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Abstract
Requirements to understand and forecast the behavior of complex macroeconomic 
interactions mandate the use of high-dimensional macroeconometric models. The 
Global Vector Autoregressive (GVAR) modeling technique is very popular among 
them and it allows researchers and policymakers to take into account both the com-
plex interdependencies that exist between various economic entities and the global 
economy through the world’s trade and financial channels. However, determining 
the cross-section unit size while using this approach is not a trivial task. In order 
to address this issue, we suggest an objective procedure for the detection of the size 
of the cross-country aggregation in GVAR models. While doing so, we depart from 
the Akaike Information Criterion (AIC) and propose an analytical modification to it, 
mainly employing an ad hoc approach without violating Akaike’s main principles. To 
supplement the theoretical results, small sample performances of those procedures 
are studied in Monte Carlo experiments as well as implementing our approach on 
real data. The numerical results suggest that our ad hoc modification of AIC can be 
used to determine the structure of the cross-section unit dimension in GVAR models, 
allowing the researchers and policymakers to build parsimonious models.

Keywords  Global VAR · Cross-Country aggregation · Model selection · Akaike 
information criterion · Ad-hoc approach

1  Introduction

International high-dimensional datasets with relatively large cross-sectional (coun-
tries/regions; N ) and time ( T ) dimensions are frequently used in economics. These 
datasets provide a wealth of information to both academics and practitioners in the 
field, helping them to understand economic developments. Although such large data-
sets provide more information, they also reveal interdependencies, such as how indi-
vidual economies depend on the global system through various channels. Factors like 
resource sharing, political developments, trade, labour, and capital movements affect 
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relations between countries. Global shocks and technological advances can also 
cause economies to become interdependent. It is therefore important to take account 
of these interdependencies in models with a large number of variables.

Due to increased economic and financial integration among countries, macroeco-
nomic policy spillovers have garnered significant attention in extensive research in 
recent decades. Various approaches have been employed to address these channels: 
Decompositions such as Kalman filtering (e.g., Canova & Marrinan, 1998; Gregory 
et al., 1997; Kose et al., 2003; Lumsdaine & Prasad, 2003), unobserved factor mod-
els (e.g., Bai & Ng, 2007; Giannone et  al., 2005; Stock & Watson, 1999, 2002), 
Factor Augmented Vector Auto Regressions (FAVAR) (e.g., Bernanke et al., 2005; 
Stock & Watson, 2005), large-scale Bayesian VARs (e.g., Banbura et  al., 2010; 
Carriero et al., 2009; De Mol et al., 2008; Giacomini & White, 2006), Panel VARs 
(PVAR) (e.g., Abrigo & Love, 2016; Canova & Ciccarelli, 2013; Love & Zicchino, 
2006) have all been used.

Dees et al. (2007) (DdPS) highlight the usefulness of unobserved factor models 
but note the difficulties in identifying these factors and assigning economic 
interpretations to them. DdPS also emphasize that even when all the common 
factors are considered, significant residual interdependencies remain unexplained 
due to policy and trade spillovers. In an analysis of the UK economy using the 
FAVAR approach, Lagana and Mountford (2005) found that while the inclusion of 
additional variables through factor augmentation helps to solve the price puzzle, it 
creates new puzzles related to the counterintuitive effects of interest rate changes 
on house prices, equity prices, and the exchange rate. Furthermore, Kapetanios and 
Pesaran (2007) conducted Monte Carlo experiments and found that estimators using 
cross-sectional averages perform better in capturing common correlated effects than 
those based on principal components.

Another widely used econometric method for analyzing high-dimensional time 
series data is the Global Vector Autoregressive (GVAR) modelling approach. First 
proposed by Pesaran et al. (2004) (PSW), it was presented as a workable solution 
to create a coherent global model of the world economy. DdPS developed the 
theoretical justification for this approach to approximate a global factor mode.1 
The GVAR approach addresses the challenge of dimensionality by decomposing 
large-dimensional VARs into a smaller set of conditional models, which are 
interconnected through cross-sectional averages. Compared to Bayesian and Panel 
VARs, the GVAR approach provides an intuitive framework for understanding cross-
country linkages and does not impose any restrictions on the dynamics of individual 
country sub-models. However, modelling a complex system like the global economy 
using the GVAR approach invariably involves many difficulties.

The most fundamental source of difficulty is the dimension and structure of the 
N . After PSW and DdPS, many studies have aimed to to explain the basic variables 
of a target country. This involves prioritizing the model results of a single country 
in the dataset over which the GVAR modelling approach is used. When the data 
contain a large N in a GVAR model, data management and computation are very 

1  See Chapter 33 of Pesaran (2015) for a survey.
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time-consuming. Hence, the complexity of a GVAR model stems from the composi-
tion of N , i.e., the aggregation of the cross-sections.

Since PSW introduced the model, there have been extensive applications of 
cross-country aggregation in the GVAR approach. Cesa-Bianchi et al. (2012) used 
the interdependence between China, Latin America, and the rest of emerging Asia, 
excluding China and India. They found that the long-run impact of a shock to China’s 
GDP on Latin American economies has tripled since the mid-1990s, while the long-
run impact of a shock to U.S. GDP has decreased by about 50%. Assenmacher 
(2013) re-examined the DdPS dataset to model the Swiss economy with only its 
three highest trading partners (accounting for about 80% of trade), excluding other 
countries. Cashin et al. (2014) utilized the GVAR model to examine the economic 
effects of oil-price shocks, distinguishing between supply- and demand-driven 
shocks. They examined 38 countries/regions, from 1979Q2 to 2011Q2, and created 
two regions: the six countries of the Gulf Cooperation Council (GCC) and the Euro 
Area block, same as in the DdPS. They found that the macroeconomic consequences 
of oil price shocks varied significantly, depending on the source of the shock and 
whether the country was an oil importer or exporter.

De Waal et al. (2015) estimated two models for South Africa, one restricted to 
South Africa and its three main trading partners (accounting for about 55% of trade) 
and the other considering all countries in the DdPS data. This approach contrasts 
with the lower bound on the share of trading partners share reported in Assenmacher 
(2013). Georgiadis (2016) employed a GVAR modelling approach that includes 
61 economies from 1999Q1 to 2009Q4. He aggregates the economies of Estonia, 
Latvia, and Lithuania into a Baltic (BAL) region, while the economies of Venezuela, 
Ecuador, and Saudi Arabia are classified as an Oil Exporting Countries (OPC) 
block. His study focused on the important role of the US in the global economy, in 
particular the cross-border spillovers of its economic activities. The findings suggest 
that the economic influence of the US is as strong abroad as it is domestically, with 
the exception of a few economies such as some Australasian, African, and Latin 
American emerging markets and China. Spillovers were particularly significant for 
Russia, the Baltics States, Greece, Ireland, and Luxembourg. In general, spillovers 
to non-advanced economies were smaller than those to advanced economies, but 
still significant. The study raises the question of whether global welfare could be 
improved if US policymakers took these spillovers into account, given the role of 
the US dollar as the global reserve currency.

A recent study by Zahedi et al. (2022) focused on the growing influence of China 
on the global economy. They constructed a Global Vector Autoregressive (GVAR) 
dataset with data from 42 countries covering the period 2000Q1–2019Q3. The study 
treated China and the US as individual countries, while European countries were 
grouped together, and the rest were considered as the rest of the world (ROW). The 
findings show that China’s increasing economic prosperity and global trade share 
have led to statistically significant spillover effects on the global economy. This 
effect is tied to China’s substantial growth in investment and activity, which has 
boosted its global trade.

Modelling the target country and other important countries, such as reference 
country, individually, and aggregating of the remaining countries into 5–10 blocks or 
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regions makes the analysis more manageable. We consider the challenge of determining 
the appropriate dimension for cross-country aggregation in GVAR models and selecting 
the optimal model from the available options when using the same dataset. In our world 
of advanced computational capabilities, models of any size can be estimated for policy 
analysis. Policy-making institutions do not face practical difficulties in developing high-
dimensional models and using them to generate forecasts. However, the availability 
of high computing power should not diminish the importance of the principle of 
parsimony. Therefore, in this paper, we propose an Akaike-type information criterion 
(AIC) and an ad hoc modification of this criterion to identify the optimal model from a 
set of competing models. The best approximating model is obtained by minimizing this 
criterion.

From a purely economic point of view, it is essential to reduce a GVAR model to 
its most parsimonious form. As will be discussed in detail in the subsequent sections, 
the GVAR approach involves a network comprising a target country, its influential 
economic and trade partners, and an aggregated entity referred to as ROW. For any 
target country, it is intuitive that the inclusion of more partners would improve the 
statistical quality of a GVAR. However, improvements in the statistical and analytical 
quality of scenario analyses do not necessarily occur simultaneously. In order to ensure 
a robust scenario analysis with concrete assumptions, it is important to distinguish 
carefullly between the most impactful partners and the rest of the world. This raises 
the question of whether to include a partner country as a separate entity or as part of 
the rest of the world in the GVAR model. This paper aims to provide a reliable starting 
point for answering this question by proposing a useful modification of the AIC.

In this paper, we also individually examine the selection of the dimension of the 
GVAR model for the developing countries. Our analysis is based on the updated 
DdPS dataset, which includes data from 33 countries from 1979Q2 to 2019Q4. 
The empirical applications yield findings that underscore the importance of the 
US, China, the Euro, and Japan for developing economies. As major participants 
in the global economy, these countries exert significant influence on developing 
economies worldwide through their economic relationships and interactions. They 
play a crucial role as major trading partners, sources of investment, and providers of 
technology and expertise for many developing countries.

The rest of the paper is structured as follows: Sect.  2 outlines the well-known 
GVAR model settings and some preliminary remarks on information criteria. Sec-
tion 3 presents an AIC-type information criterion and its ad hoc version. Section 4 
conducts Monte Carlo simulation studies to examine the performance of the proposed 
criterion. Section  5 contains a real data analysis. Section  6 provides a conclusion. 
The proofs are provided in the Appendix, and further details of the simulation experi-
ments and empirical results are given in the Supplementary Materials.

2 � An Overview of the GVAR Modelling Approach

In this section we provide an overview of the GVAR modelling approach due to 
Pesaran et al. (2004) to lay down the basis of our work in the subsequent sections. 
We consider that there are N countries (or regions) in our settings, i = 1, 2,…N . The 
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aim here is to explain the sources of the changes in the 
(
ki × 1

)
 vector of the coun-

try-specific domestic (endogenous) variables vector, �it . If a total of k , k =
∑N

i=1
ki , 

endogenous variables are to be estimated using the standard VAR model, the prob-
lem known generally as the curse of dimensionality arises.2 The GVAR modelling 
approach solves this problem in two steps. In the first step, each country-specific 
conditional VARX∗ model—domestic variables are modelled as a VAR, augmented 
by the vector of foreign-specific variables—is estimated individually. In the second 
step, the estimated conditional country models are combined into a large global 
model.

2.1 � Country‑Specific ����∗ Models

We consider the following VARX∗
(
pi, qi

)
 model as follows:

where �it and �∗
it
 are 

(
ki × 1

)
 vector of domestic variables specific to countries and (

k∗
i
× 1

)
 vector of foreign variables, respectively.3 �i� are 

(
ki × ki

)
 matrices of lagged 

coefficients, and �i� are 
(
ki × k∗

i

)
 matrices of coefficients associated with the foreign 

specific variables.
The foreign variables, denoted by �∗

it
 , is the weighted average of domestic 

variables

where win be a series of weights with wii = 0 and
∑N

n=1
win = 1.�it is a 

(
ki × 1

)
 vector 

of country-specific errors with E[�it] = 0 and�ii , 
(
ki × ki

)
 a nonsingular covariance 

matrix. The relationship between the shock of h th and h′ th variables of the i th 
country is �ii,hh� = cov

(
iht,ih�t

)
 . More specifically,

where �ii =
(
�ii,hh�

)
 and the cross-sectional dependence of shocks between i th and n 

th country is expressed as

where i ≠ n and �in =
(
�in,hh�

)
.

