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Abstract In the design of highly complex, heterogeneous and concurrent systems, dead-
lock detection remains an important issue. In this paper, we systematically analyze the
synchronization dependencies in system-level designs. We propose a data structure called
the dynamic synchronization dependency graph, which captures the runtime blocking de-
pendencies among concurrent processes. A loop-detection algorithm is then used to detect
deadlocks and help designers quickly isolate and identify modeling errors that cause the
deadlock problems. We demonstrate our approach through two publicly available system-
level modeling languages, SystemC and Metropolis, and two real world design examples,
which are complex system-level functional models for video processing.
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1 Introduction

Today’s electronic systems become highly complex, highly heterogeneous, and highly con-
current. The platform-based system-level design methodology is increasingly being adopted
as the primary method to deal with the complexity of these modern systems. It becomes an
important part of the design methodology in the electronic design industry. The earlier in the
design process the designers can locate a problem, the less time and resources will be needed
to fix it. When a design is synthesized from one level to a more detailed level, such as from
the behavioral level to the RTL level or from the RTL level to the gate level, functional veri-
fication and debugging become much more complex and expensive. Furthermore, problems
that occur at higher abstraction levels are often hidden in the implementation details at the
lower levels, making design verification even more difficult and time consuming. Decreas-
ing time-to-market and increasing design cost are pushing design, analysis, and verification
above the RTL level. System-level verification approach is necessary to catch any violation
of communication constraints or synchronization problems caused by design errors. We fo-
cus on system-level designs where the processes can represent software and hardware. The
processes are modeled in the transaction level, which means process dependencies will be
explicitly shown in the simulator by asynchronous communication. Computation and com-
munication are abstracted in the models.

Even with careful methodological guidance, it is still possible to introduce unintended
and undesirable behaviors into function specifications, high level architecture models or
function-architecture mappings. The complex interactions of the communication, compu-
tation, and data-path control components in a system-level design make it very vulnerable
to synchronization errors. Foremost among these are deadlocks, livelocks and starvations.
Many system designers encounter deadlocks on industrial examples on a daily basis. Many
of these deadlock problems come in the context of architectural mappings and coordination
interactions. In this context, deadlocks are very confusing due to other running processes
and communication resources like mutex. To manually determine a deadlock, the designers
would have to integrate additional debugging messages into the models. By the time an error
or an assertion is shown in the simulation, the deadlock may have occurred for some period
of time, and the designers would need to use a debugger to step through the long simula-
tion until the originating point of the deadlock is observed. Such procedures takes a lot of
experience of the designers and would take hours or even days.

In our MPEG-2 Decoder and Picture-in-Picture Video Processing System, designs of the
applications are very complex and design components are modeled as processes running
concurrently and asynchronously. It is very difficult to analyze the interactions between
the processes. In addition, simulation of such systems is expensive and takes long periods of
time, and we would like to catch the problems in the designs earlier in the simulation to avoid
long simulation traces and unexpected interactions between processes after the problems
occur. Being semantic in nature, the complete and precise characterizations of the systems
require formal analysis or verification. Although it is able to consider different input vectors,
it can only be done for the simplest of designs due to the state space explosion problem. In
this work, We look for a practical solution to deal with these design problems in realistic
and complex system designs. A simulation based analysis methodology is proposed for the
detection and elimination of these “semantic errors”. Designers are responsible for coming
up with simulation vectors and scenarios that are important and may lead to undesirable
behaviors such as deadlocks. Our approach automatically analyzes the simulation status and
reports deadlocks once they occur.

In this paper, we analyze and identify the deadlock problems in system-level simula-
tion. We propose a data structure to be built during simulation that reflects the runtime
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blocking dependencies among concurrent processes. We follow up with an associated dead-
lock detection algorithm to monitor the simulation inside the simulation kernel engine. The
goal of the algorithm is to help the designers identify the components and synchronization
constructs that cause the deadlock problems and provide an error trace and a history of de-
pendency snapshots that show how the system arrives at the deadlock state. Our method of
extending the simulation kernel is generic in nature and can be easily fit into any simulation
platforms. We use two publicly available system-level modeling languages and simulators,
SystemC and Metropolis to demonstrate and validate our approach. We also use two real
world designs, an MPEG-2 Decoder and a Picture-in-Picture Video Processing System, to
demonstrate the usefulness and effectiveness of the deadlock analysis.

In the next section, we discuss the related works. In Sect. 3, we introduce synchroniza-
tions normally used in system-level simulation and show various deadlock situations that
can be caused by the synchronizations. We also illustrate the data structure of the dynamic
synchronization dependency graph and the algorithms for deadlock detection. In Sect. 4,
we present the implementations in SystemC and Metropolis platforms. We also present the
evaluations of the case studies in each of the platforms. We conclude the paper in Sect. 5
and discuss some future directions in Sect. 6.

2 Related works

Deadlock detection and resolution techniques have already been extensively studied in the
areas of operating systems and database systems [1–9]. In those domains, deadlock preven-
tion is possible if particular resource allocation policies are applied. Deadlock avoidance is
used as a part of scheduling algorithms to choose at least one possible execution path where
no deadlock will occur. A resource allocation graph or state graph is usually used to analyze
and identify deadlock situations for deadlock detection. Though it is possible to incorporate
these techniques in system designs to eliminate deadlocks, they are not general enough to
apply to arbitrary designs due to the design flexibility required by today’s platform-based
embedded systems. Our deadlock analysis mechanism is integrated into the design frame-
work (rather than the designs) to help designers analyze design errors while allowing full
design flexibility.

In concurrent software, various formal verification techniques are employed to exhaus-
tively search for deadlock situations in concurrent protocols [10–14].1 In essence, synchro-
nization protocols at a high level of abstraction, either extracted from the designs or defined
a priori, are formally verified. However, modern synchronization structures are becoming
too complex and their analysis suffers from the state explosion limitation. Our approach is
based on simulation, so it can handle real complex system designs.

