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Abstract
In this paper, two approaches for measuring the distance between stock returns and 
the network connectedness are presented that are based on the Pearson correla-
tion coefficient dissimilarity and the generalized variance decomposition dissimi-
larity. Using these two procedures, the center of the network is determined. Also, 
hierarchical clustering methods are used to divide the dense networks into sparse 
trees, which provide us with information about how the companies of a financial 
market are related to each other. We implement the derived theoretical results to 
study the dynamic connectedness between the companies in the Swedish capital 
market by considering 28 companies included in the determination of the market 
index OMX30. The network structure of the market is constructed using different 
methods to determine the distance between the companies. We use hierarchical clus-
tering methods to find the relation among the companies in each window. Next, we 
obtain a one-dimensional time series of the distances between the clustering trees 
that reflect the changes in the relationship between the companies in the market 
over time. The method from statistical process control, namely the Shewhart con-
trol chart, is applied to those time series to detect abnormal changes in the financial 
market.
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1  Introduction

A financial market is often considered as a network where the nodes are companies 
and the links among nodes represent the connectedness (Diebold & Yılmaz, 2015). 
The connectedness of financial assets plays an important role for policymakers and 
forecasters, especially during recessions and crises (see Minoiu et al., 2015; Bouri 
et al., 2021; among others). However, there is a controversy on how to define and 
measure the connectedness as well as how to keep track of changes in it. Vandewalle 
et al. (2001), Onnela et al. (2004), Bonanno et al. (2004), and Chi et al. (2010) use 
the Pearson correlation of financial returns as a measure of connectedness in the 
network. This measure is symmetric and may be subject to the choice of the sam-
ple size. Recently, Diebold and Yılmaz (2014) introduce an asymmetric measure of 
connectedness based on the effects of a shock from one node to other nodes.

In this study, we consider two common measures of connectedness in the net-
works, namely the Pearson Correlation Coefficient Dissimilarity (PCCD) and the 
Generalized Variance Decomposition Dissimilarity (GVDD), and derive the dis-
tance between stock returns. First, we contribute to the literature by comparing the 
center of the network determined by these measures. Second, we use a hierarchical 
clustering method to divide the dense networks into sparse trees. Using the tree rep-
resentation of the network, it is easier to analyze which companies are more related 
to each other. Third, we monitor the real-time changes in the tree distance as a signal 
of changes in the financial network. Lastly, we analyze the 28 biggest companies 
listed on Sweden’s stock exchange to illustrate the pros and cons of the considered 
connectedness measures.

The center of the network is one of the major interests as it is a node or group 
of nodes that is most influenced by other nodes in the network. Sensoy and Tabak 
(2014) define the center of the network as the node with the largest number of adja-
cent edges or with the largest number of shortest paths going through. Diebold and 
Yılmaz (2014) analyze the volatility connectedness and define the centrality in terms 
of the net transmitter of shock. On the other hand, we model the financial returns 
as a network graph where the distance in the graph is based on the connectedness/
dissimilarity measures. Hence, the center of the network can be considered as the 
node with the shortest distance to the furthest node. We also analyze how the center 
changes and evolves over time.

Another interesting feature of the financial network is to identify which neigh-
bors or groups of companies are most related to each other. Mantegna (1999) takes 
advantage of the Pearson correlation to calculate the distance matrix of stock returns 
and cluster them into groups via a minimum spanning tree. Jung and Chang (2016) 
apply an agglomerative hierarchical clustering of the Pearson correlation and the 
partial correlation in the Korean stock market. They find that the traditional sec-
tor classifications are insufficient to determine the proximity of companies. Raffi-
not (2017) proposes hierarchical clustering methods for asset allocation and shows 
the advantage of hierarchical clustering over the classical asset allocation method. 
Similar to Mantegna (1999) we use a hierarchical clustering method to convert the 
networks of companies to rooted trees. The hierarchical clustering algorithm takes 
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advantage of the distance in the network to merge the most similar nodes into a 
cluster. The tree structure also highlights the main difference of the implied network 
based on the two connectedness measures.

