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Abstract
This paper provides empirical studies of the estimation of defaultable bonds in the 
South African financial markets. The key objective is to estimate the unobservable 
factors affecting bond yields for South African major banks. The maximum likeli-
hood approach is adopted for the estimation methodology. Multi-dimensional Cox–
Ingersoll–Ross (CIR)-type factor models are considered and compared. Extended 
Kalman filtering techniques are employed in order to tackle the situation that the 
factors cannot be observed directly. We find empirical evidence that default risk var-
ies with the business cycle, increased sharply in the South African financial mar-
ket during COVID-19 and the �-CIR model performs better than the classical CIR 
model.
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1 Introduction

The South African financial environment is becoming progressively more com-
petitive as pointed out by Van der Colff (2017). This is owing to an increase in 
globalization as well as a constant change in economic health. Due to the compet-
itive nature of the environment, the time between an economic trough and peak 
has decreased over time. An economic trough is of particular interest to compa-
nies due to the potentially dire situation they might find themselves in. If compa-
nies are unable to meet their financial obligations, it increases the probability that 
they might default. Thus, developing a model to estimate the default intensity or 
default risk has become increasingly important. This is especially relevant given 
the impact that COVID-19 has had on the global economy, which is comparable 
to that of the Global Financial Crisis (GFC) (see for example Gunay (2020) for 
further elaboration).

The South African context provides a unique environment in which to estimate 
default intensity as it is a developing country which exhibits dynamic economic 
behaviour. The deputy governor of South Africa’s Reserve Bank, Dr Rashad (see 
Cassim,  2021), explained the economic status before COVID-19 as a ”techni-
cal recession combined with mounting fiscal stress, growing public sector debt, 
and a downgrade to below investment grade status in March 2020”. In light of 
the aforementioned factors, as well as the widespread effect that the COVID-19 
pandemic has had on the overall economy, South African treasury bonds have 
an increasing probability of defaulting. For this reason, estimating default inten-
sity, specifically in the South African context, is of paramount importance. Even 
though South Africa is much riskier than investment-grade countries, its bonds 
are the most desirable out of the bonds offered by other rated below investment 
grade countries. Therefore, investors looking for high yields will surely look to 
South African bonds first. This indicates that despite the pandemic, the South 
African economy is among the top performers in the Emerging Markets (EM) 
according to empirical evidence documented by Chi (2021).

In addition to the estimation of default intensity in South African financial 
market, this work also compares two interest rate models, namely, the Cox–Inger-
soll–Ross model (CIR) originally proposed by Cox et  al. (1985) and the �-CIR 
model by Jiao et  al. (2017) which both fall under the affine class of models 
(Duffie et  al., 2003). The CIR model is more popular and has been commonly 
used in recent history due to its restriction of interest rates to the positive domain. 
�-CIR is an extension of Cox et al. (1985) to capture jumps and low interest rates. 
Until recently, interest rates have been considered to be exclusively positive, not 
considering outliers (Cox et al., 1981). Furthermore, both the CIR and the �-CIR 
models have a mean-reverting property which further captures the movements of 
observed interest rates in the financial market.

Hull (2015) details the alternative equilibrium interest rate models. These 
include the Rendelman-Bartter model as well as the Vasicek model (see Rendle-
man & Bartter, 1980; Vasicek, 1977). These models possess undesirable proper-
ties in modeling interest rates such as the modelling of interest rates similarly to 
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equity prices as well as allowing for negative interest rates. The CIR model pro-
vides an improvement on these models.

It has been thought that the CIR’s constraint to model exclusively positive interest 
rates was an advantage, however, recently, and especially in the COVID-19 crisis, 
it is not always the ideal choice to model negative interest rates. Brown and Dybvig 
(1986) as well as Gibbons and Ramaswamy (1993) found additional drawbacks to 
the use of the CIR. These include the overestimation of short rates and its sensitivity 
to parameter choices. The overestimation of short rates affects bond pricing. The �
-CIR model, was developed to remedy the drawbacks of the original CIR model. 
This model is able to model continuously low interest rates as well as sizeable jumps 
(Jiao et  al., 2017). It is especially relevant to model low interest rates during the 
period of the COVID-19 pandemic. Thus, this paper compares performance of the 
CIR model to that of the �-CIR model during the periods before COVID-19 and the 
period during the pandemic for robustness check.

In this paper and following from Cox et  al. (1981), a three factor model is 
adopted. In allowing for the extension from a one factor to a three factor model, the 
model accuracy and flexibility is improved. This is owing to the three factor model 
incorporating variation in the short and long term interest rates.

The extended Kalman filter is employed. Chen and Scott (2003) describe that the 
innovations for the Kalman filter are linear. The Kalman filter would thus only pro-
vide unbiased estimates to the parameters of the unobservable factors of the bond 
yields if the components of the risk free rate (state variables) are normally distrib-
uted. The innovations for the state variables relating to the CIR and �-CIR are not 
normally distributed, and thus an extension to the Kalman filter is required.

To solve the estimation problem efficiently two steps are followed. Firstly, a way 
of estimating the unobservable factors affecting bond yields need to be developed. 
Secondly, a way of estimating the stochastic default intensity need to be developed. 
The solution to these two problems forms the two stages of the estimation proce-
dure. The latter problem forms the basis for the ultimate purpose of this paper.

The literature concerning the topic of estimating the probability of default of cor-
porate bonds dates back to the 1970s when Merton (1974) was the first to develop 
a theory for pricing bonds where there are significant probabilities of default. He 
called this theory, ”the risk structure of interest rates” and makes use of Black-
Scholes methodology when pricing these bonds. The theory developed by Merton 
links the probability of a firm defaulting to the volatility in its asset value. This 
approach was found to be impractical according to Duffee (1999). For this approach 
to be feasible in practice, the boundary conditions must include the conditions under 
which default occurs and the division of the claimant of the firm, given that a default 
had occurred. However, the conditions that are supposed to be incorporated into the 
boundary conditions are often too complex to quantify. For this reason, other meth-
odologies had to be developed.

Our paper is related to the literature on default risk estimation such as Duffie and 
Singleton (1999), Litterman and Iben (1991), Jarrow et  al. (2001), Lando (1998), 
Duffie (1998), Madan and Unal (1998) as well as Jarrow and Turnbull (1995), who 
estimated the default intensity parameter by modeling it as a stochastic variable through 
time in a reduced-form approach. Duffie and Singleton (1999) called this methodology 
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a reduced-form model since the probability of default is linked to the asset value 
although not directly. The models developed were proven to be mathematically tracta-
ble. But it was only in a paper by Duffee (1999) that they were shown in a general way 
to have the ability to successfully model the behaviour of individual corporate bond 
prices.

The model framework adopted by Duffee (1999) was similar to those adopted by 
Madan and Unal (1998) and made a few assumptions. Firstly, the yields were chosen 
to be modeled according to the affine term structure. Secondly, the affine term structure 
of the yields is linked to the square root diffusion process (CIR model to be exact) that 
was chosen to model the interest rates and the default intensities. Lastly, the extended 
Kalman filter was chosen to estimate the parameter values.

The choice of the affine term structure for the yield corresponds to the choice of the 
CIR model for the interest rates and the default intensity. The theory used to justify 
Duffee’s choice of this model was taken from a paper by Cox et al. (1985). The theory 
that can be used to justify Duffee’s choice of the extended Kalman filter as the method 
for parameter estimation can be found in a paper by Chen and Scott (2003) where they 
explore the effectiveness of the extended Kalman filter to estimate the parameters of a 
multi-factor CIR model for interest rates.