In simulation verification, assertions that are based on temporal logics can be used to
check for safety properties in a certain period of execution.2 However, temporal assertions
have to be designed according to particular applications. They are usually used to guard
the overall behaviors of the systems, and not suitable for identifying the causes of those
undesirable behaviors due to their “trace checking” natures. A general deadlock detection
mechanism is proposed in [15] for discrete event simulation models. However, no imple-
mentation on real simulation models are discussed in the literature.

1Verisoft. http://cm.bell-labs.com/who/god/verisoft/.
2http://www.eda.org/vfv, 2003.

http://cm.bell-labs.com/who/god/verisoft/
http://www.eda.org/vfv
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In the emerging simulation environment for heterogeneous system-level designs, an ef-
fective and efficient deadlock analysis tool that can be tightly integrated into the design
methodology is needed, which is the main focus of this paper. Our mechanism to incremen-
tally search for deadlock during simulation is entirely novel and represent new directions in
simulation verification of system-level designs.

3 Synchronization dependency and deadlock analysis

In this section, we introduce a deadlock analysis methodology for system-level designs. We
propose a data structure called the dynamic synchronization dependency graph (DSDG) for
deadlock analysis. Once the synchronization dependencies are captured by the graph, an
algorithm can be used to detect deadlock situations.

In system-level simulation, high level processes run synchronously in a discrete event
simulator. Processes do not perform operations independently, they interact with the other
processes to perform the desired functionality. When the interactions between processes are
incorrectly designed or implemented, a set of processes may wait for each other and form a
cyclic dependency. When this happens, the set of processes would not have any chance to
continue execution.

Our deadlock analysis methodology is illustrated in Fig. 1. By integrating deadlock
analysis into a simulation environment for system-level designs, designers can efficiently
analyze complex concurrent systems with simulation and quickly identify design problems
that may cause deadlocks. The task of design analysis becomes much easier with the help
of runtime synchronization information combined with the regular simulation traces and the
static network structures. They can be used to guide the designers to revise the design to
eliminate the problems or modify the simulation vectors to explore different execution paths
for other design errors. This methodology allows full design flexibility and is able to handle

Fig. 1 Deadlock analysis methodology
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large models. The details of the deadlock analysis mechanism will be discussed in the rest
of this section.

We propose a data structure called the dynamic synchronization dependency graph
(DSDG), which captures the runtime blocking dependencies. A loop-detection algorithm
is then used to detect deadlocks and help designers quickly isolate and identify modeling
errors that cause the deadlock problems.

Our methodology does not consider “livelocks”, where the processes are constantly exe-
cuting without progressing. Since the definition of “progress” is application-dependent, it is
impossible for the simulator itself to distinguish between a livelock and a normal execution
loop, such as a clock generation. Our methodology also does not consider “blocking chains”,
where a process suspends itself and therefore processes that depend for it have to wait. It
happens very often in normal execution and is not considered a deadlock. Our methodol-
ogy detects deadlocks where each of the processes waits for other processes involved in the
deadlocks, hence stop all the involved processes to executed any further.

3.1 Dynamic synchronization dependency graph

Definition 1 A deadlock is a situation where two or more processes are blocked in execution
while each is waiting for others and there is no possibility of continuing execution.

Definition 2 A dynamic synchronization dependency graph (DSDG) is a directed graph S =
(V ,E). V is a set of vertices representing processes in the network and dynamic dependency
nodes. E is a set of directed edges between vertices indicating dynamic synchronization
dependencies.

In a DSDG, each process in the network is represented by a process vertex. Other de-
pendency vertices and edges are added and deleted dynamically as dependencies between
processes change in the execution. A dynamic dependency nodes are additional vertices that
are used to allow more complex dependencies such as AND- and OR-dependencies that
will be introduced later. Dynamic synchronization dependencies are directed edges that are
used to represent that processes are blocked by system-level synchronization statements.
System-level synchronization statements are normally used to synchronize concurrent run-
ning processes. If a process is blocked by a synchronization statement, it has dependencies
on the processes that may change the evaluation of the synchronization statement sometime
later.

In addition to a single dependency, in system-level designs a process can also have a
more complex dependency based on system-level modeling language dependent constructs.
In a DSDG, a process vertex can only have one outgoing edge to another process vertex
or a dynamic dependency node. A complex dependency is represented by a combination of
dynamic dependency nodes (vertices) and dynamic synchronization dependencies (directed
edges). AND-dependencies and OR-dependencies are examples of common complex syn-
chronization constructs that exist in many system-level languages. An AND-dependency
requires a process to be blocked until all the conditions become satisfied. If a process waits
for an AND-dependency of A, B and C, the process can continue in the earliest time after all
A, B and C are satisfied. An OR-dependency indicates that as long as one of the conditions
becomes valid, a process can be released from the dependency. If a process waits for an OR-
dependency of A, B and C, the process can continue in the earliest time when one of the A, B
and C is satisfied. AND-dependencies and OR-dependencies are represented in the DSDG
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Fig. 2 DSDG Examples
(A) deadlock with simple cyclic
dependency. (B) deadlock with
AND-dependency. (C) deadlock
with OR-dependency.
(D) deadlock with both AND-
and OR- dependencies. (E) no
deadlock

Algorithm 1 Main procedure to build and update a DSDG
1: procedure UPDATE_DSDG()
2: for each process pi in the system do
3: if pi is unblocked by one or more synchronization constructs then
4: remove all the dependency vertices and edges from pi caused by those synchronization

constructs;
5: end if
6: if pi is blocked by one or more synchronization constructs then
7: UPDATE_PROCESS(pi );
8: end if
9: end for

10: end procedure

examples shown in Fig. 2 as added dynamic dependency nodes and dynamic synchroniza-
tion dependencies. System-level modeling languages usually have language dependent syn-
chronization constructs. In SystemC, synchronization is based on events. In Metropolis, re-
source managers and eval-dependencies could be used to synchronize processes. Examples
of synchronization constructs for SystemC and Metropolis are shown in Sects. 4.1 and 4.2,
respectively.