The parameters of the VARX∗
(
pi, qi

)
 model in Eq.  (2.1) are estimated for all 

countries seperately. To do this, 
(
ki + k∗

i

)
× 1 dimensional vector of domestic and 

(2.1)�it = �i0 + �i1t +

pi∑
�=1

�i��i,t−� + �i0�
∗
it
+

qi∑
�=1

�i��
∗
i,t−�

+it

�
∗
it
=

N∑
n=1

win�nt

(2.2)�it ∼ IID
(
0,�ii

)

(2.3)�in = cov
(
it, nt

)
= E

(
itnt

�
)

2  See Chudik and Pesaran (2016) for further details.
3  When observable variables such as oil prices are added to the model, their contemporaneous and 
lagged values is on the right-hand side of equation.
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country-specifc foreign variables, �it = (��
it
, �∗�

it
)� , is defined and Eq. (2.1) is rewritten 

as

where �i0 =
(
�ki
,−�i0

)
,�i� =

(
�i� ,�i�

)
, p = maxi

(
pi, qi

)
 , and, for � > pi , 

�i� = 0 , and, for � > qi , �i� = 0.
The error-correction representation, VECMX∗ , of Eq.  (2.1) can be equivalently 

written as

where

The estimation theory of VAR models with weakly exogenous I(1) variables was 
developed by Harbo et al. (1998) and PSW. PSW indicates that the weak exogene-
ity assumption can be tested. This assumption is generally not rejected when the 
weights used to create the (∗) variables are granular,4 and when the target country’s 
economy is small compared to the rest of the world.

For unrestricted constant and restricted trend coefficient, the error correction 
model in Eq. (2.5) can be written as

where ∀i ∈ N , the dimensions of �i and � i are ki × ri and (ki + k∗
i
) × ri , respectively. 

And also, the ranks of these matrices are rank(�i) = rank(� i) = ri.
By adjusting � i as � i =

(
��
i�
, ��

i�∗

)� , the possibility of cointegration both within 
domestic variables and between domestic and foreign variables, and consequently 
across domestic variables of different countries is allowed as follows:

The error correction model in Eq. (2.6) is estimated by reduced rank regression.5

(2.4)�i0�it = �i0 + �i1t +

p∑
�=1

�i��it−�+it

(2.5)Δ�it = �i0 + �i1t + �i0Δ�
∗
it
−�i�i,t−1 +

p∑
�=1

�i�Δ�i,t−� + �it

�i = �i0 −

p∑
𝓁=1

�i𝓁 , and�i𝓁 = −
(
�i,𝓁+1 + �i,𝓁+2 +⋯ + �i,𝓁+p

)
.

(2.6)Δ�it = �i0 − �i�
�
i

[
�i,t−1 − �i(t − 1)

]
+ �i0Δ�

∗
it
+

p∑
�=1

�i�Δ�i,t−�+it

��
i

(
�it − �it

)
= ��

ix
�it + ��

ix∗
�
∗
it
−
(
��
i
�i
)
t

4  Pesaran (2006) stated the conditions that the weights should be such that 

(i) ∶ wi = O
�

1

N

�
, (ii) ∶

N∑
i=1

wi = 1, (iii) ∶
N∑
i=1

��wi
�� < K,

5  See Pesaran (2015) for further details.
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2.2 � Solution Strategy

In the second step of the GVAR approach, individually estimated country models 
are combined to create a large Global VAR model. For this purpose, “link” matrices 
�i are used, which contains country-specific weights. For all i , this large GVAR 
model’s dimension is 

(
ki + k∗

i

)
× k , where k =

∑N

i=1
ki and k∗ =

∑N

i=1
k∗
i
 are the total 

number of endogenous and exogenous variables in the entire system, respectively. 
This arrangement enables the rewriting of the global model in terms of �t , which is a 
(k × 1) vector of all variables:

Substituting the right-hand side of this expression into Eq. (2.4) produces

Its closed form is

where, for � = 0, 1, 2,… , p,

If �0 is non-singular matrix, which depends on weight matrices and estimation of 
parameters, the GVAR(p ) is obtained by premultiplying both sides of the equaiton 
given in (2.9) by �−1

0
:

where

PSW states that the number of cointegrations in the global model cannot exceed 
the sum of the number of long-term cointegrations in the conditional country 
models.

(2.7)�it = �i�t

(2.8)�i0�i�t = �i0 + �i1t +

p∑
�=1

�i��i�t−� + �it

(2.9)�0�t = �0 + �1� +

p∑
�=1

���t−� + �t

�𝓁 =

⎛
⎜⎜⎜⎝

�1,𝓁�1

�2,𝓁�2

⋮

�N,𝓁�N

⎞
⎟⎟⎟⎠
, �0 =

⎛
⎜⎜⎜⎝

�10

�20

⋮

�N0

⎞
⎟⎟⎟⎠
, �1 =

⎛
⎜⎜⎜⎝

�11

�21

⋮

�N1

⎞
⎟⎟⎟⎠
and �t =

⎛
⎜⎜⎜⎝

�1t
�2t
⋮

�Nt

⎞⎟⎟⎟⎠

(2.10)�t = �0 + �1� +

p∑
�=1

���t−� + �t

�0 = �−1
0
�0, �1 = �−1

0
�1

�� = �−1
0
�� , �t = �−1

0
�t
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2.3 � Cross‑Country Aggregation in GVAR Modelling

The GVAR modelling approach is a flexible method for taking into account various 
global links. However, modelling a large number of countries can pose difficulties 
in terms of data management, computation and data analysis. To make the 
analysis more manageable, one possible approach is to model the countries of high 
importance individually, and aggregate the remaining countries into one or more 
different regions. This section discusses how to perform such regional aggregation.

Suppose the dataset contains R countries/regions, i = 1, 2,… ,R , and i th region 
is composed of Ni countries. Let �ijt and �∗

ijt
 , for j = 1, 2,… ,Ni , denote the vectors 

of country-specific domestic and foreign variables in the j th country of the i th 
region, respectively. In this case, Eq. (2.1) can be rewritten as:

Here, the source of heterogeneity in the parameter vectors �ij� , �ij0 and �ij� 
comes from distinct country-specific model coefficients. Regional weights are used 
to aggregate the model.

The weight of the j th country in the i th region is w0
ij
 , and the sum of the weights 

of the countries in a region is 
∑Ni

j=1
w0
ij
= 1. Using the weighted regional variables,

we can derive the regional model similar to the VARX∗ model provided in Eq. (2.1):

where

and

Region-specific foreign variables, �∗
it
 , can be formed using regional trade 

weights or country-specific trade weights. After PSW and DdPS, most studies 
in the literature focused on explaining the basic variables of a targeted country. 
This raises the question of how to organize countries other than the targeted one 
in the cross-section dimension. Assenmacher (2013) modelled only three trading 

(2.11)�ijt = �ij0 + �ij1t +

pi∑
�=1

�ij��ij,t−� + �ij0�
∗
ijt
+

qi∑
�=1

�ij��
∗
ij,t−�

+ �ijt

�it =

Ni∑
j=1

w0
ij
�ijt

(2.12)�it = �i0 + �i1t +

pi∑
�=1

�i��i,t−� + �i0�
∗
it
+

qi∑
�=1

�i��
∗
i,t−�

+ �it

�i0 =

Ni∑
j=1

w0
ij
�ij0�i1 =

Ni∑
j=1

w0
ij
�ij1

�it =

Ni∑
j=1

w
0ijt

ij
�ijt
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partners along with Switzerland itself, and utilizing the DdPS dataset (GVAR-
DdPS). The model included the three countries with the highest trade rates 
(approximately 80%) excluding the others. This more restricted version of the 
GVAR-DdPS dataset was justified by its ease of analysis, with fewer parameters 
estimated for a smaller number of countries. However, the study didn’t elaborate 
on different model alternatives or the reasons for choosing one.

Similarly, De Waal et al. (2015) aimed to explain the South African economy 
using two forms of GVAR-DdPS, restricted and unrestricted. The restricted 
model included data from GVAR-DdPS data only for South Africa and its three 
main trading partners (approximately 55%), while the unrestricted model used all 
GVAR-DdPS data. The reason for setting up the models in this way contradicts 
the lower limit of the trade partnership share in Assenmacher (2013). The study 
stated that the trade partnership for South Africa is closer to 80%, and thus 
nearly the entire GVAR-DdPS dataset should be used, eliminating the distinction 
between the restricted and unrestricted model. However, no conclusion was 
reached as to which of the two models should be selected.

A common feature of these studies is the exclusion of what is refered to in the 
models as the ‘rest of the world’. This refers to the aggregation of countries into 
a region, achieved by restricting the country dimension in the dataset, which may 
lead to model specification errors. Competing models with different country com-
ponents are generally not considered when explaining the dynamics of the target 
country’s economy. To the best of our knowledge, the literature on the GVAR 
modelling approach has not considered exploring the strengths and weaknesses of 
multiple potential models derived from geographical, cultural or political regions. 
Given the multiple model options, the choice of the most suitable model is cov-
ered by the topic of model selection. The selection of the most appropriate model 
among the GVAR models containing different countries and/or regions, all derived 
from the same dataset, is identified as a significant gap in the literature. Therefore, 
model selection criteria can be used to eliminate this uncertainty. Specifically, an 
Akaike-type information criterion and an ad hoc modification of this criterion are 
proposed to allow the selection among all possible GVAR model specifications 
that can be generated within the same dataset.

3 � Information Criteria in Model Selection of GVAR

Based on the framework developed in Sect. 2 by Pesaran et al. (2004), we intro-
duce our proposed information criteria in this section. At the beginning, we 
adopt the general principle of Gourieroux and Monfort (1995) to derive the 
Akaike-type information criterion. To simplify to computations, we assume that 
pi = qi = p and cross-sectional dimension contains N countries (or regions), 
withi ∈ S(N) ≡ {1,… ,N} ⊆ ℕ.6 As previously defined in Eq.  (2.4), the vector 
�it vector contains all variables in the whole system. It can be re-expressed as 

6  In this case, there is no loss of generality.
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�t =
(
��
t
, �∗�

t

)� , where �t and �∗�
t

 are (k × 1) and (k∗ × 1) vectors respectively, and 
are compatible with the definitions given in Sect. 2.2. The variable�t , namely

is subject to the curse of dimensionality introduced in Sect. 2.1. The unit root and 
cointegration properties of �t are expressed with the vector error correction (VEC) 
model structure of the VAR(p ) model:

where

for � = 1,… , p − 1 , 
{
Γz�

}p−1

�=1
 and Π are (k + k∗) × (k + k∗) matrices of short and 

long run responses.

3.1 � Information Criterion

(k + k∗) × 1 Dimensional vector �t in Eq. (3.1) is closed form of the VEC model of 
�it , given in Eq. (2.2). We make the following assumption.

Assumption 1  (Weak Cross-Sectional Dependence in Errors). �t is independent and 
identically multivariate normally distributed, �t ∼ IIDN(0,�), and �, is positively 
defined, ∥ �∥2 > 0.

Remark 1  High-dimensional time series models, such as GVAR, widely subject to 
error cross-sectional dependence. In addition, Assumption 1 allows the likelihood 
analysis of the VEC model given in (3.2) and conditional expression of the model.7

When �t is rearranged to be �t =
(
��
t
, �∗�

t

)� , �t =
(
��
xt
, ��

x∗t

)� , variance–covariance 
matrix of the model in accordance with Assumption 1 is

where the dimensions of
∑

xx,
∑

xx∗ , 
∑

x∗x and 
∑

x∗x∗ matrices are (k × k) , (k × k∗) , 
(k∗ × k) and(k∗ × k∗) , respectively. And then, �xt is expressed by�x∗t8 .

