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Abstract Bioprocess development benefits from 
kinetic models in many aspects, including scale-up, 
optimization, and process understanding. However, 
current models are unable to simulate the production 
process of a coxsackievirus A6 (CVA6) virus-like 
particle (VLP) vaccine using Chinese hamster ovary 
cell culture. In this study, a novel kinetic model was 
constructed, correlating (1) cell growth, death, and 
lysis kinetics, (2) metabolism of major metabolites, 
and (3) CVA6 VLP production. To construct the 
model, two batches of a laboratory-scale 2 L biore-
actor cell culture were prepared and various pH shift 
strategies were applied to examine the effect of pH 
shift. The proposed model described the experimen-
tal data under various conditions with high accuracy 
and quantified the effect of pH shift. Next, cell culture 

performance with various pH shift timings was pre-
dicted by the calibrated model. A trade-off relation-
ship was found between product yield and quality. 
Consequently, multiple objective optimization was 
performed by integrating desirability methodology 
with model simulation. Finally, the optimal operat-
ing conditions that balanced product yield and qual-
ity were predicted. In general, the proposed model 
improved the process understanding and enabled in 
silico process development of a CVA6 VLP vaccine.

Keywords Vaccine production · Virus-like 
particle · Chinese hamster ovary cell culture · 
Bioprocess modeling · Process optimization

Abbreviations 

CHO  Chinese hamster ovary
DoE  Design of experiment
dsDNA  Double-stranded DNA
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HFMD  Hand, foot and mouth 
disease

PAT  Process analytical 
technology

VLP  Virus-like particle

List of symbols

cAmm  Ammonia concentration 
(mM)

cAmm,cr  Critical ammonia concen-
tration for specific death 
rate (mM)

cG  Glucose concentration in 
the glucose supplement 
(mM)

cGlc  Glucose concentration 
(mM)

cGln  Glutamine concentration 
(mM)

cLac  Lactate concentration 
(mM)

cM  Glucose concentration in 
the feed medium (mM)

kD  Specific death rate  (h−1)
kD,dead  Death rate during dead 

phase  (h−1)
kD,min  Minimum death rate  (h−1)
kDL  Specific lysis rate from 

dead cells  (h−1)
kDL,32  Specific lysis rate from 

dead cells at 32 °C  (h−1)
kL  Specific lysis rate from 

viable cells  (h−1)
kL,32  Specific lysis rate from 

viable cells at 32 °C  (h−1)
KDAmm

 
 Constant for cell death due to ammonia accumulation 
(mM)
KLac  Monod kinetic constant for 

lactate uptake (mM)
mGlc  Specific glucose consump-

tion rate for cell mainte-
nance (mol  cell−1  h−1)

qAmm  Specific ammonia produc-
tion rate (mol  cell−1  h−1)

qAmm,6.75  Specific ammonia produc-
tion rate at pH of 6.75 (mol 
 cell−1  h−1)

qAmm,7.15  Specific ammonia produc-
tion rate at pH of 7.15 (mol 
 cell−1  h−1)

qLac  Specific lactate uptake rate 
(mol  cell−1  h−1)

qLac,max  Maximum lactate uptake 
rate (mol  cell−1  h−1)

qVLP  Specific intracellular VLP 
accumulation rate (g  cell−1 
 h−1)

r  Intrinsic growth rate  (h−1)
rmax  Maximum intrinsic growth 

rate  (h−1)
t  Time (h)
V   Working volume (L)
VF,i  Volume of feed medium at 

i th feeding (L)
VG,i  Volume of glucose supple-

ment at i th feeding (L)
VLPintra  Intracellular VLP content 

(g  cell−1)
VLPmax  Maximum intracellular 

VLP content (g  cell−1)
Xd  Dead cell density (cells 

 L−1)
Xl  Lysed cell density (cells 

 L−1)
Xt  Total cell density (cells 

 L−1)
Xt,max  Maximum total cell density 

(cells  L−1)
Xv  Viable cell density (cells 

 L−1)
YAmm∕Gln  Yield coefficient of ammo-

nia production to glutamine 
uptake (-)

YLac∕Glc  Yield coefficient of lactate 
production to glucose 
uptake (-)

YXv∕Amm
  Yield coefficient of cell 

proliferation to ammonia 
uptake (cells  mol−1)

YXv∕Glc
  Yield coefficient of cell 

proliferation to glucose 
uptake (cells  mol−1)

YXv∕Gln
  Yield coefficient of cell 

proliferation to glutamine 
uptake (cells  mol−1)
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Introduction

Hand, foot, and mouth disease (HFMD) is a viral illness 
that usually occurs in children. In most cases, the disease 
is mild and patients recover spontaneously within several 
days. However, severe complications may occur in some 
patients, which can even lead to death. HFMD has had 
many outbreaks worldwide (Mirand et al. 2021; Puenpa 
et al. 2019; Solomon et al. 2010; Wu et al. 2010), posing 
a threat to public health.

HFMD is caused by enteroviruses which are non-
enveloped viruses with various serotypes. Coxsackievi-
rus A6 (CVA6), which is an enterovirus serotype, is gain-
ing attention because of its increasing incidence during 
this decade (Kimmis et al. 2018). CVA6 can cause adult 
HFMD (Ramirez-Fort et al. 2014), and no CVA6 vaccine 
is available.