A DSDG is automatically built and updated during simulation. It describes the status
of dependencies among all the concurrent processes in the system at a particular execution
state. If a process is actively running, there is no outgoing edge from it in the graph. When it
is blocked or released, dependency vertices and edges are added to or deleted from the graph
dynamically at the time it happens (see Algorithm 1 to 3). Initially, the DSDG only includes
all the process vertices V , and edges E is set to φ. During the simulation, UPDATE_DSDG()
is called to update the DSDG every time the synchronization dependencies of the system are
changed. UPDATE_PROCESS() is called to update the DSDG for each blocked process.
CONNECT() connects newly added vertices with directed edges.

Here we show some examples of DSDG and some of the deadlock situations that can be
detected in DSDG.

1. A DSDG shows a simple cyclic dependency among three processes, such as one that
would be shown in dining philosophers, has been shown in Fig. 2A.
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Algorithm 2 Procedure to handle a blocked process
1: procedure UPDATE_PROCESS(px )
2: for each synchronization construct that blocks px do
3: if px is blocked by a single dependency to py then
4: CONNECT(px , φ, {py});
5: else if px is blocked by a synchronization construct that requires its waiting for any of

processes p1, p2, . . ., and pn then
6: add an OR-dependency vertex ox ;
7: CONNECT(px , ox , {pi : i ∈ [1, n]});
8: else if px is blocked by a synchronization construct that requires its waiting for all of

processes p1, p2, . . ., and pn then
9: add an AND-dependency vertex ax ;

10: CONNECT(px , ax , {pi : i ∈ [1, n]});
11: end if
12: end for
13: end procedure

Algorithm 3 Procedure to connect newly added vertices
1: procedure CONNECT(src, mid, {desti : i ∈ [1, n]})
2: if mid = φ then
3: add an edge from src to dest1;
4: else
5: add an edge from src to mid;
6: for i := 1 to n do
7: add an edge from mid to desti;
8: end for
9: end if

10: end procedure

2. A DSDG shows a deadlock situation with an AND-dependency has been shown in
Fig. 2B. P1 waits for both P2 and P4, where P2 is blocked by P3 which in turn is blocked
by P1. Therefore, P1, P2 and P3 form a deadlock and cannot continue.

3. A DSDG shows a deadlock situation with an OR-dependency has been shown in Fig. 2C.
P1 waits for P2 or P3, P2 waits for P3, and P3 waits for P1. Therefore, P1, P2 and P3
form a deadlock and cannot continue.

4. A DSDG shows a deadlock situation with both an OR-dependency and an AND-
dependency has been shown in Fig. 2D. P2 is waiting for either P1 and P3, and both
of them are blocked. P3 is waiting for P1, and P1 is waiting for both P2 and P4. Since
P1 cannot continue unless P2 continues, P2 cannot continue unless one of P1 and P3
continue, and P3 cannot continue unless P1 continues, there is a deadlock formed in P1,
P2 and P3.

5. A DSDG shows a situation with both an OR-dependency and an AND-dependency but
without deadlock has been shown in Fig. 2E. P1 is waiting for either P2 or P4. Since P4
is not blocked, it can unblock P1 (OR-dependency) and eventually unblock P3 then P2.
Hence there is no deadlock.

We implement our DSDG by adjacency list representation with an array of lists of ver-
tices. Each vertex can be labeled to indicate the exact location in the source code that it is



294 E. Cheung et al.

corresponding to. This information can be made available for the designers to help identify
the problems quickly.

3.2 Deadlock detection algorithm

A deadlock happens when two or more processes are waiting for each other and there is
no possibility of continue execution. Without AND- and OR-dependencies, a deadlock is a
cyclic dependency in the DSDG. For an AND-dependency to be involved in the deadlock,
only one vertex from its outgoing edges has to be inside the set of deadlock processes. For
an OR-dependency, all vertices from its outgoing edges has to be inside the set of dead-
lock processes. Therefore, a cyclic dependency must happen for every outgoing edge from
an OR-dependency in order for it to be involved in a deadlock. Such dependency analysis
provides exact deadlock detection without any false positives or false negatives.

Every time a process suspends in the simulation, the dynamic synchronization depen-
dency graph is updated and the deadlock detection algorithm is applied. The algorithm is
shown in Algorithm 4. The DSDG and the process blocked are two inputs to the algorithm.

Algorithm 4 Deadlock detection.
1: procedure DETECT_DEADLOCK(S, P )
2: search for simple cycles in S from process vertices in P ;
3: let L = {Li = (Vi , Ei )} be the set of all these simple cycles;
4: if no new simple cycle is added to L then
5: return NO_DEADLOCK;
6: end if
7: for each Li ∈ L do
8: if Li is already marked then
9: continue;

10: end if
11: mark Li ;
12: if each vertex in Vi is either a process or AND-dependency then
13: the processes in Li are deadlocked, return;
14: else
15: D := {OR-dependency vertices in Vi that have two or more outgoing edges};
16: L

′ := {Li};
17: repeat
18: find unmarked cycles in L that contains vertices in D;
19: mark all these cycles;
20: D := D ∪ {OR-dependency vertices with two or more outgoing edges in these

cycles};
21: L

′ := L
′ ∪ {these cycles};

22: until L
′ becomes stable

23: if ∃ vertex in D that has an outgoing edge /∈ L
′ then

24: continue;
25: end if
26: the processes in L

′ are deadlocked, return;
27: end if
28: end for
29: return NO_DEADLOCK;
30: end procedure
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The algorithm searches for cyclic dependencies and determines deadlocked processes. There
are two major steps in the algorithm. First step is to find all the simple cycles in the graph
starting from the blocked process. By definition, a simple cycle in a directed graph is a cy-
cle that does not pass through a vertex more than once. To detect all the simple cycles that
involves a particular vertex is to do a depth-first-search (DFS) search from that vertex. Then
to detect all the simple cycles in the graph, do a DFS for each vertex. And the next step
is to traverse all the simple cycles and to determine any cyclic dependencies. The second
step contains two cases. First, if a cycle contains only single dependency vertices and AND-
dependency vertices then it is a deadlock (lines 12–13); second, if a cycle contains a mixture
including OR-dependency vertices, it is a deadlock if only all the outgoing branches of the
OR-dependency vertices contains in some cycles (lines 14–26).