In Diebold and Yılmaz (2014), the changes in the network are monitored by 
using a total sum of connectedness. But that measure ignores the entity of the total 
changes and somehow misinterprets the real changes in the network structure. 
Except Jaroonchokanan et al. (2022), most of the literature focus on a static cluster-
ing method. To get over this shortcoming, we use a tree distance method (see Smith, 
2020) based on the generalized Robinson–Foulds distance (see Nye et  al., 2006). 
The generalized Robinson–Foulds distance compares two trees and pairing splits in 
one tree with similar splits in the other. Hence, we obtain a daily series of distances 
due to the changes in the tree structures. To the best of our knowledge, we are the 
first to measure the tree distance in finance and recommend the abnormal change as 
a warning signal. The results can also be generalized to different stock markets.

Using the returns on stocks traded on the Swedish capital market, we analyze 
the network of financial returns for 5 years from 2017 to 2022. We consider a roll-
ing window of three months to calculate the daily measures of connectedness. It 
appears that Investor, a Swedish investment company, is the center of the network 
most of the time for both considered connectedness measures. However, there is a 
quite difference in hierarchical clustering trees between the two measures. In gen-
eral, the companies in the same sector are closer together, but the links between 
sectors are diverse between these two methods. Using both methods, Swedish Match 
has been determined as the center in the least times, namely, 0 times by using the 
PCCD method and 5 times by the GVDD method. Interestingly, Swedish Match is 
the only company from the Swedish capital market index (OMX30) that belongs 
to the Consumer Defensive sector. Therefore, it is expected to have a minor impact 
only on the rest of the companies from OMX30, which has also been documented by 
the application of the two proposed methods. Finally, we observe that the tree dis-
tance computed using Diebold & Yılmaz (2014) is in a higher magnitude and more 
volatile than the one by the Pearson correlation. However, the tree distances are cor-
related and in line with the high volatility period of stock returns.

The rest of the paper is organized as follows. Section 2 describes the two common 
measures of connectedness or dissimilarity. Section 3 introduces the network con-
struction of financial returns by applying the considered measures. Here, we outline 
the notations of a center in a network as well as describe how to form a hierarchical 
clustering tree and compute a tree distance. An empirical illustration is presented in 
Sect. 4 and conclusions are reached in Sect. 5.

2 � Dissimilarity Measure of Stock Returns

In this section, we present two common connectedness measures of financial returns 
based on the Pearson correlation and variance decomposition.

Let pi,t be the closing price of stock i at day t and let ri,t = log(pi,t) − log(pi,t−1) 
denote the log-return on stock i on day t. The Pearson correlation coefficients (PCC) 
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between asset returns i and j at time t is defined using data over M periods from 
t0 = t −M + 1 up to t as

where r̄i =
1

M

∑t

s=t0
ri,s and r̄j =

1

M

∑t

s=t0
rj,s are the sample means of the returns on 

the i and j stocks, respectively, computed over the last M periods. The correlation 
coefficient receives a value in the range [−1, 1] and it represents the linear depend-
ence between two financial returns. Then, the dissimilarity ht,PCCD

i,j
 between two 

stock returns i and j at time t can be written as

This definition of the dissimilarity satisfies the three axioms that define a metric 
H

t,PCCD = [ht,PCCD
ij

] (see Mantegna, 1999) where 0 ≤ h
t,PCCD

i,j
≤ 2 . The dissimilarity 

expresses the level at which the stocks are correlated (e.g., Onnela et al., 2003).
The Pearson Correlation Coefficient Dissimilarity (PCCD) in (2) measures a rela-

tionship among variables and has been employed in many studies, for example, Vande-
walle et al. (2001), Onnela et al. (2004), Bonanno et al. (2004) Chi et al. (2010), among 
others. The PCCD only considers the pairwise linear correlation but ignores other non-
linearities created by the time-varying correlations. It is also a non-directional measure 
that makes it difficult to distinguish the asymmetric effect of one firm from another. 
Alternatively, Diebold and Yılmaz (2014) propose a measure of the similarity based on 
the variance decomposition associated with a VAR model which helps to overcome the 
limitation of the PCCD. The similarity matrix is created based on the shares of forecast 
error of the returns which allows the measurement of how many percentages of the 
forecast error of one variable are caused by another variable.

Following Diebold & Yılmaz (2014), a VAR model of order p is used to model the 
dynamic behavior of asset returns expressed as

where rt is a n-dimensional vector of demean asset returns; Bj is a n × n variate 
matrix of regression coefficients with j = 1,… , p ; � is a n × n covariance matrix 
that describes the interaction between the components of the error process; �t is a 
n-dimensional vector of error terms that follows a white noise process with zero 
mean vector and identity covariance matrix.