1.1  Our Approach

We model default risk with affine representations of state variables from corporate 
bonds for major banks in South Africa following the approach by Duffee (1999) and 
Driessen (2004). More recent literature was found that criticises the CIR model for cer-
tain shortcomings in the way that it does not capture low-interest rates and jump behav-
iours (see for instance Mendoza-Arriaga and Linetsky (2014) for further motivation of 
applying jump processes in default risk estimation). An extension to the original CIR 
model (so-called the �-CIR model) was proposed by Jiao et al. (2017) to rectify these 
shortcomings. In this paper, a multi-factor �-CIR is implemented for econometric esti-
mation and compared to the original CIR model. We offer some modest contributions 
to these stochastic default risk estimation methodologies originally proposed by Duffee 
(1999) by implementing the model using corporate bond data from four major South 
African Banks in Rand currency. The bond data used comes from First Rand, Nedbank, 
Standard Bank and African Development Bank. In addition to the unique data, we are 
the first to implement empirical studies to show that the �-CIR model consistently out-
performs the multi-factor CIR. We exploited the extended Kalman filter to estimate and 
accommodate ”hidden” state variables for default risk in the South African financial 
market. Empirical results show that default risk in South Africa increased sharply dur-
ing COVID-19, and this points toward the application of advanced stochastic models to 
manage default risk.

1.2  Outline of Paper

The paper is organised as follows. Section 2 introduces the stochastic models that 
will be applied for the purpose of stochastic default intensity estimation. Section 3 
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describe the data and discusses the estimation procedure of the mathematical mod-
els and algorithms to be implemented. This section ends with a discussion of the 
numerical results. Section 4 concludes.

2  Bond Pricing Models

2.1  Model Variables

Consider an economy indexed by the fixed time horizon T∗ ∈ [0,∞) . In this econ-
omy, there is a d-dimensional vector of state variables Y representing the systematic 
risk factors. We fix a probability space (Ω,F,ℙ) equipped with an information filtra-
tion {Ft ∶ t ≥ 0} , that specifies for each time t the set Ft of events that are observ-
able at that time. Here, the set Ω contains the possible states of the world and F  
consists of the subsets of Ω , called “events,” to which a probability can be assigned. 
The probability measure ℙ ∶ F → ℝ assigns a probability ℙ(A) to each event A (see 
for instance Shreve, 2008).

Given a stopping time � , we say that a non-negative hazard rate process ht is the 
intensity of � if

is a martingale.
A stopping time � with intensity h(t) is doubly-stochastic, driven by Y, if � has 

Poisson property.
Applying the law of iterated expectations we get

where �(⋅) denotes the expectation under ℙ conditional on Ft.
The default-free bond price is given by1

where rt is the (risk-less) instantaneous spot rate.
The reduced-form pricing of defaultable bond price Pd with zero recovery can be 

expressed as

Mt = �{𝜏≤t} − �
t

0

hs�{𝜏>s}ds

(2.1)ℙ(𝜏 > t|X) = e− ∫ t

0
h(s)ds = 𝔼

[
e− ∫ t

0
h(s)ds

]
, t ≤ T∗,

(2.2)P(t, T) = 𝔼
ℚ

t

[
exp

(
−∫

T

t

r(s)ds

)]
,

(2.3)Pd(t, T) = 𝕀{𝜏>t}𝔼
ℚ

t

[
exp

(
−∫

T

t

(r(s) + h̃(s))ds

)
||Gt

]
,

1 The risk-neutral expectation operator with respect to the information until time t is denoted by 𝔼ℚ

t
[⋅].
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where h̃(t) is the default intensity2 under the risk-neutral measure ℚ (see Schönbu-
cher, 1998). Here Gt = Ft ∨Ht , with (Ht)0≤t≤T denoting the filtration generated by 
the default indicator process �

�≤t.
Our goal is to estimate defaultable bond in Eq. (2.3). We consider the risk-neutral 

default intensity h̃t as an additional factor whose dynamics follow

This setting inspired by Duffee (1999) is used to capture the correlation between the 
default-free factor r and the default intensity h̃ . � is treated as a correlation parameter 
and r̄ is the sample mean of r.

2.2  Stochastic Modelling

2.2.1  CIR Model

We assume both rt and ĥt are given as a sum of three independent stochastic factors 
yi for i = 1, 2, 3 , i.e.

where each yr
i
 and yĥ

i
 follow the Cox–Ingersoll–Ross (CIR)3 dynamics under the 

pricing measure, i.e.4

(2.4)h̃(s) = 𝜌(r(s) − r̄) + ĥ(s).

(2.5)r(t) =

3∑
i

yr
i
(t)

(2.6)ĥ(t) =

3∑
i

yĥ
i
(t),

(2.7)dyr
i
(t) = �

r
i
(�r

i
− ri(t))dt + �

r
i

√
yi(t)dW

ℙr
i
(t)

(2.8)dyĥ
i
(t) = 𝜅

h
i
(𝜃h

i
− ĥ(t))dt + 𝜎

h
i

√
ĥ(t)dWℙĥ

i
(t),

2 It is the probability, under the equivalent martingale measure, that bank defaults during the time 
(t, t + dt) , conditional on the bank not defaulting prior to t, is h(t)dt
3 The model we adopted for the stochastic factors is just instrumental,we could have chosen other mod-
els as well. However, one should be careful because the positivity is crucial for factors related to the 
default intensity (for which non-negativity must be maintained).
4 We assume the dynamics are given under ℙ measure.
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where dWℙr
i
(t) (i = 1, 2, 3) and dWℙĥ

i
(t) (i = 1, 2, 3) are independent Wiener pro-

cesses.5 The CIR-type model is chosen for its analytical tractability, as well as the 
guaranteed positivity of the modelled object, with the condition which ensures that 
the origin is inaccessible.

The market price of risk (MPR6) is modelled with complete affine specifications 
(see Doran and Ronn (2008), Jarrow et al. (2001) and Dai and Singleton (2002)) and 
more specifically as

where dWℚr

i
(t) and dWℚĥ

i
(t) are Wiener processes under the risk-neutral measure ℚ. , 

i.e., Under ℚ , Eqs. (2.7)–(2.8) becomes

The coefficients �r
i
, �h

i
, �r

i
, �i, �

h
i
, �r

i
 , �h

i
 , �r

i
 , and �h

i
 are positive constants in order to 

keep the model analytically tractable.
The following proposition helps us to price bonds in an affine interest rate term 

structure framework.

Proposition 2.1 Let y be a d-dimensional Cox–Ingersoll–Ross (CIR) process, i.e.

where Wi ( i = 1, .., d ) are independent Wiener processes under the probability meas-
ure ℙ . If for all i = 1, .., d

hence for all t ≥ 0 and i = 1, .., d

where

(2.9)dWℙr
i
(t) = dWℚr

i
(t) −

�
r
i

�
r
i

√
yr
i
(t)dt,

(2.10)dWℙĥ
i
(t) = dWℚĥ

i
(t) −

𝜆
h
i

𝜎
h
i

√
yĥ
i
(t)dt,

(2.11)dyr
i
(t) = (�r

i
�
r
i
− (�r

i
+ �

r
i
)ri(t))dt + �

r
i

√
yi(t)dW

ℚr

i
(t)

(2.12)dyĥ
i
(t) = (𝜅h

i
𝜃
h
i
− (𝜅h

i
+ 𝜆

h
i
)ĥ(t))dt + 𝜎

h
i

√
ĥ(t)dWℚĥ

i
(t).

(2.13)dyi(t) = �i(�i − yi(t))dt + �i

√
yi(t)dWi(t),

(2.14)� ≥ −
�
2
i

2�2
i

,

(2.15)𝔼
ℚ

[
e−� ∫ t

0
yi(s)ds

]
=eΦi(0,t,�)+yi(0)Ψi(0,t,�),

5 Here we assume for each i, dWℙr

i
 are independent.

6 In the one-dimensional CIR case the market price of risk (MPR) Λ
r
=

�
r

�
r

√
r(t).
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with Ai = �
2
i
+ 2��2

i
.

