68

1.
53

B
1.
18

2.
17

0.
69

1.
58

G
1.
03

1.
95

0.
63

1.
23

32
-b
it

F
4.
13

7.
32

2.
49

5.
35

B
4.
13

7.
35

2.
51

5.
47

G
4.
44

8.
96

2.
83

5.
38

Q
ua
lc
om

m
-l
ik
e
#M

A
C
s:
64

×6
4
on

-c
hi
p:
9M

B
8-
bi
t

F
1.
01

1.
93

0.
6

1.
44

B
1

1.
94

0.
61

1.
47

G
1.
07

2.
02

0.
63

1.
31

32
-b
it

F
4.
16

5.
13

2.
39

7.
11

B
4.
15

5.
21

2.
4

7.
09

G
4.
35

4.
77

2.
68

8.
49

T
he

no
ta
tio

n
F,
B
,a
nd

G
co
nt
ai
n
al
lt
he

re
qu

ir
ed

da
ta
fo
r
co
m
pu

tin
g
ea
ch

re
sp
ec
tiv

e
ph

as
e;
fo
r
in
st
an
ce
,F

in
cl
ud

es
bo

th
ac
tiv

at
io
ns

an
d
w
ei
gh

ts
in

fo
rw

ar
d
pa
ss

123

Novel adaptive quantization methodology...

four epochs using FP32 data transactions, while the remaining 46 epochs’ data transactions
are quantized to FP8. The paper also presented a new hardware-efficient approximate median
calculation unit that has low area, power, and latency overhead. In order to be compatible
with any DNN compute core without any major architectural modifications, the new quan-
tization unit is integrated in the memory controller. Overall, our methodology reduces the
total DRAM energy by 3.07× in comparison to the conventional FP32 transactions, while
having a minor accuracy degradation of 1%.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availibility The data which are used in this work are openly available in the following URLs.
https://www.cs.toronto.edu/\protect\unhbox\voidb@x\penalty\@M\kriz/cifar.html https://www.kaggle.com/
competitions/tiny-imagenet/data https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-
movie-reviewshttps://github.com/multi30k/dataset https://www.kaggle.com/datasets/nltkdata/penn-tree-bank

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Choquette J (2022) Nvidia hopper gpu: scaling performance. In: 2022 IEEE Hot Chips 34 Symposium
(HCS), IEEE Computer Society, (pp. 1–46)

2. Patterson D, Gonzalez J, Le Q, Liang C, Munguia L-M, Rothchild D, So D, Texier M, Dean J (2021)
Carbon emissions and large neural network training. arXiv preprint arXiv:2104.10350

3. He X, Liu J, Xie Z, Chen H, Chen G, Zhang W, Li D (2021) Enabling energy-efficient DNN training on
hybrid GPU-FPGA accelerators. In: Proceedings of the ACM International Conference on Supercomput-
ing, (pp. 227–241)

4. You J, Chung J-W,ChowdhuryM (2022) Zeus: Understanding andOptimizingGPUEnergyConsumption
of DNN Training. arXiv preprint arXiv:2208.06102

5. Jouppi NP, Yoon DH, Ashcraft M, Gottscho M, Jablin TB, Kurian G, Laudon J, Li S, Ma P, Ma X(2021)
Ten lessons from three generations shaped Google’s TPUv4i: Industrial product. In: 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA), (pp. 1–14). IEEE

6. ChenT,DuZ, SunN,Wang J,WuC,ChenY, TemamO (2014)Diannao: a small-footprint high-throughput
accelerator for ubiquitous machine-learning. ACM SIGARCH Comput Archit News 42(1):269–284

7. Zhang S, Du Z, Zhang L, Lan H, Liu S, Li L, Guo Q, Chen T, Chen Y (2016) Cambricon-X: an accelerator
for sparse neural networks. In: 2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), (pp. 1–12). IEEE

8. Stathis D, Sudarshan C, Yang Y, Jung M, Weis C, Hemani A, Lansner A, Wehn N (2020) eBrainII: a 3
kW realtime custom 3D DRAM integrated ASIC implementation of a biologically plausible model of a
human scale cortex. J Signal Process Syst 92(11):1323–1343

9. Kim D, Kung J, Chai S, Yalamanchili S, Mukhopadhyay S (2016) Neurocube: a programmable dig-
ital neuromorphic architecture with high-density 3D memory. ACM SIGARCH Comput Archit News
44(3):380–392

10. Sun X, Choi J, Chen C-Y, Wang N, Venkataramani S, Srinivasan VV, Cui X, ZhangW, Gopalakrishnan K
(2019) Hybrid 8-bit floating point (HFP8) training and inference for deep neural networks. In: Advances
in Neural Information Processing Systems 32

11. Micikevicius P, Stosic D, Burgess N, Cornea M, Dubey P, Grisenthwaite R, Ha S, Heinecke A, Judd P,
Kamalu J, et al (2022) FP8 Formats for Deep Learning. arXiv preprint arXiv:2209.05433

12. Sudarshan C, Sadi MH, Steiner L, Weis C, Wehn N (2022) A Critical Assessment of DRAM-PIM
Architectures-Trends, Challenges and Solutions. In: International Conference on Embedded Computer
Systems, (pp. 362–379). Springer