A virus-like particle (VLP) vaccine is a novel type 
of vaccine. It triggers humoral and cellular immune 
responses by resembling the protein coat of a specific 
virus (Fuenmayor et al. 2017). Compared with conven-
tional inactivated and live-attenuated vaccines, VLP vac-
cines are safer because genetic material is absent in the 
VLPs (Nooraei et al. 2021). Several VLP-based vaccines 
have been approved by the Food and Drug Administra-
tion, becoming commercially available, while others are 
undergoing clinical trials (Nooraei et  al. 2021). There-
fore, a CVA6 VLP vaccine is a promising candidate pre-
vention measure for HFMD.

Several expression systems are available for VLP 
production, including bacterial, yeast, insect, plant, 
and mammalian cells (Fuenmayor et al. 2017). Among 
these platforms, Chinese hamster ovary (CHO) cells 
were selected to produce CVA6 VLP vaccine in this 
study because of several advantages. CHO cells are able 
to grow in chemically defined and serum-free medium, 
ensuring batch consistency of the product and reduc-
ing the burden of downstream processing (Bandaranay-
ake and Almo 2014). Chemically defined serum-free 
medium is also desired from a regulatory standpoint 
because no unknown materials are contained (Lai et al. 
2013). These cells can also be adapted to suspension cul-
ture, which guarantees scalability for large-scale indus-
trial production. Furthermore, the majority of human 
viruses cannot replicate in CHO cells, which reduces 
the biosafety risk (Bandaranayake and Almo 2014; Lai 
et al. 2013). CHO cells can also produce proteins with 
complex human-like post-translational modifications 
(O’Flaherty et al. 2020).

To produce a high-quality CVA6 VLP vaccine with 
high efficiency and consistency, the production process 
needs to be developed iteratively. Kinetic modeling, 
which is derived from physical, chemical, and biologi-
cal parameters governing the process, is a powerful and 
versatile tool in the production of biopharmaceuticals 
because it enables thoughtful use and quantitative anal-
ysis and prediction of experimental data (Shirsat et  al. 
2015a, b). For example, kinetic models can be used as 
a filter to remove measurement errors and systematic 
noise, and add missing data points, so that high-quality 
data of the bioprocess are generated (Zhang et al. 2019). 
Additionally, kinetic models have been applied to aid 
online monitoring and control of bioprocesses (Hille 
et al. 2020; Krämer and King 2016). This application is 
encouraged by the regulatory agency through Process 
Analytical Technology (PAT) initiatives, promoting 
quantitative tools for real-time quality assurance (Naray-
anan et  al. 2019). Process optimization and decision-
making also benefit from kinetic modeling. A kinetic 
model has been combined with the design of experiment 
(DoE) methodology for multi-objective optimization 
of an antibody production process (Möller et al. 2019). 
This model-assisted method significantly reduced the 
number of experiments required compared with the tra-
ditional design of experiment and therefore reduced the 
cost and time. Moreover, kinetics-based models facili-
tate bioprocess scale-up (Arndt et al. 2021) and improve 
the understanding of the production process (Luo et al. 
2021). Despite these benefits, no kinetic model is avail-
able for the VLP production process. Many kinetic 
models for recombinant protein production using CHO 
cell culture have been established (Kyriakopoulos et al. 
2018). In these mechanistic models, the product titer is 
commonly correlated to viable cells using a parameter 
termed specific productivity. However, for non-envel-
oped VLP production, cell lysis is required to release the 
intracellular VLPs (Cervera and Kamen 2018). Similarly, 
we observed that VLP concentration in the supernatant 
was very low when viable cell density reached its peak. 
By contrast, production of VLPs mostly occurred dur-
ing the dead phase (after day 8) and a strong correlation 
 (R2 > 0.95) were found between the VLP concentration 
and the sum of dead cell concentration and lysed cell 
concentration, instead of viable cells. Therefore, well-
established models of recombinant protein production 
are inapplicable to the VLP vaccine production process. 
Therefore, we proposed a newly developed kinetic model 
for the VLP vaccine production process to enhance the 
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process understanding, enable in silico optimization, and 
perform quantitative decision making.

In this study, a mathematical model that describes 
process dynamics was constructed to simulate fed-
batch cultivation of CVA6 VLP-producing CHO-S 
cells using laboratory-scale bioreactors. Cell cultures 
were conducted with a pH shift on day 10 and with-
out a pH shift to determine the effects of pH on the 
CVA6 VLP titer. After calibrating the model, sensi-
tivity analysis was carried out to quantify the effect 
of model parameters. Then, culture performance with 
various pH shift timings was predicted to optimize 
the VLP yield. Finally, multiple objective optimiza-
tion balancing product yield and quality was con-
ducted by combining model simulation and desirabil-
ity methodology.

Materials and methods

Cell line, medium, and preculture

A patented CVA6-VLP-producing CHO-S cell line 
(Kuwabara et  al. 2020) provided by BIKEN Group 
Japan (Osaka, Japan) was cultivated in CD Forti-
CHO™ medium (Thermo Fisher Scientific, Waltham, 
MA, USA) supplemented with 8  mM glutamine 
(Fujifilm Wako, Osaka, Japan). Cell cultures using 
0.5 L Optimum Growth® Flasks (Thomson Instru-
ment, CA, USA) with 0.1 L working volume were 
performed after cell thawing and expansion. Cell 
cultivation was performed in a humidified incuba-
tor (Climo-Shaker, Kuhner, Switzerland) operated at 
37 °C, 8%  CO2, and 140 rpm. Cells were subcultured 
every 3–4 days when they were during the exponen-
tial phase prior to fed-batch bioreactor cultivation.