With a mixture of single, AND-, and OR-dependencies, only OR-dependencies need
special attention because one single outgoing edge in the OR-dependency vertex is able
to unblock the process, which makes a cyclic dependency an insufficient condition for a
deadlock if an OR-dependency is involved. For a single or an AND-dependency, the process
waits for all outgoing edges which make them the same as resource-allocation graph and no
special attention is needed. If a cycle contains OR-dependencies, all the outgoing branches
of the OR-dependency vertices must be contained in some cycles for them to be involved in
a deadlock. These steps repeat if those cycles also contain OR-dependencies. This is done
until all outgoing branches of all OR-dependency vertices involved have been considered
(lines 17–22 in Algorithm 4). If all outgoing edges in all OR-dependency vertices involved
are contained in cycles, there is a deadlock (lines 23–26).

Given a dynamic synchronization dependency graph S = (V ,E) and a set of processes
that are blocked from running P , we use the algorithm to detect deadlock situations. Gen-
erally, the algorithm traverses the graph, searches for cyclic dependencies, and determines
deadlocked processes. The algorithm not only decides if there is any deadlock but also iden-
tifies all the processes and synchronization constructs that are involved in the deadlock situ-
ations. In the worst case, the first step of the algorithm is to find all the simple cycles in the
graph. The DFS search from each vertex has complexity of O(|V | + |E|). So detecting all
the simple cycles in the graph has the complexity of O(|V | · (|V | + |E|)) assuming that the
adjacency-list representation is used for the graph. The rest of the algorithm will traverse
all the simple cycles at most twice with a complexity of O(|V |). If a simple cycle only
contains process vertices and AND-dependency vertices, then it is a deadlock. If a simple
cycle also contains OR-dependency vertices, there is a deadlock only if other edges from
these OR-dependency vertices all lead to cycles. Therefore, the complexity of the algorithm
is O(|V | · (|V | + |E|)). |V | and |E| are the numbers of vertices and edges, which are de-
termined by the number of process instances and dependencies in a system in a DSDG.
In reality, the overhead for deadlock detection is relatively low and constant throughout the
simulation. A DSDG is normally a sparse graph that does not reassemble the worst case. The
detection returns immediately if the newly added edge does not introduce any new simple
cycle.

4 Implementations

The dynamic synchronization dependency graph and deadlock detection algorithm have
been implemented in the SystemC and Metropolis simulators. During the simulation of a
design, a DSDG is built and updated as the dependencies of the system changes, i.e. as one
or more processes in the system are blocked from running or released from blocking. When-
ever one or more processes are blocked from running, the deadlock detection algorithm is
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invoked to search the DSDG for any deadlock situation. Once a deadlock is detected in the
simulation, the history of DSDG updates provides a trace that shows how the system ex-
ecution goes into the deadlock. Due to the incremental nature of the DSDG updates and
deadlock detection algorithms, this simulation monitoring mechanism will not introduce
significant overhead to the regular simulation. The overhead for each deadlock detection
only depends on the complexity of the DSDG, and the DSDG normally remains a sparse
graph.

4.1 SystemC

SystemC [16–19] enables system-level modeling of complex systems that can be imple-
mented with software, hardware, or combination of the two.3 One of the challenges in pro-
viding a system-level design framework is that there is a wide range of models of compu-
tation, abstraction levels, and design methodologies used in the design flows. To address
this challenge, SystemC provides a core language that introduces a new set of constructs for
generalized modeling of communication and synchronization at the very high abstraction
level. On top of this language foundation the designers can then add more specific models
of computation, design libraries, modeling guidelines, and design methodologies that are re-
quired for system-level designs. SystemC allows executable specifications of system designs
based on C++ programming language extended with constructs for describing concurrency,
timing, and reactivity modeling of parallel systems containing both software and hardware.
This is the reason why SystemC gains popularity as a de facto standard for modeling SoC
designs.

SystemC has gained popularity as a system-level modeling language. Efficient and ac-
curate simulation of the SystemC designs have become increasingly important. Efficient
deadlock detection in SystemC is accomplished by extending the SystemC simulation ker-
nel to build the DSDG incrementally at runtime, and then applying the deadlock detection
algorithm to the graph.

4.1.1 Synchronization language

SystemC models are simulated through a discrete event simulation kernel that schedules
events at runtime. SystemC includes a set of language constructs such as channels, inter-
faces, and events, as well as modeling primitives such as queues, semaphores, memories,
and buses to provide support for system-level modeling. The simple and flexible synchro-
nization capability provided by events and wait() or next_trigger() methods allow a broad
range of channels specified in the design.

In SystemC, processes are used to describe the functionality and specify concurrency
of a system. Processes are contained in modules and they access external channel inter-
faces through ports. A process can be SC_METHOD, SC_THREAD or SC_CTHREAD.
An SC_METHOD process is triggered on events and runs to completion once triggered. It
supports synchronization through the next_trigger() method that returns immediately with-
out passing control to another process. An SC_THREAD process can be suspended during
execution and resumed at a later stage. It executes once during simulation and the wait()
method is mostly used for synchronization purposes. An SC_CTHREAD process is usu-
ally sensitive to a single clock but can be suspended by an explicit wait for events. For a

3SystemC version2.0 user’s guide, Copyright 1996–2002.
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process to be explicitly blocked for deadlock detection analysis, the process needs to wait
for events either by a static sensitivity (SC_METHOD or SC_THREAD) or a dynamic sen-
sitivity (SC_METHOD, SC_CTHREAD or SC_THREAD).

Events are primitive behavior triggers. A process can suspend on or be sensitive to one or
more events. The sensitivity of a process defines when this process will be resumed or acti-
vated. Whenever one of the corresponding events is triggered, the process is resumed or ac-
tivated. If the sensitivity of the process is declared during elaboration and cannot be changed
once simulation has started, then it is called static sensitivity. In some instance we want a
process to be sensitive to a specific event or a specific collection of events that may change
during simulation. This is called dynamic sensitivity and is done by using the next_trigger(),
wait() and notify() method. The next_trigger() method is called in the method process to set
the dynamic sensitivity of the process for the next occasion. The calling method process is
triggered when one or all of the specified events is notified. The wait() method is called any-
where in the thread of execution of a thread process. When it is called, the specified events
temporarily overrule the sensitivity list, and the calling thread process suspends. When one
or all of the specified events is notified, the waiting thread process is resumed. If a process
is sensitive to a clock edge or waits for time, the process is not considered blocked by other
processes in the simulation, since the process can be unblocked by a clock edge or time.
Following is a list of different forms of next_trigger() and wait() method to wait for events
that are supported by SystemC.

