
Design Automation for Embedded Systems (2023) 27:103–138
https://doi.org/10.1007/s10617-023-09271-x

Predictable timing behavior of gracefully degrading
automotive systems

Philipp Weiss1 · Sebastian Steinhorst1

Received: 21 July 2022 / Accepted: 24 March 2023 / Published online: 11 April 2023
© The Author(s) 2023

Abstract
Fail-operational behavior of safety-critical software for autonomous driving is essential as
there is no driver available as a backup solution. In a failure scenario, safety-critical tasks can
be restarted on other available hardware resources. Here, graceful degradation can be used
as a cost-efficient solution where hardware resources are redistributed from non-critical to
safety-critical tasks at run-time. We allow non-critical tasks to actively use resources that are
reserved as a backup for critical tasks, which would be otherwise unused and which are only
required in a failure scenario. However, in such a scenario, it is of paramount importance to
achieve a predictable timing behavior of safety-critical applications to allow a safe operation.
Here, it has to be ensured that even after the restart of safety-critical tasks a guarantee on
execution times can be given. In this paper, we propose a graceful degradation approach using
composable scheduling. We use our approach to present, for the first time, a performance
analysiswhich is able to analyze timing constraints of fail-operational distributed applications
using graceful degradation. Our method can verify that even during a critical Electronic
Control Unit failure, there is always a backup solution available which adheres to end-to-end
timing constraints. Furthermore, we present a dynamic decentralized mapping procedure
which performs constraint solving at run-time using our analytical approach combined with
a backtracking algorithm. We evaluate our approach by comparing mapping success rates
to state-of-the-art approaches such as active redundancy and an approach based on resource
availability. In our experimental setup our graceful degradation approach can fit about double
the number of critical applications on the same architecture compared to an active redundancy
approach. Combined, our approaches enable, for the first time, a dynamic and fail-operational
behavior of gracefully degrading automotive systems with cost-efficient backup solutions for
safety-critical applications.

Keywords Fail-operational systems · Graceful degradation · Automotive systems · Timing
analysis

B Philipp Weiss
philipp.weiss@tum.de

Sebastian Steinhorst
sebastian.steinhorst@tum.de

1 Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10617-023-09271-x&domain=pdf

104 P. Weiss, S. Steinhorst

1 Introduction

Fail-operational behaviour of safety-critical software is essential to enable autonomous driv-
ing. Without any driver as a backup solution, the failure of an ECU has to be handled by the
software system. To manage increased software complexity, automotive electronic architec-
tures are currently undergoing major changes. Instead of adding a new control unit for each
new functionality, software is being integrated on a few, more powerful central control units
[1].

By contrast, from a software perspective, this trend leads to a decentralization. In compar-
ison to state-of-the-art monolithic ECU software, future software will be designed modular.
Such a modular design will allow dynamic shifting of software components at run-time,
including activation and deactivation of components on different ECUs. This perspective
allows new strategies to enable fail-operational behaviour.

Additionally, automotive vendors are offering over-the-air software updates to regularly
deliver the latest functionality. Here, customers will be able to purchase and enable features
over an app store, which leads to unique and customized software systems.

Thus, a dynamic resource management is required, which maps applications at run-time
as part of the software platform. A dynamic resource management allows to integrate new
applications at run-time with unique solutions for an individual mix of applications. Fur-
thermore, it enables a gracefully degrading system behaviour and allows the system to react
to unplannable changes such as the defect of a hardware unit. Using a graceful degrada-
tion approach, safety-critical tasks can be restarted on other available hardware resources,
while, in return, non-critical tasks are shut down to free resources. Therefore, instead of
adding costly hardware redundancy to enable a fail-operational behaviour, existing resources
can be repurposed. Decentralized run-time approaches have the advantage that there is no
single-point-of-failure such that the system is still able to act after any ECU failure [2]. The
advantage of using a passive backup solution compared to active redundancy is that almost
no overhead is added in terms of required computational power.

The main challenge for such a system is to achieve a predictable system behavior. Most
safety-critical applications have tomeet real-time requirements,where a complete application
execution has to finishwithin a deadline. To provide real-time guarantees, a performance anal-
ysis has to be based on a composable system such that the interference between applications
can be bounded [3].

However, there is no approach yet that ensures a predictable timing behaviour of gracefully
degrading systems where passive task instances are activated after a failure. To achieve a
fail-operational behaviour it has to be ensured that the timing constraints are met under any
circumstance. Finding a new task binding after a failure is not realistic as the backup solution
has to be available immediately. Thus, an application binding can only be considered feasible
if the deadline can be also met after restarting any of the passive task instances and a feasible
backup solution is available for any possible failure.

In this paper, we present an agent-based mapping procedure based on a backtracking
approach using a performance analysis to find feasible mappings at run-time. The agent-
based system enables a decentralized control without a single point of failure. Each agent
controls one task and is responsible for allocating resources and ensuring that constraints are
met. The system is based on a composable scheduling technique that supports a gracefully
degrading system behaviour. This allows to estimate an upper bound for the execution time
not only for active tasks but also for passive tasks once they are started. Our approach includes

123

Predictable timing behavior of gracefully degrading automotive… 105

passive tasks in the mapping search such that there is a backup solution available that fulfills
the real-time constraints under any ECU failure.

The mapping approach is intended to be performed while the car is not actively in use
such that most system resources are available for performing the search. Once the system is
in a stable state and running, the agents do not perform any action and, therefore, put no addi-
tional strain on the system resources. During run-time, monitoring with heartbeat messages
and watchdogs is performed to detect ECU failures. The solutions found by the mapping
approach include valid backup solutions for critical applications to which a fast failover
can be performed after a failure has been detected. Here, we follow our main hypothesis,
such that when the failure occurs a safe state can be reached with a minimum amount of
communication and computation. The timing analysis of a failover itself is out of scope of
this work, we refer any reader interested in the topic to the work of [4]. After a failover has
been performed, safety-critical applications are able to stay operational. However, to ensure
a safe continuation, the fail-operational behavior has to be re-established. Depending on the
amount of remaining resources, a re-mapping of the applications could be performed during
a safe halt on a parking space.

In this work, we make the following contributions:

• We analyze related work in Sect. 2 and provide an overview over related approaches
in the fields of fail-operational systems, dynamic task mapping, graceful degradation
and predictable timing behavior. We conclude that there is no work yet that allows an
execution time analysis of gracefully degrading systems.

• After introducing our system model in Sect. 3, we introduce and adapt a state-of-the-art
performance analysis based on composable scheduling to our system model in Sect. 4.

• We present our performance analysis for fail-operational systems which supports a
gracefully degradable system behaviour in Sect. 5. This analysis also takes backup solu-
tions into consideration and can evaluate whether the worst-case end-to-end application
latency can still meet the deadline after switching to a backup solution during a failover.
Furthermore, we introduce our gracefully degrading scheduling scheme.

• We present our agent-based run-time mapping procedure in Sect. 6 using our perfor-
mance analysis to find feasible mappings that meet real-time requirements. Our approach
includes passive tasks in the search such that it is ensured that all backup solutions
meet the real-time constraints. Here, we also introduce three strategies which can
strongly influence the degradation behavior. A reconfiguration of the system can be per-
formed after any failure to re-establish the fail-operational behaviour of safety-critical
applications.

• We evaluate our graceful degradation approach in our simulation framework in Sect. 7.
Here, we compare our approach to an active redundancy approach by measuring the
success rate and resource utilization overmultiple experiments. Furthermore, we evaluate
and discuss our three allocation and reservation strategies. Results show that around
twice as much critical applications can be mapped onto the same architecture when
using our graceful degradation approach compared to active redundancy approaches.
We conclude that graceful degradation can greatly increase the success rate in scenarios
where resources are limited if the risk of loosing non-critical functionality in a failure
scenario is acceptable.

123

106 P. Weiss, S. Steinhorst

2 Related work

As our work is combining aspects from many different research areas, we organized the
related work section into four subsections. First, we are presenting traditional fault-tolerant
approaches in Sect. 2.1which can be applied on device level but also on system level. Thenwe
provide an overview over existing approaches in the field of dynamicmappingmethodologies
in Sect. 2.2. Afterwards, we discuss previous work on graceful degradation in Sect. 2.3. Last,
we introduce work in Sect. 2.4 which has the goal of achieving predictable timing behavior
using composable systems.

2.1 Fail-operational systems

In [5], the authors present an overview on existing fail-operational hardware approaches
and introduce concepts for the implementation on a multi-core processor. The authors in
[6] review common fault-tolerant architectures in System-on-a-Chip (SoC) solutions such as
lock-step architectures, loosely synchronized processors or triple modular redundancy and
perform a trade-off analysis. However, this work misses to apply fail-operational aspects on
a system level instead of device level only.

The authors in [7] present a system-level simplex architecture to ensure a fail-operational
behavior of applications but also to protect the underlying operating system, middleware, and
microprocessor from failures. Here, the complex subsystem is driving the system as long as
no failure occurs. A safety subsystem and a decision controller are running on a dedicated
microcontroller. Similar authors in [8] present a fail-operational simplex architecture and
address the problem of inconsistent states in Controller Area Network (CAN) controllers
during a failover. As a solution, an atomic function stores the state and sends the message to
avoid inconsistencies allowing to protect communication with peripherals. Although these
approaches apply fail-operational capabilities on system level they are limited in flexibility
and add a lot of cost as a dedicated hardware component is required.

Other work [9] addresses the automatic optimization of redundant message routings in
automotive ethernet networks to enable fail-operational communication. In our work, redun-
dant tasks are distributed over the system with redundant communication routes such that
once a task is restarted there is always at least one communication path with preceding and
succeeding tasks.

Overall, hardware components providedwith failure detection andmitigationmechanisms
are the base for enabling a dynamic fail-operational solution on system level. However, these
solutions lack flexibility and are not dealing with the problem of providing a dynamic fail-
operational behavior for an entire system consisting of many applications distributed over
multiple ECUs.

2.2 Dynamic mapping

There has been a lot of work in the field of dynamic mapping approaches. The authors in
[10] present a decentralized and dynamic mapping approach for Network-on-Chip (NoC)
architectures. Their mapping approach takes bandwidth and load constraints into considera-
tion and uses the best-neighbour strategy, which takes only the closest search space around
a task into account. In [11] an agent-based run-time mapping approach for heterogeneous
NoC architectures is presented. The system is based on global agents containing system
state information and cluster agents which are responsible for assigning resources. Here,

123

Predictable timing behavior of gracefully degrading automotive… 107

the main motivation is to reduce computational effort and global traffic for monitoring the
system utilization when mapping the distributed applications. The authors in [12] present a
centralized run-timemapping approach with the goal of reducing network load in NoC-based
Multiprocessor-System-on-a-Chip (MPSoC) systems. Here, a dedicated manager processor
is taking care of mapping initial tasks of each application to a cluster. As a dynamic workload
is considered, all following tasks are mapped at run-time of the application upon communi-
cation requests. Multiple heuristics considering the channel load are presented and evaluated.
The authors argue that it is reasonable to use greedy algorithms as they can provide quick
results in exchange for lower search space exploration quality. They conclude that compared
to static optimizationmethods themoderate overhead of solutions found by dynamicmethods
is acceptable considering the gain in flexibility.

Most of these approaches have the goal of increasing flexibility and at most consider being
able to reconfigure the system when a faulty component is found. However, none of them
take fail-operational or timing requirements into account.

2.3 Graceful degradation

The authors in [2] introduced an agent-based approach which finds task-mappings at run-
time and ensures a fail-operational behavior of critical applications by applying graceful
degradation. Here, agents can allocate and reserve parts of resources to ensure degradation.
However, this work does not include any base for a timing analysis such that no guarantees to
timing constraints can be given. Furthermore, we introduce a performance analysis for such
a gracefully degrading system which we embed at run-time to ensure that timing constraints
are met even in failure scenarios. The authors in [13] have presented a design-time analysis
to find valid application mappings in mixed critical systems. Here, applications can have
multiple redundancies based on their fail-operational level and the system can be degraded by
shutting down optional software components. By contrast, in our approach, instead of having
a limited amount of redundancy, we re-establish lost redundancy after a failover. The authors
in [14] present a degradation-aware reliability analysis in which tasks are grouped according
to different safety levels. Using design space exploration the reliability of the degradation
modes is optimized. The work in [15] calculates the utility of a system by decomposing it
into feature subsets, which may be defined by functional or non-functional attributes, such
that the utility of the system in different degradation modes can be analyzed. However, they
do not propose any approach on designing a gracefully degrading behavior. Other work such
as [16] has been proposing to relax constraints once an anomaly occurs, leading potentially
to degraded system behavior.