Fed-batch laboratory-scale bioreactor cultivation

Laboratory-scale bioreactor cell culture was per-
formed using a stirred tank glass bioreactor (ABLE 
Biott, Tokyo, Japan) with a 2 L maximum working 
volume operated in fed-batch mode. Inoculation was 
performed by seeding cells at 4 ×  108 cells/L in a 
0.8 L working volume. Cultivation conditions were 
controlled at 30% dissolved oxygen using a pure  O2 
sparge, 80 rpm agitation, 0.1 L/min constant air flow, 
and 8 ×  10–3 L/min constant  CO2 flow. Temperature 
was controlled at 37  °C and then changed to 32  °C 

after day 5. pH maintenance was conducted by sparg-
ing  CO2 gas and 1 M  NaHCO3 addition. In the con-
trol experiment (bioreactor 1), pH was maintained at 
7.15 until the end of culture. In the treatment experi-
ment (bioreactor 2), pH was maintained at 7.15 and 
then changed to 6.75 after day 10.

Up to 3 ×  10–3 L FoamAway™ (Thermo Fisher 
Scientific) was added to when foaming was observed 
during cell culture. From day 3, 1.6 ×  10–2 L of feed 
medium (EfficientFeed™ C + AGT™ Supplement, 
Thermo Fisher Scientific), which was equal to 2% of 
the initial volume, was fed into the bioreactor every 
day. Additional glucose supplementation was con-
ducted by adding a 300  g/L glucose stock solution 
to ensure a glucose concentration of > 2  g/L. Then, 
4 ×  10–3 L of sample was collected from the bioreac-
tor daily for cell growth, CVA6 VLP concentration, 
and metabolite analyses.

Cell counting and metabolite measurements

Viable cell concentration and viability were measured 
by a ViCell automated cell counter (Beckman Coul-
ter, Brea, CA, USA). Metabolite (glucose, glutamine, 
lactate, and ammonia) concentrations were quantified 
using a BioProfile 400 Automated Chemistry Ana-
lyzer (Nova Biomedical, Waltham, MA, USA).

Cell lysis quantification

Cell lysis quantification was performed by adapting a 
previously proposed method that uses double-stranded 
DNA (dsDNA) as an indicator (Klein et  al. 2015). 
Briefly, dsDNA in supernatant samples was meas-
ured using a Quant-iT PicoGreen dsDNA Assay Kit 
(Thermo Fisher Scientific). Supernatant samples were 
diluted appropriately and 1 ×  105  μg/L Lambda DNA 
Standard was diluted to prepare the standard curve. 
Samples and the standard were mixed with assay rea-
gent in a 96-well plate. After incubation at room tem-
perature for 2 min, a VICTOR Nivo Multimode Micro-
plate Reader (PerkinElmer, Waltham, MA, USA) was 
used to excite samples and the standard at 492 nm, and 
fluorescence emission intensities at 530 nm were meas-
ured. Intracellular dsDNA content was determined by 
the mass balance under the assumption that cell growth 
stopped after the exponential phase (after day 5). By 
dividing dsDNA in the supernatant by intracellular 
dsDNA content, the lysed cell density was quantified. 
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The spontaneous release of dsDNA from viable cells 
was neglected because dsDNA concentration in the 
supernatant during the exponential phase was negligi-
ble compared with that during the dead phase.

CVA6-VLP quantification

A sandwich enzyme-linked immunosorbent assay 
developed by Biken Group Japan was applied for CVA6 
VLP quantification. Briefly, 96-well plates were coated 
with an anti-CVA6 monoclonal antibody and incubated 
at 4 °C overnight. Non-specific binding was blocked by 
incubation with EzBlock Chemi (Atto, Tokyo, Japan) 
blocking buffer for 1 h at 37 °C. Then, microplates were 
washed thrice with washing buffer (0.05% (v/v) Tween 
20 in phosphate-buffered saline) prior to addition of 
the standard or samples. Microplates were incubated at 
37 °C for 1 h, followed by three washes. A horserad-
ish peroxidase-conjugated anti-CVA6 monoclonal anti-
body was added as the secondary antibody. After 1 h 
of incubation at 37 °C, microplates were washed three 
times and binding was visualized by incubation with a 
TMB solution (Surmodics, MN, USA) for 15 min. To 
stop the reaction, BioFX 650  nm Liquid Stop Solu-
tion for TMB Microwell substrates (Surmodics) was 
added to each well. Absorbance at 650 nm was read by 
a microplate reader (Corona Electrics, Ibaraki, Japan).

Model construction

Kinetics between cells, major metabolites, and VLP 
were described by ordinary differential equations. Vol-
ume changes during fed-batch cultivation were disre-
garded because they were negligible compared with the 
working volume.

where Xt denotes total cell density; r denotes intrin-
sic growth rate and rmax denotes maximum intrin-
sic growth rate; Xt,max denotes maximum total cell 
density.

A logistic equation (Martínez et  al. 2020; Shirsat 
et al. 2015a, b) was applied to describe the behavior 
of the total cell density ( Xt ) to prevent overfitting 

(1-a)
dXt

dt
= rXt

(1-b)r = rmax ⋅

(
1 −

Xt

Xt,max

)

because it had fewer parameters than Monod-type 
equations. This equation also complied with the pre-
vious assumption that cell proliferation stopped dur-
ing the late stage of culture.