1. next_trigger(e1): This next_trigger method set the next trigger of the current process to
wait until the event e1 is notified.

2. next_trigger(e1|e2|e3): This next_trigger method set the next trigger of the current
process to wait until any of the events e1, e2, or e3 is triggered.

3. next_trigger(e1&e2&e3): This next_trigger method set the next trigger of the current
process to wait until all of the events e1, e2, and e3 are triggered.

4. wait(e1): This wait method suspends execution of the current process until the event e1
is notified.

5. wait(e1|e2|e3): This wait method holds the current thread process until any of the events
e1, e2, or e3 is triggered.

6. wait(e1&e2&e3): This wait method holds the execution of current thread process until
all of the events e1, e2, and e3 are triggered.

The semantics of the next_trigger() or wait() method with one or more event arguments
is that the method process is triggered or the thread method returns (i.e. the thread of exe-
cution is resumed) either when at least one of the events is notified or when all the events
are notified. A mixture of j operator and & operator is not supported by SystemC. SystemC
provides a set of channels and corresponding events. The event type sc_event supports user
defined channel types. The different functionality that sc_event provides are constructor,
notify() and cancel(). Processes sensitive to the next_trigger() or wait() event will trigger or
resume after the notification of the event. Thread process waiting for resources using mutex
and the semaphore will resume after unlock() and post() respectively, which internally uses
sc_event notifications. While basic SystemC does not provide specific real-time scheduling
constructs. The designers can still model controller/scheduler explicitly in SystemC by writ-
ing a processor that explicitly schedule other processes through wait/notify. Admittedly, this
is modeling only for simulation and not likely to be part of the final implementation. It can
still be used to catch synchronization errors involving scheduling.
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Fig. 3 Deadlock in SystemC

Fig. 4 More deadlock in SystemC

4.1.2 Deadlock in SystemC

Given the events, sensitivity lists and channel dependencies, the following situations are
examples of deadlock in SystemC. Here we use thread processes to enhance the readability
of the examples, but the same principle also applies for method processes.

1. A deadlock having simple cyclic dependency due to wait on event. It is shown in Fig. 3A.
2. A deadlock situation having dependencies with wait on event and wait on an OR-

sensitivity. It is shown in Fig. 3B.
3. A deadlock situation having dependencies with wait on event, wait on an OR-sensitivity

and wait on an AND-sensitivity. It is shown in Fig. 4A.
4. A deadlock situation where processes are suspended due to mutex sharing, which uses

sc_event internally. It is shown in the Fig. 4B.
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SystemC communication constructs, such as sc_fifo, sc_mutex, and sc_semaphore are
made out of basic wait and notify so can be captured in the same way. Our approach, how-
ever, will not capture so-called implicit deadlocks, such as those caused by busy waiting
loops for changes in shared memory. We believe that it is good programming practice,
and indeed is promoted by Transaction-Level Modeling for performance reasons, to always
model the communication between processes by explicit communication constructs, such as
using sc_event.

4.1.3 SystemC specific implementation

The DSDG and deadlock detection algorithm have been implemented in the SystemC simu-
lator. In SystemC, processes do not directly waiting for another processes, instead they wait
for events that would be notified by other processes. Hence in the DSDG, we represent both
processes and events as vertices. When process waits for a event, an outgoing edge will be
added to the DSDG toward the event vertex the process is waiting for. And event vertices
have outgoing edges to the processes that would notify the event. The deadlock detection
algorithm is called every time a process suspends. We have implemented the algorithm on
an incremental basis so that each time we call the algorithm, we just search the cycles that
has been affected by the newly added edges. Due to this, there is no significant overhead to
the original simulation, as will be shown by experimental result in the next section.

One issue arises during the building of the DSDG graph in SystemC. Since an event
can be notified by one of the multiple processes, any of these processes may notify that
event. As a consequence, an OR-dependency is built into the DSDG graph that the waiting
process is dependent on an OR of the notifying processes. If all of the notifying processes
are blocked, then the waiting process can participate in a deadlock. Practically, we first build
up a database of the notifying processes for any particular wait through simple searching
through the syntax tree. This database remains unchanged throughout simulation.

4.1.4 Dining philosopher example

Figure 5A shows the dining philosopher problem with 5 philosophers and 5 chop sticks.
This has been implemented in SystemC considering each philosopher as a process and each
chop stick as a mutex and each stage of the philosopher such as thinking, waiting for left
chop stick, waiting for right chop stick, eating for a while and unlocking both chop sticks as
internal process states. When a philosopher tries to pick up a chop stick that is already picked
up by another philosopher, the philosopher is blocked and wait for the event that the chop
stick is put down. A deadlock occurs if all philosophers pick up the left chop sticks and wait

Fig. 5 (A) Dining philosopher problem. (B) DSDG
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Table 1 Run time analysis of dining philosopher problem

With deadlock (no monitor) With deadlock (monitor)

#Steps #Clk Edges Time (sec) #Clk Edges Time (sec) Overhead (%)

1000 100 0.05 112 0.05 2.00

5000 250 0.13 251 0.14 3.84

10000 557 0.28 565 0.29 4.30

20000 1225 0.61 1235 0.64 4.50

50000 2423 1.25 2449 1.31 4.80

100000 5009 2.51 4910 2.64 4.81

250000 12555 6.28 Deadlock found at # 4910

1000000 50269 25.13

for the right chop sticks. We simulated this design and found that the simulator discovered
the deadlock, also gave details of the processes involved in the deadlock. The dynamic
synchronization dependency graph has been shown in the Fig. 5B and the simulation results
are shown in Table 1.