Overall, none of the mentioned work related to graceful degradation takes timing con-
straints into consideration such that a safe execution of time-critical applications can not be
guaranteed.

2.4 Predictable timing behavior

The authors of [3] describe the two concepts of predictability and composability which can be
used to reduce complexity and to verify real-time requirements. In composable systems, appli-
cations are isolated such that they do not influence each other allowing to verify their timing
behavior independently. Furthermore, using formal analysis, lower bounds on performance
can be guaranteed. Thework of [17] uses hybrid applicationmapping to combine design-time
analysis with run-time application mapping. The spatial and temporal isolation techniques

123

108 P. Weiss, S. Steinhorst

together with a performance analysis are based on the concepts from [3]. At design-time a
design space exploration with a formal performance analysis finds pareto-optimal configura-
tions. A run-time manager then searches for suitable mappings of these optimized solutions.
In contrast to their work, we extend the scheduling techniques and include passive tasks
and messages in the performance analysis to enable graceful degradation. Furthermore, our
application mapping is performed entirely at run-time with an agent-based approach.

In the real-timemixed-criticality systems community there has beenwork on guaranteeing
reduced service to low criticality tasks after switching to a safety mode when a critical task
can not meet its deadline [18]. By contrast, in our work we do not switch between twomodes,
but only degrade tasks if the resources of it have been reserved and are claimed by a critical
task. Furthermore, the approaches in the literature are mostly not focusing on distributed
systems and are not taking fail-operational aspects into consideration.

Previous work [4] has presented a formal analysis to derive the worst-case application
failover time for distributed systems. The authors analyzed the impact of failure detection
and recovery times on the timingbehavior of distributed applications.This analysis guarantees
an upper bound on the time that it would take for an application to generate a new output
after the failure of one or multiple tasks. Our current work presented in the paper at hand
could be used as a base for the analysis performed in [4] as an upper bound on task execution
and message transmission is assumed to be given there and can now be calculated. Similar
to this work the authors in [19] present a worst-case timing analysis for tasks with hot and
passive standbys. However, the topic of graceful degradation is not addressed in this work.

Related to this topic authors in [20] have analyzed the timing behavior of task migration
at run-time if a new mapping has to be found. Their deterministic mapping reconfiguration
mechanism identifies efficientmigration routes anddetermines theworst-case reconfiguration
latency. To find new application mappings and to transition predictably to new configurations
again, run-time mechanisms are combined with an off-line design space exploration. In
[21] the same authors together with others present a general overview of hybrid application
mapping techniques and composable many-core systems.

Overall, there has not been any work in the field of predictable timing behavior that con-
siders a gracefully degrading system architecture. For this purpose we build mainly upon
our previous work in [2] and the work from [17] to create, for the first time, a compre-
hensive approach that enables a safe and efficient fail-operational behavior of time-critical
applications in distributed systems by predictably analyzing the execution time behavior and
allowing a gracefully degrading system behavior.

3 Systemmodel

3.1 System

In the past, automotive vendors added a new ECU for each new functionality in the vehi-
cle. Today, cars consist often of more than 100 ECUs to control functions in the domains
like infotainment, chassis, powertrain or comfort [1]. Now the automotive industry is aim-
ing towards zonal or more centralized architectures. Some vendors such as Tesla prefer a
centralized architecture, where most of the functions are executed on a single ECU such as
the FSD computer of Tesla [22]. Bosch is developing a vehicle-centralized, zone-oriented
Electrical/Electronic (E/E) architecture with a few centralized powerful vehicle computers

123

Predictable timing behavior of gracefully degrading automotive… 109

integrating cross-domain functionality similar as [23, 24]. These vehicle computers are con-
nected to actuators and sensors via zone ECUs. This reduces the required wiring and weight
in vehicles but also system complexity.

In our work we focus on the deployment of bigger applications on a future system archi-
tecture which consists of a set of a few ECUs e ∈ E which are interconnected via switches
and a set of Ethernet links l ∈ L . The ECUs and Ethernet links use Time-DivisionMultiplex-
ing (TDM) scheduling with pre-determined time slices which can be allocated or reserved.
To dynamically activate, deactivate, and move tasks on the platform at run-time, we imple-
mented a middleware which is based on SOME/IP [25], an automotive middleware solution.
This middleware includes a decentralized service-discovery to dynamically find services in
the system and a publish/subscribe scheme to publish and subscribe to events.

3.2 Criticality

In our work we are exploring graceful degradation methodologies. Here, critical applica-
tions e.g. for autonomous driving can be restarted after a failure on another ECU. Instead
of exclusively reserving resources for this scenario, non-critical applications e.g. from the
infotainment domain can be shut down to free resources.

According to the ISO 26262 standard, applications can be assigned one of four Auto-
motive Safety Integrity Levels (ASILs) (A to D) [26]. However, we do not differ between
criticality levels of critical applications in our work as there is no justification in shutting
down applications with an assigned ASIL of A for an application with an assigned ASIL
of B as the failure of any critical application can have safety-critical consequences. Instead
it has to be ensured that all safety goals are met for any critical application. Therefore, we
only distinct between critical and non-critical applications. In our work we assume that each
critical application has fail-operational requirements. This means that the application has to
stay operational even if a failure occurs that affects this application. We define critical and
non-critical applications as follows:

• Critical application An application that has fail-operational requirements. To ensure a
fail-operational behavior passive redundancy on task level is applied. In a failure sce-
nario resources of non-critical applications might be used to keep critical applications
operational.

• Non-critical application An application without specific safety requirements. Non-
critical applications can be shut down to free resources for critical applications even
if they are not directly affected by a failure.

3.3 System software

Our system software consists of a set of applications a ∈ A, which are composed of tasks
t ∈ T . The tasks t of an application a can be distributed across multiple ECUs. Applications
are executed periodically with a period Pa and we assume each application has to meet a
deadline δ, with the period Pa being at least as long as the deadline δ. For every task we
assume that the Worst-Case Execution Time (WCET) W (t) is known.

We model each application a by an acyclic and directed application graph GA(V , E).
Safety-critical application have to fulfill fail-operational requirements and, thus, have to
remain operational even during critical ECU failures. Therefore, we assume that redundant
passive task instances are required for our safety-critical applications. The vertices V =

123

110 P. Weiss, S. Steinhorst

Fig. 1 An exemplary application graph GA(V , E) of a non-critical application (left) and a critical application
(right). The application graph of the critical application consists of two active task instances t0,a , t1,b ∈ Ta and
two passive task instances t0,b, t1,b ∈ Tb . Furthermore, it contains one active message instance m0,aa ∈ Ma
and three backup message instances m0,ab,m0,ba ,m0,bb ∈ Mb , which are required to ensure there is always
a communication path between the tasks instances available. (Color figure online)

Ta ∪ Tb of the application graph GA(V , E) are composed of the set of active task instances
Ta and the set of passive task instances Tb. The edges E = Ma ∪Mb of the application graph
GA(V , E) are composed of the set of active messages Ma and the set of backup messages
Mb. In the following are our definitions for active and passive task instances and active and
backup message instances:

• Active task instance A task instance of a critical or non-critical application. This is the
default task instance actively executing any workload. A binding α : T → E assigns an
active task instance t ∈ T to an ECU α(t) ∈ E .

• Passive task instanceA backup instance t ∈ Tb of an active task instance which is part of
a critical application. The passive task instance is only activated if its active counterpart
is affected by a failure. Here, the binding β : T → E assigns a passive task instance
t ∈ Tb to an ECU β(t) ∈ E .

• Active message instance A routing is required for each active message instance m ∈ Ma

which is part of a critical or non-critical application. A routing ρ : M → 2L assigns each
message m ∈ Ma to a set of connected links L ′ ⊆ L that establish a route ρ(m). We use
the shortest path routing obtained through Dijkstra’s algorithm such that there is only a
single route between two ECUs e available [27].

• Backup message instance For critical applications three backup message instances m ∈
Mb are required of which one will get activated after an ECU failure depending on which
passive task instances get activated. A routing σ : M → 2L assigns each backupmessage
m ∈ Mb to a set of connected links L ′ ⊆ L that establish a route σ(m).

The application graph of non-critical applications consists only of active task instances
t ∈ Ta and active messages m ∈ Ma .

Figure1presents a non-critical and a critical application according to our system model.
The non-critical application consists of two tasks and onemessage being sent between the two
tasks. For the safety-critical application the graph also includes two passive task instances and
three backupmessage instances. Three backupmessage instances are required such that it can
be ensured that always a communication between two task instances is possible regardless
of which task instances are affected by a failure. The message instances m0,ab and m0,ba are
required if only one of the active task instances is failing, while the message instancem0,bb is

123

Predictable timing behavior of gracefully degrading automotive… 111

Fig. 2 Exemplary mapping of a safety-critical application onto a hardware architecture consisting of four
ECUs e0, e1, e2, and e3, and three switches s0, s1, and s2. The green arrows indicate the active bindings of
tasks t0 and t1, while the dashed yellow arrows indicate the passive task bindings. The routings of the message
instances are indicated by the same arrow color and style as in the application graph. (Color figure online)

required if both active task instances are affected by a failure, e.g. because they are mapped
onto the same failing ECU.

Figure2 shows the binding α of the active task instances t ∈ Ta and the binding β of the
passive task instances t ∈ Tb onto a system architecture. The routing ρ of the active message
instance m ∈ Ma and the routings σ of the backup message instances m ∈ Mb are also
marked by colored arrows.

3.4 Failures

In this work and our experiments we focus on mitigating ECU failures which are detected
by watchdogs and heartbeats. Our graceful degradation approach ensures that safety-critical
applications can keep running after an ECU failure while there is no guarantee for non-
critical applications. As redundancy is used for all safety-critical tasks, the system could
withstand any single ECU failure and perform a failover for affected task instances. After a
failover, any critical application is still able to stay operational such that any hazards can be
avoided. After a time-critical failover has been performed, fail-operational capabilities have
to be re-established with a new mapping process. Applications might have to be stopped
temporarily if active task instances have to be remapped such that a safe mapping could only
be performed during a halt. To prevent this, methods such as proposed in [28] to perform a
safe real-time task migration could be applied. Our approach could be also used to mitigate
transient or software failures if the corresponding failure detectionmechanisms are supported
by hardware or software e.g. through a lock-step architecture. If possible, a failure should
be handled locally. Our solution is intended to be used as a last resort, as a failover could
lead to the shut down of non-critical applications when graceful degradation is applied.
While our approach considers that redundant message instances are required to ensure that

123

112 P. Weiss, S. Steinhorst

a communication is possible after a failover, the mitigation of network or switch failures are
out of scope of this work. For the interested reader we recommend the work of [9] on this
topic.

3.5 Failover

Our approach ensures that applications are executed withing a deadline δ and that a backup
mapping is available that is also meeting this timing constraints under regular operation. In
the case of an ECU failure we consider that the current application execution might not finish
if an active task instance is affected directly by the failure and that application execution
might be interrupted for a certain time interval. Here, it is important that a failover within the
Fault Tolerant Time Interval (FTTI) can be guaranteed [29]. In the work at hand, we do not
focus on giving a failover timing guarantee but that a stable application execution within a
timing constraint is always readily available once the failover is done. We refer any reader
interested in the topic of failover timing analysis to the work of [4]. Furthermore, we consider
that no critical states have to be transferred and recovered. However, if required checkpoints
can be periodically transmitted from active to passive task instances to save important state
data [30]. After the failure recovery computation can be continued with the latest transmitted
checkpoints.

4 Performance analysis

In this section we contribute our concept of performance analysis for distributed applications
based on the work from [3, 17]. Using this performance analysis we present our performance
analysis of gracefully degrading systems in Sect. 5. Instead of targeting NoC architectures
as in [17] we target a distributed electronic system consisting of multiple ECUs which are
connected via switches and Ethernet links. The goal of the performance analysis is to find
an upper bound for the end-to-end application latency such that it can be verified whether
a mapping adheres to a timing constraint. Here, we first formally introduce the end-to-end
application latency in Sect. 4.1 and present our derived analytical formulas for distributed
and composable system. Afterwards, we present composable scheduling together with our
adapted analytical formulas for both task and message scheduling in Sect. 4.2. Compared to
the work in [17] we chose TDM instead of a Round-Robin (RR) scheme for task scheduling.
The disadvantage of RR scheduling is that the execution latency depends on the number of
other tasks in the schedule such that the execution latency might change once tasks are added
to the schedule later. By contrast, when using a schedule based on TDM, an upper bound of
service intervals that can be allocated by tasks is already predefined which can be used for a
worst-case estimation of the execution latency. For message scheduling we use TDM as well
where we design the system such that exactly one Ethernet frame can be sent per slot and
assume that all messages can be sent within one frame. In case messages should be able to
be split up into multiple slots we refer the interested reader to [31] and [17].