123

https://www.cs.toronto.edu/protect unhbox voidb@x penalty @M {}kriz/cifar.html
https://www.kaggle.com/competitions/tiny-imagenet/data
https://www.kaggle.com/competitions/tiny-imagenet/data
https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://github.com/multi30k/dataset
https://www.kaggle.com/datasets/nltkdata/penn-tree-bank
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2104.10350
http://arxiv.org/abs/2208.06102
http://arxiv.org/abs/2209.05433

M. H. Sadi et al.

13. Park J, Lee S, Jeon D (2021) A neural network training processor with 8-bit shared exponent bias floating
point and multiple-way fused multiply-add trees. IEEE J Solid-State Circuits 57(3):965–977

14. Lee SK, Agrawal A, Silberman J, Ziegler M, Kang M, Venkataramani S, Cao N, Fleischer B, Guillorn
M, Cohen M (2021) A 7-nm four-core mixed-precision AI chip with 26.2-tflops hybrid-fp8 training,
10.49-tops int4 inference, and workload-aware throttling. IEEE J Solid-State Circuits 57(1):182–197

15. Kalamkar D, Mudigere D, Mellempudi N, Das D, Banerjee K, Avancha S, Vooturi DT, Jammalamadaka
N, Huang J, Yuen H, et al (2019) A study of BFLOAT16 for deep learning training. arXiv preprint
arXiv:1905.12322

16. Sudarshan C, Sadi MH, Weis C, Wehn N (2022) Optimization of DRAM based PIM architecture for
energy-efficient deep neural network training. In: 2022 IEEE International Symposium on Circuits and
Systems (ISCAS), (pp. 1472–1476). IEEE

17. Behrooz P (2000) Computer arithmetic: algorithms and hardware designs. Oxford Univ Press 19:512583–
512585

18. Rousseeuw PJ, Hubert M (2018) Anomaly detection by robust statistics. Wiley Interdiscip Rev Data Min
Knowl Discov 8(2):1236

19. Liu L, Jiang H, He P, Chen W, Liu X, Gao J, Han J (2019) On the variance of the adaptive learning rate
and beyond. arXiv preprint arXiv:1908.03265

20. Wen W, Xu C, Yan F, Wu C, Wang Y, Chen Y, Li H (2017) Terngrad: Ternary gradients to reduce
communication in distributed deep learning. In: Advances in Neural Information Processing Systems 30

21. Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks.
In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. JMLR
Workshop and Conference Proceedings, (pp. 249–256)

22. Zhang T, Lin Z, Yang G, Sa CD (2019) QPyTorch: a low-precision arithmetic simulation framework
23. Samajdar A, Joseph JM, Zhu Y, Whatmough P, Mattina M, Krishna T (2020) A systematic methodology

for characterizing scalability of dnn accelerators using scale-sim. In: 2020 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). IEEE, (pp. 58–68)

24. Steiner L, Jung M, Prado FS, Bykov K, Wehn N (2020) DRAMSys4.0: a fast and cycle-accurate
systemC/TLM-based DRAM simulator. In: International Conference on Embedded Computer Systems.
Springer, (pp. 110–126)

25. ChandrasekarK,WeisC,LiY,GoossensS, JungM,NajiO,AkessonB,WehnN,GoossensK.Drampower:
open-source dram power and energy estimation tool

26. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017)
Attention is all you need. In: Advances in Neural Information Processing Systems 30

27. Sudarshan C, Lappas J, Weis C, Mathew DM, Jung M, Wehn N (2019) A lean, low power, low latency
DRAM memory controller for transprecision computing. In: International Conference on Embedded
Computer Systems. Springer, (pp. 429–441)

28. tomsHardware: measuring DDR4 power consumption. Accessed (2014). https://www.tomshardware.
com/reviews/intel-core-i7-5960x-haswell-e-cpu,3918-13.html

29. Chatha K (2021) Qualcomm® Cloud Al 100: 12TOPS/W scalable, high performance and low latency
deep learning inference accelerator. In: 2021 IEEE Hot Chips 33 Symposium (HCS). IEEE, (pp. 1–19)

30. Keller B, Venkatesan R, Dai S, Tell SG, Zimmer B, Dally WJ, Gray CT, Khailany B (2022) A 17–95.6
TOPS/W deep learning inference accelerator with per-vector scaled 4-bit quantization for transformers
in 5nm. In: 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits).
IEEE, (pp. 16–17)

31. Keller B, Venkatesan R, Dai S, Tell SG, Zimmer B, Sakr C, Dally WJ, Gray CT, Khailany B (2023) A
95.6-tops/w deep learning inference accelerator with per-vector scaled 4-bit quantization in 5 nm. IEEE
J Solid-State Circuits 58(4):1129–1141

32. SadiMH,MahaniA (2021)Accelerating deep convolutional neural network base on stochastic computing.
Integration 76:113–121

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1905.12322
http://arxiv.org/abs/1908.03265
https://www.tomshardware.com/reviews/intel-core-i7-5960x-haswell-e-cpu,3918-13.html
https://www.tomshardware.com/reviews/intel-core-i7-5960x-haswell-e-cpu,3918-13.html

	Novel adaptive quantization methodology for 8-bit floating-point DNN training
	Abstract
	1 Introduction
	2 Methodology
	2.1 Bias estimator
	2.2 Median variation and 'e' identification

	3 Hardware implementation
	4 Experimental setup
	5 Results
	5.1 Accuracy
	5.2 Online statistical analysis unit area and power
	5.3 DRAM access analysis

	6 Related works
	7 Conclusion
	References