In Table 1 the column with deadlock (No monitor) presents the run time of the regular
SystemC simulation model and the column with deadlock (monitor) presents the run time of
our proposed model. The simulation resolution time has been set at 50 µs and the simulation
has been set to simulate forever so that each philosopher will be continuing eating and
thinking. We can see that even the deadlock occurs at 4910 clock cycle, the simulate() and
crunch() inside the simulation engine run forever watching for any process to be ready. But
with our monitoring mechanism we are able to detect the deadlock early as soon as it occurs.
We raise a deadlock flag and also we report the dependencies and processes involved in the
deadlock. The overhead on the SystemC simulator due to the additional procedure calls is
below 5%. This is because the work to do for updating the graph and searching the cyclic
dependencies is done incrementally.

4.1.5 Case study: process network MPEG-2 decoder

We demonstrate our implementation in SystemC through a real world design example, an
MPEG-2 Decoder [20]. We use an Intel Xeon 1.4 GHz processor with 512 MB of RAM
for our experiments. We do a run time comparison between the regular simulation model
and the simulation model with our proposed enhancements. The overhead on the overall
simulation is shown to be insignificant.

The MPEG-2 Decoder system-level design is shown in Fig. 6. The design is modeled
as a Kahn Process Network [21]. Processes are connected and communicate through un-
bounded FIFO queues. In the design, controller processes control the dataflow of the MPEG-
2 video stream. When the video stream enters the decoder, it is first parsed into MPEG-2
frames. Each frame is decoded through the inverse scan (IS), inverse quantization (IQ) and
inverse discrete cosine transforms (IDCT) process pipeline. Prediction processes perform
motion compensation and prediction on the frames. Output processes combine the raw video
streams and output the stream from the decoder. We implement the design in SystemC and
limit the sizes of the FIFO queues. Each of the process is implemented as a thread process
and FIFO queue is implemented as a sc_fifo with finite size. Reading from a FIFO queue
when empty is blocking and the calling process is suspended to wait for the event that an-
other process writes to the FIFO queue. Similarly, writing to a FIFO queue when full is
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Fig. 6 System level diagram of the MPEG-2 decoder

blocking and the calling process is suspended to wait for the event that another process
reads from the FIFO queue. Hence when the process reads from an empty FIFO queue, it
waits for the sc_event which would be notified by the FIFO writer when writing to the FIFO
queue. Similarly, when the process writes to a full FIFO queue, it waits for the sc_event
which would be notified by the FIFO reader when reading from the FIFO queue. In our im-
plementation of the MPEG-2 Decoder design, there are 19 thread processes and 126 events.
A deadlock occurs if the FIFO queue sizes are too small. A process is blocked when writing
to a full FIFO queue. Before it is resumed, the process is not capable to write to another
FIFO queue or read from another FIFO queue to unblock other processes. If successive
blocked process includes the process that read from the FIFO queue the first process writing
for, a deadlock occurs and no process in the loop can continue execution. We experience
such case when the one of the output FIFO queue size is too small in the Fig. 7. We have
analyzed the run time of the MPEG-2 Decoder without deadlock. Although we limit all the
FIFO queue sizes to be minimal and create extensive number of event waiting, simulation
overhead keeps at a steady value of 7.3%. The run time simulation data has been shown in
Table 2. The overhead for deadlock detection is relatively constant throughout the simula-
tion lifetime. The overhead for each deadlock detection only depends on the complexity of
the DSDG, which does not change dramatically. Vertices and edges are dynamically added
and deleted during simulation, and the DSDG normally remains a sparse graph. Therefore,
it only adds a small and constant overhead for each system-level synchronization statement.
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Fig. 7 A DSDG for MPEG-2 decoder

Table 2 Run time analysis of MPEG-2 decoder

#Frames #Steps Without deadlock With deadlock Overhead

0 37656 0.862 sec 0.924 sec 7.19%

1 52195 1.440 sec 1.575 sec 9.37%

2 73406 2.025 sec 2.178 sec 7.55%

3 79136 2.339 sec 2.518 sec 7.65%

4 87827 2.719 sec 2.914 sec 7.17%

5 92435 3.062 sec 3.302 sec 7.83%

6 96435 3.170 sec 3.410 sec 7.57%

7 98255 3.234 sec 3.466 sec 7.17%

4.2 Metropolis

Metropolis [22] is a system-level design framework for modern embedded systems. In the
modeling language of Metropolis, Metropolis Meta-Model (MMM), a design is specified
as asynchronous processes with communication specified with media and with its overall
behavior limited by the synchronization constructs: function-architecture mappings, await
statements, interface function calls, constraints, and schedulers. The function and abstract
architecture of a system are specified separately and correlated by the synchronization of the
functional events with architectural events (mapping). To limit the behavior of processes,
designers can put high level LTL (Linear Temporal Logic) [23] or LOC (Logic of Con-
straints) [24] constraints on the system specification without giving any specific scheduling
algorithm, and leave the implementation to the lower levels of abstraction. Designers can
also write their own schedulers in architecture models at a high abstraction level, which are
called quantity managers in Metropolis. The high flexibility of the design platform allows
designers to use different modeling constructs freely in a system design. Without a platform-
supported systematic analysis mechanism, this flexibility can lead to vulnerability to design
errors that may cause deadlocks.
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Fig. 8 An example of synch
constraint

4.2.1 Synchronization language

The modeling constructs for synchronization in MMM include synch constraints, await
statements, interface functions, quantity managers and LTL and LOC constraints. Most of
these synchronization constructs are not unique to MMM, and their counterparts are also
used in other concurrent modeling languages.

In Metropolis, the system function and the architecture are modeled as separate networks
of processes communicating through media. In a functional network, functional processes
run concurrently and communicate with each other through media. In an architectural net-
work, computing and storage resources are modeled with media. Services that the architec-
ture can provide are modeled with processes that are called mapping processes. A function
model is mapped to an architecture model as the events of functional processes and mapping
processes are synchronized with synch constraints. Designers are allowed to implement par-
ticular schedulers as quantity managers to manage architectural resources and services in
an architecture model. Quantity managers are basically scheduling media that implement a
particular set of functions that can be invoked by processes to issue service requests. An ar-
chitectural mapping process may be suspended by a quantity manager if it requests resources
(quantities in Metropolis terminology) from it. The corresponding functional processes that
are mapped to the mapping process can then be blocked through synch constraints.