4.1 End-to-end application latency

For time-critical applications, a mapping can only be considered feasible if the worst-case
end-to-end application latency L(α, ρ) does not exceed a given deadline δ such that the

123

Predictable timing behavior of gracefully degrading automotive… 113

following constraint has to be met:

L(α, ρ) ≤ δ. (1)

The end-to-end latency of a distributed application is influenced by both executing com-
putational tasks t and sending messagesm between the tasks. However, task execution times
andmessage transmission times will most certainly differ between each iteration. This highly
depends on the paths being taken in a program and interference caused by other applications
which are executed concurrently in the system. The interference time is mainly influenced
by the scheduling and admission algorithms that are used for the Central Processing Unit
(CPU), the network infrastructure and other shared resources. The worst-case end-to-end
execution latency L(α, ρ) is determined by the critical path as

L(α, ρ) = max∀path∈paths(GA(V ,E))
PL(path, α, ρ), (2)

where the critical path is the path through an application with the highest aggregated
latency. The path latency PL(path, α, ρ) itself can be calculated as

PL(path, α, ρ) =
∑

∀t∈path∩T
T L(t, α(t)) +

∑

∀m∈path∩M

CL(m, ρ(m)), (3)

by summing up all task latencies T L(t, α(t)) and communication latenciesCL(m, ρ(m))

of tasks and messages which lie in this path. To predictably calculate these worst-case task
latencies T L(t, α(t)) and worst-case communication latencies CL(m, ρ(m)) it is required
to analytically determine an upper bound. To reduce complexity, composability is required
to ensure that applications have only a bounded effect on each other. Well-known scheduling
approaches such as RR or TDM temporally isolate task execution or message transmission
on a resource.

In Fig. 3an exemplary mapping of a non-critical application with annotated worst-case
task and communication latencies is presented. The path latencies for the two paths p0 =
(t0 − m0 − t1) and p1 = (t0 − m1 − t2) in the application graph can be calculated as
PL(p0, α, ρ) = 30 ms and PL(p1, α, ρ) = 35 ms. The critical path p1 leads to a worst-
case end-to end application latency of L(α, ρ) = 35 ms. With a deadline of δ = 40 ms Eq.1
would be still fulfilled.

4.2 Composable scheduling

We use TDM scheduling for tasks and messages as this allows a partitioned analysis, where
applications can be mapped and analyzed independent from each other.

4.2.1 Task scheduling

In general, the task latency T L(t, α(t)) consists of the actual task execution time
T Lexec(t, α(t)) and the task interference time T Linter (t, α(t)), which a task spends waiting
e.g. due to scheduling:

T L(t, α(t)) = T Lexec(t, α(t)) + T Linter (t, α(t)). (4)

Thus, theworst-case task execution timewithout interference T Lexec(t, α(t)) is amultiple
of the service interval time τSI such that we can calculate it using the WCET W (t, α(t)) as

T Lexec(t, α(t)) =
W (t, α(t))

τSI
� · τSI . (5)

123

114 P. Weiss, S. Steinhorst

Fig. 3 Exemplary mapping of a non-critical application onto a hardware architecture consisting of four ECUs
e0, e1, e2, and e3, and three switches s0, s1, and s2. The green arrows indicate the binding of a task to an
ECU. The message routings are marked in the color of the corresponding message in the application graph.
There are two paths p0 = (t0 − m0 − t1) and p1 = (t0 − m1 − t2) in the application graph. Taking the task
and communication latencies from the figure, the path latencies can be calculated as PL(p0, α, ρ) = 30 ms
an PL(p1, α, ρ) = 35 ms. With p1 as the critical path, the worst-case end-to-end application latency can be
calculate as L(α, ρ) = 35 ms. With a deadline of δ = 40 ms the constraint in Eq.1 would be met. (Color
figure online)

Fig. 4 Example of a task schedule with a maximum amount of allocatable service intervals of SImax = 5. One
service interval |SIa | = 1 is allocated for the task t0. With a WCET of T Lexec(t0, α) = W (t0, α) = 2τSI ,
two full execution cycles are required in the worst case for the task to finish execution. With the corresponding
worst-case task interference time of T Linter (t0, α) = 8τSI , the worst-case task latency can be calculated as
T Linter (t0, α) = 10τSI . (Color figure online)

Given a number of service intervals SIa(t) that are allocated for a task t and a defined
maximum number of service intervals SImax we can determine the worst-case interference
time T Linter (t, α(t)) as

T Linter (t, α(t)) =
 W (t, α(t))

|SIa(t)| · τSI
� · (SImax − |SIa(t)|) · τSI . (6)

Here, SImax − |SIa(t)| reflects the number of service intervals that a task would have to
wait until it is executed again. The first factor represents how many times the task would
have to wait until its turn in the worst-case. An exemplary task schedule with the derivation
of the worst-case task latency T L(t, α(t)) is presented in Fig. 4.

123

Predictable timing behavior of gracefully degrading automotive… 115

4.2.2 Message scheduling

We assume that messages are sent over ethernet links oppose to the work of [17] where
smaller links connect multiple processing elements on a NoC architecture. For the worst-
case communication latency we can proceed likewise as for the task scheduling to calculate
the worst-case communication latency CL(m, ρ) with the worst-case message transmission
time CLtrans(m, ρ) and the worst-case communication interference time CLinter (m, ρ):

CL(m, ρ(m)) = CLtrans(m, ρ(m)) + CLinter (m, ρ(m)) (7)

For the message scheduling we use the notation SL to describe the time frame of a slot
interval. We design the system such that exactly one ethernet frame with a maximum frame
size of 1518 bytes can be sent in one time slot. We assume that message sizes do no exceed
the Maximum Transmission Unit (MTU) of an ethernet frame such that only one slot has to
be allocated per message. Using this we can calculate the tranmission time of a message over
one ethernet link CLtrans(m, l) as

CLtrans(m, l) = τSL . (8)

To calculate the interference time of amessage over one linkCLinter (m, l)we assume that
a maximum number of slots SLmax is defined. As the transmission of the message requires
only one slot, a message has to wait one transmission round in the worst case:

CLinter (m, l) = (SLmax − 1) · τSL . (9)

Combining these twoworst-case latencies we can calculate theworst-case communication
latency CL(m, l) of a message m over one link l as

CL(m, l)=CLtrans(m, l)+CLinter (m, l)=(SLmax − 1) · SL+SL=SLmax · τSL . (10)

This approach allows us to analyze the worst-case communication latency over each link
individually as

CL(m, ρ(m)) =
∑

∀l∈ρ(m)

CL(m, l) (11)

Under the assumption that all links in the system are designed equally, the communication
latency only depends on the number of links that the message m is passing on its route ρ,
further denoted as hops(ρ(m)), which allows us to further simplify the formula to

CL(m, ρ(m)) = hops(ρ(m)) · SLmax · τSL . (12)

Our formulas are based on the assumption that a message requires exactly one slot to be
transmitted. In case the system should be designed more fine granularly such that a message
could require multiple slots for transmission, we refer the interested reader to [31] and [17].

5 Performance analysis of gracefully degrading systems

Using a state-of-the-art analysis presented in Sect. 4 it is possible to analyze whether a
configuration of an application consisting of active tasks is meeting a deadline δ. However,
we need to ensure that critical applications are still able to continue full operation after
any ECU failure without violating Eq.1. Here, we add passive tasks as a backup solutions
that are started once the active task is affected by a failure. Furthermore, we are enabling a

123

116 P. Weiss, S. Steinhorst

gracefully degrading behaviour as in [2] such that resources that are allocated by non-critical
applications can be used by critical applications if required. The advantage of using our
passive backup solution compared to active redundancy is that during operation no overhead
is added in terms of required computational power.

Theoretically, it would be possible to search for a new valid configuration which sat-
isfies the timing constraint after an ECU failure occurred. However, this approach would
have multiple disadvantages accompanied with highly unpredictable behaviours. First, it can
not be guaranteed that sufficient resources are available for task computations and message
transmissions after a failure even if a degradation approach is used. The ECU failure reduces
the system-wide resource pool such that not every application might be able to find suffi-
cient resources. Even if the system was over-designed, the next failure would increase the
uncertainty further. Second, even if sufficient resources were still available, it is uncertain if a
mapping could be found that would satisfy the timing constraint. Third, it could take a lot of
time to find a valid solution. Even if a valid solution was available it could take an unknown
amount of time to find one. Although the unavailability of an application might be tolerable
for a certain amount of time (FTTI) during a failover, it would not be predictable how long it
would take to find a solution and most likely it would not be found in time. Fourth, it would
be unpredictable which non-critical applications would be shut down due to degradation as
this would be only decided after the occurrence of the failure. Most importantly, this means
it is uncertain if a solution can be found in time yet if one is existing, which is unarguably
an unacceptable behaviour for safety-critical applications. Furthermore, it would be at least
desirable to also allow a more predictable degradation behaviour of non-critical applications.

Therefore, it is necessary to improve uncertainty and achieve amore predictable behaviour.
To bypass having to find new solutions after an ECU failure, we have to ensure that a suitable
backup solution is already available for any ECU failure in the system. To ensure this we
add redundant tasks such that there is at least one instance of each task available after an
ECU failure that has sufficient resources to continue operation and to communicate with
other tasks. Here, we present our performance analysis of gracefully degrading systems to
verify that these backup solutions always meet timing constraints in Sect. 5.1. This solution
allows a predictable system behaviour as it is known if a valid backup solution is available
that meets resource and timing constraints before any failure and allows to quickly switch
to this backup solution. Last, we present our composable scheduling of gracefully degrading
systems in Sect. 5.2, which allows to independently derive worst-case latencies while also
enabling a gracefully degrading system behavior. This solution also allows to predict inwhich
failure scenario a non-critical application will be shut-down due to graceful degradation.

5.1 End-to-end application latency

A valid binding needs to ensure that the deadline δ is not only met by the active part of the
application, but also in case any of the backup solutions have to be used in a failure scenario.
The activation of passive task instances could lead to a new critical path in the applica-
tion which might not meet the deadline δ. The worst-case end-to-end application latency
L(α, β, ρ, σ) considers not only the worst-case end-to-end application latency L(α, ρ) of
currently active task instances but also of any possible future configurations, where passive
task instances are activated. To achieve a fail-operational behaviour, a valid mapping of a
safety-critical application has to fulfill the following constraint:

L(α, β, ρ, σ) ≤ δ. (13)

123

Predictable timing behavior of gracefully degrading automotive… 117

Fig. 5 Exemplarymapping of a safety-critical application onto a system architecturewith annotatedworst-case
latencies. When using state-of-the-art performance analysis and disregarding the passive task and message
instances the worst-case end-to-end application latencyL(α, ρ) = 30 ms would meet the deadline δ = 35 ms.
However, in a failure scenario where t0,a was affected by a failure and t0,b activated, the deadline could no
longer be met leading to a configuration that violates the timing constraint. Our performance analysis takes the
highlighted critical path p2 = (t0,b − m0,ba − t1,a) with a worst-case path latency of PL(p2, α, β, ρ, σ) =
40 ms into account leading to a worst-case end-to-end application latency of L(α, β, ρ, σ) = 40 ms. Here, a
violation of the timing constraint with the deadline δ = 35 ms can be identified. Therefore, our performance
analysis can be used to quickly evaluate different configurations and help design automation algorithms to
find a valid configuration. (Color figure online)

As any activation of a passive task instance could potentially lead to a violation of this
constraint, any path through the instance graph GB(V , E), including passive task instances
t ∈ Tb and backup messages m ∈ Mb, has to be considered. Therefore, we can define
the worst-case end-to-end application latency L(α, β, ρ, σ) as the critical path through the
instance graph GB(V , E), which also includes all possible backup solutions:

L(α, β, ρ, σ) = max∀path∈paths(GB (V ,E))
PL(path, α, β, ρ, σ), (14)

The path latency PL(path, α, β, ρ, σ) depends not only on the worst-case latency of
active task instances T L(t, α(t)) and the worst-case communication latency of active mes-
sages CL(m, ρ(m)), but also on the potential worst-case latency of passive task instances
T L(t, β(t)) and the potential worst-case latency of backup messages CL(m, σ (m)), such
that it can be calculated as

PL(path, α, β, ρ, σ) =
∑

∀t∈path∩Ta
T L(t, α(t)) +

∑

∀t∈path∩Tb
T L(t, β(t))+

∑

∀m∈path∩Ma

CL(m, ρ(m)) +
∑

∀m∈path∩Mb

CL(m, σ (m)).
(15)

From this formula it can be observed that it is also necessary to find a bound on the potential
worst-case latency of passive task instances T L(t, β(t)) and the potential worst-case latency
of backup messages CL(m, σ (m)).

