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Abstract
Accurately estimating the size of unregistered economies is crucial for informed 
policymaking and economic analysis. However, many studies seem to overfit partial 
data as these use simple linear regression models. Recent studies adopted a more 
advanced approach, using non-linear models obtained using machine learning tech-
niques. In this study, we take a step forward on the road of data-driven models for 
the unregistered economy activity’s (UEA) size prediction using a novel deep-learn-
ing approach. The proposed two-phase deep learning model combines an AutoEn-
coder for feature representation and a Long Short-Term Memory (LSTM) for time-
series prediction. We show it outperforms traditional linear regression models and 
current state-of-the-art machine learning-based models, offering a more accurate 
and reliable estimation. Moreover, we show that the proposed model is better in gen-
eralizing UEA’s dynamics across countries and timeframes, providing policymakers 
with a more profound group to design socio-economic policies to tackle UEA.

Keywords  Informal economy · MIMIC · Non-observed economy · Black economy · 
Deep learning in economics

JEL Classification  E26 · E41 · H26 · O17

1  Introduction

A precise and consistent assessment of unregistered economic activities holds sig-
nificant importance for policymakers when making decisions based on economic 
metrics such as economic growth, employment, productivity, and consumption. 
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The presence of unregistered economic activities can result in the underestima-
tion of crucial economic indicators, such as the Gross Domestic Product (GDP), 
which can have evident repercussions on macroeconomic policies. Furthermore, 
the coexistence of an unregistered economy activity (UEA) alongside a formal 
one might undermine the credibility and trustworthiness of public institutions. 
This situation can also lead to the misuse of social insurance programs and a 
decline in tax revenues, as documented in previous studies (Schneider & Buehn, 
2016; Gyomai & van de Ven, 2014; Shami, 2019). Fighting tax evasion and the 
UEA have been important policy goals in countries belonging to the Organisa-
tion for Economic Co-operation and Development (OECD) during recent decades 
(Schneider, 2016). To this end, in 2011, the OECD surveyed its member countries 
to estimate the size of the UEA in each of them during 2008–2009 (Gyomai et al., 
2012). Figure 1 shows the estimated UEA’s size as a portion of their GDP of the 
same year in several countries for 2008–2009. One can notice that for some coun-
tries the values cross the 10% mark, which highlights the importance of estimat-
ing this value and afterward designing policies to tackle it.

Despite the large body of work about the UEA in general (Schneider & Enste, 
2000; Enste & Schneider, 2002) and its measurement, in particular (Schneider 
et al., 2010; Breusch, 2005b), different authors often focus on different aspects of 
the UEA. However, most economists agree that the UEA contains all economic 
activities that are untaxed (Blades & Roberts, 2002). As a result, the activities 
accompanying the UEA may be legal or illegal, and the assumption is that the 
economic agents are, at least passively, aware that bringing their activities to the 
attention of the authorities would have tax (and possibly other legal) ramifica-
tions (Shami, 2019).

To this end, professionals have developed a wide range of methods to estimate 
the UEA’s size and to determine the factors that cause the decrease or increase of 
this quanta (Ha et al., 2021; Breusch, 2005a). However, more often than not, these 
methods focus on only one segment of the UEA (Schneider & Buehn, 2016; Elgin & 

Fig. 1   The composition of the UEA’s size as a portion of the country’s GDP in 2008–2009 for several 
OECD member countries. Data taken from Gyomai et al. (2012)
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Schneider, 2016). Moreover, due to the “unregistered” nature of the UEA, the esti-
mations over the years, even on the same data, have a very large variability (Schnei-
der & Buehn, 2018; Thai & Turkina, 2013). This phenomenon highlights the com-
plexity of estimating the size of the UEA.