(3.1)�t =

p∑
�=1

���t−� + �0 + �1t + �t

(3.2)Δ�t = −Π�t−1 +

p−1∑
�=1

Γz�Δ�t−� + �0 + �1t + �t

(3.3)Π = �(k+k∗) −

p∑
�=1

�� , Γz� = −

p∑
�=�+1

��

E
�
�t�

�
t

�
= � =

⎛
⎜⎜⎝

∑
xx

∑
xx*∑

x*x

∑
x*x*

⎞⎟⎟⎠

7  See Gourieroux and Monfort (1995) and Pesaran et al. (2000) for more information.
8  See Bierens (2004) for the transformation.
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where vt ∼ IIDN(0,�
vv
) , �

vv
= �xx − �xx∗�

−1
x∗x∗

�x∗x , vt and �x∗t are unrelated.
For Δ�t , we have conditional model:

where �xx,x∗ = �x − �xx∗�
−1
x∗x∗

�x∗ , �0 = �xx∗�
−1
x∗x∗

 , for � = 1,… p − 1 , 
�� = Γ� − �xx∗�

−1
x∗x∗

Γ∗
�
 , �0 = ��0 − �xx∗�

−1
x∗x∗

��∗0 and �1 = ��1 − �xx∗�
−1
x∗x∗

��∗1.
Following Pesaran et  al. (2000), it assumes that 

{
�∗
t

}∞

t=1
 is weakly exogenous, 

namely

so �xx,x∗ = �x.
More specificially, we have

and

The 
{
�∗
t

}∞

t=1
 and 

{
�t

}∞

t=1
 processes are Garratt et al., (2006) state that trend coeffi-

cients must be restricted in order to eliminate the quadratic trend and ensure that the 
trend in the deterministic part of �t is linear. In this case, ��∗1 = 0 and so �1 = ��1.

The equation system given in (3.2) has different dynamics, for endogenous vari-
ables, Δ�t , and for exogenous variables, Δ�∗

t
 , and thus consists of two parts. Granger 

and Lin (1995) and Pesaran et al. (2000) describe variables with I(1) characteristics 
associated with the concept of weak exogeneity as “long-run forcing”.

The 
{
�∗
t

}∞

t=1
 and 

{
�t

}∞

t=1
 processes are consistent with the conditional and the 

marginal model definitions, respectively.9 Thus, the information criteria proposed 
for the GVAR modelling approach can be considered within the framework of the 
likelihood approach described by Pesaran et al. (2000).

To simplify the derivation, unrestricted intercept and restricted trend model 
option given in Eq. (2.6), �0 ≠ 0 and �1 = �x� , be used in Eq. (3.6) and we have

(3.4)�xt =
∑
xx∗

∑
�−1
x∗xx∗t

+ vt

(3.5)Δ�t = −�xx,x∗�t−1 + �0Δ�
∗
t
+

p−1∑
�=1

��Δ�t−� + �0 + �1t + vt

�x∗ = 0

(3.6)Δ�t = −�x�t−1 + �0Δ�
∗
t
+

p−1∑
�=1

��Δ�t−� + �0 + �1t + vt

(3.7)Δ�∗
t
=

p−1∑
�=1

��Δ�t−� + ��∗0 + �x∗t

(3.8)Δ�t = �0 +�x̃�̃t−1 + �0Δ�
∗
t
+

p−1∑
�=1

��Δ�t−� + vt

9  See Pesaran (2015) for the conditional and the marginal model concepts.
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where �̃t−1 = (t, ��
t−1

)� , and �x̃ = �x

(
−𝛾 , I(k+k∗)

)
 . In addition, �x = �x�

� , �x , �x and 
� are k × (k + k∗) , (k × r) and (k + k∗) × r dimensional matrices, respectively. 

r =
N∑
i=1

ri is the total number of cointegrations in the GVAR system.

When the VEC model given in Eq. (3.8) is stacked for T  observation,

where Δ� ≡ (
Δ�1,… ,Δ�T

)
 , lT is T × 1 dimensional ones vector, 

Δ�∗ ≡ (
Δ�∗

1
,… ,Δ�∗

T

)
 , Δ�−� ≡ (

Δ�1−� ,… ,Δ�T−�
)
 , � = 1,… , p − 1 , 

� ≡ (
�0,�1,… ,�p−1

)
 , Δ�− ≡ (Δ�∗� ,Δ�−1�,… ,Δ�1−p�)� , �̃−1 ≡ (T ,�−1�)� 

�−1 ≡ (
�0,… , �T−1

)
 , and � ≡ (

v1,… , vT
)
.

In order to utilize the model presented in Eq. (3.9) instead of the unconditional 
VEC(p − 1 ) model given in Eq.  (3.2), which presents a dimension problem 
when estimated directly, the log-likelihood function is split into two parts: the 
conditional and the marginal model.

We can further explain the above expression with the following lemma:

Lemma 1  If the assumption of weak exogeneity is valid, �x∗ = 0, the log-likelihood 
function of the unconditional model in Eq. (3.2) can be derived from the conditional 
and the marginal models given in Eq. (3.6) and Eq. (3.7):

where �Δz , � and �∗ are vectors of parameters in unconditional, conditional and 
marginal models, respectively.

The proof of Lemma 1 is given in Appendix.

The log-likelihood function of the conditional model in Eq. (3.9) is

where � is a K × 1 dimensional vector,

and

In Eq.  (3.2), we define Δ�t as a continuous random variable,Δ� , where 
Δ�t =

(
Δ��

t
,Δ�∗�

t

)� , characterized by the probability density function f (Δ�,�Δz) . The 
parameter vector �Δz is 

(
KΔz × 1

)
 dimensional, with�KΔz

∈ Θ ⊂ ℝ
KΔz . Let’s assume 

the true parameter vector for �Δz0 is�Δz , which is unknown. This vector originates 

(3.9)Δ� = �
�
0T

+ �Δ�− +�x̃�̃−1 + �

�(�Δz,�) = �v(�,�vv) + �∗(�
∗
�x∗x∗)

(3.10)l(�) =
−kT

2
log(2�) −

T

2
log||�vv

|| − 1

2
tr
(
�
−1
vv
VV

�
)

� =
(
vec(�)�, vec

(
�x

)�
, vec(�x)

�, vech
(
�
vv

)�)�

(3.11)K =

[
k ×

[
k∗ + (k + k∗)(p − 1)

]
+ kr + (k + k∗) × r +

(
k(k + 1)

2

)]
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from the probability density function f (Δ�,�Δz0) , which correctly reflects observed 
sample data. We select a �Δz such that the actual parameter vector closely approxi-
mates�Δz0 . Thus, the probability density functions f (Δ�,�Δz) and f (Δ�,�Δz0) are 
expressed as the rival model and the actual model, respectively. Using Lemma 1, 
these models are described as f (Δ�,�) and f (Δ�,�0).

The Kullback–Leibler (K-L) information distance is generally used to derive an 
Akaike-type information criterion.10 In order to use the K-L information to measure 
the distance between the two models, the following assumptions should be made. 
These assumptions are also known as regularity conditions (RC).11 We consider that 
i′ , be the i′ th element of�.

Assumption 2  (RC1) ∀� ∈ Θ,

the derivatives exist for all Δ� and i�, j�, k� = 1⋯K.

Assumption 3  (RC2) For �0 ∈ Θ, functions of G(Δx), H(Δx) and K(Δx) exist,

inequalities exist for Δ� and i�, j�, k� = 1⋯K , and

Assumption 4  (RC3) For � ∈ Θ,

exist and ∥ �(�)∥2 > 0.

Remark 2  According to RC1, �logf (Δx,�)
��

 has Taylor series expansion as a function of �.
�logf (Δx,�)

��
 is considered score vector. RC2 allows derivatives of ∫ f (Δx,�)dΔx and 

∫ [
�logf (Δx,�)

��

]
dΔx to be obtained according to �. Finally, RC3 requires the score vector 

to have a finite variance.

Lemma 2  If the regularity conditions are provided in RC1-RC3, the score vector, 
S(�) =

�logf (Δx,�)

��
, has zero mean and constant variance.

�log f (Δ�,�)

��i�
,
�2log f (Δ�,�)

��i���j�
,
�3log f (Δ�,�)

��i���j���k�

||||
�f (Δ�,�)

��i�

|||| ≤ Gi� (Δ�),
|||||
�2f (Δ�,�)

��i���j�

|||||
≤ Hi�j� (Δ�),

|||||
�3f (Δ�,�)

��i���j���k�

|||||
≤ Ki�j�k� (Δ�)

∫ Gi� (Δ�)dΔ� < ∞, ∫ Hi�j� (Δ�)d� < ∞, ∫ Ki�j�k� (Δ�)dΔ� < ∞

(3.12)�(�) = E

[(
�logf (Δ�,�)

��

)(
�logf (Δ�,�)

���

)]

10  For further details of K-L information, see Burnham and Anderson (2002).
11  See Hogg et al. (2005) for detailed information.
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The proof of Lemma 2 is given in Appendix.

For VEC model given in (3.9), the K-L information is

where E indicates the expectation of the Δ� according to f (Δ�,�0).

When the expression is arranged, the K-L is

Proposition 1  If the regularity conditions are provided in RC1-RC3, for the VEC 
model given in Eq.  (3.9), K − L(�0;�) is a non-negative measure, the amount of 
information of the distance of f (Δx,�) to f (Δx,�0) probability density function.

The proof of Proposition 1 is given in Appendix.

Corollary 1  Proposition 1  provides that the analytical characteristics of the amount 
of K − L(�0;�) information for the VEC model given in Eq. (3.9) are.

(i) If f (Δ�,�0) ≠ f (Δ�,�) , K − L(�0;�) > 0.

(ii) If, and only if f (Δ�,�0) = f (Δ�,�) , if the model is specified correctly, 
K − L(�0;�) = 0.

(iii) Because Δ� is independent and identically distributed, K − L(�0;�) is 
additive.

f0 and f  will be used instead of f (Δ�,�0) and f (Δ�,�) for ease of spelling. If g is 
an another competing model other than f  , Eq. (3.14) is rewritten as

When comparing competing models, the actual correct model f0 does not need to 
be known. Furthermore, the f0 model is never truly known. Therefore, the priority 

(3.13)

K − L
(
�0;�

)
= E

[
log f

(
Δ�,�0

)
− log f (Δ�,�)

]

= ∫ f
(
Δ�,�0

)
log f

(
Δ�,�0

)
dΔ� − ∫ f

(
Δ�,�0

)
log f (Δ�,�)dΔ�

= H
(
�0;�0

)
− H

(
�0;�

)

(3.14)K − L
(
�0;�

)
= ∫ f

(
Δ�,�0

)
log

(
f
(
Δ�,�0

)
f (Δ�,�)

)
dΔ�

K − L(f0;f ) = H(f0) − H(f0;f )

K − L(f0;g) = H(f0) − H(f0;g)

K − L(f0;f ) − K − L(f0;g) = H(f0;g) − H(f0;f ).
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in the amount of K-L information given in Eq. (3.14) will be the estimation of the 
competing model f  . The K-L information amount is expressed as:

The estimate of the amount of K-L information is random because it depends on 
f̂  . We focus on the expected amount of K-L information12

where the expectation is on f̂ .
As mentioned earlier, the first term is not necessary when choosing between 

competing models. Thus, minimizing the expected amount of K-L information 
equates to maximizing the second term. Multiplying the second term by − 2, the 
purpose function13 becomes:

where the integral is based on the f0 , which is the true the population random 
variable Δ� . As mentioned earlier, the true probability density function will never 
be known. However, estimates are made based on the sample drawn from Δ� , Δ�̃ . 
Hence, Eq. (3.16) can be rewritten as:

Here, Δ�̃ is an independent sample drawn from the random variable Δ� with a 
probability density function of f0 . Thus, A represents the expected estimate of log-
likelihood. Burnham and Anderson (2002) argue that models with low A values have 
good out-of-sample log-likelihood.

and when the log-likelihood function of the conditional model given in Eq. (3.10) is 
rewritten as:

The maximum value of the log-likelihood function of the system is obtained with 
the parameters that are actually correct:

K − L
(
f0;f̂

)
= H

(
f0
)
− H

(
f0;f̂

)
.