For illustration let us assume that a deadline δ = 35 ms is given for the safety-critical
application as presented in Fig. 5 . When disregrading passive task and message instances
and using the annotated worst-case latencies from the figure, state-of-the-art performance

123

118 P. Weiss, S. Steinhorst

analysis as presentend in [17] would conclude a worst-case end-to-end application latency of
L(α, ρ) = 30 ms which would meet the deadline δ = 35 ms. However, in a failure scenario
where t0,a is affected by a failure and t0,b activated, the deadline can no longer be met
leading to a configuration that violates the timing constraint. By constrast, our performance
analysis takes passive task and messages instances into account and, therefore, is able to
identify the highlighted critical path p2 = (t0,b − m0,ba − t1,a) with a worst-case path
latency of PL(p2, α, β, ρ, σ) = 40 ms. A violation of the timing constraint with a worst-
case end-to-end application latency of L(α, β, ρ, σ) = 40 ms and the deadline δ = 35 ms
is clearly visible. Here, our performance analysis can be used to quickly evaluate different
configurations and help design automation algorithms to find a valid configuration.

5.2 Composable scheduling of gracefully degrading systems

We extend state-of-the-art scheduling such as presented in [17] by introducing the concept of
graceful degradation. For our analysis and experimentswe apply graceful degradation toCPU
resources although the concept can also be applied to link resources as well. Applied to our
composable schedules, this means that service intervals can not only be allocated for a task
but also reserved. A reservation indicates that the corresponding service interval is currently
not in use, but might be used and turned into an allocation once the backup instance is being
used. Service intervals that can be reserved are empty service intervals that have not been
allocated yet or service intervals which are already allocated by non-critical applications. The
allocation of slots works vice-versa, non-critical applications can allocate service intervals
that are free or which are already reserved by critical applications. Critical applications on the
other hand can only allocate service intervals that are completely free. If a service interval is
allocated by a non-critical application and also reserved by a critical application the graceful
degradation approach is applied. In case there is a failure in the system and critical passive
task instances have to be started to mitigate a failure, the reservation of the resources will be
turned into an active allocation and any non-critical taskswhich formerly held an allocation of
the corresponding slots are shut down. Depending on the application, it could then be decided
if the degraded non-critical application keeps running in a degraded mode or is completely
shut down.

For the latency analysis of the backup solutions itself it is not relevant whether a reserved
slot is also allocated and graceful degradation is applied or not as the reservation will be
turned into an allocation. This procedure allows to predict before the occurrence of any
failure if a valid backup solution can be found, but also allows a predictable behaviour of
the graceful degradation approach. Furthermore, we can reuse our analytical formulas from
Sect. 4.2 to calculate T L(t, β(t)) based on the number of reserved service intervals SIr (t)
and the binding of the passive task instance β(t):

T L(t, β(t)) = T Lexec(t, β(t)) + T Linter (t, β(t)), (16)

T Lexec(t, β(t)) =
W (t, β(t))

τSI
� · τSI , (17)

T Linter (t, β(t)) =
 W (t, β(t))

|SIr (t)| · τSI
� · (SImax − |SIr (t)|) · τSI . (18)

To calculate the worst-case communication latency CL(m, σ (m)) of backup message
instances, under the same assumptions as in Sect. 4.2, we can reuse Eq.12 based on the

123

Predictable timing behavior of gracefully degrading automotive… 119

(a) Task schedule with reserva-
tion and allocation.

(b) Non-critical task tn being
degraded.

(c) Reservation turned into an
allocation.

Fig. 6 Example of a task schedule with a maximum amount of allocatable (lower) and reservable (upper)
service intervals of SImax = 5. One service interval |SIr | = 1 is reserved for the critical task instance t0,b .
The same service interval is allocated by the non-critical task instance tn . In a failure scenario where t0,b has
to be activated, tn is being degraded in a first step. Afterwards, t0,b is taking over the allocation of the service
interval. (Color figure online)

routing of the backup message instances σ :

CL(m, σ) = hops(σ (m)) · SLmax · τSL . (19)

In Fig. 6an exemplary task schedule with reservations and allocations is presented. The
upper service intervals indicate a reservation, while the lower service intervals indicate an
allocation of the same service interval. In this example the first service interval is allocated by
the non-critical task tn but also reserved by the critical task instance t0,b. In a failure scenario
where the task instance t0,b is activated to serve as a backup solution, the non-critical tn
first looses its allocation and, thus, is being degraded. Afterwards, the reservation of the
task instance t0,b is turned into an active allocation such that this resource can now be used
exclusively by the critical task instance.

The decision which service interval should be allocated or reserved is not straightforward.
When always a completely free service interval is taken first, then the schedule might run out
of service intervals earlier such that not sufficient resources might be left for other tasks. On
the other hand, when it is tried to overlap service intervals as much as possible but more than
sufficient service intervals are available for all tasks, then an avoidable degradation might
occur in a failure scenario. We present and discuss three different allocation and reservation
strategies in Sect. 6.4 and evaluate them in Sect. 7. Before that, we introduce in the following
section our agent-based mapping approach and the components required to implement such
a gracefully degrading behavior at run-time.

6 Agents—finding feasible solutions at run-time

We use a dynamic agent-based approach to perform mapping and constraint checking at
run-time. In the following we describe the components involved in the mapping process and
the algorithms used by the agents. Each agent controls one task instance and is responsible
for allocating resources and ensuring that constraints are met. Together the agents enable a
decentralized control without a single point of failure. This concerns both active and passive
task instances. The agents are able to communicate in a predefined order with each other
to manage the mapping process of all task instances of an application. To dynamically acti-
vate, deactivate, and move tasks on the platform at run-time, we implemented a middleware
which is based onSOME/IP [25]. Thismiddleware includes a decentralized service-discovery

123

120 P. Weiss, S. Steinhorst

to dynamically find services in the system and a publish/subscribe scheme to publish and
subscribe to events.

We assume that most system resources are available for performing the search and that the
mapping approach be performed while the car is not actively in use. Once a stable mapping
is found, the agents do not perform any action and, thus, do not require any additional
resources. As backup mappings are already found and readily available, we follow our main
hypothesis, such that when the failure occurs a safe state can be reached with a minimum
amount of communication and computation. After a failover, the fail-operational behavior
has to be re-established to ensure a safe travel as further failures could lead to potential
hazards. A re-mapping of the applications has to be performed during a safe halt.

Our system to find feasible mappings at run-time consists mainly of agents and resource
managers. Resource managers manage the resources associated with an ECU or switch.
The resource managers take care of the allocation or reservation requests and assign the
corresponding service intervals or slots. By assigning a slot a resource manager implicitly
decides how the system will be degraded in a failure scenario and which task instances
will loose resources. Therefore, changing the algorithm for assigning the slots can impact
the degradation behaviour and success chance of finding a mapping. The responsibility of
an agent is to find a suitable mapping for its task that meets all mandatory constraints by
allocating and reserving resources at the resource manager or by moving to another ECU.
Furthermore, each agent also verifies if an application-wide constraint such as the end-to-end
application latency is still met. As partially a sequential mapping order is required to fulfill or
verify these constraints, agents can communicate with each other to synchronize the mapping
flow.

In the following we first provide an overview and formalize the constraints that have to
be respected to consider a given mapping as a valid solution in Sect. 6.1. We then present a
solution how the timing constraints are evaluated at run-time using our performance analysis
in Sect. 6.2. Afterwards, we present the mapping process of an application using agents in
Sect. 6.3. Here, we first go into detail in which order the agents find a mapping for their task
to be able to meet all constraints. Afterwards, we present a code listing and describe how
the search space is searched for a valid solution by the agents which solves all constraints
using a backtracking algorithm. Furthermore, we describe the role of resource managers in
Sect. 6.4 which are responsible for performing allocations and reservations by choosing the
corresponding service intervals. We also present our allocation and reservations strategies
that can be used by a resource manager which has a direct effect on how the system will
be degraded. Last, we describe the recovery and reconfiguration process with the immediate
failure reaction to ensure a safe fail-operational behavior in Sect. 6.5.

6.1 Constraints

The following constraints have to be respected to consider any found mapping as a valid
solution.

C.1 The application-wide worst-case end-to-end application latency must meet the deadline
δ:

L(α, β, ρ, σ) ≤ δ (20)

123

Predictable timing behavior of gracefully degrading automotive… 121

C.2 An active task instance ta and its corresponding passive task instance tb may not be
mapped onto the same ECU as this would contradict our fail-operational goal:

α(ta) �= β(tb). (21)

C.3 The number of allocated service intervals NSI ,a(e), reserved service intervals NSI ,r (e)
and service intervals with both allocation and reservation NSI ,ar (e) of an ECU e must
not exceed the number of maximum available service intervals SImax :

NSI ,a(e) + NSI ,r (e) + NSI ,ar (e) ≤ SImax (22)

C.4 The number of allocated slots NSL,a(l), reserved slots NSL,r (l) of a link l must not exceed
the number of maximum available slots SLmax :

NSL,a(l) + NSL,r (l) ≤ SLmax (23)

C.5 Service intervals which are allocated by a critical task t must not be allocated or reserved
by any other task:

∀SI ∈ SIa(t) ∧ ∀t ′ ∈ T : SI /∈ SIa(t
′) ∧ SI /∈ SIr (t

′) (24)

C.6 Service intervals which are reserved by a critical task t must not be allocated or reserved
by another critical task but may be allocated by a non-critical task:

∀SI ∈ SIr (t) ∧ ∀t ′ ∈ Tc : SI /∈ SIa(t
′) ∧ SI /∈ SIr (t

′) (25)

C.7 Service intervals which are allocated by a non-critical task t must not be allocated by any
other task but may be reserved by a critical task:

∀SI ∈ SIa(t) ∧ ∀t ′ ∈ T : SI /∈ SIa(t
′) (26)

C.8 Slots which are allocated or reserved by a message m must not be allocated or reserved
by another message:

∀SL ∈ SLa(m) ∧ ∀m′ ∈ M : SL /∈ SLa(m
′) ∧ SL /∈ SLr (m

′) (27)

∀SL ∈ SLr (m) ∧ ∀m′ ∈ M : SL /∈ SLa(m
′) ∧ SL /∈ SLr (m

′) (28)

Sect. 6.2 describes how solutions that respect Constraint C.1 can be found at run-time
by splitting the validation problem up into smaller sub-problems which are solved by the
agents. Constraint C.2 is respected by constraining the mapping order of the agents and by
limiting the search space accordingly as described in Sect. 6.3. Constraints C.3 to C.8 are
implicitly respected by the resource manager when assigning service intervals and slots to
task and message instances as described in Sect. 6.4.

6.2 Run-time timing constraint solving

As described in Sect. 5.1 the critical path in the application graph has to be identified to verify
whether Constraint C.1 can be met. Instead of verifying the timing constraint once all task
instances are mapped, we continuously evaluate whether the application meets the timing
constraint with the task instances mapped so far. This is done at run-time as the mapping
of task instances and their predecessors is not known at design time. We split the bigger
problem of verifying each single path into smaller sub-problems solved by the agents such
that the constraint is continuously being verified and the search can be interrupted earlier if

123

122 P. Weiss, S. Steinhorst

the mapping process is running into a dead-end. As only the critical path is of interest, each
agent calculates and stores the worst-case path latency to its task L(t, α, β, ρ, σ) as

L(t, α, β, ρ, σ) = max∀tp∈pred(t)
(L(tp, α, β, ρ, σ) + CL(mtp−t , ρ, σ))+

T L(t, α(t), β(t)).
(29)

Here, an agent requires only the worst-case path latencies L(tp, α, β, ρ, σ) of its prede-
cessor tasks tp and the corresponding worst-case communication latencies to its own task
CL(mtp−t , ρ, σ)) together with the worst-case task latency T L(t, α(t), β(t)). The maxi-
mum of all paths from preceding tasks tp to this task t is then the worst-case path latency to
it task L(t, α, β, ρ, σ). Accordingly, instead of verifying Constraint C.1 once all tasks are
mapped, each agent can verify the following constraint on its own:

L(t, α, β, ρ, σ) ≤ δ (30)

This has the advantage if there are multiple sink tasks in an application graph that each
agent can verify the constraint on its own. Furthermore, if the constraint can not be met by
any of the tasks during the mapping process, the process can be stopped and a backtracking
algorithm can be applied saving the agents from evaluating invalid solutions.