To formalize the task of estimating the UEA size, economics using one or more 
of three main measurement methods. First, the direct approach involves assessing 
the magnitude of the Non-Observed Economy (NOE) through either voluntary sur-
vey responses or tax audit techniques. In the survey approach, an official organiza-
tion designs and administers a survey. Meanwhile, the tax audit method relies on 
the difference between the income reported for taxation purposes and the income 
determined through targeted examinations (Cantekin & Elgin, 2017; Feld & Larsen, 
2012; Feld & Schneider, 2010). Second, the indirect approach is macroeconomic 
and involves the utilization of diverse economic and non-economic indicators that 
provide insights into the evolution of the UEA over time. This method is dependent 
on five indicators that reveal certain traces of the UEA—the discrepancy between 
national expenditures and income statistics, the discrepancy between official and 
real labor force statistics, the transactions approach, the currency demand approach 
(CDA), and the physical input method, which includes factors like electricity con-
sumption (Tanzi, 1980, 1983; Ferwerda et  al., 2010; Ardizzi et  al., 2014). Lastly, 
the modeling approach involves the use of statistical models for estimating the 
UEAA as an unobservable (latent) variable. The most commonly employed meas-
urement method is based on the Multiple Indicator Multiple Cause (MIMIC) proce-
dure, which draws inspiration from the research of Weck (1983) and Frey and Weck 
(1983). Originally, the MIMIC approach was developed for factor analysis in psy-
chometrics, particularly for estimating intelligence (Elgin & Erturk, 2019; Andrews 
et al., 2011; Elgin & Schneider, 2016).

Regardless of the definition and method one chooses, the final step of all 
these methods is the computation of the UEA’s size from real-world data, which 
is a (time-series) regression task. Commonly, the linear regression (LG) model 
is used for this task (Dybka et al., 2019, 2020; Shami et al., 2021). However, it is 
repeatedly shown to over-fit and poorly predict the UEA’s size even on partially 
correct data as the produced numbers of these models show an increasing drift 
over time from any reasonable values. Into this gap, studies that utilize machine 
learning models have been shown to outperform the linear models and provide 
more stable results over time while capturing from the data well-established eco-
nomic concepts which further assures their performance (Ivas & Tefoni, 2023). 
For instance, Shami and Lazebnik (2023) used a Random Forest algorithm with 
the currency demand-based model on data from Israel (1995–2019, yearly sam-
ple) and from the United Kingdom (2000–2019, quertly sample), showing the 
model outperformed the linear models developed on the same data by Shami 
et al. (2021); Dybka et al. (2019). In a similar manner, Felix et al. (2023) inves-
tigated partial data from 122 countries (2004–2014, yearly sample) comparing 
eleven models—four linear models and seven machine learning models. The 
authors show that constantly, the machine learning models outperformed the lin-
ear models, and using the Shapley value analysis (Mokhtari et  al., 2019), they 
were able to provide an interpretation of these models. This adoption of machine 
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learning models into UEA estimation occurs in parallel to a more global adop-
tion of machine learning models for a wide range of economic tasks (Lazebnik 
et al., 2023; Yoon, 2021; Paruchuri, 2021; Gogas et al., 2022; Saha et al., 2023; 
Savchenko & Bunimovich-Mendrazitsky, 2023).

Despite the advantages machine learning models bring to the estimation of 
the UEA’s size, it has two fundamental flaws. First, machine learning models 
require a relatively large amount of data to “learn” well and produce stable and 
generalized models that are not overfitted and “memorizing” the patterns of the 
training data presented to them Ying (2019). Unfortunately, in this field, the data 
is scarce ranging between dozens to several hundred observations for each coun-
try (Dybka et al., 2019; Ivas & Tefoni, 2023). Second, many machine learning 
models are poorly performing with noisy data (Gupta & Gupta, 2019) which is 
present in this field due to the complexity of precisely measuring some of the 
features. In order to overcome these challenges, one can take advantage of (shal-
low) deep learning models (LeCun et  al., 2015). These models usually require 
more data compared to machine learning models but as they are more expressive 
(i.e., can capture more complex dynamics) they can take the data from multi-
ple countries into consideration, overcoming the first challenge. Moreover, these 
models are known to be robust in the presence of noisy data (Kim et al., 2021; 
Wu et al., 2020). Indeed, outside the scope of UEA’s size estimation, deep learn-
ing models for economic tasks using larger datasets (Nosratabadi et al., 2020a; 
Zheng et al., 2023; Shami & Lazebnik, 2022).

In this study, we propose the first, as far as we know, deep learning based 
model to improve the UEA’s size estimation. We based the proposed model on 
a two-phase neural network architecture, one which finds a meaningful repre-
sentation space using the AutoEncoder architecture (Dong et al., 2018) followed 
by the long-short term memory (LSTM) method to solve a time-series problem 
(Greff et al., 2017). We show that the proposed model, on average, outperforms 
the current state-of-the-art models proposed by Shami and Lazebnik (2023) and 
Felix et al. (2023), as well as the widely used linear regression model using the 
dataset provided by Medina and Schneider (2018) as well as the same dataset 
with additional six socio-demographic features. In addition, we show that the 
proposed model generalizes its results better compared to the other models and 
therefore more reliable.