We rewrite the VAR model (3) in the moving average (MA) representation as

(1)𝜌t
i,j
=

∑t

s=t0

�
ri,s − r̄i

��
rj,s − r̄j

�
�∑t

s=t0

�
ri,s − r̄i

�2 ∑t

s=t0

�
rj,s − r̄j

�2 ,

(2)h
t,PCCD

i,j
=
√

2(1 − �t
i,j
).

(3)rt = B1rt−1 +⋯ + Bprt−p + �
1∕2

�t,

(4)
rt = �(L)�1∕2

�t,

�(L) =
(
I − B1L −⋯BpL

p
)−1

= �0 +�1L +�2L
2 +⋯ ,
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where L is the lag operator that is Lrt = rt−1 . To compute the MA representation, 
the Cholesky factor of the covariance matrix � is commonly used together with the 
generalized variance decomposition (GVD) framework of Koop et  al. (1996) and 
Pesaran and Shin (1998). Note that the GVD helps to produce variance decomposi-
tions that are invariant to the order of the variables. Diebold and Yılmaz (2014) con-
sider the standardized variance decomposition matrix Ĥ

t
= [ĥt

ij
] as the shares of the 

K-step-ahead error variances in forecasting ri due to the shocks to rj,

where ej is a n-dimensional vector with the jth element unity and zeros elsewhere 
and �jj is the j-th diagonal element of � . Therefore, ĥt

ij
 measures the connectedness 

between i and j stock returns based on the variance decomposition of forecast errors. 
And due to the construction, 

∑n

j=1
ĥt
ij
= 1,∀i = 1,… , n and ĥt

ij
∈ [0, 1] . To convert 

this variance decomposition matrix or the similarity matrix to a dissimilarity matrix 
H

t,GVDD = [ht,GVDD
ij

] , we use the following formula:

In this case, if two companies are more related to each other, then ht,GVDD
ij

 is smaller.

3 � Graphs

In this section, we consider the network of financial returns using the graph theory. 
A graph or a network G(V, E) contains a set of vertices (V) and the relation between 
the nodes which is indicated by E (see, e.g., Cormen et al. 2001; Bondy and Murty 
1976). In graphs, sometimes there is more than one edge between some nodes, and 
also there may be a loop, i.e., an edge from a node to itself. If there is no loop nor 
multiple edges in the graph we have a simple graph. If the relation is symmetric we 
have an undirected graph, otherwise, we have a directed graph. If the edges have 
some numeric values (or weights) we have a weighted graph. Based on the meas-
ures proposed in Sect.  2, the smaller weights (or lengths) of the edges mean that 
they are more similar. For each graph, we have some subgraphs as well. A subgraph 
of a graph G(V, E) is a graph G� = (V �,E�) such that V ′ ⊂ V  and E′ ⊂ E . Another 
characteristic of a graph is connectedness. We say that an undirected graph G is 
connected, if and only if there is a path between all the nodes in the graph. A similar 
definition is also presented for a directed graph which is called strongly connected 
graph. For further definitions and properties from graph theory, we refer to Cormen 
et al. (2001).

(5)

ĥt
ij
=

𝜈t
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j=1
𝜈t
ij
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ij
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3.1 � Adjacency Matrix

One way to describe a graph is by an adjacency matrix. For a given graph with n 
vertices V1,V2, ...,Vn , the adjacency matrix A is an n by n matrix such that the num-
bers of rows and columns are equal to the number of vertices V. Then, the element 
(i,  j) in the adjacency matrix is wi,j (or 0) if there is (or is not) an edge between 
vertices Vi and Vj with the weight of wi,j . The adjacency matrix is symmetric if the 
graph is undirected which means that Ai,j = Aj,i . In Fig. 1, an illustration of a graph 
is presented, which is constructed by using the artificial returns on five stocks traded 
on the Swedish capital market.

Contrariwise, for any squared matrix A we can construct a graph in which the 
number of vertices of the graph is equal to the number of columns of the matrix, 
and between any two vertices Vi and Vj we add an edge with the weight of Ai,j . This 
matrix A is the adjacency matrix of the graph. In the following, we consider two 
dissimilarity measures Ht,PCCD in (2) and Ht,GVDD in (6) as the adjacency matrices 
to identify the connectedness between Swedish companies. The adjacency matrix 
that we obtain from the PCCD is a symmetric matrix and we construct an undirected 
graph. Similarly, we construct an asymmetric adjacency matrix and a directed graph 
by using the GVDD measure.