6.3 Agent

In our work each task instance is assigned to an agent which is responsible for finding a
mapping by allocating and reserving resources at resource managers and by coordinating the
mapping process with other agents. In the following we first present a pre-defined mapping
order in which the agents of an application find a mapping. Afterwards, we describe the
search space exploration of an agent using a code listing. Last, we present the backtracking
approach which agents require to explore different solutions.

6.3.1 Mapping order

For the mapping process of the tasks onto the ECUs a predefined mapping flow is required
to ensure that constraints are met and only valid mappings are generated. Theoretically, it
would be preferable to map all tasks in parallel. However, there are limitations to the level
of parallelism due to constraints and their verification at run-time. To adhere to Constraint
C.2 a sequential mapping flow between active and passive task instances is required to
avoid mapping both task instances onto the same ECU. Therefore, we define that active task
instances have to be mapped before passive task instances. Second, to allocate and reserve
resources for communication, the routing from a predecessor task to its successor has to
be known. We decided that the succeeding tasks allocate and reserve the resources for all
incoming messages. As a consequence, a task instance can only be mapped onto an ECU
once all preceding task instances are mapped. This sequential mapping order is also required
to perform the run-time constraint solving described in Sect. 6.2.

Figure7shows the mapping flow of an exemplary task instance graph consisting of four
tasks. The mapping process starts with the active task instance of the source task t0,a . All
other task instances are initially waiting until they received a message from all their mapping
predecessors. Once the active task instance has found a mapping it will inform its passive
counterpart t0,b that it found a valid mapping. The passive task instance t0,b that has been

123

Predictable timing behavior of gracefully degrading automotive… 123

Fig. 7 An exemplary task instance graph with the corresponding mapping flow. Passive task instances are
mapped after active task instances. Active task instances have to wait until the passive task instances of their
predecessors are mapped. As the task instances of t1 and t2 do not have any dependencies on each other they
can be mapped in parallel. However, the active task instance of t3 has to wait for both branches to finish to
continue with the mapping process. (Color figure online)

waiting then finds a mapping itself. It ensures that the ECU to which the active task instance
is mapped to is removed from the search space of the passive task instance. Afterwards, the
passive task instance informs all active task instances of directly succeeding tasks. In the
example t0,b informs t1,a and t2,a about a successful mapping. Active task instances might
have to wait not only for one but multiple passive task instance of their preceding tasks
depending on the dependencies in the application graph. In the figure t3,a has to wait for both
t1,b and t2,b to finish. By contrast, neighbouring tasks with shared predecessors can search
for a mapping in parallel as they have no direct dependency and open a new branch as it is
the case for the task instances of t1 and t2 in the example. Any tasks instances belonging
to different branches can also work in parallel. Therefore, the level of parallelism in the
mapping search is bound by the number of branches or the width of the application graph.
Tasks which have predecessors in multiple different branches reduce the level of parallelism
and represent a bottleneck.

6.3.2 Agent mapping

Once it is the turn of an agent to find amapping, it is its responsibility to evaluate the mapping
options and ensure that resources are allocated and reserved accordingly. Listing 1 shows the
pseudo-code for the mapping process of an agent. Each agent starts in the Wait() function
(Line 1) where they wait until all predecessors send a signal that they found a mapping and
transmit their worst-case latencies and mappings. Afterwards, the agent becomes active and
is searching for a mapping. Here, at first the search space is set up consisting of all available
ECUs in the system (Line 6). Then, in case a passive task instance tb is being mapped, the
ECU to which the corresponding active task instance ta is mapped to is removed from the

123

124 P. Weiss, S. Steinhorst

search space B(tb) to adhere to Constraint C.2 (Lines 7 and 23):

B(tb) = {e ∈ E | e �= α(ta)} (31)

To find the most suitable solution, the different options for the mapping of the task are
evaluated (Lines 8 and 28). Here, the worst-case path latency L(t, e) for each available ECU
e ∈ E is calculated. Afterwards, the search space can be filtered for invalid solutions that do
not adhere to Eq.6.2 and, therefore, would violate Constraint C.1 (Lines 9 and 34). Using a
heuristic the possible solutions are then sorted by the calculated by an increasing worst-case
latency (Line 10). The agent then tries to allocate resources for the most fitting solution by
sending allocation and reservation requests to resource managers (Lines 11 and 40). Here,
service intervals have to be allocated or reserved for the executing tasks and slots allocated
or reserved for all incoming messages on the links on the corresponding routing paths. The
resource managers receive a request from an agent to allocate or reserve a certain amount of
service intervals for CPU resources or slots for a link. The resource manager then executes
the allocation or reservation and answers the agent whether the allocation or reservation
could be performed successfully or not. The resource manager also implicitly decides how
the system will be degraded by choosing the corresponding service intervals for the agent.
However, this behavior is completely transparent to the agent and it does not know whether
the activation of its passive task instance will lead to a degradation of another task and vice
versa. Multiple strategies of the resource manager for allocating and reserving resources are
described in Sect. 6.4. In case all resources could be successfully allocated and reserved a
valid solution has been found such that the agent can update the binding for its task, move to
the corresponding ECU and inform all succeeding agents about its success (Lines 18-21).

Listing 1 Code listing of our agent-based mapping approach.

1 Wait() :
2 α, β,L(tp) ← WaitForPredecessors()
3 FindMapping(α, β,L(tp))
4

5 FindMapping(α, β) :
6 E ← GetSearchSpace()
7 E ← RemoveActiveBindingFromSearchSpace(α ,E)
8 L ← EvaluateSearchSpace(α, β,L(tp), E)
9 E ← FilterSearchSpace(L, E)

10 E ← SortSearchSpaceByLatency(L, E)
11 ε ← TrySolutions(E)
12

13 i f ε == ∅

14 for tp in pred(t) :
15 tp .Backtrack()
16 Wait()
17 else :
18 UpdateBindings(α, β, ε)
19 L(t) ← L(t, ε)
20 MoveToECU(ε)
21 InformSuccessors(α, β,L(t))
22

23 RemoveActiveBindingFromSearchSpace(E) :
24 i f t ∈ Tb :

123

Predictable timing behavior of gracefully degrading automotive… 125

25 E .remove(α(t))
26 return E
27

28 EvaluateSearchSpace(α, β, E) :
29 for ε ∈ E :
30 ρ, σ ← GetRoutings(α, β, ε)
31 L(t, ε) = max∀tp∈pred(t) (L(tp) + CL(mtp−t , ρ, σ)) + T L(t, ε)
32 return L, E
33

34 FilterSearchSpace(L, E) :
35 for ε ∈ E :
36 i f L(t, ε) > δ :
37 E .remove(ε)
38 return E
39

40 TrySolutions(E) :
41 while ε ∈ E and not ζ :
42 E .remove(ε)
43 ζ ← AllocateAndReserveResources(ε) :
44

45 i f not ζ :
46 return ∅

47 else :
48 return ε

49

50 Backtrack () :
51 FreeResources()
52 InvalidateSuccessors ()
53 FindMapping()
54

55 InvalidateSuccessors () :
56 for ts in succ(t) :
57 ts . Invalidate ()
58

59 Invalidate () :
60 FreeResources()
61 InvalidateSuccessors ()
62 Wait()

6.3.3 Backtracking

In case that either all solutions in the search space have been filtered out or not sufficient
resources could be allocated or reserved for any of the solutions, the mapping algorithm
ran into a dead end. Here, a backtracking algorithm is performed. The agent informs its
predecessor in the mapping flow that no solution could be found and then goes back into its
initial waiting status (Lines 14–16 and 49). The informed agent then frees all resources it had
previously allocated or reserved and the ECU to which it is currently mapped to is removed
from the search space. Afterwards, this agent has to in turn inform all other succeeding agents

123

126 P. Weiss, S. Steinhorst

in the mapping flow that its mapping has been invalidated. This prohibits the succeeding
agents in other branches from wasting time and unnecessarily occupying resources. Even if
the other branches were to find a valid solution, the solution would be based on a mapping
of their predecessor that is no longer valid. Furthermore, they are informed that they have
to wait again for their predecessor in the mapping flow. After invalidating its successors the
backtracking agent tries to find another valid solution (Line 53) and will then again inform
its predecessors about the success. If there is no valid solution left or no other solution can
be found, it will itself start the backtracking process of its own predecessors.

6.4 Resourcemanager

In the following we describe how an allocation and reservation request of an agent is per-
formed by a resourcemanager. Furthermore, we introduce the three allocation and reservation
strategies Random, FreeFirst and FreeLast and describe their respective advantages and
disadvantages over each other. These three strategies are evaluated in detail in Sect. 7.

6.4.1 Resource allocation and reservation

The resource managers receive a request from an agent to allocate or reserve a certain amount
of service intervals for CPU resources or slots for a link. It is the job of the corresponding
resourcemanager to execute the allocation or reservation and to answerwhether the allocation
or reservation could be performed successfully or not. The resource manager decides during
this process which exact service intervals or slots will be allocated or reserved. Here, it
ensures that constraints C.3 to C.8 are met as it is programmed to only operate within these
bounds. This allocation and reservation process also decides how the systemwill be degraded
in a failure scenario. Section 5.2 describes in detail how a degradation would be performed
on the level of service intervals. If a service interval is both reserved by a critical passive task
instance and allocated by a non-critical task instance, the service interval is automatically
assigned to the critical task instance once a failure occurs. In our system a critical agent can
pass the information in which failure scenarios this activation should occur. The resource
manager is then informed by a watchdog about any failures occuring in the system such that
it can immediately react. This behavior is completely transparent to the agent and it does not
know whether the activation of its passive task instance will lead to a degradation of another
task.

6.4.2 Strategies

In the following we discuss the three strategies we developed to allocate and reserve resource
slots. By default the resource managers use the Random strategy which chooses the service
intervals assigned to an allocation or reservation request randomly. Changing this algorithm
can impact the degradation behaviour and success chance of finding a mapping. In the fol-
lowing we propose two alternative strategies FreeFirst and FreeLast for assigning service
intervals.

TheFreeFirst strategy aims atminimizing the overlap between reservations and allocations
by assigning service intervals first that have not been allocated or reserved. Only if no free
service interval is available the algorithm will allocate or reserve other service intervals. The
algorithm has the advantage of reducing the degradation effect as allocations and reservations
overlap as little as possible. The downside is that in scenarioswhere resources are constrained,

123

Predictable timing behavior of gracefully degrading automotive… 127

the algorithm might lead to lower success rates of finding mappings as less free service
intervals will be available. On the other hand, in more relaxed scenarios it uses all available
resources to reduce the degradation effect with little effect on the success rate.

The FreeLast strategy aims at utilizing resources more efficiently by assigning service
intervals first that already have been allocated or reserved, which maximizes the overlap
between reservations and allocations. The advantage is that even in resource-constrained
scenarios, the resources are used in an efficient way such that the success rate of finding
mappings is increased. On the other hand, as the overlap between reservations and allocations
is maximized, there will be a stronger degradation effect in case of a failure scenario. In
scenarios where resources are less constrained, reservations and allocations will overlap even
if additional free service intervals were available leading to avoidable degradation effects.

When choosing one of the two opposing strategies, a trade-off between degradation effect,
success rate and resource-efficiency has to bemade. In scenarios where degradation is desired
or tolerated, the FreeLast strategy can lead to a lower resource utilization and higher success
rates. In scenarios where many resources are available and degradation should be avoided as
much as possible the FreeFirst strategy maximizes resource utilization to minimize degra-
dation impact. We continue this discussion with our experimental results in Sect. 7, which
gives further insights into these three strategies.