The remainder of this manuscript is organized as follows. In Sect.  2, we 
described the data used for our experiments as well as formally introduced the 
proposed model. In Sect. 3, we outline the results of our experiments. In Sect. 4, 
we discuss the obtained results in the context of economic usability. Lastly, 
Sect. 5 concludes our findings and suggests some areas for further research.

2 � Method and Materials

In this section, we formally outline the datasets used in this study followed by a 
mathematical formalization of the proposed deep learning model, and the experi-
mental setup used for the absolute evaluation of the proposed model alongside a 
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comparison to other models. Notably, the UEA’s size estimation is a time-series 
regression problem. A schematic view of the proposed study’s structure is provided 
in Fig. 2.

2.1 � Data

For the “original” dataset, denoted by Do , we adopted the dataset initially proposed 
by Medina and Schneider (2018) and followed the pre-processing procedure pro-
posed by Felix et  al. (2023). Simply put, the dataset contains 122 countries with 
yearly data between 2004 and 2014. The dataset contains 13 features which followed 
the features proposed by Goel and Nelson (2016) alongside the log value of the GDP 
per capita. Namely, the features are inflation, unemployment rate, trade liberaliza-
tion, net inflow, final consumption expenditure of the general government, start-up 
procedures to register a business, cost of business start-up procedures, average time 
required to start a business (in days), average time required to register property (in 
days), average time to prepare and pay taxes (in days), democracy index, tax burden, 
quality and diversity of exports, and GDP per capita.1 As the dataset contained miss-
ing data, imputation was performed for the missing data where we filled missing 
data with the weighted average of k = 5 nearest neighbors according to the remain-
ing features and Euclidean distance (computed after normalization of each feature) 
(Zhang, 2012).

In addition, in order to allow the model to distinguish between countries, we 
introduce six new features for each country, resulting in 19 features, in total. Namely, 
the introduced features are the country’s population size, male-to-female rate, popu-
lation’s mean age, average income, the average cost of a house, and the Big Mac 
Index (BMI) (Clements et al., 2012). We obtained this data from the OECD dataset, 
as well as McDonald’s websites. We chose these features as they are both widely 
available and easy to obtain and since they provide some identification about the 
country’s socio-economic state which was previously shown to be associated with 
the UEA’s size (Wallace & Latcheva, 2006). This enhanced dataset is denoted by De.

2.2 � Model Definition

The proposed model is based on two well-known deep learning architectures: a fully 
connected AutoEncoder and LSTM neural networks (NN). The first is responsible 

Fig. 2   A schematic view of the proposed study’s structure

1  We refer the interested reader to Felix et al. (2023) for more details.
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for extracting a computationally useful feature space while the latter is designed for 
time-series tasks, such as the UEA’s size prediction, and is able to capture temporal 
patterns. Intuitively, since LSTM could handle the problem of long-term dependen-
cies well while requiring relatively less data compared to other time-series architec-
ture of NN, it is a promising modeling decision for these settings (Yu et al., 2019). 
Formally, the model has seven layers: a fully-connected (FC) layer with 12 dimen-
sions, a dropout layer with a drop-out rate of p = 0.1 , an FC layer with 8 dimensions, 
a dropout layer with a drop-out rate of p = 0.05 , an FC layer with 6 dimensions, an 
LSTM layer with 6 dimensions, and a fully-connected layer with 1 dimension, oper-
ating as the output layer. The encoder part of the AutoEncoder is contracted from 
the first five layers while the last two layers are associated with the LSTM part of 
the NN. These hyper-parameter values are obtained manually using a trial-and-error 
approach.

AutoEncoders are designed to have two parts—an encoder and decoder with a 
“latent” space between them. Intuitively, the model searches for a smaller represen-
tation space with more computationally meaningful features, commonly called the 
“latent” space, to represent most (or even all) the data provided in the input layer. 
This is done by first encoding the data from the input space to the latent space and 
then decoding it back into the input space and checking if the input and output are 
identical (Dong et al., 2018). However, the decoder part of the AutoEncoder is not 
useful as part of prediction processes and therefore removed once the entire AutoEn-
coder model is trained, leaving only the encoder part of the NN. Once the encoder 
is obtained, its weights are frozen (i.e., it is not changed during training). Then, we 
attached the LSTM NN to the latent space to capture temporal patterns and train 
this part. A schematic view of the proposed model and the training procedure of the 
model is described in Fig. 3.