 If ( cAmm>cAmm,cr during dead phase):

 Else:

where Xd is dead cell density and Xv is viable cell 
density; kD is specific death rate and kDL is specific 
lysis rate from dead cells; kD,dead stands for death rate 
during dead phase; KDAmm

 stands for constant for cell 
death due to ammonia accumulation, cAmm stands for 
ammonia concentration and cAmm,cr stands for critical 
ammonia concentration for specific death rate; kD,min 
is minimum death rate and kL is specific lysis rate 
from viable cells; Xl denotes lysed cell density.

Cell death and lysis pathways as well as their cor-
responding coefficients are illustrated in Fig. 1. These 
pathways were modeled by adapting previously pro-
posed equations (Kontoravdi et al. 2007; Kroll et al. 
2017). Briefly, cell death was accelerated significantly 
when the ammonia concentration exceeded its critical 
concentration ( cAmm,cr = 5 mM) during the dead phase 
(Kontoravdi et al. 2007). Additionally, lysed cells ( Xl ) 
could be generated by viable cells ( Xv ) directly or 
dead cells ( Xd ) as shown by the two terms in Eq. (3), 
respectively. Xv was the difference between Xt and the 
sum of Xd and Xl.

(2-a)
dXd

dt
= kDXv − kDLXd

(2-b)kD = kD,dead ⋅
KDAmm

+ cAmm − cAmm,cr

KDAmm

(2-c)kD = kD,min

(3)
dXl

dt
= kLXv + kDLXd

(4)
dXv

dt
= rXt −

(
kD + kL

)
⋅ Xv

(5)

dcGlc
dt

= −
(

rXt −
(

kD + kL
)

Xv
)

∕YXv∕Glc − mGlcXv

+
VF,icM
V

+
VG,icG
V
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Before day 5:

 After day 5:

where cGlc and cLac are glucose and lactate concentra-
tions, respectively; YXv∕Glc

 is yield coefficient of cell 
proliferation to glucose uptake; VF,i and VG,i denote 
the volumes of feed medium and glucose supplemen-
tation at i th feeding, respectively; cM and cG are the 
glucose concentrations of the feed medium and glu-
cose supplementation, and V  is the working volume; 
mGlc is specific glucose consumption rate for cell 
maintenance; YLac∕Glc represents yield coefficient of 
lactate production to glucose uptake and qLac repre-
sents specific lactate uptake rate; qLac,max is maximum 
lactate uptake rate and KLac is Monod kinetic constant 
for lactate uptake.

Equation  (5) was modified from a study by Xing 
et  al. which consists of glucose consumption due to 
cell growth and maintenance as well as the increase 

(6-a)

dcLac

dt
=
((

rXt −
(
kD + kL

)
⋅ Xv

)
∕YXv∕Glc

− mGlcXv

)
⋅ YLac∕Glc

(6-b)

dcLac
dt

=
(

(

rXt −
(

kD + kL
)

⋅ Xv
)

∕YXv∕Glc − mGlcXv

)

⋅ YLac∕Glc − qLacXv

(6-c)qLac = qLac,max ⋅
cLac

KLac + cLac

in glucose concentration as a result of feeding (Xing 
et al. 2010). The change of lactate concentration was 
modeled by Eq. (6). Cells switched from lactate pro-
duction to lactate consumption after day 5, which 
can be observed in Fig.  2i. The mechanism of this 
kind of lactate switch remains unclear, although it is 
common in CHO cell lines (Hartley et  al. 2018). A 
yield coefficient ( YLac∕Glc ) was used to link glucose 
use and lactate production. After day 5, an additional 
Monod-type term was applied to account for lactate 
consumption.If ( cGln > 0 mM):

 If ( cGln = 0 mM):

where cGln and cAmm denote glutamine and ammonia 
concentrations, respectively; YXv∕Gln

 denotes yield 
coefficient of cell proliferation to glutamine uptake 
and YAmm∕Gln denotes yield coefficient of ammonia 
production to glutamine uptake; YXv∕Amm

 yield coef-
ficient of cell proliferation to ammonia uptake and 
qAmm is specific ammonia production rate.

Similarly, glutamine consumption was described 
by a yield coefficient and ammonia was considered to 
be the production of glutamine when glutamine was 
available. When glutamine was depleted, ammonia 
was used as an alternative nitrogen source and con-
sumed until the end of the cell growth phase. This 
phenomenon has also been reported in other mamma-
lian cell lines (Lie et al. 2019). Additionally, ammo-
nia production for cell maintenance was modeled 
through qAmm , which differs at various pHs. After day 
6. If ( VLPintra < VLPmax and pH = 7.15):

 If ( VLPintra = VLPmax or pH = 6.75):

(7-a)
dcGln

dt
= −

(
rXt −

(
kD + kDL

)
⋅ Xv

)
∕YXv∕Gln

(8-a)

dcAmm

dt
=
(
rXt −

(
kD + kDL

)
⋅ Xv

)
∕YXv∕G ln ⋅ YAmm∕G ln

(7-b)
dcGln

dt
= 0

(8-b)

dcAmm

dt
= −

(
rXt −

(
kD + kDL

)
⋅ Xv

)
∕YXv∕Amm

+ qAmmXv

(9-a)
dVLPintra

dt
= qVLP

Fig. 1  Cell death and lysis pathways with their corresponding 
rate coefficients. Adapted from Kroll et al. (2017). This figure 
was created by Adobe Illustrator 2023 (Adobe Inc., CA, USA)
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where VLPintra is the amount of VLPs accumulated 
intracellularly, and qVLP is its accumulation rate; cVLP 
denotes VLP concentration in the medium.