Proof See Lamberton and Lapeyre (1996).   ◻

Next we apply Proposition 2.1 to compute bond prices in Eqs. (2.2) and (2.3):

The defaultable bond price is given by

Under the no-arbitrage principle, the risk-neutral dynamics (2.12) support the affine 
yield structure

(2.16)Φi(0, t,�) = −
2�i�i

�
2
i

ln

⎛
⎜⎜⎝
�i(e

√
Ait − 1) +

√
Ai(e

√
Ait + 1)

2
√
Aie

√
Ai+�i

2
t

⎞
⎟⎟⎠
,

(2.17)Ψi(0, t,�) =
−2�(e

√
Ait − 1)

�i(e
√
Ait − 1) +

√
Ai(e

√
Ait + 1)

,

(2.18)P(t, T) = 𝔼
ℚ

t

[
exp

(
−∫

T

t

r(s)ds

)]
= 𝔼

ℚ

t

[
exp

(
−∫

T

t

3∑
i

yr
i
(s)ds

)]

(2.19)=

3�
i=1

𝔼
ℚ

t

�
e− ∫ T

t
yr
i
(s)ds

�
= e

∑3

i=1
(Φr

i
(t,T ,1)+yr

i
(t)Ψr

i
(t,T ,1)).

(2.20)Pd(t, T) = 𝔼
ℚ

t

[
exp

(
−∫

T

t

(r(s) + h(s))ds

)]

(2.21)= 𝔼
ℚ

[
exp

(
−∫

T

t

(rs + 𝜌(rs − r̄) + ĥs)ds

)]

(2.22)= e𝜌r̄(T−t) × 𝔼
ℚ

[
exp

(
−(1 + 𝜌)∫

T

t

rsds

)]
𝔼
ℚ

[
exp

(
−∫

T

t

ĥsds

)]

(2.23)= exp

{
3∑
i=1

(𝜌ir̄i(T − t) + Φr
i
(t, T , (1 + 𝜌i)) + yr

i
(t)Ψr

i
(t, T , (1 + 𝜌i)))

}

(2.24)× exp

{
3∑
i=1

(Φh
i
(t, T , 1) + yh

i
(t)Ψh

i
(t, T , 1))

}
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with

It should be emphasised here that the parameters for Φr
i
 are (�r

i
, �r

i
, �r

i
, �r

i
) while for 

Ψh
i
 are indexed by h, i.e., (�h

i
, �h

i
, �h

i
, �h

i
).

2.2.2  ̨ ‑CIR Model

The �-CIR model is an extension of the above-mentioned CIR model. Duffee 
(1999) models the state variables by using the CIR process but since then, the 
�-CIR model has been found to make up for the drawbacks of the original CIR 
model.

Jiao et al. (2017) explains that this model enables continuous low-interest rates 
(such as were observed in the South African financial market, during the COVID-
19 pandemic) as well as sizeable jumps. Typically, the low-interest rates and large 
jumps do not occur simultaneously. In order to allow for these previously-considered 
rare occurrences in interest rates, the �-CIR model is based on a regime-switch-
ing framework. The jump behaviour as well as the fatter tails are characterised by 
an added parameter, � , which is incorporated by adding an �-stable Lévy process 
beside the geometric Brownian motion in the original CIR representation.

The �-CIR process yt satisfies the following stochastic differential equation 
(SDE),

where �, �, �Z are non-negative and � ∈ ℝ . The process B = (B(t), t > 0) is a Brown-
ian motion and Z = (Z(t), t > 0) is a spectrally positive �-stable compensate Lévy 
process with parameter � ∈ (1, 2] whose Laplace transform is given is given by

The process W and Z are assumed to be independent. The departure of the process 
Z from Brownian motion is controlled by the tail index � . When 𝛼 < 2 , Z is a pure 
jump process with heavy tails.

(2.25)Y(t, T) = −
lnP(t, T)

T − t
= Gr

0
(T − t) +Gr

1
(T − t)⊤��(t),

(2.26)Gr
0
(�) = −

1

�

3∑
i=1

Φr
i
(0, �, 1, 0)

(2.27)Gr
1
(�) =

(
−

1

�

Ψr
1
(0, �, 1, 0) −

1

�

Ψr
2
(0, �, 1, 0) −

1

�

Ψr
3
(0, �, 1, 0)

)

(2.28)yr(t) =
(
yr
1
(t) yr

2
(t) yr

3
(t)
)
.

(2.29)dy(t) = �(� − y(t))dt + �

√
y(t)dB(t) + �Z

�

√
y(t−)dZ(t),

�[e−qZ(t)] = exp

{
−

tq�

cos(��∕2)

}
, q ≥ 0.
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As in Sect. 2.2.1, we also assume the instantaneous spot rate r and the default 
intensity h are driven by a sum of three independent state variables evolving 
according to the stochastic differential equation (2.29).

We have assumed that model dynamics (2.29) are specified under a risk-neutral 
probability ℚ . However, it is important to establish a link with the physical meas-
ure denoted by ℙ . The following proposition enables us to change measures from 
ℚ to ℙ for �-CIR dynamics (see also Jiao et al., 2021).

Proposition 2.2 Fix T⋆ large enough. Let y be an �-CIR (�, �, �, �Z , �) process 
defined in (2.29) under the risk-neutral measure ℚ and assume that the filtration 
(Ft)t>0 is generated by the random fields W and Ñ . Fix �1 ∈ ℝ and �2 ∈ ℝ+ , and 
define for t ∈ [0, T∗]

Then the Doléans-Dade exponential E(U) is a martingale on [0, T⋆] and the proba-
bility measure ℚ defined by dℚ

dℙ

||||FT⋆

= E(U)T⋆ is equivalent to ℙ . Moreover, r is under 

ℙ an �-CIR process as with the parameters (�ℙ, �ℙ, �ℙ, �ℙ

Z
) , where

Proof See Jiao et al. (2017, 2021).   ◻

In the following, we give a proposition of a useful transform that will be neces-
sary for the computation of bond prices under �-CIR model.

Proposition 2.3 Let y be a �-CIR process given in Eq.  (2.29) with y(0) = y0 . For 
𝜇 > 0 , we have

where � and � are the solutions to the generalized Ricatti equations

Moreover, the functions F and R ∶ iℝ × ℂ2
−
→ ℝ are defined by

(2.30)Ut = �1 ∫
t

0 ∫
ys

0

W(ds, du) + ∫
t

0 ∫
ys−

0 ∫
∞

0

(e−�2� − 1)Ñ(ds, du, d�).

�
ℙ = � − ��1 −

��Z

cos(��∕2)
�
�−1
2

, �
ℙ = ��∕�ℙ, �

ℙ = �, �
ℙ

Z
= �Z .

(2.31)𝔼
ℚ

[
e−� ∫ t

0
y(s)ds

]
= exp

(
�(t,�) + y0�(t,�)

)
,

(2.32)
��(t,�)

�t
= F(�(t,�),�), �(0,�) = 0;

(2.33)
��(t,�)

�t
= R(�(t,�),�), �(0,�) = 0.

(2.34)F(u,�) = ��u,
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Proof See Jiao et al. (2017).   ◻

As in Sect. 2.2.1, we assume both rt and ĥt are given as a sum of three independ-
ent stochastic factors yi for i = 1, 2, 3 , i.e.

where the yr
i
 and yĥ

i
 follow the �-Cox–Ingersoll–Ross (CIR) dynamics under the 

pricing measure,

where dBr
i
(t), dZr

i
(t), dZĥ

i
(t) (i = 1, 2, 3) and dBĥ

i
(t) (i = 1, 2, 3) are independent 

Wiener processes.
Example if r(t) is given as a sum of the factor �-CIR model in Eq. (2.29), with 

parameters (�r
i
, �r

i
, �r

i
, �r

Zi
, �r

i
) for i = 1, 2, 3 under the equivalent risk-neutral prob-

ability measure ℚ then the zero-coupon bond price is given by setting � = 1 in 
Proposition 2.3:

where �r
i
 and � r

i
 solve the generalized Riccati equations

where

(2.35)R(u,�) = −� − �u +
�
2

2
u2 −

�
�

Z

cos(��∕2)
(−u)� .