6.5 Recovery and reconfiguration

In a failure scenario with a critical application, an immediate failure reaction and failover to
the backup solution is required to keep the application operational. Failures can be detected
via watchdogs and heartbeats. In previous work [4], we have presented a formal analysis to
derive the worst-case application failover time for distributed systems. Here, we analyzed
the impact of failure detection and recovery times on the timing behavior of distributed
applications. This analysis guarantees an upper bound on the time that it would take for an
application to generate a new output after the failover of one or multiple task instances. Our
current work can be used as a base for the analysis done in [4] as our system provides an
upper bound on task execution and message transmission times.

In case an active task instance of a critical application is affected by the failure, the watch-
dogs notice a timeout and notify both the resource manager and the agent of the passive task
instance. The resource manager immediately turns the reservation of the agent into an alloca-
tion and performs a degradation if required. The agent of the passive task instance then starts
its task. As we use a service-oriented middleware with a publish/subscribe pattern, this task
instance then has to subscribe to its predecessor task instances to receive the corresponding
messages. In case the preceding task instances have been affected by the failure as well, they
first have to advertise their service before succeeding task instances can subscribe to them. If
a passive task instance of a critical application is affected by a failure no immediate failure
reaction is required. In case a failover has been performed by a preceding task instance, a task
instances also has to wait until the corresponding service is offered until it can re-subscribe
to it.

If a task instance of a non-critical application is affected by a failure, no immediate
reaction is required. In case a non-critical task instance is affected by a degradation the agent
is automatically notified. The degraded non-critical task can then run in a degraded mode
with less available resources or completely be shut down.

After the immediate failover, which ensures a safe fail-operational behavior of critical
applications, a reconfiguration of the system can be performed. During this reconfiguration,

123

128 P. Weiss, S. Steinhorst

resources can be freed by shutting down task instances of failed non-critical applications.
Furthermore, it is important to re-establish the fail-operational behavior of critical applica-
tions. Here, the agent of the source task invalidates the mapping of all its successors in the
mapping order which in turn also inform all their own successors. Afterwards, the mapping
process can be repeated while the car is in a safe state until a valid configuration is found.

7 Evaluation

We evaluate our performance analysis and our agent-based approach using our in-house
developed simulation framework. The framework has been developed to simulate automotive
hardware architectures and the execution and communication of the system software accord-
ing to our system model in Sect. 3. On top of the simulation framework we implemented the
agents, resource managers and strategies as described in Sect. 6. For the simulation frame-
work we chose a process-based Discrete-Event Simulation (DES) architecture based on the
SimPy framework [32]. The hardware architecture and system software are described in a
specification file using the XML schema from the OpenDSE framework [33]. The simula-
tion framework supports any kind of hardware architecture consisting of ECUs, switches,
and links. To allow a dynamic behavior where tasks and agents are moving between ECUs
at run-time we use a communication middleware based on the SOME/IP standard [25]. The
middleware consists of a service discovery which allows to dynamically find services at run-
time. Communication participants are either modelled as clients or services. Furthermore,
the middleware supports remote-procedure calls and includes a publish/subscribe scheme.
The framework also offers the possibility to simulate ECU failures by shutting down ECUs.
ECU failures are detected via heartbeats that are periodically sent between all ECUs. Once
a watchdog does not receive the heartbeat within a certain timeout interval it reports the
corresponding ECU failure.

7.1 Setup

The hardware architecture that we use in our experiments and which is depicted in Fig. 8
consists of ten homogeneous ECUs which are connected in pairs to one switch. The switches
are connected to each other in a ring architecture resulting in a maximum hop count of four
between each ECU.We use shortest path routing based onDijkstra’s algorithm for routing the
messages [27]. For our experiments we use applications which are synthetically generated
by the OpenDSE framework using the TGFF algorithm [33, 34]. All applications consist of
exactly ten tasks with a WCET of W (t, α(t)) = 2.5 ms and the requirement to allocate or
reserve five service intervals. We design the system such that exactly one ethernet frame with
a maximum frame size of 1518 bytes can be sent in one time slot. Using ethernet links with
a data rate of 1 Gbit/s we can calculate the transmission time over one link l as

ttrans = 1518 byte

1 Gbit/s
= 12.144μs. (32)

Rounding this value, we design our slot interval as τSL = 12.5μs. Thus, we can calculate
the transmission time of a message over one ethernet link CLtrans(m, l) as

CLtrans(m, l) = τSL = 12.5μs. (33)

123

Predictable timing behavior of gracefully degrading automotive… 129

Fig. 8 The simulated hardware architecture used in our experiments. Ten homogeneous ECUs e ∈ E are
connected in pairs via ethernet links l ∈ L to one switch s ∈ S forming a ring architecture. Messages
are routed using Dijkstra’s algorithm [27]. In the worst case four hops are required to enable communication
between twoECUs.Using ethernet linkswith a data rate of 1Gbit/s, amaximum slot number of SLmax = 1000
and a slot interval of τSL = 12.5μs, the worst-case communication latency for sending a message m over
one link is CL(m, l) = 12.5 ms

Choosing SLmax = 1000, we can calculate the worst-case communication latency
CL(m, l) over one link according to Eq.10 as

CL(m, l) = SLmax · τSL = 12.5ms. (34)

The resource managers on the ECUs are managing access to a schedule with SImax = 250
service intervals and a service interval time of τSI = 0.5 ms resulting in a total number of
2500 service intervals.

7.2 Experiments

We set the deadline δ for the worst-case end-to-end application latency to 1200 ms, creating
scenarios with both tight and relaxed timing constraints for the randomly generated appli-
cations. For the experiments we chose 20 non-critical applications and deviated the number
of critical applications Nc between 10 and 30 to construct scenarios where resources are
constrained and scenarios where the resource situation is relaxed. Results present the aver-
age values of 500 runs per configuration. For each single run a new set of applications was
synthetically generated. As the search process could potentially take a lot of time in cases
with tight timing constraints or where resources are limited, we set an upper bound of 10,000
backtrack operations as a stopping criteria. Cases which hit this upper bound are considered
as failed. We conducted the simulations on a server with an Intel Xeon Gold 6130 CPU
consisting of 16 cores running at 2.1 GHz and 128GB of RAM. Each simulation run was
assigned a single CPU and 8GB of RAM. Simulation runs finished within a few minutes in
the majority of cases. In the worst case it took 76min to finish the simulation.

In the following we present the mapping success rates of our constraint solving approach
over a deviating number of critical applications. We compare these results to our graceful
degradation approach from [2] where no timing constraints are considered and to an active

123

130 P. Weiss, S. Steinhorst

10 15 20 25 30

50

60

70

80

90

100 Invalid solutions

Nc

Su
cc
es
s
ra
te

[%
]

Resource Availability [2] Constraint Solving Active Redundancy

Fig. 9 Experimental results presenting the average mapping success rate of critical applications for deviating
numbers of critical applications Nc . Using our constraint solving approach with graceful degradation (blue
curve with square marks) the success rate is significantly higher than using active redundancy (orange curve
with star marks). When not considering timing constraints and only taking resource availability (black curve
with triangle marks) into account, as presented in [2], only invalid solutions would be found which is not an
option. (Color figure online)

redundancy where no degradation is applied. Afterwards, we evaluate the success rate of our
three allocation and reservation strategies from Sect. 6.4. Then we further analyze one sce-
nario by presenting Cumulative Distribution Function (CDF) over the number of explorations
performed for both the successful and failed cases. Furthermore, we present the number of
free service intervals and the number of overlapping service intervals for all our three strate-
gies and also compare these results to an active redundancy approach. Last, we summarize all
findings from these experiments about the difference of our allocation and reservation strate-
gies between each other and draw a conclusion about the importance of graceful degradation
compared to state-of-the-art approaches.

7.2.1 Success rate—constraint solving versus state of the art

Figure9presents the average success rate of the application mapping processes of critical
applications for a deviating number Nc of critical applications. We compare our constraint
solving approach (blue curve with square marks) to our state-of-the-art approach in [2]
where timing constraints are not considered and only resource availability is taken into
account. Furthermore, we conducted experiments where constraint solving is applied but no
degradation is allowed (orange curve with star marks) representing approaches with active
redundancy or where passive redundancy is used but resources are allocated exclusively to
one task. While the approach based only on resource availability (black curve with triangle
marks) is able to map applications with a success rate of 100% in cases where the resource
situation is relaxed the success rate steadily decreases with an increasing amount of critical
applications down to a success rate of 69.7% at a number of Nc = 30 critical applications.
Looking at our run-time constraint solving approach it can be observed that the success rate
is lower even in scenarios with a relaxed resource situation as some timing constraints are
too tight to find a valid solution. With an increasing number of critical applications Nc the
resources become themore limiting factor such that the success rate decreases further but also
comes closer to the resource availability curve. These results confirm that an approach based

123

Predictable timing behavior of gracefully degrading automotive… 131

10 15 20 25 30

60

70

80

90

100

Nc

Su
cc
es
s
ra
te

[%
]

Random FreeFirst FreeLast

Fig. 10 Experimental results presenting the average mapping success rate of critical applications of our
strategies for different numbers of critical applications Nc . The FreeLast heuristic (green curve with circle
marks) leads to increased success rates compared to the random constraint solving (blue curve with square
marks), while the FreeFirst heuristic (red curve with diamond marks) leads to lower success rates. With lower
numbers of critical applications there is no impact of the heuristics on the success rate is visible as sufficient
resources are available to allocate and reserve all required service intervals. With an increasing number of
critical applications resources become more constraint and the advantages and disadvantages of the heuristics
become more visible. (Color figure online)

only on resource availability would find mappings that would violate timing constraints in
a high number of cases in this setup. The active redundancy approach has a similar success
rate to our constraint solving approach with a number of Nc = 10 critical applications.
However, with an increasing number of critical applications the success rate drops steadily
with significant worse results than our constraint solving approach with degradation. It is
clearly visible that graceful degradation can greatly increase the success rate in scenarios
where resources become more limited. While it looks like the approach based on resource
availability as a higher success rate, it mainly generates invalid solutions which is not an
option.

7.2.2 Success rate—strategies

We also evaluate our strategies for allocating and reserving resources presented in Sect. 6.4.
Figure10presents the success rates of critical applications of the default Random strategy
(blue curve with square marks) and our two heuristics FreeFirst (green curve with circle
marks) and FreeLast (red curve with diamond marks). For non-resource constrained cases
with 10 and 15 critical applications, the values of all three algorithms are close to each other.
Afterwards, in scenarios where resources become more limited with an increasing number
of critical applications the success rate decreases for all three strategies. However, the three
curves diverge from each other, with the FreeLast strategy having the highest success rates
and theFreeFirst strategy leading to the lowest success rates. In resource relaxed scenarios the
FreeLast heuristic is not advantageous as there are sufficient resources available to reserve and
to allocate for both the Random and the FreeFirst algorithms. In more resource-constrained
scenarios the advantage of the FreeLast strategy regarding the more efficient use of resources
becomes visible, while the FreeFirst heuristic is leading to sub-optimal results. We discuss
in Sect. 7.2.4 that there can be scenarios in which the FreeFirst strategy can have advantages.

123

132 P. Weiss, S. Steinhorst

Random FreeFirst FreeLast

0 0.2 0.4 0.6 0.8 1
·105

70

80

90

Ne,c

C
D
F
[%

]

(a) Successful mappings.

0 0.20.40.60.8 1 1.21.41.6
·105

0

10

20

30

Ne,c

C
D
F
[%

]

(b) Failed mappings.