For the training of both the AutoEncoder and the LSTM, we used the Adam opti-
mizer (Kingma & Ba, 2017) with a learning rate of 10−4 and 2 ⋅ 10−4 , respectively. 
In addition, we use a 32-observation batch size for both training processes. For the 
AutoEncoder and LSTM training process, we used the L1 distance between the output 
and input layers and the RMSE metric as the loss functions, respectively.

Fig. 3   A schematic view of the proposed model and the training procedure of the model
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2.3 � Experiment Setup

Given the two datasets, Do and De , and the proposed model, we explore three aspects 
of the model—its performance and generalization capabilities. For each one of these 
aspects, we compare the proposed model with three previous models. First, a Ran-
dom Forest (RF) (Ho, 1998; Altman & Krzywinski, 2017) with the trees’ depth 
obtained using the grid-search hyperparameter tunning method (Liu et  al., 2006) 
(ranging from 1 and up to the ceiling of the root number of features) and a Boolean 
satisfiability (SAT) based post-pruning (Lazebnik & Bunimovich-Mendrazitsky, 
2023), as proposed by Shami and Lazebnik (2023). Second, the CatBoost model 
(Dorogush et  al., 2018) with its learning rate, trees’ depth, and iteration for the fit-
ting procedure are obtained by the grid search method, searching the parameter space 
{[0.1, 0.01, 0.001], [3, 5, 10], [100, 200, 300]} as proposed by Felix et al. (2023). Third, 
the LG model as proposed by Shami et al. (2021).

In order to measure each model’s prediction capability, the dataset (for both the Do 
and De cases) used by the model is divided into training and testing cohorts, such that 
the first contains the first 80% (1073 observations) chronological-sorted observations 
while the latter contains the remaining 20% (269 observations) of the observations. In 
practice, the first eight years of each country are allocated to the training cohort while 
the last two years are allocated to the testing cohort. The training cohort was provided 
to the models during the training phase while the testing cohort was used to evaluate 
the models’ performances. Importantly, at each point in time, the model predicted one 
year into the future, using all available data. As such, for the second year of the testing 
cohort, the first year is used by the model.

Following previous works (Shami et al., 2021; Felix et al., 2023), we adopted the 
root mean square error (RMSE) as well as the coefficient of determination ( R2 ) metrics 
for the models’ performance measurement. Formally, we define RMSE as follows:

where yp, yo ∈ ℝ
n are the model’s prediction and the observed values data such that 

n is the number of observations taken into consideration. Similarly, we define the 
coefficient of determination as follows:
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3 � Results

In this section, we outline the performance and generalization of the proposed model 
while showing a comparison with previous state-of-the-art machine learning models 
and the classical model.

3.1 � Performance

Table 1 outlines the RMSE and R2 values of the models with the test data for both 
the original ( Do ) and extended ( De ) datasets. One can see that for both cases, the 
model performs worse than the machine learning and deep learning models. Both 
the RF and CatBoost models which represented the machine learning approach 
show promising results with R2 close to 0.9 . Interestingly, the extended features do 
not contribute much to their performance as the R2 of the RF and CatBoost models, 
nonetheless an increase of 0.8% and 0.7% , respectively, is obtained. For the deep 
learning model (the proposed model), it is outperforming all other models for both 
cases. For the extended dataset ( De ), the performance increases in 1.3% compared 
to the original dataset ( Do ). This highlights the ability of the model to take partially 
related data into account in order to find complex connections. The results of the 
CatBoost and LG models, obtained for the original dataset ( Do ), are similar to those 
reported by Felix et al. (2023). The small differences in the results can be associated 
with the different splitting of the dataset into the training and testing cohorts.