(2.36)r(t) =

3∑
i

yr
i
(t)

(2.37)ĥ(t) =

3∑
i

yĥ
i
(t),

(2.38)dyr
i
(t) = �

r
i
(�r

i
− yr

i
(t))dt + �

r
i

√
y(t)dBr

i
(t) + �

r
Zi

�
r
i

�
yr
i
(t−)dZr

i
(t),

(2.39)dyĥ
i
(t) = 𝜅

ĥ
i
(𝜃ĥ

i
− yĥ

i
(t))dt + 𝜎

ĥ
i

√
y(t)dBĥ

i
(t) + 𝜎

ĥ
Zi

𝛼
ĥ
i

�
yĥ
i
(t−)dZĥ

i
(t),

(2.40)P(t, T) =

3∏
i=1

exp
(
�
r
i
(T − t, 1) + yi(t)

r
�

r
i
(T − t, 1)

)
,

(2.41)
��

r
i
(t, p)

�t
= Fi(�

r
i
(t, p), p), �

r
i
(0, p) = 0, ∀i;

(2.42)
��

r
i
(t, p)

�t
= Ri(�

r
i
(t, p), p), �

r
i
(0, p) = 0, ∀i,

(2.43)Fi(u, p) = �
r
i
�
r
i
u
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From the zero-coupon �-CIR representation of the bond price, the zero-coupon �
-CIR yield can be determined exactly as given in Eq. (2.25).

The defaultable bond price under the �-CIR model is given by

where �r
i
(s, p) , and � r

i
(s, p) are solutions to Eqs. (2.41)–(2.44).7 𝜙ĥ

i
(s, p) and 𝜓 ĥ

i
(s, p) 

are the unique solutions to

where

(2.44)Ri(u, p) = −p − �
r
i
u +

(�r
i
)2

2
u2 −

(�r
Zi
)�

r
i

cos(��r
i
∕2)

u�
r
i .

(2.45)Pd(t, T) = 𝔼
ℚ

t

[
exp

(
−∫

T

t

(r(s) + h(s))ds

)]

(2.46)= e𝜌r̄(T−t) × 𝔼
ℚ

[
exp

(
−(1 + 𝜌)∫

T

t

rsds

)]
𝔼
ℚ

[
exp

(
−∫

T

t

ĥsds

)]

(2.47)

= exp

{
3∑
i=1

(
𝜌ir̄i(T − t) + 𝜙

r
i
(T − t, 1 + 𝜌i) + yi(t)

r
𝜓

r
i
(T − t, 1 + 𝜌i)

)}

(2.48)× exp

{
3∑
i=1

𝜙
ĥ
i
(T − t, 1) + yi(t)

ĥ
𝜓

ĥ
i
(T − t, 1)

}
,

(2.49)
𝜕𝜙

ĥ
i
(t, p)

𝜕t
= Fĥ

i
(𝜓 ĥ

i
(t, p), p), 𝜙

ĥ
i
(0, p) = 0, ∀i;

(2.50)
𝜕𝜙

ĥ
i
(t, p)

𝜕t
= Rĥ

i
(𝜓 ĥ

i
(t, p), p), 𝜓

ĥ
i
(0, p) = 0, ∀i,

(2.51)Fĥ
i
(u, p) = 𝜅

ĥ
i
𝜃
ĥ
i
u

(2.52)Rĥ
i
(u, p) = −p − 𝜅

ĥ
i
u +

(𝜎ĥ
i
)2

2
u2 −

(𝜎ĥ
Zi
)𝛼

ĥ
i

cos(𝜋𝛼ĥ
i
∕2)

u𝛼
ĥ
i .

7 The system of ODEs (2.41)–(2.44) can be solved fast and efficiently numerically using standard fourth-
order Runge–Kutta methods using complex arithmetic.
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3  Empirical Research

The South African government bond data as well as the corporate data from four of 
South Africa’s largest banks was retrieved from Bloomberg’s database.

Two different types of data were used in the implementation namely the treasury 
bond data (used in the estimation of the risk-free component) and corporate bond 
data of the four major banks in South Africa (used in the estimation of the default 
risk component). A detailed explanation follows.

3.1  Data and the Methodology

3.1.1  Government Bond Data

The South African government bond data8 was used as a proxy for risk-free rate 
for which to estimate the default-free process. Daily bond yields from 22/10/2015 
to 10/05/2021 with maturities of 2, 6, 10, and 15 years were used.9 As stated in the 
introduction of this paper, government bonds of developing nations are generally 
too risky to be used in the estimation of the default-free process. However, in the 
South African bond context, it is one of the nearest to risk-free proxies that can be 
achieved. It was also stated that South African bonds trade in the speculative invest-
ment category indicating that there is a considerable probability of default. It should 
thus be noted that the estimate of the three-factor risk-free rate cannot be expected to 
be accurate. The government bond data used in the estimation of default-free param-
eters were the bond yields with maturities of 2, 6, 10, and 15 years from 22/10/2015 
to 10/05/2021. Table 1 gives the descriptive statistics of the long-end of the South 
African government bond yields. Our data covers a more recent important event, 
the Global COVID-19 pandemic. We, therefore, break the data further down into 
smaller subsamples and analyse their statistical features as depicted in Table  1. 
There is a regime shift observed at the onset of the pandemic. As seen from Table 1, 
the short-end of the yield curve drastically declined during the COVID-19 period. 
Note that the standard deviation of the 6- and 10-year bond yields estimated in the 
period of COVID-19 0.896% and 0.683% respectively which is almost double that 
(0.399% and 0.336% resp.) of the corresponding yields before COVID-19. The rea-
son for this seemingly higher volatility is due to the market uncertainty as a result 
of COVID-19. To better quantify the volatility of the interest rates during those two 
periods, we also present the linearly as well as nonlinearly detrended standard devia-
tion of the interest rates. The linearity and nonlinearity are removed by subtracting 
a least-squares polynomial fit of degree 1 and degree 2 respectively. For the two 
statistics of skewness (asymmetry) and kurtosis (leptokurtic), we can observe that 
the bond yields used in our study are characterised by non-normal distributions. The 

8 We consider bonds issued in South African Rands. Normally, countries never default on government 
bonds issued in their own currency, only on bonds issued in foreign currency—this is because they have 
control over their own currency.
9 We use the short ends of the yield curve because it is more liquid.
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positive signs of the skewness coefficients indicate that the bond yields are skewed 
to the right and are far from being symmetric for all bond yields during COVID-19 
period. Also, the kurtosis coefficients confirm that the leptokurtic distributions for 
all yields used in this study show the existence of a high peak or a fat tails in their 
volatilities.

Owing to the wide-ranging impact that COVID-19 has had on the overall econ-
omy, an estimation of the parameters was drawn before the pandemic as well as 
during (Chi, 2021). The COVID-19 pandemic starting date was taken as the 5th of 
March 2020, which is considered to be the date that the virus entered South Africa. 
This allows for just over three weeks of data prior to South Africa’s nationwide lock-
down. These dates were selected in order to be able to assess the full impact that the 
pandemic has had on bond prices and to clearly judge which model reacted best to 
the impact the pandemic had on the market. The data that were available in the time 
period before the pandemic is large enough to acquire meaningful results when the 
model fit it.

To assess the impact of the COVID-19 pandemic we split our data sample into two 
subperiods. First, the estimation is performed for the period 22/10/2015–05/03/2020 
before the global lockdown, 05/03/2020–10/05/2021 during the pandemic, and for 
the whole period, i.e., from 22/10/2015 to 10/05/2021.