(3.15)

E
[
K − L

(
f0;f̂

)]
= ∫ f0(��)logf0(��)d�� − E

[
∫ f0(��)logf̂ (��)d��

]

(3.16)A = −2E

[
∫ f0(��)log f̂ (��)d��

]

(3.17)A = −2E
[
log f̂ (Δ�̃)

]

vt = Δ�t − �0 −�x̃�̃t−1 − �0Δ�
∗
t
−

p−1∑
�=1

��Δ�t−�

(3.18)l(�) =
−kT

2
log (2�) −

T

2
log ||�vv

|| − 1

2

T∑
t=1

v
�
t
�
−1
vv
vt

12  See Gourieroux and Monfort (1995) for further details.
13  The multiplication of log-likelihood by − 2 is similar to parameter sizing of $${\chi }^{2}$$.



	 H. I. Gunduz et al.

1 3

Therefore, the desired value of the A function is:

This will be the value obtained if there is no estimation error.14

Lemma 3  If the conditional VEC model given in Eq. (3.9) with a parameter count of 
K and variance–covariance matrix �vv,0 is actually estimated with f̂ (Δx) while the 
correct model is f0,

and

The proof of Lemma 3 is provided in Appendix.

The target function A in Eq.  (3.20) appears to exceed the desired value of A0 
by K parameters. The second term represents the cost of an additional parameter 
estimate, measured by the expected amount of K-L information. When parameters 
are estimated instead of using actual parameter values, the K-L amount increases 
linearly with the number of parameters, K.

This result is represented differently in Eq.  (3.21). The sample log-likelihood 
function is less than the desired value of A0 by K parameters. This represents the 
cost of over-fitting within the sample. The sample log-likelihood is a measure of 
in-sample compatibility and is therefore less than the population’s log-likelihood. 
Taken together, these two statements indicate that the target value of the sample 
logarithmics is 2K less than A . This reflects the combined cost of over-fitting and 
parameter estimation.

By combining expression Eqs. (3.20) and (3.21), we get:

which forms the general structure of the AIC. The likelihood is obtained by 
estimating parameters, where −2 × (log − likelihood) signifies the goodness of fit 
and 2 × (numberofparameter) is considered the penalty term.15

Theorem 1  GVAR-Akaike information criterion (GAIC): In the VEC model given in 
Eq.  (3.9), under the validity of Lemma 1–3, 

{

�k̃(N) :k̃(N) = k̃(N),1, k̃(N),2,⋯ , k̃(N),K

l
(
�0

)
=

−kT

2
log (2�) −

T

2
log ||�vv,0

||

(3.19)A0 = kT log (2�) + T log ||�vv,0
||

(3.20)A = kT(log (2�) + 1) + T log ||�vv,0
|| + K

(3.21)E
[
−2�T

(
�̂
)]

= kT(log (2𝜋) + 1) + T log ||�vv,0
|| − K

AIC = −2 × (log − likelihood) + 2 × (number of parameter)

14  The population variance-covariance matrix is unknown, but calculations can be easily shown if �vv,0 
is known.
15  See Cavanaugh and Neath (2019) for further details.
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∈ ℤ+,N ∈ ℕ
} is a set of all competing models generated according to the country/

regional structure and

is an estimator of twice the target function given in Eq. (3.21) minimized to select 
an �k̃(N)

 model from among the competing models.

k is the number of endogenous variables and k̃(N) is the number of parameters that 
vary depending on the country/region dimension N.

The proof of Theorem  1 is given in the Appendix. All models are estimated, 
and the one with the lowest GAIC value is considered the best. The advantages of 
AIC include its ease of calculation, implementation, and interpretation. Essentially, 
it provides an intuitive approach to model selection, accounting for the cost (or 
penalty) of each additional parameter estimate.

Despite these advantages, the criterion has well-documented disadvantages in the 
literature. Cavanaugh and Neath (2019) argue that when the number of parameters 
is larger than the number of observations, the penalty term on the right-hand side 
of the criterion is significantly affected, leading to biased results. This situation is 
particularly evident when the sample size is increased. Shibata (1989) emphasizes 
that the AIC criterion is sensitive to the number of parameters, and Linhart and 
Zucchini (1986) claim that the criterion can be heavily biased towards incorrect 
model selection as the number of parameters increases.

The GAIC criterion, developed for the GVAR modelling approach, is also likely 
to face similar challenges. This is particularly true as the number of individual 
country/region models increases, along with the number of endogenous and, 
therefore, exogenous variables, causing the size of the parameter vector to exceed the 
number of observations. This feature is particularly prominent in macroeconomic 
analyses and in datasets used in the GVAR modelling approach. The finite sample 
characteristics observed for the Akaike-type criteria were also observed for the 
GAIC criterion. Section 3.2 proposes an ad − hoc solution for the GAIC criterion 
based on these observations.

3.2 � An Ad hoc Modification to Information Criterion

For the GVAR model with a number of parameters, K , GAIC in Eq. (3.22) is:

(3.22)
GAIC

(
k̃(N)

)
= −2 log�

(
�̂k̃(N)

)
+ 2k̃(N)

= k(log (2𝜋) + 1) + log
|||�̂vv,0

||| +
2k̃(N)

T
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and the row-dimension of the vector of parameters is defined as:

The total number of endogenous and exogenous variables in the GVAR system 
is defined by average values as follows:

and

So we have

From this point of view, applying same approach to K in Eq. (3.24) obtained 
the following equation:

Thus, the GAIC(K) criterion given in Eq.  (3.25) is defined in terms of three 
different functions as follows:

Firstly, we consider the function f2
(
�̂vv,0

)
 that takes into account the stochas-

tic structure. This function is defined as follows:

where �̂vv,0 be a matrix of k × k dimension. The estimate of the variance–covariance 
matrix,

is calculated from the estimated residuals of country/region specific models.

(3.23)GAIC(K) = k(log (2𝜋) + 1) + log
|||�̂vv,0

||| +
2K

T

(3.24)K =

[
k ×

[
k∗ + (k + k∗)(p − 1)

]
+ kr + (k + k∗) × r +

(
k(k + 1)

2

)]

k =

N∑
i=1

ki = Nk

k∗ =

N∑
i=1

k∗
i
= Nk

∗

(3.25)GAIC(K) = Nk(log (2𝜋) + 1) + log
|||�̂vv,0

||| +
2K

T

(3.26)K = (p − 1)N2k
2
+ pN2kk

∗
+ 2rNk + rNk

∗
+

1

2
N2k

2
+

1

2
Nk

GAIC(K) = f1

(
N, k

)
+ f2

(
�̂vv,0

)
+ f3

(
N2,N, p, r, k, k

∗
, 2T−1

)

f2

(
�̂vv,0

)
= log

|||�̂vv,0
|||

(3.27)𝚺̂vv,0 =

T∑
t=1

v̂tv̂
�

t
∕T
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If the total number of endogenous variables in the GVAR model, k = Nk , is 
greater than time dimension T  , �̂vv,0 may not be positively defined.16 This will be a 
serious problem in the calculation of the criteria.

The matrix is given in Eq.  (3.27) is the estimation of the large-dimension 
variance–covariance matrices mentioned by Bailey et al., (2019), is in keeping with 
the problems and solutions that are being encountered. It can be defined as follows:

One solution recommendation is to be restricted to the diagonal elements of this 
matrix. In addition, PSW states that the GVAR modelling approach enables weak 
cross-sectional dependency, N → ∞,

In the framework of these approaches, to derive an ad − hoc modification of 
GAIC , a transformation of the function f2

(
�̂vv,0

)
 is applied as follows.17

Secondly, we examine f1
(
N, k

)
 and f3

(
N2,N, p, r, k, k

∗
, 2T−1

)
 functions, which 

are deterministic structures depending on N . To obtain ad − hoc versions of these 
funcitons, we rearrange them to remove the cross-sectional dimension effect so that 
they do not depend on N . Thus, these functions can be obtained as follows:

and

where dim denote dimension expression and � = 2∕T .
Finally, GAIC(K)ad−hoc is obtained as the sum of these three functions as follows:

(3.28)�̂vv,0 =

⎛⎜⎜⎜⎝

�cov
�
v̂1t, v̂1t

�
�cov

�
v̂1t, v̂2t

�
⋯ �cov

�
v̂1t, v̂Nt

�
�cov

�
v̂2t, v̂1t

�
�cov

�
v̂2t, v̂2t

�
⋯ �cov

�
v̂2t, v̂Nt

�
⋮ ⋮ ⋮

�cov
�
v̂Nt, v̂1t

�
�cov

�
v̂Nt, v̂2t

�
⋯ �cov

�
v̂Nt, v̂Nt

�

⎞⎟⎟⎟⎠

∑N

i,n=1
�in,hh�

N
→ 0

(3.29)f ad−hoc
2

�
Bdiag�̂vv,0

�
=

∑N

i=1
log

����̂vivi,0
���

N

(3.30)f ad−hoc
1

(
k
)
=

Nk(log(2�) + 1)

N
= k(log(2�) + 1)

(3.31)f ad−hoc
3

(
K
)
=

� × dim(K)

N

16  See Smith and Galesi (2014) for further details.
17  Bdiag means that non-diagonal elements are restricted and the main diagonal matrices are taken as 
they were given in (3.32).
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4 � Small Sample Evidence

This section examines the finite sample performances of the model selection criteria 
previously defined as GAIC and GAIC(K)ad−hoc , respectively. We adopt an approach 
similar to that of Fujikoshi and Satoh (1997). In this approach, we consider the 
performance of the information criteria when the country dimension of the true 
model is larger (smaller) than the country dimension of the candidate models. The 
objective of this approach is to generate competing models against the true model in 
all circumstances, whether the dimension of the model parameters is large or small. 
Our main aim is to measure the sensitivity of these criteria across all possible model 
alternatives, as might be encountered in empirical studies. We will first introduce the 
setting, then present and discuss the findings.

4.1 � Design of Simulation

The Data Generation Process (DGP) is based on four main scenarios. Our aim 
is to simulate events commonly found in macroeconometric applications when 
designing these scenarios. The primary reason for this approach is the variability 
in the structure and content of the cross-sectional country dimension within the 
same dataset in the GVAR model, depending on the target country whose economy 
is being analyzed. For instance, when considering the economy of target country 
A, some countries need to be modeled individually, while others within the same 
dataset must be aggregated.Conversely, the content and composition of the cross-
sectional dimension should be changed when the aim is to analyze the target country 
B in the same dataset.18 As a result, our primary focus is on target and reference 
countries, as stated in Sect.  1. The following scenarios will outline the main 
considerations for the formulation of the DGPs:

Scenarios

1. The size of target country’s economy is smaller than that of other countries. Furthermore, the 
relationship between target and reference country is stronger than the relationship between other 
countries and reference country

2. The size of target country’s economy is smaller than that of other countries. Furthermore, the 
relationship between target and reference country is weaker than the relationship between other 
countries and reference country

3. The size of target country’s economy is smaller than that of reference country, but it is bigger than 
other countries. Furthermore, the relationship between target and reference country is stronger than the 
relationship between other countries and reference country

(3.32)GAIC(K)ad−hoc = f ad−hoc
1

(
k
)
+ f ad−hoc

2

(
Bdiag�̂vv,0

)
+ f ad−hoc

3

(
K
)

18  Country is used to denote the cross-section unit size of simulated GVAR model.
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Scenarios

4. The size of target country’s economy is smaller than that of reference country, but it is bigger than 
other countries. Furthermore, the relationship between target and reference country is weaker than the 
relationship between other countries and reference country

The DGPs are created in response to the aforementioned scenarios.. The cross-
sectional unit dimension, which represent the countries, is numbered and labeled 
as follows: i = 1, 2, 3, 4, 5, 6, 7 . Four different DGPs are simulated in the following 
direction:

DGP1: The economy of the target country, labeled as 6, is smaller than all the 
other country’s economies ( 6 < 1 < 2 < 3 < 4 < 5 < 7 ). The relationship between 
the target country (label 6) and countries labeled as 1, 2, 3, 4 , and 5 is weak, while 
the relationship between reference country (label 7 ) and target country is strong.