3.2 � Distance Matrix

For a graph, we can construct the distance matrix by using the adjacency matrix. 
The distance between two vertices Vi and Vj is the summation of weights of all the 
edges in the shortest path from Vi to Vj . The distance matrix D for a graph G is a 
squared matrix such that the number of columns is the number of vertices of the 
graph and each element Di,j indicates the distance from vertex Vi to Vj . If the graph 
is undirected, the distance matrix is a symmetric matrix, otherwise, the matrix is 
asymmetric. Figure 2 depicts the undirected graph and the distance matrix obtained 
by using the results presented in Fig. 1.

Fig. 1   Undirected graph consisting of five vertices together with the adjacency matrix A . In the case of 
the PCCD, the elements Aij of the adjacency matrix A correspond to the artificial elements of Ht,PCCD for 
some t which are random numbers between 0 and 2
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In this section, we are interested in graphs and the clustering of the networks that 
we make by using the variance decomposition matrix. Networks and graphs are two 
important topics in the field of statistics and finance and have attracted lots of atten-
tion (see Mantegna 1999; Diebold and Yılmaz 2014; Cerbo and Taylor 2021; Touli 
and Lindberg 2022).

3.3 � Center of a Graph

There are some characteristics of graphs that we use in this paper. One of the impor-
tant properties of the graph is the center of the graph which we define below (see 
also Wasserman and Faust (1994) for more information and definition related to the 
center of the graph).

In a network of companies, we consider that the center of the network is a ver-
tex (or a set of vertices) in the graph that has a minimum value of the maximum 
distances from it (them) to other vertices. For finding the center of a graph, we add 
a column (or a row) to the distance matrix of the graph, called max, whose ele-
ments maxi indicate the maximum distance from the i-th vertex to other vertices. 
The center of the graph is then the vertex (a set of vertices) that has the minimum 
value at the max column.

Figure  3 illustrates the computation of the center of the undirected graph of 
Fig. 2, which appears to be Electrolux.

Besides, based on the results discussed in the previous section, it can be proven 
that the PCCD is a distance. Therefore, at each window t and for any pair of i and j, 
h
t,PCCD

i,j
 is the shortest distance between two vertices Vi and Vj . Therefore, for the 

PCCD method, the distance matrix is equal to the adjacency matrix.

3.4 � Hierarchical Clustering of a Data

As the graph of the financial assets is a presentation of dense network structure, ana-
lyzing and reporting their properties based on different connectedness measures can 
be very difficult. Instead, we work with a tree clustering that indicates the relation 
between companies. There are many methods to cluster the data, for example, flat 

Fig. 2   An undirected graph consisting of five vertices together with the distance matrix D
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clustering and hierarchical clustering (see Dasgupta 2016; Wang and Wang 2020). 
We focus on hierarchical clustering in this paper because of some advantages of the 
method. The first advantage of using hierarchical clustering is that we do not need 
to indicate the number of clusters before starting the clustering. Another advantage 
is that the structure of the cluster is a tree and therefore we can use some properties 
of trees, such as the distance between trees. In the hierarchical clustering tree, the 
leaves correspond to the firms and each internal node corresponds to a cluster such 
that all the data in one cluster are indicated by the leaves of the subtree rooted at the 
internal node.

There are two methods for hierarchical clustering: agglomerative and divisive 
(see Dasgupta 2016; Wang and Wang 2020). The algorithm for the divisive method 
is more complicated than the one for the agglomerative method. Moreover, most of 
them are NP-hard to compute which means that there is no known polynomial time 
algorithm for implementing them. As such, we make use of agglomerative methods. 
We first start with vertices that are more similar to each other and then merge them 
until we reach the groups that are less similar to each other. At last, we merge even 
those groups that are completely different from each other. In all kinds of hierarchi-
cal clustering, all the groups are merged eventually.

In this paper, we choose to work with a single linkage clustering algorithm that 
is efficient and suitable for the symmetric distance. When the matrix is asymmetric, 
then we consider the max between the element uv and vu in the asymmetric matrix 
and we convert it to a symmetric matrix. Then, the methods that exist for symmetric 
matrices, are employed (see Carlsson et al. 2018 for details).