Figure 1, below, shows the South African bond yields for 2-, 6-, 10-, and 15-years 
to maturity. A regime shift is observable at the start of the COVID-19 pandemic 
where the South African government bond yields experienced a sudden increase fol-
lowed by a sharp decline in the interest rates. The spread between long-term and 
short-term interest rates increased substantially in the wake of the global pandemic. 
This indicates varying levels of risks in the market, and this is a key predictor of 
economic recessions as detailed by Estrella and Mishkin (1998).

From Fig. 1, it can be seen that the daily yield data is more volatile for longer 
maturities. Furthermore, the yield data for the 2, 6, 10 and 15 year bonds follow the 
same pattern. The yields of these bonds have an overall increasing trend. This is due 
to the increasing yield required by investors as the risk of default increases as the 

Fig. 1  South African Government Bond Yields
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time to maturity decreases. The reason for the increase in yield is further empha-
sised by the spike in the data for the 2, 6, 10 and 15 year bonds at the start of 2020, 
which is most likely due to the onset of the COVID-19 pandemic which indicates 
the uncertainty in the market and a decrease in demand of South African Treasury 
bonds at that time.

3.1.2  Corporate Bond Data

The corporate data that was used was taken from four of South Africa’s major banks 
namely African Development Bank (ADB), FirstRand, Nedbank, and Standard 
Bank. The government bond data was given in terms of zero-coupon yield values, 
whereas the corporate bond data was given in terms of bond price values. The data-
set for the government bond yields is longer than the dataset for individual banks. 
This is accounted for in the estimation process.

Tables 2 and 3 show corporate bond data summary statistics for the major banks 
that will be applied in the default risk estimation procedure.

3.2  Estimation Method

This section discusses the mathematical methodology that was used in the imple-
mentation of the models.

The estimation approach considered is the quasi-maximum likelihood in com-
bination with the extended Kalman filter. The model is cast into a state-space 

Table 2  Corporate bonds for 
South African major banks

This table shows the main features of the corporate bond data for 
major banks in South Africa included in the sample. We collect three 
bonds for the African Development bank, and two bonds for the rest. 
AFDB coupons are relatively low than the other bank due to its bet-
ter credit quality. All bonds pay the coupon semi-annually and are 
not collateralised

Name Coupon (%) Issue date Maturity date

(a) African Development Bank data: 10/10/2019 to 10/05/2021
AFDB 6.5 10/10/2019 17/10/2024

7.07 21/02/2019 29/03/2023
6.73 23/04/2019 26/05/2023

(b) First Rand data: 13/07/2016 to 10/05/2021
FSRSJ 10.75 13/07/2016 10/12/2024

7.75 13/07/2016 28/02/2023
(c) Nedbank data: 16/09/2019 to 10/05/2021
NEDSJ 10.66 17/02/2016 17/02/2023

5.81 16/09/2019 12/09/2024
(d) Standard Bank data: 23/02/2017 to 10/05/2021
STABAN 10.065 20/11/2015 20/03/2023

9.775 23/02/2017 31/01/2024
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form, which consists of the system equations and the observation equations. The 
estimation of the defautable bond price in Eq. (2.3) is followed by two steps. The 
hidden factor is the instantaneous rate in Eqs. (2.7) and (2.38). First we estimate 
the instantaneous rate rt according to default-free bond data. Then taking the first 
step result as given we estimate the risk-neutral default intensity ht based on the 
observation of corporate bonds. In this case, the hidden factor is the instantane-
ous intensity in Eqs. (2.8) and (2.39).

Table 3  Summary Statistics of Corporate bond yields for South African major banks

This table shows the descriptive statistics of the corporate bond yield data for major banks in South 
Africa. The yields do not vary much over time for all banks as seen from the low value of the standard 
deviation

Coupon AFDB FSRSJ NEDSJ STABAN

6.50% 7.07% 6.73% 10.75% 7.75% 10.66% 5.81% 10.07% 9.78%

Before COVID-19
Mean 2.370 2.243 2.135 4.872 3.233 4.012 2.003 4.314 4.267
Standard 

deviation
0.002 0.002 0.005 0.003 0.003 0.001 0.005 0.003 0.004

Detrended S.D 0.001 0.002 0.005 0.002 0.002 0.001 0.002 0.002 0.002
Nonlinear 

detrended 
S.D

0.001 0.001 0.002 0.002 0.002 0.000 0.002 0.002 0.002

Kurtosis − 0.367 − 0.938 − 0.636 − 0.757 − 0.871 1.726 − 1.250 − 0.969 − 1.005
Skewness − 0.606 − 0.612 − 0.911 − 0.349 − 0.356 − 1.629 − 0.095 0.339 0.104
During COVID-19
Mean 2.358 2.231 2.121 4.870 3.226 4.002 2.001 4.303 4.252
Standard 

deviation
0.005 0.006 0.006 0.002 0.002 0.005 0.008 0.004 0.005

Detrended S.D 0.005 0.006 0.006 0.002 0.002 0.005 0.006 0.003 0.003
Nonlinear 

detrended 
S.D

0.003 0.003 0.003 0.002 0.002 0.002 0.005 0.001 0.002

Kurtosis − 0.451 − 0.051 0.564 − 1.022 0.300 − 0.979 2.425 − 0.991 − 1.158
Skewness 0.665 0.602 0.985 − 0.221 0.672 0.405 1.679 0.559 0.403
Whole Period
Mean 2.361 2.234 2.125 4.872 3.230 4.005 2.002 4.311 4.263
Standard 

deviation
0.007 0.007 0.008 0.003 0.004 0.006 0.007 0.006 0.008

Detrended S.D 0.006 0.006 0.006 0.003 0.002 0.004 0.006 0.003 0.003
Nonlinear 

detrended 
S.D

0.003 0.004 0.005 0.002 0.002 0.004 0.006 0.003 0.003

Kurtosis − 1.367 − 1.291 − 1.035 − 0.806 − 1.217 − 1.494 1.821 − 0.337 − 0.295
Skewness 0.230 0.160 0.506 − 0.194 0.334 − 0.158 1.357 − 0.739 − 0.787
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3.2.1  Default‑Free Model Methodology

The default free model presented by Duffee (1999) uses the assumption of the 
equivalent martingale measure ℚ (which may not be unique) where bonds are priced 
according to the default-free interest rate rt . Duffee (1999) considers the assumption 
of a two-factor model.10 In this paper a three-factor model is considered, whereby rt 
is equal to the sum of the state variables as given in Eq. (2.36).

There are four maturities, T1 = 2 years, T2 = 6 years, T3 = 10 years, and T4 = 15 
years. The observed bond yield Y(t, Tj) of corresponding maturity Tj is fitted into the 
formula

where Gr0 and Gr1 are of the form as given in (2.26) and (2.28) and the measure-
ment errors �jt are i.i.d. N(0, �2

�
)-distributed. The estimation task is to estimate the 

unobservable instantaneous rate rt which is expressed as a sum of factors given in 
Eq. (2.7) or (2.29) and the parameters in Gr0 and Gr1 according to the observed yield 
Y(t, Tj).

In the filtering case, the parameter set Θ includes the observation error variance 
and the variance of the state variables.

This paper estimates parameters through the method of quasi-maximum likeli-
hood (in conjunction with the extended Kalman filter discussed in the “Appen-
dix A”), i.e., we choose �̂� that maximises the likelihood of all observations YtN:

where the likelihood function L(YtN , �) can be decomposed in terms of sequential 
conditional likelihood so that

The parameter estimates need to be given in terms of the real-world measure. When 
switching from the risk-neutral world to the real world, the volatility of the model 
stays constant while the drift rate does not. To connect pricing under the risk-neutral 
measure to pricing under the real-world measure, Dai and Singleton (2002) incor-
porates the market price of risk into the model to account for the change in the drift 
rate (for Proposition 2.2). The market price of risk (defined in Eqs. (2.9) and (2.10)) 
is thus another parameter to estimate.