3.2 � Generalization

For the generalization analysis, we explore two types of generalization—cross-
prediction between countries and prediction lag. For the cross-prediction between 
countries analysis, the model is trained on the data of n = 121 countries and 
leaves one country out as the test case. For this country, only the first observa-
tion (year) provides the model to predict the UEA’s size for the following year. 
The prediction is then computed to the following year until all years available in 
the dataset are predicted. This process repeats 122 as each time, a single coun-
try is left outside the training cohort and used as the testing cohort, following 

Table 1   The model’s 
performance in terms of RMSE 
and coefficient of determinations 
( R2 ) for both the original ( D

o
 ) 

and extended ( D
e
 ) datasets

Dataset Model RMSE R
2

D
o

Proposed 3.841 0.904
RF 4.205 0.867
CatBoost 4.078 0.892
LG 8.951 0.523

D
e

Proposed 3.683 0.916
RF 4.108 0.874
CatBoost 3.954 0.898
LG 9.020 0.503
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the leave-one-out cross-validation method (Wong, 2015). Table  2 presents the 
results of this analysis, presented as the mean value of all counties, divided into 
the original ( Do ) and extended ( De ) datasets. The proposed model outperforms 
all other models, outperforming the second-best model, the CatBoost model, with 
15.5% and 15.3% for the original and extended datasets, respectively. Moreover, an 
ANOVA (Analysis Of Variance) supplemented with post-hoc T-tests and Bonfer-
roni correction is performed for both datasets (Girden, 1992). For both, the pro-
posed model statistically significantly outperforms the other model with p < 0.05 . 
In addition, the LG model’s performance is statistically significantly worse than 
the other models with p < 0.01.

For the prediction lag analysis, we define the prediction lag, � ∈ [1, 9] to be 
the number of years ahead a model is required to predict from a given year. For 
example, if the model is provided with the data til 2008 and � = 3 , the model 
would predict the UEA’s size for 2011. Figure 4 presents the results of this analy-
sis such that the x-axis is the prediction lag ( � ) and the y-axis is the RMSE of the 
model. Specifically, Fig. 4a, b show the results for the original and extended data-
sets, respectively. In both cases, all models’ RMSE is monotonically increasing 

Table 2   The models’ 
generalization ability between 
countries. The results are 
shown as the mean ± standard 
deviation of n = 122 following 
a leave-one-out cross-validation 
strategy

Dataset Model RMSE R
2

D
o

Proposed 5.103 ± 0.847 0.743 ± 0.059

RF 6.208 ± 1.208 0.695 ± 0.071

CatBoost 5.894 ± 1.095 0.702 ± 0.076

LG 9.752 ± 1.493 0.407 ± 0.048

D
e

Proposed 5.043 ± 0.793 0.755 ± 0.052

RF 6.148 ± 1.270 0.704 ± 0.080

CatBoost 5.816 ± 1.095 0.709 ± 0.082

LG 10.120 ± 1.273 0.422 ± 0.055

Fig. 4   The models’ stability analysis as a function of the production lag (in years). The results are shown 
as the mean value of n = 122 countries
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with the prediction lag. The proposed model constantly obtains RMSE lower than 
the other models while the LG obtained the worst RMSE compared to the other 
model. The RF and CatBoost model interchange while showing similar dynamics.

4 � Discussion

In this study, we leveraged recent advancements in deep learning models to enhance 
the precision and reliability of one of the widely utilized and esteemed models for 
estimating the scale of the UEA. By incorporating an AutoEncoder architecture to 
capture a computationally meaningful feature space, followed by an LSTM method 
to capture patterns over time. To train the model, we adopted a well-established 
dataset for this task proposed by Elgin and Oztunali (2012). These features are in 
conjunction with the MIMIC approach. As far as we know, this is the first attempt to 
use deep learning based model for UEA’s size estimation.

Unlike LG and even more complex machine learning models, deep learning 
models do not require the user to identify “promising” features, as it is able to con-
tract a computationally useful parameter space as part of the model (Karkkainen 
& Hanninen, 2023). In a complementary manner, while tree-based models are part 
of previous machine learning-based attempts (Felix et  al., 2023; Shami & Lazeb-
nik, 2023) are theoretically able to approximate any continuous function (following 
the universal approximation theorem) (Kratsios & Papon, 2022), empirical results 
deep learning achieve this goal better, given enough data (Theofilatos et al., 2019; 
Korotcov et al., 2017; Nikou et al., 2019). Hence, the utilization of a deep learning 
model eliminates the necessity for manually searching for relationships between var-
iables, providing a more robust solution compared to previous attempts. To this end, 
Table 1 reveals that the proposed model outperformance the machine learning and 
LG models in both terms of RMSE and coefficient of determination ( R2 ) metrics on 
the original datasets. Moreover, the proposed model shows the most improvement in 
these two metrics given the extended dataset.