Fig. 11 CDFs of the number of total number of epxlorations of the critical applications Ne,c in the scenario
with Nc = 25 critical applications for both the successful cases (a) and the failed cases (b). Most applications
that successfully found a mapping require clearly less than 500 explorations, with only a few exceptions
requiring more explorations. Applications that could not find a mapping within the upper limit of 10,000
backtracking operations often required more than 500 explorations. (Color figure online)

7.2.3 Cumulative distribution function

To allow a more fine-grained analysis of these three strategies we present the CDFs of the
number of explorations Ne,c tested per critical application for the scenario with Nc = 25
critical applications split up into successful and failed mapping cases in Fig. 11. The number
of explorations Ne,c defines howmany times in total the agents of a critical applications have
explored a mapping by sending allocation and reservation requests for a potential solution.
In a best-case scenario every agent successfully finds a mapping on the first try. In the worst-
case scenario mappings are tested until our stopping criteria of 10,000 backtrack operations
is reached. It can be observed that in the case of successful mappings almost all mappings
are found with less than 500 allocation or reservation requests with only a few outliers.
For applications that could not find a mapping within the upper limit of 10,000 backtrack
operations many could confirm within 500 explorations that no mapping can be found. This
implies that applications started backtracking relatively early in the search process as tasks
which are further up in the application graph could not find amapping due to limited resources
such that it can be confirmed relatively quickly that no mapping can be found. However,
for many applications it frequently took more than 500 explorations up to around 16,000
explorations. In these cases many task instances were already mapped until running into a
shortage of resources or a violation of a timing constraint such that many explorations would
have to be performed to confirm that no solution exists. The curves of the FreeFirst and the
FreeLast strategies appear to have a similar trend as the curve of the Random strategy with a
positive or negative offset. In the case of failedmappings this means for theFreeFirst strategy
that there aremore caseswhich are counted as failed after relatively few explorations implying
that mappings could not be found due to resource constraints. On the other hand, in the case of
theFreeLast strategy, this implies thatmore applications couldfindamapping compared to the
other two strategies as applications did not run as often into resource constraints. Therefore,
these results further confirm the findings that the FreeLast strategy has an increased success
rate due to utilizing service intervals more efficiently, while the FreeFirst strategy runs into
resource constraints more often.

123

Predictable timing behavior of gracefully degrading automotive… 133

Random FreeFirst FreeLast Active Redundancy

10 15 20 25 30
0

250

500

750

1,000

1,250

1,500

1,750

Nc

Se
rv
ic
e
in
te
rv
al
s

(a) Average number of free service intervals.

10 15 20 25 30
0

250

500

750

1,000

1,250

1,500

1,750

Nc

Se
rv
ic
e
in
te
rv
al
s

(b) Average number of overlapping service inter-
vals.

Fig. 12 Experimental results of the average numbers of free and overlapping service intervals with a total
number of 2500 service intervals distributed over ten ECUs. The results are consistent with success rates
from Fig. 10. A higher number of free service intervals is better as this allows to map more applications and
increases the success rate. A higher number of overlapping service intervals directly increases the number of
free service intervals and, therefore, increases the success rate. The FreeFirst heuristic occupies more service
intervals than the default service intervals distribution algorithm, while the FreeLast heuristic occupies less
service intervals leading to higher success rates. On the other hand, the FreeLast heuristic has a higher number
of overlapping allocations and reservations which leads to a higher degradation impact, while the number of
overlapping service intervals is lower for the FreeFirst heuristic. The active redundancy approach requires the
most service intervals and does not result in any overlapping service intervals. (Color figure online)

7.2.4 Service interval utilization

Figure12presents the number of free service intervals and the number of overlapping service
intervals of the experiments with a deviating number of critical applications Nc. It can be
observed that the curves are running almost parallel to each other with an offset until a
minimumclose to zero is hit. Inmost cases some service intervals remainunoccupied although
not all applications can be mapped as the remaining service intervals are distributed over
multiple ECUs and might only be a fraction of the service intervals required to map an
application. The FreeLast strategy has the most free service intervals for the scenarios with
a lower number of critical applications, while the FreeFirst algorithm leads to lower number
of free service intervals compared to the Random strategy. The active redundancy approach
leads to the lowest number of freely available service intervals. Comparing Figs. 12a to 9 and
10 we can see that the success rate always starts to decrease when the curve is hitting a low
in the number of freely available service intervals. This observation confirms our previous
findings that the number of available resources is limiting the success rate.

However, this advantage is bought with a likely more reduced functionality of non-critical
applications after a failover scenario. In the case of active redundancy no service intervals are
overlapping as no degradation is performed at all. The other three strategies lead to increas-
ingly more overlapping service intervals with an increasing number of critical applications
with the FreeLast resulting in most overlapping service intervals and the FreeFirst strategy
resulting in the lowest number of overlapping service intervals. Themore service intervals are
overlapping the more likely a non-critical application will be degraded if the corresponding
service interval is required by a passive task instance that is performing a failover. The number
of overlapping service intervals also provides an explanation for the difference in free service

123

134 P. Weiss, S. Steinhorst

intervals between the three strategies. The FreeLast strategy overlaps service intervals when-
ever possible, keeping a maximum of free service intervals available which can be used to
map further applications. The FreeFirst strategy instead avoids overlapping service intervals
as much as possible leading to less freely available service intervals and thus limiting the
amount of applications that can be mapped. This means at the same time that the FreeLast
strategy is more likely resulting in a degradation in a failover scenario while the FreeFirst
minimizes this risk. In scenarios with constrained resources, theFreeLast strategy can use the
resources more efficiently by overlapping service intervals, resulting in higher success rates
of findingmappings but also leading to significantly higher degradation effects on non-critical
applications. In scenarios with relaxed resource situations the FreeLast heuristic does not
make use of the plentiful available resources and might result in degradation scenarios that
could be avoided when using all resources. On the other hand, the FreeFirst heuristic has the
disadvantage of having lower success rate in resource-constrained scenarios as overlapping
service intervals is avoided as far as possible. In more relaxed situations it uses all available
resources to avoid degradation as much as possible leading to more optimal solutions.

7.2.5 Summary

Summarizing our observations and findings fromour experimental resultswe have shown that
it is necessary to use our constraint solving approach as approaches based only on resource
availability would result in solutions violating timing constraints. Additionally, our assump-
tions about advantages and disadvantages of the three allocation and reservation strategies
Random, FreeFirst and FreeLast from Sect. 6.4 have been confirmed. All results together
provide a clear picture that the FreeLast strategy results in higher success rates by overlap-
ping service intervals as far as possible and, thus, leaving more free service intervals to map
other applications.While this strategy leads to increased success rates in resource-constrained
scenarios, there is an increased degradation effect that could be avoided in scenarios with a
relaxed resource situation. The FreeFirst strategy leads to lower success rates by avoiding to
overlap service intervals as far as possible leading to less freely available service intervals
and, thus, less applications that can be mapped. While this strategy reduces the degradation
effect in scenarios with plentiful resources, it results in significantly lower success rates in
resource-constrained scenarios compared to the other two strategies. Overall, the FreeLast
maximizes the graceful degradation effect while the FreeFirst strategy minimizes it with all
accompanying advantages and disadvantages for both.

Most importantly, our experiments have confirmed that graceful degradation strongly
increases the success rate of finding a mapping for critical applications compared to an
active or passive redundancy approachwithout degradation in resource-constrained scenarios.
Wen using the FreeLast strategy, more than double the number of critical applications can
fit onto the system architecture in our setup compared to an active redundancy approach.
Summarized, graceful degradation can be a powerfulmethodologywhich uses resourcesmore
efficiently than common redundancy approaches and which can strongly increase the number
of applications that can be mapped onto the same system architecture while providing the
same fail-operational capabilities. However, when designing a system it has to be considered
that more non-critical functionality is lost due to degradation in a failover scenario. Here, a
trade-off between degradation impact, mapping success rate and resource availability has to
be carefully evaluated.

123

Predictable timing behavior of gracefully degrading automotive… 135

8 Limitations

Proving whether a valid mapping and schedule solution exists or not is an NP-complete
problem which would take exponential time in the worst case [10, 21, 35]. In our approach
we assume that the problem is solved on a few powerful ECUs interconnected by high-speed
Ethernet and that most of the resources are available for the mapping process. The mapping
process itself is not performed during a time critical phase and only while the car is safely
parked such that longer search times might be acceptable. Our simulation times on a single
CPU with 8 GB of RAM typically ranged from a few minutes up to 76min. However, to
address scalability issues and in-car resource limitations of our approach there is interest-
ing research on hybrid mapping methods such as presented in [35]. Here, meta-heuristic
optimization approaches are used to find multiple pareto-optimal solutions at design time.
Run-time backtracking approaches then perform constraint solving. In [35] the backtracking
approach finds a solution for a comparable problem size within a fewmilliseconds. However,
it has to be assumed that communication within a NoC architecture is faster than on a system
level. Future work could include a hybrid mapping approach with the pre-computation of
possible mappings at design time such that new mappings after a failover are found faster.

A known disadvantage of the decentralized resource control is the amount ofmessages that
are required for resourcemonitoring [10]. In our case themessages are required for allocating
and reserving resources. Therefore, the search time is highly dependent on the amount of
messages sent. Here, in-car networks could pose a bottleneck during the mapping search. For
an in-car implementation and the given problem size we would assume that in the worst case
18messages (1 for theCPU,8 for the links, two-way) are sent per explorationover 4hops in the
worst case. With a transmission time of CLtrans(m, l) = 12.5μs and the maximum number
of explorations Ne,c = 16000 (see Figure 11) measured, the time taken to send all monitoring
messages of one application would equate to τ = 18 ∗ 4 ∗ 12, 5μs ∗ 16.000 = 14.4 s.
Multiplying this result with the number of applications N = 50 would result in a total
time of τtot = 720 s spent on the transmission of messages. For our given problem size
we would assume the transmission times as acceptable since these are pessimistic estimates.
However, high-speed in-car connections are a requirement to solve the mapping problem
with a decentralized control in a reasonable time frame.

Another limitation of our approach is that after a failover has been performed, no safe
operation of the critical applications can be guaranteed as another critical failure could lead
to potentially hazardous situations. Here, the car has to come to a stop and start a re-mapping
process to re-establish the fail-operational behavior. Adding another layer of redundancy
could potentially resolve this issue but would increase the problem complexity greatly as the
communication between all redundant instances would need to be ensured. Hybrid mapping
approaches could reduce the time spent on finding a new mapping greatly. Additionally,
there is research on performing real-time task migration [28]. Using such an approach a new
mapping could be applied while the car is actively driving. If this can be achieved in a safe
way and within an application’s operation conditions, a reconfiguration could be performed
without having to stop the car.

123

136 P. Weiss, S. Steinhorst

9 Conclusion

In this paper, we have presented an agent-based approach which enables, for the first time,
graceful degradation for real-time automotive applications. Our approach guarantees pre-
dictability for end-to-end timing constraints and enables a graceful system degradation
while ensuring fail-operational requirements of critical applications. The advantage is that
resources can be utilized more efficiently in mixed critical systems if a reduced function-
ality of non-critical applications after a failover can be accepted. To enable this behavior
we have first introduced state-of-the-art predictable timing analysis for composable schedul-
ing and adapted it to our system model. Then, we extended this predictable timing analysis
for fail-operational systems to include backup solutions in the analysis such that it can be
ensured that there is always a solution available that fulfills the end-to-end application latency
constraint. Furthermore, we introduced our composable scheduling of gracefully degrading
systems which allows critical backup solutions to reserve service intervals which are allo-
cated by non-critical applications. In a failure scenario, once a critical backup solution has
to be started, it can take over the resources such that the system is being degraded in an
intended way. The advantage of using our passive backup solution compared to active redun-
dancy is that almost no overhead is added in terms of required computational power. We also
presented our agent-based approach which uses our run-time constraint solving approach to
find solutions that meet resource and timing constraints. Here, a pre-defined mapping order
of the tasks is required to ensure that constraints can be met. In case the mapping search is
running into a dead end, backtracking is applied to explore other possible solutions. Resource
managers receive requests from agents to allocate and reserve resources and decide which
service intervals will be assigned. Here, we introduced three new strategies Random, Free-
Last and FreeFirst, for the assignment of the resources which heavily influence how the
system will be degraded. We performed multiple experiments on our simulation platform
to evaluate our approach. We have shown that it is necessary to use our constraint solving
approach as approaches based only on resource availability would result in solutions violat-
ing timing constraints. Compared to state-of-the art approaches such as active redundancy,
our graceful degradation approach could fit double the amount of critical applications on
the same platform before influencing the mapping success rate. The experiments proved that
the FreeLast strategy further enhances the effect of graceful degradation effect by overlap-
ping as much service intervals as possible, while the FreeFirst strategy reduces the graceful
degradation by avoiding any overlapping service intervals as far as possible. Our experiments
have shown that graceful degradation can greatly increase the success rate in scenarios where
resources are limited if the risk of loosing non-critical functionality in a failure scenario is
acceptable. In summary, by enabling graceful degradation for real-time applications with our
predictable timing analysis and agent-based approach, resources can be utilizedmore flexibly
and efficiently while guaranteeing a safe and dynamic behavior of automotive systems.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Predictable timing behavior of gracefully degrading automotive… 137

References

1. Saidi S, Steinhorst S, Hamann A, Ziegenbein D, Wolf M (2018) Future automotive systems design:
research challenges and opportunities: special session. In: Proceedings of the international conference on
hardware/software codesign and system synthesis (CODES+ISSS)