Since the risk-free rate is the sum of state variables, the process for the yi ’s also 
follows the CIR model and is generated as a square root diffusion process indepen-
dently for each variable, as stated in Chen and Scott (2003). It is then clear that the 
state variables can be written recursively. A model for the yield is then determined, 

(3.1)Y(t, Tj) = Gr
0
(Tj − t) +Gr

1
(Tj − t)⊤��(t) + 𝜖jt,

(3.2)�̂� = argmax
𝜃∈Θ

L(YtN , 𝜃),

(3.3)�̂� =

N∏
k=1

l(ytk |Ytk−1 , 𝜃).

10 Duffee (1999) employed two factors for the default-free process and one factor for the defaultable pro-
cess. This paper assumes three factors for both default-free and defaultable processes.
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such that it is dependent on the state variables. Following that, the model error 
of the yield can be determined by calculating the difference between the treas-
ury bond yield data (i.e. the market yield) and the model yield. Chen and Scott 
(2003) make use of the extended Kalman filter in order to estimate the unobserv-
able state variables and the same methodology is applied in this paper as well. The 
extended Kalman filter is used in order to tackle the situation that the factors cannot 
be observed directly. Since the log-likelihood function depends on the error in the 
model yield, the parameters for the state variables ( �r

i
 , �r

i
 , �r

i
 , �r

i
 ) are found such that 

the (negative) log-likelihood is a minimum. In this way, the parameters are essen-
tially estimated through a quasi-maximum likelihood (QML) technique since the 
noise process is conditionally Gaussian.11

3.2.2  Defaultable Model Methodology

This section is the main purpose of the paper which is to estimate the default risk 
or intensity parameter, ĥt.12 This estimation procedure uses the short rate, rt , as esti-
mated in the default free estimation procedure discussed in Sect. 3.2.1.

The process followed by the default intensity parameter, ĥt is also modeled by the 
multi-factor CIR and �-CIR model given in Eqs. (2.8) and (2.39) respectively.

Observed are corporate bond prices of a major bank with different maturity dates 
Tj and coupon cj that identifies the jth bond. For example, for the CIR model the 
measurement equation, based on Eq. (2.3) becomes

�jt ∼ N(0, �2
�
).

For all i = 1, 2, 3 yr
i
 is treated as exogenously given and Φr

i
 and Ψr

i
 are evaluated 

at �r
i
, �r

i
, �r

i
 , and �r

i
 already estimated in the first step of default-free estimation. The 

maximum likelihood method is applied in order to estimate yh
i
, �h

i
, �i, �

h
i
, �h

i
, �h

i
 and 

the variance of the measurement errors �
�
 . The same procedure applies to the �-CIR 

model.
As done in the default-free Sect. 3.2.1 where the state variables were estimated 

from the recursive pattern, the default intensity parameter in this section is estimated 
through a recursive pattern. The model bond price is subtracted from the observed 

(3.4)

Pd(t, Tj, cj)& = exp

{
3∑
i=1

(𝜌ir̄i(Tj − t) + Φr
i
(t, Tj, (1 + 𝜌i), 0) + yr

i
(t)Ψr

i
(t, Tj, (1 + 𝜌i), 0))

}

(3.5)× exp

{
3∑
i=1

(Φh
i
(t, Tj, 1, 0) + yh

i
(t)Ψh

i
(t, Tj, 1, 0))

}
+ �jt,

11 As pointed out by Chen and Scott (2003) to apply the CIR type models, the quasi maximum likeli-
hood estimation is not consistent because there is a bias in the filtering method. They developed an unbi-
ased estimator for the unobservable state variables. They reveals significant biases for the estimates that 
determine the time series properties of interest rates.
12 Analogy to the default-free process, we also assume that the default intensity is driven by a sum of 
three state variables.
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market corporate bond to estimate the model error. An extended Kalman filter pro-
cedure was implemented to specify the method used in estimating the default inten-
sity parameters that minimize the model errors. From the estimated parameters, the 
default intensity was thus calculated.

3.3  Empirical Results

This section begins with the discussion of the default-free process estimation. We 
proceed to discuss the estimation of default risk from defaultable corporate bonds. 
Lastly, a comparison is then drawn between the two models, making specific infer-
ence to performance of models before COVID-19 to that during the pandemic.

3.3.1  Default‑Free Parameter Estimation Result

The implementation of the default-free estimation was done to find the optimal 
parameter values that result in the minimum of the negative log-likelihood with the 
extended Kalman filtering approach (see Chen and Scott (2003) and Chen and Scott 
(1993) for more details on Extended Kalman fitering method or see “Appendix A” 
for a brief summary of Kalman filtering). A global optimiser, Adaptive Simulated 
Annealing (ASA) introduced by Ingber (1993, 1996) is used for the optimisation 
task.13 Default-free parameter estimates are given in Table 4. We measure the per-
formance based on the log-likelihood value, the bigger the absolute value of the 
log-likelihood function, the better the model fits the data. For example, the mini-
mum of the negative log-likelihood value for the default-free for 3-factor CIR model 
is −7.47E + 04 and −8.48E + 03 before and during COVID-19 respectively while 
the negative log-likelihood value for the default-free for 3-factor �-CIR model is 
−7.99E + 04 and −8.87E + 03 before and during COVID-19 respectively. This indi-
cates that the �-CIR model provides a better fit to the data. We can also see that 
both models perform poorly during the COVID-19 period. The estimates of the 
parameters are given in Table 4 below, rounded to the nearest 3 decimals. The val-
ues in parentheses are the standard errors of the estimates.14 Furthermore, looking at 
the small values for the standard errors, we are confident about the accuracy of the 
default-free parameter estimates for both models.

In Table 5, we show the model fit across yield maturities. The �-CIR model con-
sistently outperforms the CIR model across all maturities and has a better RMSE 
notably during the COVID-19 period.15 Figure 2 shows the state variables from both 
models that were estimated using the optimal parameters given in Table 4. The state 
variables were estimated for the period of October 2015–May 2021. The estimated 

13 The main advantage of the method is the ability to go beyond the local minimum solutions.
14 Obtained by taking the square root of the diagonal of the inverse of the Hessian matrix of the negative 
log-likelihood function.
15 �-CIR has a lot more parameters, so a better fit in absolute terms is to be expected. One may consider 
using the Akaike Information Criterion for a better relative comparison.
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unobservable or state variables mimic the trajectories of the yield curve very well 
before and during COVID-19.

As seen from Fig. 2, the filtered state variables from both models have trajecto-
ries identical to the government bond yields showing that the estimates of the state 
variables are accurate and a further indication that the default-free algorithm per-
forms well on the full data set as well as at subperiods. It is also important to note 
that owing to the three-factor nature, the state variables have additional flexibility in 
which to capture the bond yields.

In the next section, we give the estimates of the defaultable bond process.

3.3.2  Default Risk Parameters Estimation Result

The parameters estimated in the default-free algorithm are kept constant. The default 
risk parameter estimates for 3-factor CIR and �-CIR model are given in Tables 6–7 
and 8–9 respectively. Looking at CIR model estimates in Tables 6 and 7, estimates 
for all banks are statistically significant. However, in the case of the �-CIR model 
estimates (see in Tables 8, 9) standard errors are quite large (see, for example, the 
results for the African Development Bank and Nedbank).

The parameter � , determines how closely related the model is to the original CIR 
model by how close it is to the value of 2. One would argue that state variable 2 as 
estimated from FirstRand data over the whole period is closer in theory to the origi-
nal CIR model while state variables 1 and 3 are more likely to capture large jumps 
in interest rates, as well as continuously low-interest rates in the market. However, 
� has little effect if �z is zero as is the case here. This fact is further emphasized by 
Fig. 4 which shows default intensity ht to follow the dynamics of log corporate bond 
prices. Nevertheless, as was discussed in the methodology for the �-CIR model, the 
methods in determining the model yields for the CIR and the �-CIR models are the 
reason for the large differences in state variables estimated by the two models. It can 
also be reiterated at this point that the advantages of the �-CIR model are those of 
the jump diffusion and its ability to capture low-interest rates. Figure 4 shows how 
the model has achieved this.