A synch constraint is an alternative of a rendezvous used in the concurrent program-
ming [25, 26]. It can specify that two events in two different processes must occur at the
same time. If only one of the two events can be scheduled to occur, the process containing
the event has to be blocked until the other event can occur also. A synch can also require that
an event cannot occur until any of the other events occur. The execution of a process has to
be blocked at a certain event until all the synch constraints containing the event are satisfied.
For example, assume functional process p0 and mapping processes p1 and p2 have events
e0, e1 and e2, respectively, and are synchronized by a synch constraint synch(e0 => e1||e2),
which requires that e0 cannot occur until e1 or e2 occurs. This scenario may denote that a
functional process cannot run until there are free computation resources in the architecture.
The execution of p0 may be blocked by either p1 or p2, as illustrated in Fig. 8.

An await statement is used to establish mutually exclusive sections and to synchronize
processes. It contains one or more statements called critical sections, each controlled by a
triple (guard; testlist; setlist). The guard can be any Boolean expression, and the testlist and
setlist denote sets of interfaces, which essentially work as integer semaphores that can be
incremented or decremented. A critical section is said to be enabled if its guard is evaluated
to true and none of the interfaces in the testlist has been set by other processes in the system.
A critical section may start executing only if it is enabled. While the critical section is being
executed, the “semaphores” specified in the setlist are incremented and can block other
processes that require the semaphores. The interface function calls are also prevented if the
interface is set by an await. If no critical section is enabled, the execution blocks. If more
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than one critical section are enabled, the choice is non-deterministic. For example, an await
statement has two critical sections:

await {
(foo(); intf00; intf01) {critical_section0;}
(true; intf10, intf11; intf10, intf11) {critical_section1;}}

The first critical section is enabled only if guard foo() is evaluated to true and intf00 is not set
by other awaits. If a process enters this critical section, intf01 will be set . The second critical
section is enabled only if none of interfaces intf10 and intf11 is set by other processes. If a
process enters this critical section, intf10 and intf11 will be set by the process. Note that an
interface can be set by multiple processes at a given time and must be unset by all of them
to be released.

Designers can also add general LTL and LOC constraints to a system to further restrict
the behaviors of the system. We do not present these constraints directly in the paper since
their specification semantics are not for execution and it is up to the simulator to make sure
that the execution is consistent with the constraints.

4.2.2 Deadlock in Metropolis

Given the constructs considered in MMM, only the following situations may block the exe-
cution of a running process:

1. A process has to wait for synchronization from other functional or architectural processes
as required by one or more synch constraints.

2. A process cannot execute an interface function due to the fact that the interface is in-
cluded in the setlist of a critical section being executed in another process’s await state-
ment.

3. A process is blocked at an await statement due to the unsatisfaction of all its guard/testlist
conditions.

4. A mapping process is suspended by a quantity manager when it is requesting some quan-
tity from it but cannot be satisfied.

The interaction of these synchronization constructs can be quite complicated. A deadlock
exists if and only if there exist dependency loops among the processes in a system. We will
identify and analyze the deadlock situation and report the processes and the media to which
they are connected. The synchronization dependency analysis is useful to provide a guide to
the designers to help isolate the problem.

4.2.3 Case study: picture-in-picture video processing system

In this section, we use a real design of a complex function model for Picture-in-Picture
video processing and a high level model of function-architecture mapping to demonstrate
the usefulness and effectiveness of our deadlock analysis approach for system-level designs.

Figure 9 shows a picture-in-picture (PiP) video processing design. TS DEMUX demulti-
plexes the single input transport stream (TS) into multiple packetized elementary streams
(PES). PES PARSER parses the packetized elementary streams to obtain MPEG video
streams. Under the control of the user (USRCONTROL), decoded video streams can either
be resized (RESIZE) or directly feed to JUGGLER that combines the images to produce the
picture-in-picture videos. RESIZE is the major component of PiP that computes and adjusts
the size of MPEG video frames according to user inputs. It consists of about 9,000 lines of
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Fig. 9 Picture-in-picture design

Fig. 10 The RESIZE unit and its
synchronization dependencies

Metropolis Meta-Model source code and contains 22 concurrent processes and more than
300 media.

The video frames and control signals are passed between processes through around 80
communication channels specified with media. The communication channels are modeled
at the task transition level (TTL) with bounded first-in-first-out (FIFO) buffers [27]. The
mutual exclusion and boundary checking of the bounded FIFO buffer is guaranteed by a
central protocol. To simulate the RESIZE unit, three additional processes are used to mimic
user inputs (USER), send MPEG video streams to the unit (SOURCE) and absorb the data
from it (SINK) as shown in Fig. 10A.

In the simulation with our runtime deadlock monitoring mechanism enabled, a deadlock
is reported immediately after TMUX_UV and TMEM_CTL_U block each other through
two await statements and their synchronization dependencies are captured in the DSDG
as shown in Fig. 10C. As it turns out, there is a design error in process TMUX_UV,
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Table 3 Simulation and analysis
summary for both case studies Example RESIZE unit Mapping model

Code size 9000 lines 5900 lines

Processes 22 8

Media 300+ 16

Deadlocked processes 2 5

Time to catch deadlock 2 min <1 min

which fails to read all the data sent by TMEM_CTL_U. The data in the bounded buffer
of the channel between the two processes accumulates until the buffer becomes full. Then
a deadlock occurs where TMEM_CTL_U is blocked waiting for the buffer space to be re-
leased by TMUX_UV while TMUX_UV is also blocked waiting for reading signals from
TMEM_CTL_U. The designers can now focus on the two processes and the communication
channels between them to identify and correct those design errors. A solution is to modify
process TMUX_UV and make it absorb all the data from its input channels even if not all the
data is useful. We observe that, without the deadlock detection mechanism, the simulation
will continue and the regular simulation trace won’t show any apparent sign of deadlock un-
til most of the processes in the system are eventually blocked. By that time, the simulation
trace is long and a large number of processes are blocked. Our approach automatically catch
the deadlock as it first occurs. Designers can then focus on solving the deadlock without
complicating themselves by the consequences of the deadlock. The simulation and analysis
results are summarized in Table 3.