DGP2: The economy of the target country, labeled as 6, is smaller than all the 
other countries’ economies ( 6 < 1 < 2 < 3 < 4 < 5 < 7 ). The relationship between 
the target country and the other countries is strong, but the relationship between the 
target country and the reference country (label 7) is weak.

DGP3: The economy of the target country, labeled as 5, is the second largest 
economy after the reference country’s economy ( 6 < 1 < 2 < 3 < 4 < 5 < 7 ). The 
relationship between the target country (label5 ) and countries labeled as 1, 2, 3, 4 and 
6 is weak, while its relationship with the reference country (label 7) is strong .

DGP4: The economy of the target country, labeled as 5 , is the second largest 
economy after the reference country’s economy ( 6 < 1 < 2 < 3 < 4 < 5 < 7 ). The 
relationship between the target country (label 5 ) and countries labeled as 1, 2, 3, 4, 
and 6 is strong, but its relationship with the reference country (label 7) is weak.

A common feature across all DGPs is that the economic size ranking of the 
countries holds for all DGPs. Table 1 illustrates this situation by using predetermined 
values assigned to the variableD . The values assigned to this variable only serve to 
provide an order of magnitude19:6 < 1 < 2 < 3 < 4 < 5 < 7 .

The predetermined variable “trade” has been generated to represent the link 
matrix �i , as described in Sect. 2.2. In DGP1, the relationship between the target 
country (label 6) and the countries labeled 1, 2, 3, 4 and 5 is weak. However, its 
relationship with the reference country’s economy (label 7) is stronger, as shown in 
Table 2 below. For example, the amount of artificial trade carried out by the target 
country (label 6) has conducted with the reference country (label 7) is 800.

After that, trade weights are calculated using these values, which are presented 
in Table 3.20 As can be seen from Table 3, the importance value of the reference 
country (label 7) for the target country (label 6) is 53%. Thus, the reference country 
is more important for the target country than other countries are.

As can be seen from Table 4, the relationship between the target country (label 
6) and the countries labeled 1,2,3,4, and 5 is strong, while the relationship with the 

19  Arbitrary assignment of values, provided that the ranking remains the same, will not cause any 
changes in calculations.
20  Due to rounding errors, the sum of some cells may not be exactly one.
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reference country’s economy (label 7) is weak in DGP2. The amount of artificial 
trade carried out by the target country (label 6) has conducted with the reference 
country (label 7) is 50.

The trade weights are calculated using these values, which are shown in Table 5. 
In DGP 2, the importance of the reference country (label 7) for the target country 
(label 6) is 7%. The importance of the reference country for the target country is less 
than the importance of the other countries.

In DGP3, we use the trade weights which obtained in DGP2. The relationship 
between the target country (label 5) in DGP3 and the countries labeled 1, 2, 3, 4 and 
6 is weak, but the relationship is strong with the reference country’s economy (label 
7) is 27%, as shown in Table 5.

In Table 6, the amount of artificial trade carried out by the target country (label 
5) with the reference country (label 7) is 500. In DGP4, the relationship between 
the target country (label 5) and the countries labeled 1, 2, 3, 4 and 6 is strong, but the 
relationship with the reference country’s economy (label 7) is weak, 13%, as shown 
in Table 7.

In all DGPs, we examine two endogenous (domestic) variables per countries i 
(where i = 1,… ,N andki = 2 ), denoted as �it =

(
xi1, xi2

)� . Therefore, the dimen-
sion of the vector of all endogenous variables, �t , is (2N × 1) , and is denoted as 
�t =

(
��
1t
, ��

2t
,… , ��

Nt

)� . The initial value of all variables for all countries is set to 
zero, �−101 = 0 . In the simulations, T ∈ {100, 200, 500} and 2000 replications are 
run for each experiment.

Because DdPS derives an approximation of GVAR to a global factor 
model, all DGPs were generated from the canonical global factor model, for 
t = −101,−100… , 0, 1, 2,… , T ,

and

where �i0 and �if  are vectors of (2 × 1) constant coefficients and loadings of factor, 
respectively.

Unobservable global factors vector ft is generated as

(4.1)�it = �i0 + �if ft + �it

�i0 ∼ IIDN(1, 1),

�if =

(
�i11
�i21

)
∼ IID

(
N(0, 0.50)

N(0.5, 0.50)

)

ft = ft−1 + �ft

Table 1   Predetermined values 
of D

i 1 2 3 4 5 6 7

D 10,000 20,000 30,000 40,000 50,000 5000 70,000
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Table 2   Values for country-level 
trade relations for DGP1 

1 2 3 4 5 6 7

1 0 250 350 450 650 100 800
2 160 0 400 500 700 120 1000
3 200 300 0 550 750 140 1200
4 250 350 450 0 800 150 1400
5 310 400 500 600 0 200 1600
6 350 100 150 250 350 0 600
7 400 500 600 700 1200 800 0

Table 3   Values for country level 
trade rates for DGP1 

1 2 3 4 5 6 7

1 0 0.13 0.14 0.15 0.15 0.07 0.12
2 0.10 0 0.16 0.16 0.16 0.08 0.15
3 0.12 0.16 0 0.18 0.17 0.09 0.18
4 0.15 0.18 0.18 0 0.18 0.10 0.21
5 0.19 0.21 0.20 0.20 0 0.13 0.24
6 0.21 0.05 0.06 0.08 0.08 0 0.09
7 0.24 0.26 0.24 0.23 0.27 0.53 0

Table 4   Values for country-level 
trade relations for DGP2 and 
DGP3 

1 2 3 4 5 6 7

1 0 250 350 450 650 100 800
2 160 0 400 500 700 120 1000
3 200 300 0 550 750 140 1200
4 250 350 450 0 800 150 1400
5 310 400 500 600 0 200 1600
6 350 100 150 250 350 0 600
7 400 500 600 700 1200 50 0

Table 5   Values for country level 
trade rates for DGP2 and DGP3 

1 2 3 4 5 6 7

1 0 0.13 0.14 0.15 0.15 0.13 0.12
2 0.10 0 0.16 0.16 0.16 0.16 0.15
3 0.12 0.16 0 0.18 0.17 0.18 0.18
4 0.15 0.18 0.18 0 0.18 0.20 0.21
5 0.19 0.21 0.20 0.20 0 0.26 0.24
6 0.21 0.05 0.06 0.08 0.08 0 0.09
7 0.24 0.26 0.24 0.23 0.27 0.07 0
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where �f ,t ∼ IIDN(0, 1).(2 × 1) vector of country/region specific effects �it , 

�t =
(
��
1,t
, ��

2,t
,… , ��

N,t

)�

 , is generated as

where �t =
(
��
1t
, ��

2t
,… , ��

Nt

)� , and �t ∼ IIDN2N(0, �).21 For i, n = 1, 2,…N , 
(2N × 2N) matrix of long-run relationship, �� =

{
Π�,in

}
 , is generated as

where �� means speed of adjustment, �� =
{
��,in

}
 , and long-run coefficients are �� , 

�� =
{
��,in

}
 . Their dimensions are (2N × r) . ∀i , we set r =

N∑
i=1

ri and ri = 1.

For validity of following condition,

∀i ∈ N , we set

(4.2)�t =
(
�2N −��

)
�t−1 + �t

�� = ���
�
�

Rank
(
�𝜉

)
= Rank

(
�𝜉

)
= Rank

(
�𝜉

)
= r < 2N

Table 6   Values for country-level 
trade rselations for DGP4 

1 2 3 4 5 6 7

1 0 250 350 450 650 100 800
2 160 0 400 500 700 120 1000
3 200 300 0 550 750 140 1200
4 250 350 450 0 800 150 1400
5 310 400 500 600 0 200 1600
6 350 100 150 250 350 0 600
7 400 500 600 700 500 800 0

Table 7   Values for country-level 
trade rates for DGP4 

1 2 3 4 5 6 7

1 0 0.13 0.14 0.15 0.15 0.07 0.12
2 0.10 0 0.16 0.16 0.16 0.08 0.15
3 0.12 0.16 0 0.18 0.17 0.09 0.18
4 0.15 0.18 0.18 0 0.18 0.10 0.21
5 0.19 0.21 0.20 0.20 0 0.13 0.24
6 0.21 0.05 0.06 0.08 0.08 0 0.09
7 0.24 0.26 0.24 0.23 0.27 0.53 0

21  The features that this model should provide are included in the Supplementary Material.
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and

The following description gives the details of the simulation. For y = 1, 2, 3, 4 , 
S
DGPy

N
= {i ∶ i ∈ N} shows countries/regions in the y-th DGP . The true model is 

denoted as TM . For m = 1, 2, 3, 4, 5 , EMm refers to the m-th Estimated Model (which 
means Rival or Candidate Model), and ROWb refers to the b-th Rest of the World.22 
To understand the approach in the simulation and to facilitate the interpretation of 
the results, we discuss a sample DGP23:

•	 For y-th DGP, TM contains 4 countries/regions. These are ROW , country 5, 
target country, number 6, and reference country, number 7, respectively:

•	 For y-th DGP, the region ROW consists of aggregretion of countries 1, 2, 3, 4:

•	 For y-th DGP, countries, estimated in first rival model:

•	 For y-th DGP, countries, estimated in second rival model:

��,i =

(
−0.5

0

)
, ��,i =

(
1

−1

)
,

�� =

⎛⎜⎜⎜⎝

��1 0 … 0

0 ��2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … ��N

⎞⎟⎟⎟⎠

�� =

⎛⎜⎜⎜⎝

��1 0 … 0

0 ��2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … ��N

⎞⎟⎟⎟⎠

S
DGPy=1

N,TM=4
=
{
S
DGPy=1

N,ROW1
, 5, 6, 7

}
.

S
DGPy=1

N,ROW1
= {1, 2, 3, 4}.

S
DGPy=1

N,EM1
= {1, 2, 3, 4, 5, 6, 7},

S
DGPy=1

N,ROW0
= {}.

S
DGPy=1

N,EM2
=
{
S
DGPy=1

N,ROW1
, 3, 4, 5, 6, 7

}
,

22  The same definitions are made for all DGPs.
23  All other cases are included in Supplementary Material.
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•	 For y-th DGP, countries, estimated in third rival model:

•	 For y-th DGP, countries, estimated in forth rival model:

•	 For y-th DGP, countries, estimated in fifth rival model:

4.2 � The Results of Monte Carlo Experiments

Tables 8, 9, 10, 11, 12, 13 and 14 report the results of the GAIC and GAICad−hoc 
criterion in Monte Carlo experiments with various DGP specifications as mentioned 
above.24 These tables display the frequencies at which the criteria select correct and 
incorrect models. The rows indicate the TM, while the columns show the EM. Cells 
marked with * denote the frequency of correctly determining the model based on the 
criterion. Other cells display the selection frequency results of the candidate model.