Our previous observations indicated that the VLPs 
were produced efficiently after day 6. Moreover, a 
pH downshift suppressed production of intracellular 
VLPs. Additionally, there was a maximal intracellular 
VLP content that a single cell can contain ( VLPmax ). 
The VLP concentration in the medium was simulated 
by combining VLPintra with cell release, either cell 
death or lysis, as shown by Eq. (10).

The computational work was conducted in MAT-
LAB R2021a and Optimization Toolbox (The Math 
Works, Inc., MA, USA). Ordinary differential equa-
tions were solved by ode45 solver in MATLAB. 
Parameters were determined by minimizing weighted 

(9-b)
dVLPintra

dt
= 0

(10)
dcVLP

dt
= VLPintra ⋅

(
kD + kL

)
⋅ Xv

root-mean-square deviation between the experimen-
tal data and model simulation. Model simulation was 
evaluated by the coefficient of determination  (R2) 
(Colin Cameron and Windmeijer 1997).

Local sensitivity analysis

To further understand the effect of various model 
coefficients and initial culture conditions, local sen-
sitivity analysis was carried out. Briefly, the relative 
change in the final VLP concentration by the end 
of cell culture was simulated in response to a 10% 
change in model parameters independently. Model 
parameters of bioreactors 1 and 2 before day 10 were 
averaged because two bioreactors were operated 
under the same conditions before the pH shift on day 
10. Coefficients after the pH shift were based on the 
simulation of bioreactor 2. Local sensitivity was sim-
ulated under the same pH shift strategy in bioreactor 
2.

Fig. 2  Comparison between model simulations of bioreactor 1 
(solid line) and bioreactor 2 (dash line) (Edward 2022) versus 
experimental data of bioreactor 1 (closed circle) and bioreactor 

2 (open circle) for nine variables (a–i).  R2 was used to evalu-
ate the goodness of fit. This figure was created by MATLAB 
R2021a (The Math Works, Inc., MA, USA)
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Predictions under various pH shift timings

After model calibration, determined parameters were 
used to predict the experimental performance of the 
VLP production process under various pH shift strat-
egies. Various time-dependent cell densities, major 
metabolite concentrations, and VLP yield were pre-
dicted to understand and optimize the process of VLP 
vaccine production.

Multiple objective optimization

Desirability methodology was applied to optimize 
the production process with multiple responses ( yi ) 
such as metabolite concentrations or the VLP con-
centration. In brief, various responses were used to 
compute an individual desirability function ( di

(
yi
)
 ), 

which was either maximization (Eq. 11-a) or minimi-
zation (Eq. 11-b) depending on customized objectives 
(Möller et  al. 2019). Individual desirability di

(
yi
)
 

ranged from 0 to 1. The objective was satisfied if its 
di
(
yi
)
 was close to 1. The overall desirability was 

obtained by multiplication of individual objectives 
as illustrated by Eq. (12), which was used as a quan-
titative criterion for comparison to guide decision 
making.

where Ui and Li are customized upper and lower 
boundaries, respectively. By integrating the designed 
desirability function with the model simulation, mul-
tiple objective optimization was performed to predict 
the optimal pH shift strategy and timing to stop the 
batch.

(11-a)di
�
yi
�
=

⎧
⎪⎨⎪⎩

0 ifyi < Li�
yi−Li

Ui−Li

�
ifLi < yi < Ui

1 ifyi < Ui

(11-b)di
�
yi
�
=

⎧
⎪⎨⎪⎩

1 if yi < Li�
Ui−yi

Ui−Li

�
ifLi < yi < Ui

0 if yi > Ui

(12)D =

n∏
i =1

di
(
yi
)
= d1

(
y1
)
× d2

(
y2
)
⋯ × dn

(
yn
)

Results and discussion

Simulation of bioreactor cultivation

Parameters in the model equations were estimated to 
fit two batches of bioreactor cell culture by the afore-
mentioned parameter determination method. A com-
parison between experimental data and model simu-
lation is shown in Fig.  2. Additionally, some model 
parameters are listed in Table 1. As shown in Fig. 2a, 
simulation of the total cell densities of the two bio-
reactors fitted the experimental data with high accu-
racy. The two batches of bioreactor culture had simi-
lar profiles because the two bioreactors were operated 
under the same conditions during the growth phase. 
Model parameters related to total cell density ( rmax 
and Xt,max ) were also comparable between batches.

In addition to the total cell density, this model 
thoroughly described viable cell densities (Fig.  2b) 
and dead cell densities (Fig. 2c) with  R2 > 0.95. Com-
pared with bioreactor 1, cell death in the late stage 
of cell culture was increased in bioreactor 2 after the 
pH shift. The phenomenon was caused by acceler-
ated accumulation of ammonia due to the pH down-
shift (Fig.  2f). As shown in Fig.  2f, ammonia con-
centrations ( cAmm ) were estimated by the proposed 
model. At the beginning, ammonia was produced 
by glutamine consumption. When glutamine was 

Table 1  Comparison of model parameters between bioreac-
tors 1 and 2

Parameter Bioreactor 1 Bioreactor 2

rmax  (h−1) 0.042 0.044
Xt,max  (108 cells  L−1) 181.1 191.5
kD,min  (10–4  h−1) 2.5 1.7
kDL,32  (10–3  h−1) 8.8 6.9
kL,32  (10–3  h−1) 1.4 1.3
kD,dead  (10–4  h−1) 5.1 3.3
KDAmm