3.5 � Distance Between Trees

In the previous section, different types of clustering methods were introduced for 
the stock returns. As in each period, a hierarchical clustering tree is obtained and the 
changes in the hierarchical clustering tree can be summarized by using the distances 
between the trees. We start this section by introducing some methods for calculating 
the distance between trees.

Fig. 3   Determination the center 
of the graph in Fig. 2. The 
added column to the distance 
matrix D is max. The minimum 
value of this column, depicted in 
red, specifies Electrolux as the 
center of the graph
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The tree edit distance and the tree alignment distance are two distances that are 
primarily defined between trees (see Bille, 2005). Furthermore, the interleaving 
distance and the Frechet-like distance are defined between merge trees1 (see e.g., 
Morozov et al. 2013; Touli 2021). Recently, the interleaving distance was general-
ized in Touli and Wang (2022), which proposed a fixed parameter tractable algo-
rithm for finding the interleaving distance between two merge trees. The generalized 
Robinson–Foulds metrics for comparing and finding the similarity between phyloge-
netic trees2 has been worked by M.R. Smith. The practical computation of the dis-
tance between trees can be performed by using the R package TreeDist (see Smith, 
2020).

3.5.1 � Robinson–Foulds Distance

Robinson–Foulds distance is a distance that is defined on unrooted labeled trees. 
Each edge in a tree is a bridge3 that divides the leaves of a labeled tree into two 
groups such that there is no overlapping between them. The Robinson–Foulds algo-
rithm counts the number of splits in one tree that do not exist in another one (see 
Bogdanowicz and Giaro 2011; Smith 2020). In other words, it is defined by

such that �(T1) is the set of all splits related to edges of T1 , similar for �(T2) . Also, 
for two sets A and B, A⊖ B = (A ⧵ B)

⋃
(B ⧵ A).

Since the set of rooted trees is a subset of trees, we can also use the above defini-
tion for labeled rooted trees. Moreover, the hierarchical clustering trees are labeled 
rooted trees. As such, we can find the dissimilarity between them or in other words 
the distance between them by using the Robinson–Foulds distance.

The Robinson–Foulds method does not provide an acceptable result when there 
is a small change in trees, for example, when the difference between the two trees 
T1 and T2 is that just one leaf in T1 moves in T2 like Fig. 4. In this case, the Robin-
son–Foulds distance returns a very large number that indicates that the two trees are 
not similar. Therefore, the generalized Robinson–Foulds method was introduced in 
Smith (2020).

Smith (2020) introduced three information-based distances between the phylo-
genetic trees. As the distance between the rooted trees indicates the relationship 
between the clustered markets, the clustering information distance is the most suit-
able one that we can use here. The phylogenetic trees and the hierarchical trees are 
very similar in structure. In both of them, the leaves of the tree save the information 
about the data. In the phylogenetic trees, we have the names of species, while the 

dRF(T1, T2) =
1

2
|𝜓(T1)⊖𝜓(T2)|

1  From Morozov et al. (2013) a merge tree is a rooted tree with a real-valued function which is defined 
on the tree. The function is monotonically decreasing from the root of the leaves.
2  A phylogenetic tree is a rooted labeled tree such that the tree indicates the evolutionary relationships 
between different species.
3  In a graph, a bridge is an edge that if we cut it, the graph is divided into two separate graphs.
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names of the companies are used in the hierarchical tree that we have constructed 
from the relationship between these companies. Also, in phylogenetic trees, the 
nearest common ancestor of similar species is closer to them rather than the dif-
ferent species. In the hierarchical clustering trees, we have a similar situation as 
well. Namely, if two companies are more related, then they are merged faster than 
the ones that are more different. Therefore, in this work, we use the distance that is 
defined on the phylogenetic trees for finding the distance between the hierarchical 
clustering.

4 � Empirical Illustration

In this section, we consider 28 Swedish companies. We analyze the network struc-
ture of the asset returns through the PCCD method and the GVDD method. Then, 
we find the center of the networks. Also, by using hierarchical clustering and the 
information distance between rooted trees, we investigate the changes in the hierar-
chical trees.

We first take the adjusted closing prices of 28 Swedish companies from Yahoo 
Finance for 5 years, from March 31st, 2017 to March 30th, 2022. In the analysis, 
a moving window of three months is employed. Commonly, three months have 63 
open days and, therefore, we consider the first 63 days as the first window. Then we 
shift by one day and the second window starts from day two and ends at day 64, and 
so on. For each window we use two methods to find the adjacency matrices for these 
companies: (i) PCCD which constructs a symmetric matrix and therefore undirected 
graph, and (ii) GVDD which constructs an asymmetric matrix and a directed graph, 
respectively.