Table 8 reports the results for DGPy=1 . When the dimension of the TM is 3 and 
T = {100, 200, 500} , the GAIC criterion selects this model is approximately 100%. 
However, for other results marked with *, increasing the dimension of the TM wors-
ens the performance of the GAIC criterion. It also exhibits bias towards selecting 
the alternative candidate model with 3 countries. This reflects the over-parameter-
ization of an Akaike-based criterion, as described in Sect. 3.2. For example, when 
the dimension of the TM is 4 and T = {100, 200, 500} , the value of the criterion 
increases, favoring the selection of the nearest alternative, which is the candidate 

S
DGPy=1

N,ROW1
= {1, 2}.

S
DGPy=1

N,EM3
=
{
S
DGPy=1

N,ROW2
, 4, 5, 6, 7

}
,

S
DGPy=1

N,ROW2
= {1, 2, 3}.

S
DGPy=1

N,EM4
=
{
S
DGPy=1

N,ROW3
, 5, 6, 7

}
,

S
DGPy=1

N,ROW3
= {1, 2, 3, 4}.

S
DGPy=1

N,EM5
=
{
S
DGPy=1

N,ROW4
, 6, 7

}
,

S
DGPy=1

N,ROW4
= {1, 2, 3, 4, 5}.

24  In simulation study, we use an open-source Matlab toolbox developed by Smith and Galesi (2014), 
can be obtained from the web at: https://​sites.​google.​com/​site/​gvarm​odell​ing/. All documents including 
datasets and Matlab codes on the simulation designs are given in supplementary materials.

https://sites.google.com/site/gvarmodelling/
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model with 3 countries. More specifically, the GAIC criterion is inherently sensitive 
to the number of parameters

Table 8   Average selected model frequencies of GAIC and GAICad−hoc in DGP1 

TM and EM mean true and estimated model, respectively
* highlights that TM coincides with the EM

T = 100

GAIC GAIC
ad−hoc

TM/EM 3 4 5 6 7 TM/EM 3 4 5 6 7

3 100* 0 0 0 0 3 90.55* 2.75 0.65 0.55 5.5
4 99.6 0.4* 0 0 0 4 30.55 50.20* 2.40 1.65 15.2
5 100 0 0* 0 0 5 36.65 2.90 42.05* 1.1 14.30
6 100 0 0 0* 0 6 21.80 1.65 1.35 65.4* 9.8
7 100 0 0 0 0* 7 10.65 7.85 35.2 7.05 39.25*

T = 200

GAIC GAIC
ad−hoc

TM/EM 3 4 5 6 7 TM/EM 3 4 5 6 7

3 100* 0 0 0 0 3 91* 2.15 0.35 0.1 6.4
4 100 0* 0 0 0 4 54.9 22.30* 2.35 0.90 19.55
5 100 0 0* 0 0 5 58.65 1 20.65* 0.65 18.65
6 100 0 0 0* 0 6 39.75 1.6 0.85 46.2* 11.6
7 100 0 0 0 0* 7 5.15 7.15 40.75 4.90 42.05*

T = 500

GAIC GAIC
ad−hoc

TM/EM 3 4 5 6 7 TM/EM 3 4 5 6 7

3 100* 0 0 0 0 3 87* 2.3 0.55 0.15 9.75
4 99.6 0.4* 0 0 0 4 78.9 1.10* 1.85 0.65 17.5
5 100 0 0* 0 0 5 77.55 1 6.85* 0.15 14.4
6 100 0 0 0* 0 6 69.20 1.7 0.85 14.7* 13.55
7 100 0 0 0 0* 7 5.55 12.35 28.40 3.6 50.10*

Table 9   The relationship with 
countries for SDGPy=1

N,TM

ROW 5 6 7

ROW 0 0.65 0.34 0.67
5 0.37 0 0.13 0.24
6 0.17 0.08 0 009
7 0.45 0.27 0.53 0
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When the dimension of TM is 3 and T = {100, 200, 500} , the GAICad−hoc results 
in Table 8 reveal a selection frequency of approximately 91%, similar to the GAIC . 
If the dimension of TM is 4 and T = 100 , the selection frequency of  TM for GAIC 
and GAICad−hoc is % 4 and % 50 , respectively. Increasing T  diminishes the selec-
tion frequency of TM for GAICad−hoc to 51%, 22% and 1.10%. Although similar to 
GAIC , the rate of decrease is slower. When evaluated in DGPy=2 , the frequencies are 
approximately 56%, 37% and 15%, respectively.

Tables 9 and 10 show that, in the case of DGPy=1 with TM dimension is 4, the 
relationship between target country (label 6) and the country (label 5) is weak. In 
contrast, the target country (label 6) has a strong relationship with ROW. Table 11 
reveals that the relationship between target country (label 6) and ROW increases 
from 34 to 67%. These observations demonstrate that the strength of relationships 
between countries significantly influences model selection.

For TM = 4, 5 in DGPy=1,2 , with T = 100, 200 and 500 , GAICad−hoc is sensi-
tive to candidate models with EM = 3 . In contrast, for TM = 6, 7 in DGPy=1,2 , 
when T = 100, 200 and 500 , GAICad−hoc is more robust and shows less sensitivity 
to candidate models with EM = 3 . Comparing the performance of GAICad−hoc for 
various sets25 reveals some important findings. The most notable difference between 
TM = 4, 5 and TM = 6, 7 in DGPy=1,2 is the need to consider almost all countries 
individually. Under these sets, GAICad−hoc gives successful results in small sample 
performances. Therefore, the ad hoc modification for GAIC produces more suc-
cessful outcomes in situations where the country dimension is large and countries 
need to be treated individually in the GVAR modelling approach. Indeed, this is also 
observed for TM = 5, 6 in DGPy=3,4.

Table 10   The relationship with 
countries for SDGPy=1

N,EM3

ROW 6 7

ROW 0 0.47 0.91
6 0.26 0 0.09
7 0.74 0.53 0

Table 11   The relationship 
with countries for SDGPy=1

N,DM=4
 and 

S
DGPy=2

N,DM=4

ROW 5 6 7 ROW 5 6 7

ROW 0 0.65 0.34 0.67 ROW 0 0.65 0.67 0.67
5 0.37 0 0.13 0.24 5 0.37 0 0.26 0.24
6 0.17 0.08 0 0.09 6 0.17 0.08 0 0.09
7 0.45 0.27 0.53 0 7 0.45 0.27 0.07 0

25  SDGPy=1,2

N,TM=6
= {S

DGPy=1,2

N,ROW1

, 3, 4, 5, 6, 7} with S
DGPy=1,2

N,ROW1

= {1, 2} and S
DGPy=1,2

N,EM=3
= {S

DGPy=1

N,ROW3

, 6, 7} with 

S
DGPy=1,2

N,ROW3

= {1, 2, 3, 4, 5}
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A similar result to that of the GAIC criterion presented in Table 8 can be found 
in Tables 11, 12 and 13. As mentioned earlier, this scenario is consistent with the 
Akaike literature.

In DGPy=3 , T = 100, 200 and 500 , while for TM = 5 the results given in Table 13 
show that the selection frequency of  TM for GAICad−hoc are 87%, 80% and 78%. For 
TM = 6 , the results are 90%, 87% and 78%, respectively. The same results are given in 
Table 14 for DGPy=4 . For T = 100, 200 and 500 , and TM = 5 , the results indicate that 
the selection frequency of TM for GAICad−hoc are 87%, 76% and 77%. If TM = 6 , these 
proportions are 92%, 88% and 77%, respectively. Comparing these findings with the 
results for TM = 5, 6 in DGPy=1,2 , T = 100, 200 and 500 , we conclude that:

Table 12   Average selected model frequencies of GAIC and GAICad−hoc in DGP2 

TM and EM mean true and estimated model, respectively
* highlights that TM coincides with the EM

T = 100

GAIC GAIC
ad−hoc

TM/EM 3 4 5 6 7 TM/EM 3 4 5 6 7

3 100* 0 0 0 0 3 91.2* 3 0.65 0.65 4.5
4 99.75 0.25* 0 0 0 4 26.8 55.8* 2.6 1.5 13.3
5 100 0 0* 0 0 5 36.45 4 44.35* 1.35 14.3
6 100 0 0 0* 0 6 26.20 2.95 1.5 57.45* 11.9
7 100 0 0 0 0* 7 11.45 7.55 30.1 7.15 43.75*

T = 200

GAIC GAIC
ad−hoc

TM/EM 3 4 5 6 7 TM/EM 3 4 5 6 7

3 100* 0 0 0 0 3 91* 2.15 0.35 0.1 6.4
4 100 0* 0 0 0 4 54.9 22.30* 2.35 0.90 19.55
5 100 0 0* 0 0 5 58.65 1 20.65* 0.65 18.65
6 100 0 0 0* 0 6 39.75 1.6 0.85 46.2* 11.6
7 100 0 0 0 0* 7 5.15 7.15 40.75 4.90 42.05*

T = 500

GAIC GAIC
ad−hoc

TM/EM 3 4 5 6 7 TM/EM 3 4 5 6 7

3 100* 0 0 0 0 3 88* 2.45 0.5 0.2 9.3
4 100 0* 0 0 0 4 67.1 15.1* 2.05 0.90 14.85
5 100 0 0* 0 0 5 77.45 1 6.5* 0.25 14.55
6 100 0 0 0* 0 6 58.75 1.55 1 27.2* 11.5
7 100 0 0 0 0* 7 3.85 13.20 25.65 3.85 53*
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•	 An increase in the economic size of the target country,
•	 A decrease in the economic size of the ROW,

can enhance the successful of the GAICad−hoc.
We also examine that the structure used in these DGPs,

S
DGPy=1,2

N,TM=5
=
{
S
DGPy=1,2

N,ROWTM=5
, 4, 5, 6, 7

}
,

S
DGPy=3,4

N,TM=5
=
{
S
DGPy=3,4

N,ROWTM=5
, 3, 4, 5, 7

}
,

Table 13   Average selected model frequencies of GAIC and GAICad−hoc in DGP3 

TM and EM mean True and Estimated model, respectively
* highlights that TM coincides with the EM

T = 100

GAIC GAIC
ad−hoc

TM/EM 3 4 5 6 7 TM/EM 3 4 5 6 7

3 100* 0 0 0 0 3 61.7* 1.05 3.3 33.75 0.2
4 99.55 0.45* 0 0 0 4 1.8 27.75* 9 61.25 0.2
5 100 0 0* 0 0 5 5.6 0.9 87.15* 0.4 5.95
6 100 0 0 0* 0 6 0.85 1.5 6.25 90.95* 0.45
7 99.95 0.05 0 0 0* 7 7.95 17.1 14.30 60 0.65*

T = 200

GAIC GAIC
ad−hoc

TM/EM 3 4 5 6 7 TM/EM 3 4 5 6 7

3 100* 0 0 0 0 3 51.35* 0.45 2.25 45.8 0.15
4 100 0* 0 0 0 4 0.5 5.8* 8.35 85.25 0.1
5 100 0 0* 0 0 5 9.85 0 80.05* 0.05 9.65
6 100 0 0 0* 0 6 0.45 1.50 9.85 87.85* 0.35
7 100 0 0 0 0* 7 0.6 17 19.1 62.4 0.9*

T = 500

GAIC GAIC
ad−hoc

TM/EM 3 4 5 6 7 TM/EM 3 4 5 6 7

3 100* 0 0 0 0 3 26.05* 0.55 4.55 68.85 0
4 100 0* 0 0 0 4 0.6 0.35* 8 91 0.05
5 100 0 0* 0 0 5 7.80 0 78.25* 0.25 13.3
6 100 0 0 0* 0 6 1 2.55 17.75 78.45* 0.25
7 100 0 0 0 0* 7 0.85 14.1 23.7 61 0.35*
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and

and the following transformation,

S
DGPy=1,2

N,ROWTM=5
= {1, 2, 3},

S
DGPy=3,4

N,ROWTM=5
= {1, 2, 6},

f ad−hoc
2

�
Bdiag�̂vv,0

�
=

∑N

i=1
log

����̂vivi,0
���

N
,

Table 14   Average selected model frequencies of GAIC and GAICad−hoc in DGP4 

TM and EM mean true and estimated model, respectively
* highlights that TM coincides with the EM