 (mM) 0.59 0.60
YXv∕Gln

  (1012 cells  mol−1) 1.90 2.45
YAmm∕Gln (−) 1.45 1.84
YXv∕Amm

  (1012 cells  mol−1) 1.74 1.08
qAmm,7.15  (10–15 mol  cell−1  h−1) 0.95 1.65
qAmm,6.75  (10–15 mol  cell−1  h−1) N.A 2.66
VLPmax  (10–12 g  cell−1) 3.85 3.39
qVLP  (10–13 g  cell−1  h−1) 0.59 1.08
tVLP,cr (h) 209.5 175.3
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depleted, ammonia started to be consumed to sup-
port cell growth until the viable cell density reached 
its peak. Other mammalian cell lines have also been 
reported to exhibit similar behavior (Lie et al. 2019). 
Subsequently, the ammonia concentration increased 
again because of cell maintenance (Xu et  al. 2019). 
After a pH shift to 6.75, the ammonia production 
rate ( qAmm,6.75 ) was increased significantly compared 
with the specific ammonia production rate at pH 7.15 
( qAmm,7.15 ), resulting in a higher ammonia level than 
in the control bioreactor, which was consistent with 
the observation of Lee et al. (2021). As a result, cell 
death was accelerated in bioreactor 2. Overall, the 
model successfully described ammonia concentra-
tions during cell culture, despite small deviations 
between data points and simulation in the final stage. 
These deviations were mainly caused by the simplic-
ity of the model. Additionally, the effect of the pH 
shift was quantified successfully through the change 
in qAmm.

In terms of the lysed cell density (Fig.  2d), the 
kinetic model provided precise descriptions of the 
data. Model simplicity and experimental error con-
tributed to model deviation. Data from the two bio-
reactors did not show significant differences, and 
model parameters related to cell lysis and specific cell 
lysis rates from dead and viable cells at 32 °C ( kDL,32 
and kL,32 ) were comparable, which suggested that 
the effect of the pH shift on cell lysis was negligible. 
Additionally, glutamine consumption was modeled 
accurately (Fig. 2e). The difference in the initial glu-
tamine concentrations might be due to experimental 
and measurement errors.

Figure 2g shows the experimental data and model 
simulation of the VLP concentration ( cVLP ) over the 
cultivation time. VLP production was effectively 
simulated by the proposed model. After day 6, VLPs 
started to be released into the medium. VLP con-
centrations in two bioreactors had similar profiles, 
although there were more dead cells in bioreactor 2 
because of the higher ammonia concentration due to 
the pH shift. The reason was that every single cell in 
bioreactor 2 contained fewer intracellular VLPs on 
average. tVLP,cr indicates the critical time for intracel-
lular VLP accumulation to reach maximum intracel-
lular VLP content ( VLPmax ). As shown in Table  1, 
tVLP,cr was shorter than 240  h in each bioreactor, 
which means that intracellular VLP accumulation 
achieved its maximum and stopped before the pH 

shift. Therefore, VLP concentration was the product 
of the sum of dead and lysed cell density and VLPmax . 
Even though there were more dead and lysed cells in 
bioreactor 2, VLPmax was lower in bioreactor 2 (3.85 
×  10–12  g  cells−1 in bioreactor 1 and 3.39 ×  10–12  g 
 cells−1 in bioreactor 2) indicating that every single 
cell contained fewer VLPs on average. As a result, the 
VLP concentration was not improved much in bio-
reactor 2. In addition, lower VLPmax was due to the 
batch-to-batch variation which was probably caused 
by the nature of cells because VLPmax was reached 
before the pH shift. Two bioreactors were operated 
under the same conditions before pH was shifted on 
day 10. Besides, because the newly proposed equa-
tion correlating cell death and lysis with VLP con-
centration (Eq.  10) is able to describe CVA6 VLP 
concentration during the cell culture precisely, it pro-
vides an opportunity of modeling production process 
of other products which are produced intracellularly 
such as other non-enveloped VLPs. More concretely, 
according to our observations, the production of 
Enterovirus 71, Coxsackievirus A10, Coxsackievirus 
A16, and Norovirus VLPs, which are non-enveloped 
VLPs, has shown similar behavior to the CVA6 VLP. 
Their product concentrations were also strongly cor-
related to dead and lysed cell densities. Such kind of 
behavior can be modeled by Eq. 10 as well. Besides, 
this kinetic model can also be modified to model 
other non-enveloped VLP vaccine production pro-
cess since the product release of other non-enveloped 
VLP relies on cell lysis as well (Cervera and Kamen 
2018). To customize the model to other production 
processes, equations of cell growth, death and lysis 
can be modified since the limiting substrate can be 
different in various cells. Similar to Eq.  10, product 
concentration can be correlated to dead and lysed cell 
densities subsequently. Simulating dead and lysed cell 
densities accurately is critical for modeling product 
concentration, as these densities can affect product 
concentration directly.

As shown in Fig.  2h, the kinetic model only 
provided an estimation of glucose concentrations 
in two bioreactors with low accuracy of  R2 = 0.67 
and 0.52, respectively. The main reason for the low 
accuracy was the simplicity of the model. Only two 
model parameters were used to describe the behav-
ior of glucose concentration. Fewer parameters 
were helpful for the generality by preventing over-
fitting. Increasing the number of model parameters 
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would improve the model accuracy. For example, 
the specific glucose consumption rate could be 
changed from a constant to a Monod-type term. 
However, it is noteworthy that there exists a trade-
off between generality and precision in the field of 
modeling mammalian cells (Shirsat et  al. 2015a, 
b). In this case, the precision of glucose concen-
tration simulation was sacrificed because glucose 
was kept sufficient and did not affect the product 
yield. In addition, experimental and measurement 
errors also contributed to the significant deviation 
between experimental data and model simulation. 
For instance, addition of feeding medium as well as 
glucose supplement could introduce human error. 
Simulation of the lactate concentration is shown 
in Fig.  2i. Lactate was produced during the expo-
nential growth phase and switched to consumption 
after day 5. The dynamic model described the lac-
tate concentration with reasonable accuracy.