4.1 � Networks of Financial Returns

Using the two proposed methods of determining the adjacency matrix, we find the 
center of the graphs at each window and compute the frequency of each company to 
be the center during the past 5 years.

Figures 5 and 6 depict the centers of the network determined in each window by 
applying the GVDD method and the PCCD method, respectively. In both figures, 

Fig. 4   Two trees with similar structures (just one leaf has been changed), but with large Robinson–
Foulds distance
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Fig. 5   The center of the network during the period from March 31st, 2017 to March 30th, 2022 by using 
the PCCD method

Fig. 6   The center of the network during the period from March 31st, 2017 to March 30th, 2022 by using 
the GVDD method
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we observe that the center of the network is time-dependent with a larger number 
of changes present when the GVDD approach is used. Also, the number of compa-
nies determined as the center of the network is larger for the GVDD method. In the 
case of the PCCD approach, the center of the network shows more stable behavior. 
Finally, both approaches select the company Investor in the majority of times.

By definition, the center of the graphs is a company that has the most influence 
on stock returns of all the other companies in the shortest time. Figure 7 presents the 
absolute frequencies of each company to be the center of the network. The computa-
tions are performed by the GVDD method and the PCCD method.

In Fig.  7, we observe that the highest frequency of the center happens for the 
company called Investor by both methods. It means that during the considered 
period, Investor was most of the time the center of the companies between the 28 
companies that we chose. Therefore, as Investor is an investment company, the 
financial industry has the most influence on all the other companies during the con-
sidered time in Sweden. The companies with the second and third highest frequen-
cies are Atlas Copco B and ABB Ltd for the GVDD method and Kinnevik AB and 
ABB Ltd for the PCCD method, respectively. Furthermore, Swedish Match, H&M, 
Getinge, and Autoliv, Inc. have never been determined as the center of the network 
by the PCCD methods, while all companies have been chosen at least one time to 
be the center of the network by the GVDD method with Swedish Match having the 
smallest absolute frequency equal 5.

If we consider the data from 31 January 2020 to 31 July 2020, which is the 
time that COVID-19 was started, then Svenska Cellulosa Aktiebolaget (SCA) 
was the most popular center using the PCCD method and Investor remained 

Fig. 7   The frequency of the companies to be the center of the graphs using the PCCD method (blue) and 
the GVDD method (yellow)
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the most popular center by the GVDD method. Also, from 1 October 2020 to 
10 May 2021, which corresponds to the time when the Coronavirus Delta vari-
ant was dominant, Investor was indicated to be the most popular center by both 
methods. Finally, from 1 December 2021 until the last day in the data ASSA 
ABLOY AB was the most popular center by using both methods.

4.2 � Hierarchical Clustering Tree

Figures  8 and 9 depict the hierarchical clustering trees computed for subse-
quent days by the PCCD method and the GVDD method. We chose the date that 
observed the largest changes in the information distance between two hierarchi-
cal trees. It took place on 10/02/2021 in the case of the PCCD method and on 
11/03/2020 in the case of the GVDD method.

By looking at the figures, we see that there is a difference between the consid-
ered two methods, especially between those hierarchical clustering trees which 
correspond the largest differences in two consequent days by each of the meth-
ods. The height of the hierarchical distance happened on two different days. 
Furthermore, we see that on average the height of the hierarchical trees in the 
PCCD method is larger than the one in the GVDD method.

Fig. 8   Hierarchical clustering trees for window number 670 (March 11th, 2020) when the GVDD 
method (first row) and the PCCD method (second row) are used. Hierarchical clustering trees obtained 
by both methods for the window number 671 are depicted in the second column. During the last 5 years, 
these days had the most different hierarchical trees by using the GVVD method



	 E. F. Touli et al.

1 3

Fig. 9   Hierarchical clustering trees for window number 900 (February 10th, 2020) when the GVDD 
method (first row) and the PCCD method (second row) are used. Hierarchical clustering trees obtained 
by both the methods for the window number 901 are depicted in the second column. During the last 5 
years, these days had the most different hierarchical trees by using the PCCD method

Fig. 10   Distances between the hierarchical clustering trees in the GVDD method are depicted in blue 
(the upper one), while the yellow line (the middle one) corresponds to the distances between the hierar-
chical clustering trees when the PCCD method is used. The dark grey area indicates the time of the first 
COVID-19 wave
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4.3 � Distance Between Hierarchical Clustering Trees

In the previous section, by using the single linkage hierarchical clustering for the 
PCCD method and for the GVDD method we construct the hierarchical clustering of 
the stock data at each window. Using the distance defined in Sect. 3.5, we compute 
the distance between the hierarchical trees in this section sequentially. The results 
are depicted in Fig. 10.