T = 100

GAIC GAIC
ad−hoc

TM/EM 3 4 5 6 7 TM/EM 3 4 5 6 7

3 100* 0 0 0 0 3 61.5* 0.95 3.35 33.95 0.25
4 99.5 0.5* 0 0 0 4 1.7 28.05* 8.7 61.25 0.3
5 100 0 0* 0 0 5 5.80 0.85 87.05* 0.4 5.9
6 100 0 0 0* 0 6 0.80 1.45 5.90 91.55* 0.3
7 99.95 0.05 0 0 0* 7 6.10 16.25 14.45 62.2 1*

T = 200

GAIC GAIC
ad−hoc

TM/EM 3 4 5 6 7 TM/EM 3 4 5 6 7

3 100* 0 0 0 0 3 51.3* 0.5 2.2 45.95 0.05
4 100 0* 0 0 0 4 0.65 5.95* 8.5 84.80 0.1
5 100 0 0* 0 0 5 9.5 0 76.25* 0.2 13.6
6 100 0 0 0* 0 6 0.5 1.55 9.25 88.4* 0.3
7 100 0 0 0 0* 7 0.75 15 22.1 61.55 0.6*

T = 500

GAIC GAIC
ad−hoc

TM/EM 3 4 5 6 7 TM/EM 3 4 5 6 7

3 100* 0 0 0 0 3 25.7* 0.6 4.7 69 0
4 100 0* 0 0 0 4 0.55 0.4* 8 90.9 0.15
5 100 0 0* 0 0 5 8.05 1 77.1* 0.25 14
6 100 0 0 0* 0 6 1.20 2.15 19.6 76.9* 0.15
7 100 0 0 0 0* 7 0.85 15.90 22.95 59.85 0.45*
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We present some concluding remarks. For a country with a large economy, 
shocks occurring in countries with smaller economies are often too inconsequential 
to warrant individual treatment. Thus, these countries can be aggregated. The 
economic size of the target country serves as a crucial indicator in the aggregation 
process of smaller economies. This approach allows us to obtain the appropriate 
model selection without having to estimate numerous models. A similar scenario has 
been observed under conditions where the 6-country model is correct. Furthermore, 
our findings are consistent with those obtained in DGPy=3,4 and DGPy=1,2 where 
TM = 3 . It’s also worth noting that the size of the ROW region is also an important 
indicator for the target country.

Considering the case where TM = 3,

and

In DGPy=1,2 while the country (label 5) with the second largest economy is part 
of the ROW region, the economy (label 6) with the weakest economy is now less 
important. As mentioned above, the modification made with f ad−hoc

2

(
Bdiag�̂vv,0

)
 

inherently depends on the importance of the shocks from the countries. The results 
observed in the case of TM = 4 are similar. When constructing the model for the 
target country, the difference in economic size between the ROW region and the 
target country should not be too large.

In DGPy=3,4 for TM = 7 , the selection of the candidate model EM = 6 stands out. 
For this case, we have

and

S
DGPy=1,2

N,TM=3
=
{
S
DGPy=1,2

N,ROWTM=3
, 6, 7

}
,

S
DGPy=3,4

N,TM=3
=
{
S
DGPy=3,4

N,ROWTM=3
, 5, 7

}
,

S
DGPy=1,2

N,ROWDM=3
= {1, 2, 3, 4, 5},

S
DGPy=3,4

N,ROWDM=3
= {1, 2, 3, 4, 6}.

S
DGPy=3,4

N,TM=7
= {1, 2, 3, 4, 5, 6, 7},

S
DGPy=3,4

N,EM=5
=
{
S
DGPy=3

N,ROWEM=5
, 2, 3, 4, 5, 7

}
,

S
DGPy=3,4

N,ROWTM=7
= {},

S
DGPy=3,4

N,ROWEM=5
= {1, 6}.
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In the candidate model alternative, the ROW region comprises countries with the 
smallest economic size, labelled as ‘1’ and ‘6’. Looking at Table 7, we can see that 
the relationship between the target country (label 5) and the country (label 1), is 
stronger than the relationship between the target country, labelled with 5, and the 
reference country (label 7). Moreover, country (label 6) is the second most associated 
country with country (label 1). In cases where individual country models need to 
be considered, GAICad−hoc shows sensitivity to the complexity of the relationships 
between countries. Even though it may not be quantifiable, the involvement of 
countries outside the target country, due to factors such as geographical reasons, 
cannot be filtered out in the GVAR modelling approach. This affects the criteria.

5 � Empirical Application: How Many Countries Should be Individually 
Included in GVAR Models for Developing Countries?

In what follows, we conduct an analysis to demonstrate the usefulness and 
effectiveness of model selection criteria by investigating the structure of modelling 
in developing countries within a GVAR framework. Our objective is to highlight the 
empirical performance of our approach. In doing so, we analyse each developing 
country individually. We propose a modelling strategy for constructing dynamic 
multi-country frameworks that consider the structure of trade relations and draws 
upon the existing GVAR literature. Before presenting our proposed modelling 
framework, we provide a brief overview of the methodology and data employed.

5.1 � Data and Variables

In our econometric analysis, we utilize the updated GVAR-DdPS dataset, which 
includes data from 33 countries and covers the period from 1979Q2 to 2019Q4. This 
dataset is drawn from the dataset ofMohaddes and Raissi (2020).26 Table 15 presents 
the list of countries in the updated GVAR-DdPS database.

The primary focus of this paper lies on developing countries, specifically: Argentina, 
Brazil, Chile, China, India, Indonesia, Korea, Malaysia, Mexico, Peru, Philippines, 
Saudi Arabia, South Africa, Thailand, and Turkey. Our modelling strategy is to conduct 
an analysis and derive results for each country individually.

For country i during the period t , the updated GVAR dataset comprises of quarterly 
macroeconomic and financial variables. These variables include log real GDP ( yit ), the 
inflation rate ( pit ), short-term interest rate ( �S

it
 ), long-term interest rate ( �L

it
 ), log deflated 

exchange rate ( eit ), log real equity prices ( qit ), and quarterly data on oil prices ( poilt ). 
Consequently, the vector of endogenous variables, �it , contains the following variables:

yit = ln
(
GDPit∕CPIit

)
, pit = ln

(
CPIit

)
, qit = ln

(
EQit∕CPIit

)
,

eit = ln
(
Eit

)
, �S

it
= 0.25 × ln

(
1 + RS

it
∕100

)
, �L

it
= 0.25*ln

(
1 + RL

it
∕100

)

26  For further details, see https://​www.​mohad​des.​org/​gvar.

https://www.mohaddes.org/gvar
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where GDPit is the nominal gross domestic product, CPIit is the consumer price 
index, EQit is the nominal equity price index, Eit is US dollars exchange rate, RS

it
 is 

the short rate, and RL
it
 is the long rate.

We use country-specific trade-weighted averages to calculate country-specific for-
eign variables:

where, as mentioned above, wij is a set of weights such that 
∑N

j=1
wij = 1 . For the 

empirical applications, the trade weights are calculated as the average of the years 
2014–2016:

where Tij,t represents the bilateral trade between country i and country j in a specific 
year t ; it is calculated as the average of country i ’s exports and imports with country 
j , Ti,t =

∑N

j=1
Tij,t for t = 2014, 2015, 2016 . In the supplementary materials, we pro-

vide concise information and specifications of the individual models for developing 
countries.

5.2 � Modelling Strategy and Results

We have formulated a strategy for constructing competing models to analyze 
individual countries. The key components of this strategy are as follows: (i) a 
developing country’s trade with countries in the 33-country GVAR should not be 
less than 50% of its total trade with all trading partners, (ii) when a developing 

�
∗
it
=

N∑
j=1

wij�jt,wii = 0

wij =
Tij,2014 + Tij,2015 + Tij,2016

Ti,2014 + Ti,2015 + Ti,2016

Table 15   Countries in the 
GVAR Model

Asia and Pacific North America Europe

Australia Canada Austria
China Mexico Belgium
India United States (US) Finland
Indonesia France
Japan South America Germany
Korea Argentina Italy
Malaysia Brazil Netherlands
New Zealand Chile Norway
Philippines Peru Spain
Singapore Sweden
Thailand Middle East and Africa Switzerland

Saudi Arabia Turkey
South Africa United Kingdom
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country’s trade with its trading partners exceeds 80%, we build a model with the 
largest country size, and (iii) the US is always included as a separate entity in 
these models. For demonstration purposes, Table 16 shows the cumulative trade 
weights with other countries for Argentina, as an example from the GVAR DdPS 
dataset.

Table 16   Argentina’s 
cumulative trade weights with 
trading partners

(*) denotes that the trade weights are arranged in descending 
order, from largest to smallest. (**) indicates the threshold where a 
minimum value of 50% is attained. (!) shows that the requirement of 
individual US participation is satisfied. (***) signify the fulfillment 
of the maximum country size condition, where Argentina’s trade 
with trading partners exceeds 80%

Country* ∑N

j=1
wij

Country* N∑
j=1

wij

Brazil 0.266 United Kingdom 0.927
China 0.433 Malaysia 0.940
Euro** 0.588 Peru 0.951
US! 0.716 South Africa 0.960
Chile 0.751 Australia 0.969
India 0.780 Saudi Arabia 0.978
Mexico*** 0.807 Turkey 0.984
Japan 0.827 Philippines 0.990
Canada 0.847 Sweden 0.993
Korea 0.864 Singapore 0.996
Switzerland 0.880 Norway 0.999
Indonesia 0.896 New Zealand 1.000
Thailand 0.912

Fig. 1   Competing models for Argentina based on trade relations
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Using the information given in Table  16, Fig.  1 illustrates the identification of 
models for Argentina utilizing this strategy.

According to the modelling strategy based on trade relations, four different compet-
ing models are developed. These models consist of sscountries represented by square 
boxes. Model 1 comprises Brazil, China, the Euro area, the US, and the ROW because 
of the minimum two conditions are satified. The Euro area, as in the DdPS, comprises 
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Fig. 2   The results of GAIC-model selection criterion for developing countries
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Fig. 3   The results of GAICad−hoc-model selection criterion for developing countries
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eight out of the eleven countries that initially adopted the Euro on 1 January 1999. 
These are Germany, France, Italy, Spain, the Netherlands, Belgium, Austria, and Fin-
land. The ROW region is formed by combining all the remaining countries listed in 
Table 15, expect Brazil, China, the Euro area, and the US. Similarly, in Model 2, the 
ROW region is formed by combining all the other countries in Table 15, except Bra-
zil, China, the Euro area, the US, and Chile. Model 3 shows that India, like Chile, is 
added to the model individually. Consequently, using a comparable methodology, the 
fourth model, is constructed, and Mexico is included as the final individually modelled 
country, meeting the maximum country size condition (exceeding 80%). Figures 2 and 
3 display the results obtained using the above modelling strategy for 15 developing 
countries, using GAIC and GAICad−hoc respectively. The calculated results according 
to the criteria for these models are shown in the supplementary materials.

On the one hand, the GAIC criterion tends to favor the selection of models cor-
responding to the largest countries. This tendency aligns with the AIC criterion’s 
behavior in other econometric model structures, such as the lag lenght selection in 
VAR models. It is commonly observed that the AIC criterion tends to favor models 
with a larger number of parameters. This observation is also consistent with the find-
ings presented in the theoretical and simulation experimental sections of this paper.

On the other hand, the GAICad−hoc criterion tends to prioritize the selection 
of models with a fewer number of parameters. This implies that when the trade 
partnership of developing countries exceeds 50%, sufficient information on the 
economic structure of these countries is collected. This observation is also consistent 
with the theoretical framework outlined in the study and the results of the simulation 
experiments.