Local sensitivity analysis

Batch-to-batch variation existed between the two 
bioreactors as suggested by the variance in model 
parameters and initial conditions. The change in the 
final VLP yield in response to the variance in model 

parameters and initial conditions needed to be exam-
ined. Therefore, local sensitivity analysis was carried 
out to determine the effect of the coefficients used in 
the proposed model on the final product yield. The 
analysis was performed in a one-way manner, which 
changed one factor by 10% while keeping other fac-
tors constant to observe the fractional change in the 
output (Qian and Mahdi 2020). A tornado plot was 
used to display the results of sensitivity analysis 
(Fig. 3). Ammonia was the metabolite related to cell 
death. Additionally, glutamine consumption was cor-
related to ammonia production in the kinetic model. 
Therefore, the effect of variance in the initial con-
centrations of ammonia and glutamine ( cAmm,initial 
and cGln,initial ) on the final VLP yield was investi-
gated. Glutamine supplementation in the medium was 
critical for VLP production because a 10% increase 
in the initial glutamine concentration increased the 
final VLP concentration by 20.19%. The increase in 
the glutamine concentration led to a higher level of 
ammonia, which increased the number of dead cells. 
Consequently, the release of VLPs was enhanced. 
Conversely, changes in the initial ammonia concen-
tration were unable to cause significant differences in 
the final product yield because the numerical value 
of cAmm,initial was too low. In summary, the sensitivity 

Fig. 3  Results of local sensitivity analysis. This figure was created by Microsoft® PowerPoint 2022 Version 16.61 (Microsoft Cor-
poration, WA, USA)
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analysis of initial conditions showed that glutamine 
supplementation was an important material attrib-
ute affected the product yield, whereas the final VLP 
yield was resistant to the variance in the ammonia 
concentration at the beginning.

Fractional changes in model parameters also 
affected VLP production. The decrease in rmax had a 
negative effect on the VLP yield because it delayed 
cell growth, and therefore reduced the numbers of 
dead and lysed cells. Similarly, the reduction in Xt,max 
was also adverse for VLP production, but it only 
had a limited effect. Yield coefficients also consid-
erably changed the final VLP concentration because 
they influenced the ammonia level during cultiva-
tion and subsequently affected cell death. Specifi-
cally, if YXv∕Gln

 , YAmm∕Gln , or YXv∕Amm
 was increased by 

10% independently, the final VLP amount would be 
changed by 9.33%, 10.48%, and 4.62%, respectively. 
Additionally, qAmm,7.15 and qAmm,6.75 played roles in the 
product concentration because they indirectly affected 
cell death by influencing the ammonia concentration. 
Increases in these coefficients accelerated the accu-
mulation of ammonia, which increased cell death and 
eventually promoted the release of VLPs. Moreover, 
variances in model parameters related to cell death 
and lysis induced changes in the product yield. KD,min 
only had a minimal effect on the final VLP yield 
because it was a parameter during the early stage of 
cell culture, whereas cell death mostly occurred dur-
ing the late stage. However, 10% changes in kD,dead , 

KDAmm
 , and kL,32 led to a 4–6% difference in the final 

product concentration. In terms of parameters directly 
related to VLP production, VLPmax had a considerable 
effect because a 10% decrease reduced the VLP yield 
by 9.39%. However, qVLP only had a limited effect. 
Production of VLPs was also affected by the pH shift 
timing. The results of local sensitivity analysis sug-
gested the potential of optimizing the VLP production 
process by shifting the pH earlier. It would be benefi-
cial to perform additional experiments to validate the 
simulation results of sensitivity analysis. However, in 
this case, model validation was difficult to perform. 
For instance, it was challenging to increase specific 
death rate by 10% independently without changing 
other process parameters.

Effect of the pH shift timing on VLP production

To further investigate experimental performance 
under various pH shift timings, a prediction was per-
formed using determined model coefficients (Fig. 4). 
For the simulation, model parameters and initial 
conditions were averaged when applicable. D8 to 
D14 denote the pH downshift timing from day 8 to 
14 (without a pH shift). On the basis of the course 
of cAmm predicted in Fig. 4e, ammonia accumulation 
was accelerated after the pH shift. Consequently, 
Xv decreased faster under strategies in which pH 
was shifted on earlier days. Furthermore, if the pH 
was downshifted on early days, Xd (Fig.  4b) and Xl 