The three lines in Fig. 10 demonstrate the behavior of an autoregressive process. 
To study this effect and also to investigate possible (lag) relationships between the 
three-time series we fit a vector autoregressive model (VAR) to these series. First, 
the order of the autoregressive model is chosen by using the Hannan and Quinn 
model selection criteria (see, Hannan & Quinn, 1979), which results in two. Second, 
we fit a VAR(2) model to ({PCCDt}, {GVDDt}, {OMXt}) , which leads to the fol-
lowing multivariate model

where {�t} is a white noice process with covariance matrix given by

In the model equation, the coefficients denoted with ‘ ∗∗∗ ’ are statistically signifi-
cant at 0.1%, ‘ ∗∗’—at 1%, ‘ ∗’—at 5%, and ‘  ’—at 10%. We observe that the current 
values of tree distances constructed by using the PCCD and GVDD methods are 
positively correlated with their previous values. Moreover, the values obtained by 
using the PCCD method have also an impact on future values obtained for both the 
PCCD method and the GVDD method at lag 2. While the previous distances are 
positively correlated with the future ones, the values of the Swedish capital market 
index, OMX, have a negative significant impact at lag 1. To this end, we note the 
OMX index cannot be predicted by any of the distances considered in the study nor 
by the previous values of the index itself.

In Fig. 10, we compare the PCCD and GVDD methods and we see that, in gen-
eral, the application of the GVDD method leads to larger values of the distances 
between the trees over time, which means that in the GVDD methods, the hierar-
chical clustering trees differ more than in the case when the hierarchical cluster-
ing trees are constructed by using the PCCD method. Also, the average value of 
the distances is larger when the GVDD method is used in comparison to the PCCD 
method. Both plots in Fig. 11 depict the series with the distances together with the 
mean line and 5× standard deviation (SD) line. The comparison of the pattern of 
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computed distances with 5× SD corresponds to the application of the Shewhart con-
trol chart for detecting changes in statistical process control (see e.g., Psarakis and 
Papaleonida 2007; Bodnar and Schmid 2011; Bisiotis et al. 2022). We see that most 
of the time the jumps of magnitude larger than 5× SD happen after the beginning of 
the year 2020 in both plots. Also, the number of jumps that are higher than 5× SD is 
larger when the GVDD method is used. Moreover, 7 out of 20 jumps that are above 
the green line happened in 2020 during the COVID-19 time.

5 � Conclusion

Specifying and monitoring the structure of the financial market is an important 
research topic with direct applications to real-life problems. The knowledge about 
the center of the capital market is useful in the determination of its stability while 
clustering the companies on the capital market provides us information about the 
connectedness of the companies traded on it. The above-mentioned topics are 
treated in the literature by constructing a graph and determining its center as well as 
by finding the hierarchical clustering trees.

In the paper, two methods are compared for determining the network of com-
panies traded on the Swedish capital market. While the first approach, the PCCD 
method, is based on a symmetric adjacency matrix, the second one, the GVDD 
method, employs an asymmetric adjacency matrix. Both methods indicate the com-
pany Investor as the center of the Swedish capital market in most of the considered 
cases. On the other side, the company Swedish Match shows the largest dissimilar-
ity to all other companies traded on the Swedish stock exchange. Finally, comput-
ing the distances between the hierarchical clustering trees we found that most of the 
changes in the structure of the Swedish capital market happen at the beginning of 
2020, i.e., during the first COVID-19 wave.
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Fig. 11   a Distances between the hierarchical clustering trees computed by using the PCCD method. The 
purple dashed line indicates 5× SD and the red dashed line is the mean line. b Distances between the 
hierarchical clustering trees were obtained by using the GVDD method. The green dashed line indicates 
5× SD and the blue dashed line is the mean line
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