Moreover, as shown in Table 2, the proposed model is more robust in analyzing 
data of other countries, providing researchers a tool to rapidly explore economic, 
social, and political signals that are relatively easier to measure (i.e., the country’s 
population size) compared to the UEA’s related measurements between countries 
(Brunetti, 1997; Bilan et  al., 2020). Similarly, Fig. 4 also shows, that for the pre-
sented datasets, the proposed model provides better results for predictions further 
way in the future compared to the other models. In this context, the model shows 
increasing RMSE concerning the prediction lag but this dynamic is common for 
time series tasks (Kim & Lee, 2019). Overall, the proposed deep learning model is 
both generalizing better between countries and allows us to make predictions further 
to the future with less error. This outcome is of great economic importance when 
planning socio-economical policies to try and reduce the UEA’s size since such poli-
cies commonly require several months to years to initialize and several more to fully 
alter the socio-economic dynamic in a country (Cohen et al., 2020). As such, a more 
accurate UEA’s size estimation based on a given situation can provide policymakers 
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with a more data-driven ground to design an appropriate policy (Lazebnik et  al., 
2023; McKibbin & Vines, 2020).

The proposed model extends the capabilities of previous models as it learns 
cross-countries as the data of a large number of countries is used to train the model, 
providing the model the ability to capture more fundamental economic processes 
across countries that occurred in parallel, compared to previous attempts that treated 
each country in isolation, ignoring the international influence they have on each 
other (Fishelson, 1988; Dell’Anno & Schneider, 2003). As such, the proposed model 
by itself, while already outperforming previous models, can be further improved 
given more versatile data and not only more observations of the features currently 
popularized in the domain.

It is important to note, that the proposed model is as good as the quality of the 
data it is provided with. While this claim holds for all data-driven models, it is of 
economic complexity in the UEA’s size estimation context. To be exact, the fea-
tures used to estimate the UEA’s size are usually related to the registered economy 
while missing important dynamics such as black and gray market trades, financially 
related criminal-driven economic processes, and others (Gyomai et  al., 2012). As 
such, in order to make the proposed model more usable, governments and economic 
organizations should aim to gather such data while also providing the already availa-
ble features at a higher rate to reduce the error in the UEA’s size estimations, provid-
ing policymakers a more profound ground to design socio-economic policies (Enste 
& Schneider, 2002; Orviska et al., 2006).

5 � Conclusion

The significance of comprehending the development of the UEA has become 
increasingly apparent, as evidenced by the surge in research focused on quantify-
ing its extent. Nonetheless, the methods of estimation and econometric techniques 
employed to attain this objective were previously constrained to investigating lin-
ear connections among variables believed to both influence and be impacted by the 
presence of informal economic activities. Recently, data-driven methods that utilize 
non-linear machine learning models provided a leap forward in the UEA’s size esti-
mation accuracy and stability while introducing new challenges to the field. In this 
study, we continue this line of work as we leverage a deep learning model to explore 
both non-linear and high-dimensional relationships between economic indicators 
and the size of the UEA.

Namely, we integrate a deep model with the MIMIC approach, a method that 
numerous researchers have identified as the most preferable choice among the vari-
ous alternatives currently available. We show that the proposed model provides 
more accurate and robust results compared to the current state-of-the-art machine 
learning and widely adopted models. Nonetheless, as the economy and technology 
progress, the CDA might be sub-optimal. For example, as the usage of crypto-cur-
rency increases, the influence of classical currency demand would be less repre-
sentative of the entire UEA (Marmora, 2021). Thus, future studies could explore 
the usage of deep learning models with other UEA measurement approaches. In 
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addition, as the proposed results are obtained on a relatively short duration (i.e., 10 
years), they should be considered with some caution as large-scale events such as 
global pandemic (Lazebnik et al., 2021; Carlsson-Szlezak et al., 2020), war (Liadze 
et al., 2023), or policy shifts (Alexi et al., 2023; Annicchiarico & Cesaroni, 2018) 
can cause a drastic drift in the dynamics (Gama et al., 2014). Thus, once possible, 
future studies should repeat our analysis on larger datasets to examine if the results 
do not change significantly or adopt the method to handle such events. Moreover, 
another possible approach to tackle the UEA’s size estimation problem which is also 
more explainable is using the symbolic regression method (Simon et al., 2023; Sti-
jven et al., 2016; Udrescu & Tegmark, 2020; Mahouti et al., 2021). Moreover, as the 
proposed model is based on the relationship between countries with different cur-
rencies, it might be useful to include the exchange rate of currencies to a single one, 
such as the US dollar, to obtain a better representation of the monetary relationships 
over time.
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