Fig. 4  Prediction of experimental performance of the VLP 
vaccine production process with various pH shift timings for 
six variables (a–h). D8–14 denote the day when a pH shift is 

performed. This figure was created by MATLAB R2021a (The 
Math Works, Inc., MA, USA)
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(Fig.  4c) tended to be higher by the end of cultiva-
tion. As shown in Fig. 4d, the pH shift timing hardly 
affected glutamine consumption. The time-dependent 
course of VLP concentrations was also predicted. 
Despite the highest number of dead and lysed cells, a 
pH shift on day 7 resulted in the lowest yield, which 
was due to the low VLPintra because the pH downshift 
stopped the accumulation of VLPintra , and VLPmax 
could not be reached. If pH was shifted on day 8 or 
later days, VLPmax was achievable. When VLPintra 
reachedVLPmax , the higher Xd and Xl released more 
VLPs. Therefore, except for day 7, the final VLP 
yield was decreasing as the pH shift timing was later. 
The highest yield was achieved by shifting the pH 
on day 8, which generated an approximately 20% 
increase in the final product concentration compared 
with the cell culture without a pH shift. However, the 
presence of batch-to-batch variation posed difficulty 
for the validation of prediction results. For example, 
as mentioned before, after the pH shift, there were 
more dead and lysed cells in bioreactor 2. Thus, it 
was supposed to be higher yield in bioreactor 2. Nev-
ertheless, the product concentration was not improved 
much because of the batch-to-batch variation of cells. 
Even though model validation was absent, simulation 
results were in line with previous reports. More spe-
cifically, elevated ammonia level due to the pH down-
shift was also reported by several studies (Lee et al. 
2021; Trummer et  al. 2006). Considering ammonia 
was reported to be toxic for cells (Schneider 1996) 
and be able to induce cellular apoptosis (Wang et al. 
2018), it was logical that the model predicted there 
would be more dead cells if pH was shifted earlier 
because of higher ammonia concentration.

Multiple objective optimization

In the field of biopharmaceutical production, maxi-
mizing product yield is not the only criterion. Prod-
uct quality also needs to be guaranteed. Our results 
showed that a pH shift increased the ammonia level 
at the late stage of cell culture, which accelerated cell 
death and consequently resulted in a higher yield. 
Nevertheless, a high ammonia concentration also 
has a negative effect on glycosylation gene expres-
sion in CHO cells resulting in inhibited glycosylation 
of recombinant proteins (Chen and Harcum 2006). 
VLPs are also a type of recombinant proteins and pre-
vious studies have demonstrated that glycosylation is 

critical for triggering the immune response as well as 
the function and structure of VLPs, such as glycopro-
tein folding and VLP assembly (Chen and Lai 2013; 
Lavado‐García et al. 2022). Thus, there is a trade-off 
between product yield and quality. To enable quan-
titative decision making of the trade-off, the model 
simulation was integrated with desirability method-
ology. A desirability function was designed to maxi-
mize the VLP concentration while simultaneously 
minimizing the ammonia concentration.

The result was visualized by a surface plot (Fig. 5). 
In general, as the cell culture proceeded, the value 
of desirability increased at the beginning because 
the VLP concentration kept increasing during this 
period. Nevertheless, desirability decreased during 
the late stage because of the high ammonia concen-
tration. Additionally, the delay in the pH shift timing 
had a positive effect on the overall desirability. Nota-
bly, desirability did not change with respect to the 
change in pH shift timing if the pH shift timing was 
later than the cultivation timing, which was indicated 
by the diagonal on the surface. Cell culture without a 
pH shift at 311 h was predicted to be the most desired 
operating condition that balanced the product yield 
and quality.

Conclusion

In this study, a kinetic model was constructed for the 
VLP vaccine production process using CHO cell cul-
ture to fulfill the gap of currently available models 
which cannot simulate the pattern of VLP produc-
tion. The constructed model simulated the experi-
mental data from two batches of bioreactor cell 
cultures under various pH shift strategies with high 
accuracy. It also revealed the mechanism of cellu-
lar behaviors with respect to metabolite concentra-
tions. The newly proposed equation correlating VLP 
concentration with cell death and lysis provides an 
opportunity of modeling other non-enveloped VLP 
production process. The determined model param-
eters enabled quantitative comparison between the 
two bioreactors, so that the effects of a pH shift was 
quantified and provided a better understanding of the 
process dynamics. By performing sensitivity analy-
sis, glutamine supplementation in the medium was 
suggested to be an important material attribute that 
considerably affected the final VLP yield. Therefore, 
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to guarantee efficient VLP vaccine production, glu-
tamine supplementation has to be designed and con-
trolled carefully. Subsequently, the calibrated model 
was used to predict the performance of the VLP vac-
cine production process if a pH shift was conducted 
on various days. Day 8 was the optimal day to shift 
the pH to achieve the highest VLP yield. However, 
there was a trade-off between product yield and qual-
ity. To balance them, desirability methodology was 
integrated with the model simulation to perform 
multiple objective optimization. Cell culture with-
out a pH shift at 311 h was predicted to be the most 
desired operating strategy, which balanced the prod-
uct yield and quality. Hence, the use of this model 
enabled quantitative decision making for process 
optimization in silico, so that the cost and time to 
conduct experiments were reduced. In conclusion, 
the newly proposed model is a versatile tool to facili-
tate development of the VLP vaccine production 
process. It also has the potential to support hybrid 
modeling, which integrates a mechanistic model and 
data-driven methods such as artificial neural network 
(Narayanan et  al. 2019). Additionally, both mecha-
nistic and hybrid modeling play important roles in 

digital twin, which enables process development in 
silico and is desired by the biopharmaceutical indus-
try as bioprocesses are moving towards Industry 4.0 
(Cardillo et  al. 2021; von Stosch et  al. 2021). Cell 
culture performance has been suggested to be dif-
ferent even under the same conditions. Therefore, 
further research may develop stochastic models that 
use distribution to quantify batch-to-batch variation 
because batch consistency is also important for biop-
harmaceutical production.
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