Figure  4 show the state variables that were estimated with the parameter esti-
mates given in Table 6, 7, 8 and 9. Further comparisons were drawn between the 

Table 5  RMSE of yield to Maturity

This table shows the cross-sectional performance using root mean square errors as a measure of the 
model fit to bond yield across maturities. RMSE are expressed in basis points(bp), which is 1

100

 th of 1%

Before COVID-19 During COVID-19 Whole period

CIR RMSE 
(bp)

�-CIR RMSE 
(bp)

CIR RMSE 
(bp)

�-CIR RMSE 
(bp)

CIR RMSE 
(bp)

�-CIR RMSE 
(bp)

2y 9.738 9.374 11.049 10.849 11.488 11.254
6y 9.623 9.538 12.493 12.152 12.163 12.046
10y 9.079 7.368 13.081 12.772 10.140 9.800
15y 8.827 8.291 13.603 13.107 10.798 10.577
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state variables for the whole period and the log bond prices. This was done to high-
light how the estimation performed. It is clear that the CIR model was able to fol-
low the same trend as that of the bond data while the �-CIR strayed relatively far 
away from the bond yield. Thus, the CIR model outperformed the �-CIR model in 
the conditions of the economy prior to COVID-19. This is as was expected as the 
economy was functioning in an ordinary way and its interest rates prior to COVID-
19 were not low.

The comparative graphs in Fig. 4 highlight the inefficiency of the CIR model dur-
ing the COVID-19 period while depicting how the �-CIR model follows the trend of 
the log bond quite well. Thus, the �-CIR model outperforms the CIR model owing 
to its property of modeling low interest rates and jump behaviour. The South African 
governor, Lesetja Kganyago (Kganyago, 2021), explains that South African interest 
rates are at record lows and this warrants a consistent modelling approach. Therefore 
our results show that a multi-factor �-CIR model could be the best candidate for 
modelling interest rates in times of market uncertainty.

Table 10 depicts the mean squared errors (MSE) and Akaike Information Criterion 
(AIC) of the models fit to corporate bond data across different subperiods. We observed 
that the �-CIR model has the lowest MSE for all banks in the sample and across all sub-
periods (see also Fig. 3). The �-CIR model has more parameters than the CIR model, 
in order to have a meaningful comparison, we give AIC. The preferred model is the one 
with the lowest AIC. The formula for the AIC is

where n is the number of observations, and p is the number of free parameters to be 
estimated. As revealed by the AIC and looking at Fig. 3 we see that �-CIR consist-
ently outperformed the CIR model for pricing corporate bonds.

The CIR-distributed default intensity for the banks in Fig.  4, resulted in the 
default intensity factors being either decreasing or constant functions. According to 

(3.6)AIC = n ln(MSE) + 2p,

Fig. 2  Comparison of the bond yield with estimated state variables (full data set) from each model
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(Crouhy et al., 2001), companies with low credit ratings (below investment grade) 
have decreasing probabilities of default. It should be noted that default intensity is 
not interchangeable with the probability of default, however, relationship is mono-
tonic. Figure 4 therefore tells the reader that banks below investment grade bonds 
are clearing indicated by their decreasing default intensity curves.

The credit ratings of the African Development Bank, FirstRand, Nedbank and 
Standard bank, respectively, were found to be AAA, BB- and BB-, BB- according 
to Fitch. Furthermore, S &P rated FirstRand as B and Nedbank as BB- (which is a 
higher rating than FirstRand). These ratings reinforce the results obtained from the 
CIR model since the banks with lower credit ratings have steeper downward curva-
ture of their default intensities. African Development Bank with the highest rating 
has the least downward curvature and indicates a stable default intensity. First Rand 
with the lowest credit rating according to S &P, has the steepest default intensity. 
Lastly, Nedbank has a higher rating than FirstRand and a more stable curve.

Moreover, Fig. 4 portrays the results of the three-factor default intensity param-
eter from the �-CIR model. It is clear that the two models portray opposite results 
to one another with the default intensities of FirstRand and Nedbank now being 
upward-sloping. Upward-sloping default intensities are constant with the standard 
understanding of the probability of default. That is, default risk as seen from today, 
increases when looking further into the future.

At first glance, the results from the �-CIR model are more reliable since they are 
consistent with standard default risk understanding and since the default free form 
or this model outperformed the CIR model during the COVID-19 period. Recall that 
these results are for the period during the pandemic.

Table 10  Corporate bond pricing errors

This table shows the mean square errors (MSE) and t Akaike Information Criterion (AIC) between the 
model corporate bond prices and actual observed corporate bond prices for each bank. Due to market 
dynamics during COVID-19, both models exhibit a slight increase of rmse during that period. The sam-
ple period for each bank is given in Table 2

Before COVID-19 During COVID-19 Whole period

MSE AIC MSE AIC MSE AIC

African development bank
CIR 1.10E−04 − 5.18E+03 2.15E−03 − 3.46E+03 1.84E−03 − 3.55E+03
alpha-CIR 4.80E−05 − 5.61E+03 1.42E−04 − 4.98E+03 2.68E−04 − 4.61E+03
First Rand
CIR 3.51E−02 − 3.16E+03 1.43E−03 − 6.27E+03 6.65E−04 − 7.01E+03
alpha-CIR 1.52E−04 − 8.40E+03 6.11E−04 − 7.04E+03 6.19E−04 − 7.03E+03
Nedbank
CIR 3.28E−04 − 4.74E+03 1.38E−03 − 3.87E+03 1.23E−03 − 3.94E+03
alpha-CIR 3.36E−05 − 6.06E+03 2.30E−05 − 6.29E+03 2.40E−05 − 6.26E+03
Standard Bank
top CIR 5.27E−04 − 7.54E+03 4.80E−04 − 7.64E+03 8.23E−05 − 9.42E+03
alpha-CIR 6.37E−04 − 7.30E+03 3.07E−05 − 1.04E+04 4.60E−05 − 9.96E+03
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Fig. 3  Pricing performance
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Next, we show the probability of a major bank defaulting within the next n-year. 
As revealed in Table 11 AFDB and FSRSJ are found to have a low probability of 
default within one year. AFDB is rated much more highly than the other banks and 
the probability of default are consistently lower than other banks. NEDSJ is found 
to have the highest probability of default within the next 20 years. Moreover, we are 

Fig. 4  Corporate bond estimation default intensity using the multi-factor CIR-based models
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puzzled to see that although FSRSJ has a low probability of default within one-year 
compared to STABAN, the 20-year probability of default for FSRSJ is higher than 
that for STABAN. This could be due to the fact that the model is fitted to short-
term data (for maturity ranging from 1 to 10 years), and almost all of the values in 
Table 11 represent extrapolation, which is something that usually models do badly.

4  Concluding Remarks

In this paper we began with an understanding of the South African bond yield data 
that the estimation procedure was implemented. We considered 3-factor CIR and �
-CIR models under completely affine specification. Comparisons were drawn for the 
periods before COVID-19 as well as during COVID-19 in order to ascertain which 
model performed better under the different circumstances. The defaultable results 
were compared during the COVID-19 period for both models. We found that the 
South African context provided a unique and interesting setting in which to estimate 
stochastic default intensity. This was owing to the South African bonds being an 
attractive investment. Their low-rated status means that they are riskier than invest-
ment-grade bonds and thus provide a higher yield to investors. Additionally, South 
African bonds perform better than other below-investment-grade bonds, and thus 
investments in the bonds are attractive.