2. Weiss P, Weichslgartner A, Reimann F, Steinhorst S (2020) Fail-operational automotive software design
using agent-based graceful degradation. In: Proceedings of the conference on design, automation and test
in Europe (DATE), pp 1169–1174. https://doi.org/10.23919/DATE48585.2020.9116322

3. Akesson B, Molnos A, Hansson A, Angelo JA, Goossens K (2011) Composability and Predictability
for independent application development, verification, and execution, pp 25–56. https://doi.org/10.1007/
978-1-4419-6460-1_2

4. Weiss P, Elsabbahy S, Weichslgartner A, Steinhorst S (2021) Worst-case failover timing analysis of dis-
tributed fail-operational automotive applications. In: Proceedings of the conference on design, automation
and test in Europe (DATE), pp 1294–1299. https://doi.org/10.23919/DATE51398.2021.9473950

5. KohnA,KäßmeyerM, SchneiderR,RogerA, StellwagC,HerkersdorfA (2015) Fail-operational in safety-
related automotive multi-core systems. In: 10th IEEE international symposium on industrial embedded
systems (SIES), pp 1–4. https://doi.org/10.1109/SIES.2015.7185051

6. Baleani M, Ferrari A, Mangeruca L, Sangiovanni-Vincentelli A, Peri M, Pezzini S (2003) Fault-tolerant
platforms for automotive safety-critical applications. In: Proceedings of the 2003 international conference
on compilers, architecture and synthesis for embedded systems. CASES ’03, pp 170–177. https://doi.org/
10.1145/951710.951734

7. Bak S, Chivukula DK, Adekunle O, SunM, CaccamoM, Sha L (2009) The system-level simplex architec-
ture for improved real-time embedded system safety. In: 15th IEEE real-time and embedded technology
and applications symposium, pp 99–107. https://doi.org/10.1109/RTAS.2009.20

8. Oszwald F, Obergfell P, Traub M, Becker J (2019) Reliable fail-operational automotive e/e-architectures
by dynamic redundancy and reconfiguration. In: 2019 32nd IEEE international system-on-chip conference
(SOCC), pp 203–208. https://doi.org/10.1109/SOCC46988.2019.1570547977

9. Smirnov F, Reimann F, Teich J, Han Z, Glaß M (2018) Automatic optimization of redundant message
routings in automotive networks. In: Proceedings of the 21st international workshop on software and
compilers for embedded systems, pp 90–99. https://doi.org/10.1145/3207719.3207725

10. Weichslgartner A, Wildermann S, Teich J (2011) Dynamic decentralized mapping of tree-structured
applications on NoC architectures. In: Proceedings of the fifth ACM/IEEE international symposium, pp
201–208. https://doi.org/10.1145/1999946.1999979

11. Faruque M, Krist R, Henkel J (2008) Adam: run-time agent-based distributed application mapping for
on-chip communication. In: Proceedings of the 45th annual design automation conference, pp 760–765.
https://doi.org/10.1145/1391469.1391664

12. de Souza Carvalho EL, Calazans NLV, Moraes FG (2010) Dynamic task mapping for MPSoCs. IEEE
Des Test 27(5):26–35. https://doi.org/10.1109/MDT.2010.106

13. BeckerK,VossS (2015)Analyzinggraceful degradation formixed critical fault-tolerant real-time systems.
In: 18th international symposium on real-time distributed computing (ISORC), pp 110–118. https://doi.
org/10.1109/ISORC.2015.10

14. Glaß M, Lukasiewycz M, Haubelt C, Teich J (2009) Incorporating graceful degradation into embedded
system design. In: Proceedings of the conference on design, automation and test in Europe, pp 320–323.
https://doi.org/10.1109/DATE.2009.5090681

15. Shelton CP, Koopman P, Nace W (2003) A framework for scalable analysis and design of system-wide
graceful degradation in distributed embedded systems. In: Proceedings of the 8th International work-
shop on object-oriented real-time dependable systems (WORDS), pp 156–163. https://doi.org/10.1109/
WORDS.2003.1218078

16. Herlihy MP, Wing JM (1991) Specifying graceful degradation. IEEE Trans Parallel Distrib Syst 2(1):93–
104. https://doi.org/10.1109/71.80192

17. Weichslgartner A, Wildermann S, Gangadharan D, GlaßM, Teich J (2018) A design-time/run-time appli-
cation mapping methodology for predictable execution time in MPSOCS. ACM Trans Embed Comput
Syst. https://doi.org/10.1145/3274665

18. Guo Z, Yang K, Vaidhun S, Arefin S, Das SK, Xiong H (2018) Uniprocessor mixed-criticality scheduling
with graceful degradation by completion rate. In: 2018 IEEE real-time systems symposium (RTSS), pp
373–383. https://doi.org/10.1109/RTSS.2018.00052

19. Kim J, Bhatia G, Rajkumar R, Jochim M (2012) Safer: system-level architecture for failure evasion in
real-time applications. In: 2012 IEEE 33rd real-time systems symposium, pp 227–236. https://doi.org/
10.1109/RTSS.2012.74

123

https://doi.org/10.23919/DATE48585.2020.9116322
https://doi.org/10.1007/978-1-4419-6460-1_2
https://doi.org/10.1007/978-1-4419-6460-1_2
https://doi.org/10.23919/DATE51398.2021.9473950
https://doi.org/10.1109/SIES.2015.7185051
https://doi.org/10.1145/951710.951734
https://doi.org/10.1145/951710.951734
https://doi.org/10.1109/RTAS.2009.20
https://doi.org/10.1109/SOCC46988.2019.1570547977
https://doi.org/10.1145/3207719.3207725
https://doi.org/10.1145/1999946.1999979
https://doi.org/10.1145/1391469.1391664
https://doi.org/10.1109/MDT.2010.106
https://doi.org/10.1109/ISORC.2015.10
https://doi.org/10.1109/ISORC.2015.10
https://doi.org/10.1109/DATE.2009.5090681
https://doi.org/10.1109/WORDS.2003.1218078
https://doi.org/10.1109/WORDS.2003.1218078
https://doi.org/10.1109/71.80192
https://doi.org/10.1145/3274665
https://doi.org/10.1109/RTSS.2018.00052
https://doi.org/10.1109/RTSS.2012.74
https://doi.org/10.1109/RTSS.2012.74

138 P. Weiss, S. Steinhorst

20. Pourmohseni B, Wildermann S, Glaß M, Teich J (2017) Predictable run-time mapping reconfiguration
for real-time applications on many-core systems. In: Proceedings of the 25th international conference on
real-time networks and systems, pp 148–157. https://doi.org/10.1145/3139258.3139278

21. Pourmohseni B, Glaß M, Henkel J, Khdr H, Rapp M, Richthammer V, Schwarzer T, Smirnov F, Spieck J,
Teich J et al (2020) Hybrid application mapping for composable many-core systems: overview and future
perspective. J Low Power Electron Appl. https://doi.org/10.3390/jlpea10040038

22. WikiChip: Tesla FSD computer. https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip Accessed 16
Aug 2022

23. Lunt M (2016) E/E-architecture in a connected world. https://www.asam.net/index.php?eID=dumpFile&
t=f&f=798&token=148b5052945a466cacfe8f31c44eb22509d5aad1 Accessed 16 Aug 2022

24. Bosch: vehicle-centralized, zone-oriented E/E architecture with vehicle computers. https://www.bosch-
mobility-solutions.com/en/mobility-topics/ee-architecture/ Accessed 16 Aug 2022

25. Scalable service-oriented MiddlewarE over IP (SOME/IP) (2021) http://some-ip.com/
26. International Organization for Standardization: ISO 26262 (2011) Road vehicles—functional safety—

part 1–9, 1st edn. International Organization for Standardization
27. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271.

https://doi.org/10.1007/BF01386390
28. Pourmohseni B, Smirnov F,Wildermann S, Teich J (2020) Real-time task migration for dynamic resource

management in many-core systems. In: Workshop on next generation real-time embedded systems (NG-
RES 2020). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. https://doi.org/10.4230/OASIcs.NG-
RES.2020.5

29. Frese T, Leonhardt T, Hatebur D, Côté I, Aryus H-J, Heisel M (2020) Fault tolerance time interval: how
to define and handle. In: Neue dimensionen der mobilität: technische und betriebswirtschaftliche aspekte,
pp 559–567. https://doi.org/10.1007/978-3-658-29746-6_45

30. Weiss P, Daporta E, Weichslgartner A, Steinhorst S (2021) Checkpointing period optimization of dis-
tributed fail-operational automotive applications. In: 2021 24th Euromicro conference on digital system
design (DSD), pp 389–395. https://doi.org/10.1109/DSD53832.2021.00066

31. Heisswolf J, König R, Kupper M, Becker J (2013) Providing multiple hard latency and throughput
guarantees for packet switching networks on chip. Comput Electr Eng 39(8):2603–2622. https://doi.org/
10.1016/j.compeleceng.2013.06.005

32. SimPy T (2021) SimPy discrete event simulation library for Python, Version 4.0.1. https://simpy.
readthedocs.io

33. Reimann F, Lukasiewycz M, Glaß M, Smirnov F (2021) OpenDSE—Open design space exploration
framework. http://opendse.sourceforge.net/

34. Dick RP, Rhodes DL, Wolf W (1998) Tgff: task graphs for free. In: Proceedings of the sixth international
workshop on hardware/software codesign. (CODES/CASHE’98), pp 97–101

35. Schwarzer T, Roloff S, Richthammer V, Khaldi R, Wildermann S, Glaß M, Teich J (2018) On the
complexity of mapping feasibility in many-core architectures. In: 2018 IEEE 12th International sym-
posium on embedded multicore/many-core systems-on-chip (MCSoC), pp 176–183. https://doi.org/10.
1109/MCSoC2018.2018.00038

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1145/3139258.3139278
https://doi.org/10.3390/jlpea10040038
https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip
https://www.asam.net/index.php?eID=dumpFile&t=f&f=798&token=148b5052945a466cacfe8f31c44eb22509d5aad1
https://www.asam.net/index.php?eID=dumpFile&t=f&f=798&token=148b5052945a466cacfe8f31c44eb22509d5aad1
https://www.bosch-mobility-solutions.com/en/mobility-topics/ee-architecture/
https://www.bosch-mobility-solutions.com/en/mobility-topics/ee-architecture/
http://some-ip.com/
https://doi.org/10.1007/BF01386390
https://doi.org/10.4230/OASIcs.NG-RES.2020.5
https://doi.org/10.4230/OASIcs.NG-RES.2020.5
https://doi.org/10.1007/978-3-658-29746-6_45
https://doi.org/10.1109/DSD53832.2021.00066
https://doi.org/10.1016/j.compeleceng.2013.06.005
https://doi.org/10.1016/j.compeleceng.2013.06.005
https://simpy.readthedocs.io
https://simpy.readthedocs.io
http://opendse.sourceforge.net/
https://doi.org/10.1109/MCSoC2018.2018.00038
https://doi.org/10.1109/MCSoC2018.2018.00038

	Predictable timing behavior of gracefully degrading automotive systems
	Abstract
	1 Introduction
	2 Related work
	2.1 Fail-operational systems
	2.2 Dynamic mapping
	2.3 Graceful degradation
	2.4 Predictable timing behavior

	3 System model
	3.1 System
	3.2 Criticality
	3.3 System software
	3.4 Failures
	3.5 Failover

	4 Performance analysis
	4.1 End-to-end application latency
	4.2 Composable scheduling
	4.2.1 Task scheduling
	4.2.2 Message scheduling

	5 Performance analysis of gracefully degrading systems
	5.1 End-to-end application latency
	5.2 Composable scheduling of gracefully degrading systems

	6 Agents—finding feasible solutions at run-time
	6.1 Constraints
	6.2 Run-time timing constraint solving
	6.3 Agent
	6.3.1 Mapping order
	6.3.2 Agent mapping
	6.3.3 Backtracking

	6.4 Resource manager
	6.4.1 Resource allocation and reservation
	6.4.2 Strategies

	6.5 Recovery and reconfiguration

	7 Evaluation
	7.1 Setup
	7.2 Experiments
	7.2.1 Success rate—constraint solving versus state of the art
	7.2.2 Success rate—strategies
	7.2.3 Cumulative distribution function
	7.2.4 Service interval utilization
	7.2.5 Summary

	8 Limitations
	9 Conclusion
	References