Figures  2 and 3 also show findings that reinforce the significance of the US, 
China, the Euro area, and Japan for developing economies. As major players in the 
global economy, these developed countries have a significant impact on developing 
countries through their economic relations and interactions. They play a crucial role 
as major trading partners, sources of investment, and providers of technology and 
expertise for many developing countries.

Developing economies have significant links with major economic powers, includ-
ing the US, China, the euro area and Japan. The US holds a central position in the 
global economy and is an important trading partner for many developing economies. 
China, characterized by rapid economic growth, has emerged as a crucial player in 
global trade. Developing economies have expanded their trade relations with China 
and integrated themselves into its production chain. The Euro area is also a trading 
partner for many developing economies. In addition, Japan is a notable trading part-
ner for developing countries, with a robust economy in sectors such as high technol-
ogy, automobiles and finance.The economic policies of these developed countries, 
such as interest rates, exchange rates, and trade policies, can have a direct and signifi-
cant effects on the growth and competitiveness of developing countries.

These relationships with major economic powers present both opportunities and 
challenges for developing countries. Depending on global economic developments, 
these developing economies may need to adapt their economic policies and refine 
their foreign trade strategies. At the same time, these relationships can provide 
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incentives for developing countries to strengthen their domestic economic founda-
tions and enhance their competitiveness.

6 � Conclusion

The main purpose of this study is to propose an approach to the problem of cross-
country aggregation within GVAR models. GVAR models are superior to FAVAR 
models and PVAR models both in terms of modelling flexibility and the ability to 
aggregate cross-country aggregated estimates. As a result, academic researchers and 
practitioners tend to favour GVAR models and enjoy the ability to include virtually 
all countries’ data in their models. The availability of vast computational resources, 
including both the software and hardware, turn the task of multi-country modelling 
into a trivial one.

Nevertheless, while practicing GVAR modelling, the modeler has the liberty to 
consider the other economies in the world either individually or within a bundle of 
countries marked as the ‘Rest of the World’ (ROW). The common practice is to take 
into account the close trade partners individually and to bundle the others as ROW. 
While such an approach seems both realistic and practical, it undermines a deep-
rooted principle of econometrics, which is ‘parsimony’. In relation to the principle 
of parsimony, avoidance from model specification errors can be facilitated via proper 
model selection criteria. Owing to the serious transaction costs in GVAR models, 
determining the appropriate model at the least cost must be considered a priority for 
effective day-to-day use of these models. Having noticed the literature gap in GVAR 
model selection, this study develops, examines and suggests an information criterion 
for parsimonious model selection in GVARs.

Our proposed information criteria have been developed in two stages. We 
considered a relatively straightforward Akaike Information Criterion-type crite-
rion in the first stage, which is a criterion that does not distinguish between the 
cross-section and time dimensions. After observing the dominance of the cross-
section dimension on the values of our first criterion, we adjusted it to come up 
with our second, i.e., proposed, information criterion. The proposed criterion, 
by construction, is capable of handling the cross-section and time dimensions 
in a balanced fashion. In that, while determining the appropriate model dimen-
sions, expansion of a GVAR model over either of the dimensions would yield 
equal degrees of punishment.

Owing to the ad hoc character of the proposed information criterion, it is not 
feasible to test its qualities by means of formal statistical tests of hypotheses. So, 
we resort to two separate exercises in which we examine if the criterion works 
sufficiently well. In the first exercise, the small sample characteristics of the 
developed criterion are examined through a series of simulation experiments. 
The basic principle in designing experiments is that the model dimension, which 
is actually considered correct, both covers a set of competing models and has 
a subset. Thus, the effects of all possible situations in high-dimensional time 
series data are reflected, eventually underlining the viability of the proposed 
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criterion. Namely, the proposed criterion has provided results that coincide with 
the simulated data generating processes at hand.

The findings out of our first exercise can be summarized as follows: First, 
the economic size of the target country that is being explained affects the 
country/region structure of the GVAR model that should be generated. When 
compared to a country with a large economy and a small country, it is less 
fragile to be affected by cross-country relations. Secondly, the results of the 
GVAR modelling approach show sensitivity to the relationship of countries with 
the country designated as the reference country, regardless of their economic 
size. The weakening of the relationship with the reference country for the target 
country allows other countries to participate more individually in the model. 
Finally, the success of the GVAR modelling approach and in connection with the 
model selection criteria is higher if the country/region models are individually 
included in the system rather than the creation of more compact regions that are 
aggregated.

In the second exercise, based on an updated DdPS dataset of 33 countries 
from 1979Q2 to 2019Q4, individual GVAR model selection problem is 
considered. The proposed criterion has successfully yielded the GVAR 
models that reflect the real-life trade relations of developing countries with 
their counterparts. In this exercise, the results obtained exhibit a common 
characteristic: developing countries are more prone to the developments in the 
US, China, European countries and Japan than the rest of the world. In all these 
exercises, parsimonious as well as economically intuitive GVAR specifications 
have been obtained.

All in all, the proposed information criterion of this study seems to be a 
promising first step in sustaining parsimony in GVARs. Future work may 
shed more light on a standard set of principles to be applied within the GVAR 
modelling approach in a way to bring together the forecast performance of 
models and their degree of parsimony.

Appendix

Proof of Lemma 1
: The log-likelihood function of the unconditional model given in Eq. (3.2) is

where �t =
(
��
xt
, ��

x∗t

)� , we have

where

(A.1)�
(
�Δz,�zz

)
= −

T(k + k∗)

2
(log 2�) −

T

2
log||�zz

|| − 1

2

∑
�T
t=1

t��−1
zz
�t

(A.2)��
t
�
−1�t = ��

xt
�
xx�xt + 2��

t
�
xx*�*

t
+ �*�

t
�
x*x*�*

t
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and

From Eq. (3.5), using vt = �xt − �xx*�
−1
x*x

�x*t , we have

where

Furthermore, similar to the process performed in Eq. (3.6):

using the assumption of weak exogeneity, �xx,x∗ = �x , we also have

where

and from Eq. (3.8), we have

(A.3)�
−1 =

(
�
xx

�
xx∗

�
x∗x Σx∗x∗

)

|�| = ||�x∗x∗
|||||�xx − �xx∗�

−1
x∗x∗

�x∗x
|||

(A.4)��
t
�
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�
t
�
−1
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vt + ��

x*t
�
−1
x*x*

�x*t
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�x∗x.
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Hence, under the validity of the weak exogeneity assumption, the log-likelihood 
of the VEC ( p − 1 ) model in Eq. (3.2) is the sum of the log-likelihood of the models 
in Eq. (3.8) and Eq. (3.10). Consequently, � , the conditional model parameter vec-
tor, is independent of the marginal model, �∗(�

∗
�x∗x∗) . Finally, MLE estimation of 

� in the conditional model is identical to the indirect estimation of parameters in the 
unconditional model.

Proof of Lemma 2
: Because f (Δ�,�) is a probability density function,

When the partial derivative is received on both sides of the equality,27 according 
to �,

Therefore we have ∫ S(�)�f (Δ�,�)d(�) = 0 or E[S(�)] = 0.28

By assumption RC3, the variance of S(�) is finite,

Proof of Proposition 1
: K-L information given in Eq. (3.15) is

where from Eq. (3.2)

(
Δ�∗

t
−

p−1∑
�=1

��Δ�t−� − ��∗0

)

∫ f (Δ�,�)dΔ� = 1

(A.8)

∫
�f (Δ�,�)

��
dΔ� = 0

∫
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1
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��
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∫
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��
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(A.9)
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[
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[
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��
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���
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27  Derivatives and integrals can be replaced by the assumption RC2.
28  The expectation is based on f (Δ�).s
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and

And as mentioned in Eq. (3.5), since we have v0t ∼ IIDN
(
0,�

vv0

)
 , and f (Δ�,�)

f (Δ�,�0)
 is 

a convex function, using Jensen’s inequality,29 for log
[

f (Δ�,�)

f (Δ�,�0)

]
 we get:

where

It is used in (A.11), we finally have

Proof of Lemma 3
: The unbiasedness of the MLE estimator was obtained by using Eq. (3.18) and 

from Pesaran et al. (2000), we have

where 𝚫𝐱̂ and Ẑ∗�
−1

 are residuals of ordinary least square (OLS) estimation in regres-
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29  See Hogg et al. (2005) for further details.
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where I
(
�0

)
 is Fisher information matrix given in RC3 assumption, and also

This expression is Eq. (3.21).
In a similar way, substituting �̂ in Eq. (3.19)

and taking expectation we finally have

Proof of Theorem 1: Using the Taylor expansion, similar to the asymptotic distri-
bution theory of MLE estimation, we first note that the model f

(
��,�0

)
 is estimated 

with f̂ (��) = f
(
��, �̂

)
.

The target function given in Eq. (3.17) can be rewritten as

where 𝚫𝐱̃ is an independent sample.
Let �̃ be the MLE calculated on this independent sample. This is an independent 

copy of �̂.
We can rewrite A as

From RC2 assumption, consider Hessian

(A.13)
∫ f0(��) log f

(
��, �̂

)
d�� = −

kT

2
log2𝜋 −

k

2

−
T

2
log ||�v,v,0

||
− tr

[
I
(
�0

)[[
�̂ − �0

[
�̂ − ��

0
]
]]

A = −2E

[
∫ f0(��) log f

(
��, �̂

)
d��

]

= kT log 2𝜋 + k + T log ||�v,v,0
||

+ trE
[
I
(
�0

)[[
�̂ − �0

[
�̂ − ��

0
]
]]
,

= kT(log 2𝜋 + 1) + T log ||�v,v,0
|| + K

−2�𝛽 = k(log 2𝜋) + T−1
V̂V̂

�

−E
[
2�𝛽

]
= kT(log 2𝜋 + 1) + T log ||�v,v,0

|| − K

A = −2E
[
log f

(
𝚫𝐱̃, �̂

)]

(A.14)A = −2E
[
log f

(
��, �̃

)]

ℍ = −
𝜕

𝜕�𝜕��
E
[
log f (��,�)

]
> 0
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and using a second-order Taylor series expansion of the log-likelihood f
(
��, �̃

)
 

about �̂ , this is30

because of the first-order condition for the MLE, the second equality holds and we 
have

Using RC1-3, we get

and

Under the RC1-3, MLE has convergence properties which is proved by Pesaran 
et al. (2000).

Therefore, we finally have
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(A.15)
log f

(
��, �̃

)
= log f

(
��, �̂

)
+

𝜕

𝜕��
log f

(
��, �̂

)(
�̃ − �̂

)

−
1

2
(�̃ − �̂)�ℍ

(
�̃ − �̂

)
+ Op

(
T−1∕2

)

(A.16)log f
(
��, �̃

)
= log f

(
��, �̂

)
−

T

2
(�̃ − �̂)�ℍ

(
�̃ − �̂

)
+ Op

(
T−1∕2

)

A = E
[
2logf

(
��, �̂

)]
+ E

[
T(�̃ − �̂)�ℍ

(
�̃ − �̂

)]
+ O

(
T−1∕2

)
,

= −E
[
2 logL

(
�̂
)]

+ E
[
T(�̃ − �)�ℍ

(
�̃ − �

)]

+E
[
T(�̂ − �)�ℍ

(
�̂ − �̂

)]
+ 2E

[
T(�̃ − �)�ℍ

(
�̂ − �

)]
+ O

(
T−1∕2

)

A = −E
[
2�T

(
�̂
)
]+E[𝜒2

K
]+E[𝜒2

K

]
+ O

(
T−1∕2

)
,

= −E
[
2�T

(
�̂
)]

+ 2K + O
(
T−1∕2

)
.

30  Op denotes boundedness in probability.
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