The South African economy experienced an economic territory owing to the pan-
demic. The widespread effect that the pandemic has had on the economy was far-
reaching and this ushered us to critically examine the behavour of default intensity 
specifically at this time.

The main focus of this paper was to estimate the unobservable factors affecting 
bond yields and to ultimately estimate the default intensity of corporate bonds.

The CIR model has traditionally been a preferred interest rate model since inter-
est rates have commonly been considered positive up until recent years. During 
the COVID-19 pandemic, South Africa has experienced all-time interest rate lows. 
As a result of this, an extension to the CIR model, known as the �-CIR model was 
chosen to compare its performance to the CIR model. The model is able to capture 
continuously low-interest rates as well as sizeable jumps that are prevalent during 
COVID-19 since it is a period of economic turmoil. This paper aimed at assessing 

Table 11  Probability of default

This table displays the probability of a bank to default within the 
next n-year. This probability is computed using Eq.  (2.1), 
1 − �

[
e
− ∫ t

0

h(s)ds
]
 , where h is the estimated default intensity

Bank/year 1Y 5Y 10Y 20Y

AFDB 0.072 0.182 0.306 0.438
FSRSJ 0.088 0.213 0.283 0.471
NEDSJ 0.143 0.277 0.412 0.611
STABAN 0.198 0.263 0.338 0.465
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the performance of each interest rate model in different time phases to draw conclu-
sions, about which model performs best.

It was found that the CIR model performed well but not as well as that of the �
-CIR model before the pandemic. This is understandable as interest rates prior to 
COVID-19 were at a moderate level and the economy was relatively stable.

It was subsequently found that the �-CIR model outperformed the CIR model 
during the outlined COVID-19 period. This can be attributed to the fact that the �
-CIR model is able to model low-interest rates that, as well as sizeable jumps, which 
have been prevalent during the pandemic.

The defaultable section was implemented on the data during the COVID-19 
period. One would expect that, as with the results in the default-free section, the �
-CIR model would be a better model. However, owing to the inconclusive results 
attained from the model it was not considered as reliable. The CIR model showed 
that FirstRand and Nedbank, had sharp decreasing curves. This can be attributed 
to the credit quality of the banks being that of BBB- and Ba2. This means that ini-
tially there is a high probability of default, however, as time passes the probability of 
default decreases. African Development Bank has a more stable straight curve. This 
is owing to the fact that the bank has an AAA rating.

The research conducted showed that there was a clear significance in using a 
three-factor model to estimate the unobservable state variables. The graphs clearly 
show that an additional state variable enables a better fit to some of the bond yields, 
as well as a more accurate fit.

The CIR and �-CIR interest rate models fall under the equilibrium class of mod-
els. Research has also been conducted on a similar topic using the Vasicek model for 
the short rate. However, further research on this topic can be conducted to compare 
the performance of the equilibrium class models with no-arbitrage models. Accord-
ing to Hull (2015), no-arbitrage models better capture the reality of interest rates 
since the drift term is a function of time (unlike the equilibrium models). Due to 
this adjustment, the zero rate in the market at each point in time would be used to 
calculate the short rate for the future. Using these models, the estimates for the state 
variables and default intensity parameters would be updated once new market infor-
mation is made available. Estimates would thus not primarily be based on historical 
data.

Since the performance difference between the two models considered is not 
substantial, we may conclude that both are equally well suited to ZAR bond data. 
Furthermore, this paper sheds light on the dynamics and peculiarities of the South 
African financial market, which may have practical implications for professionals or 
policymakers in the context of default risk management.

Lastly, alternative machine learning algorithms could provide a possible enhance-
ment to estimating stochastic default intensity. The extended Kalman filtering algo-
rithm that was implemented in this paper is a form of machine learning. However, 
alternative machine learning algorithms could provide possible enhancements to 
parameter estimation, particularly in the field of code efficiency. An added benefit 
of exploring alternative machine learning algorithms would be that of an algorithm 
that learns as additional data is incorporated into the model. Accuracy could be 
improved when applying this method.
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Appendix A: The Extended Kalman Filter Algorithm

Our model consists of two sets of equations. The first one is the system equation that 
describes the evolution of the state variables, namely

whereas the second one is the observation equation that links the state variables with 
the market-observable variables and is of the form

Let Ŷt = Et[Yt] and Ŷt|t−1 = Et−1[Yt] denote the expectations of Yt at t and t − 1 
respectively and let Pt and Pt|t−1 denote the corresponding estimation error covari-
ance matrices. Linearizing the h-function around Ŷt|t−1 we obtain,

where

The Kalman filter yields

and

where

The log-likelihood function is constructed as

(A.1)Yt+1 = Φ0 + ΦYYt + wt+1, wt+1 ∼ iid N(0,Qt),

(A.2)zt = h(Yt) + ut ut ∼ iid N(0,Ω).

(A.3)zt = (h(Ŷt|t−1) − H�
t
Ŷt|t−1) + H�

t
Yt + ut, ut ∼ iid N(0,Ω),

(A.4)H�
t
=

𝜕h(Yt)

𝜕Y �
t

|Yt=Ŷt|t−1 .

(A.5)Ŷt+1|t =Φ0 + ΦY Ŷt,

(A.6)Pt+1|t =ΦYPtΦ
�
Y
+ Qt,

(A.7)Ŷt+1 =Ŷt+1|t + Pt+1|tH�
t
F−1
t
𝜖t,

(A.8)Pt+1 =Pt+1|t − Pt+1|tH�
t
F−1
t
HtPt+1|t,

(A.9)𝜖t =zt+1 − h(Ŷt+1|t),

(A.10)Ft =HtPt+1|tH�
t
+ Ω.

(A.11)logL = −
1

2
log(2�)

T∑
t=1

Nt −
1

2

T∑
t=1

log |Ft| − 1

2

T∑
t=1

�
�
t
F−1
t
�t.
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Appendix B: Adaptive Simulated Annealing (ASA) Minimisation

Adaptive Simulated Annealing (ASA) is an optimisation method that seeks the 
global minimum parameters by using a probabilistic transition rule that determines 
the criteria for moving from one feasible solution to another in the design space. It 
is an extension of the Simulated Annealing developed by Kirkpatrick et al. (1983) 
(Fig. 5).

Consider Θ to bet the admissible parameter space and f ∶ Θ → ℝ , be the objec-
tive function. The algorithm seek the global minimum �g , such that f (𝜃g) < f (𝜃) 
∀� ∈ Θ. This algorithm has been developed to fit observed data to a theoretical 
objective function over a D-dimensional parameter space.

Appendix B.1: ASA in Brief

ASA considers a parameter �i
k
 in dimension i generated at annealing-time k with 

the range

calculated using the random variable yi , so that

The generating function gT (y) is defined as

where the subscript i on Ti denotes the parameter index. Its cumulative probability 
distribution is

where

yi is generated from a ui from the uniform distribution

The annealing schedule for Ti is computed by

(B.1)�
i
k
∈ [li, ui],

(B.2)�
i
k+1

= �
i
k
+ yi(ui − li), yi ∈ [−1, 1].

(B.3)gT (y) =

D∏
i=1

1

2(|yi| + Ti) ln(1 + 1∕Ti)
≡

D∏
i=1

gi
T
(yi),

(B.4)GT (y) = �
y1

−1

⋯�
yD

−1

dy
�1
⋯ dy

�DgT (y
�) ≡

D∏
i=1

Gi
T
(yi),

Gi
T
(yi) =

1

2
+

sgn (yi)

2

ln(1 + |yi|∕Ti)
ln(1 + 1∕Ti)

.

(B.5)ui ∈ U[0, 1], yi = sgn
(
ui −

1

2

)
Ti

[(
1 +

1

Ti

)|2u�−1|
− 1

]
.
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a global minima statistically can be obtained. i.e.,

Control can be taken over ci , such that

where ni and mi can be considered ”free” parameters to help tune ASA for specific 
problems.
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