In the platform-based design, the mapping is the key procedure that correlates the func-
tion to the architecture. In this design example (as shown in Fig. 11A), two source processes
(S1 and S2) write the data into two independent channels. A separate process (Join) then
reads data items from both channels, manipulates them, and then sends the result data to
another process (Sink) through another channel. In the abstract architecture model, there
are two CPU/RTOS units, a bus unit, a memory unit and a quantity manager (i.e. sched-
uler) for each architectural unit. A CPU unit can be shared among several software tasks
that may request services from it. When more than one service request is issued to a CPU,
arbitration is needed. The mapping procedure synchronizes the processes in the function
model and the mapping processes (representing software tasks) in the architecture model.
In this example (as shown in Fig. 11A), functional processes S1 and S2 are mapped to map-
ping processes SwTask1 and SwTask2, respectively, which are associated to CPU1 and the
other two processes are mapped to CPU2. The CPU quantity managers implement a non-
preemptive static-priority dynamic scheduling policy. The two CPUs are connected to the
bus and the bus is connected to the memory unit.

Our deadlock detection mechanism reports a deadlock within one minute of simulation.
Due to the boundedness of the channels between processes, process S1 cannot complete a
task of writing data before Join reads from and releases the channel buffer. Therefore, with
the current CPU scheduling policy, the deadlock occurs when S1 obtains the CPU service
but cannot complete a writing task while Join is still waiting for data from S2 who cannot
get CPU service. The deadlock situation involves five processes, two await statements, two
synch constraints and a quantity manager as shown in Fig. 11B. This analysis also suggests
several possible deadlock resolutions. The deadlock can be resolved by making the channel
buffer large enough to store all the data from a single writing task, increasing the number
of CPUs, or changing the CPU scheduling policy. We also observe that such deadlocks
only occur in the mapped design and are not inherent in the function specification or in
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Fig. 11 A mapping model and its synchronization dependencies

the architecture model. The simulation and analysis results for this mapping model are also
listed in Table 3.

5 Conclusion

In this paper, we study the deadlock problem in system-level designs that include complex
synchronization constructs and functionality. We present our deadlock detection approach
with a data structure called the dynamic synchronization dependency graph and an associ-
ated deadlock detection algorithm. We use two publicly available system-level design tools,
Metropolis and SystemC, and two real world design examples to demonstrate the usefulness
and effectiveness of our deadlock detection approach for system-level designs. We believe
that the dynamic synchronization dependency graph can be used to not only detect deadlock
situations but also help search for livelock or starvation problems. We are currently work-
ing on combining our simulation-based deadlock detection mechanism and existing formal
verification techniques to search for more subtle problems such as livelock and starvation in
system level designs.
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Algorithm 5 Deadlock Avoidance
1: procedure deadlockAvoid(Li )
2: Find all the es in cycle Li ;
3: Let T = Set of all the resolution tags corresponding to all es ;
4: sort T in increasing order and let n = the cardinality of T ;
5: for k = n − 1 to 0 do
6: if All the process vertices at resolution stage Tk have been marked being executed

first then
7: continue;
8: else
9: reset all the deadlocked processes to the resolution stage Tk ;

10: choose a process which has not been executed first at stage Tk ;
11: Mark the first executed process of the stage Tk ;
12: start the simulation from the sc_time_stamp of Tk ;
13: end if
14: end for
15: Return Deadlock cannot be avoided;
16: end procedure

6 Future direction

Due to the non-deterministic nature of the system-level design, different non-deterministic
resolutions can lead to different simulation traces, all equally valid. A simulator naturally
can only simulate one such resolution, so it is possible to choose a resolution that is more
likely/unlikely to find a deadlock. To search for deadlock, a simple heuristic may choose a
resolution that will lead to more dependency. In our simulation environments, we can easily
have the simulator “test run” different resolution for a few cycles and then choose the most
“busy” one. We are currently investigate the efficiency and usefulness of such an algorithm.

Alternatively, the designers may be willing to overlook, for now, the resolution that
will cause a deadlock and concentrate on the normal functioning of the system. Further
synthesis step or manual manipulation may then make the deadlock due to a particular
non-determinism resolution irrelevant. At each resolution point, we take a snapshot (the
process name, the model name, the suspended stage, and the blocking information) of all
the processes that are either suspended or ready to run and store in an array of queues. We
tag a serial number to this resolution.

In Algorithm 5, we find all the resolution stages that introduce dependencies in the
DSDG. We sort these resolutions as per their tag numbers and reset our processes to the data
present in queue corresponding to the last resolution. We find an alternative execution order
at this stage and start simulation from there. If all the possible execution orders of this stage
hit the deadlock then we try moving one stage back. And this continues until either we find
a way to avoid the deadlock or we fail avoiding the deadlock considering all the possible
execution orders of all the identified resolution stages. The performance of the algorithm is
heuristic in nature and depends on the number of the resolution stages we consider to look
back. Currently our implementation looks back one resolution stage. For evaluation purpose
we designed a small example as shown in Fig. 12. We have three processes interdependent
on each other by blocking dependencies. The process chosen at each resolution stage has
been shown in bold. We hit a deadlock just after resolution stage 4. Process a waits on c,
process c waits on b and process b waits on process a. We apply our heuristic of rolling
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Fig. 12 An example showing avoiding deadlock

back to the last stage and choose process c to execute before process b which avoids the
deadlock and simulation continues.

We are also working on other communication error such as starvation and livelocks.
Starvation is simply defined as processes that could run but are not allowed to run by the
scheduler for a “long” period of time. If a scheduling process is modeled by the designers,
then it is up to them to build in a starvation detection or make their scheduling starvation
free by using the likes of watchdog timers. We are working on starvation detection example
where processes are starved by system-level simulator scheduler. Obviously, how long is
“long” will be a user-defined parameter. Livelocks can be defined as processes busy working
but no progress are made. We are looking at detection of livelocks through two separate
methods. First is to look at the system states that “keeps repeating”. The second is to look
at the dependency patterns that “keeps repeating”. We are currently gathering examples of
starvation and livelocks from industrial design to make our study more relevant.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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