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Abstract
This study considers multiperiod bankruptcy prediction models, an aspect scarcely 
considered in research despite its importance, since creditors must assess the risk of 
loans over the entire life of the debt and not at a specific point in the future. Two pos-
sibilities for the implementation of multiperiod prediction models are considered: 
Multi-Model multiperiod Bankruptcy Prediction Models (MMBPM) and Single-
Model multiperiod Bankruptcy Prediction Models (SMBPM). The former considers 
the conditional probabilities obtained by individual models predicting bankruptcy at 
specific times in the future, while the latter is a single model predicting bankruptcy 
at a specific time interval in the future. The results show that there are no significant 
differences between the two approaches when compared using data after the learn-
ing period. However, SMBPMs have the important advantage of interpretability for 
decision-making, which is discussed with examples. Moreover, a comparison of 
SMBPM performance with external references is performed.

Keywords Business failure · Multiperiod · Explainable Artificial Intelligence · 
Interpretability · Genetic programming

1 Introduction

The need for multiperiod Bankruptcy Prediction Models (BPMs) (which make pre-
dictions for a future time interval rather than for a specific moment in time) arises 
quite naturally because it responds to the fact that creditors must face credit risk, 
not at a specific moment in time, but over the entire life of the debt. Despite this, 
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the use of multiperiod BPMs (especially in the long term) is rather limited and their 
research interest rather low (Aziz & Dar, 2006; Matenda et al., 2021).

There are two concepts to focus on (Luo et  al., 2022): the prediction horizon 
and the task of a multiperiod BPM. At time t, the prediction horizon Ί refers to a 
future prospective time period. The multiperiod BPM estimates the probability of 
business failure occurring within the time period [t + 1,t + Ί]. That is, multiperiod 
failure prediction consists of creating multiperiod BPMs that, e.g., with data from 
2008 (t = 2008), estimate the probability that a company will fail at different predic-
tion horizons. For example, if the prediction horizon is 2 years, the interval will be 
[2009, 2010], if the prediction horizon is 5 years, the interval will be [2009, 2013]) 
and with a prediction horizon of 9  years, the multiperiod BPM will estimate the 
probability that a company will fail in the years from 2009 to 2017, inclusive.

The current approaches to address the realisation of multiperiod failure prediction 
(multiperiod BPM) share the same hypothesis: the probability of an event occurring 
(future) depends only on the current state (present) and not on previous states (past). 
For this reason, they use the calculation of the conditional probabilities of failure in 
a period without having failed in the previous period, probabilities which are taken 
from individual BPMs that predict failure at specific points in time in the future. In 
this way, the creation of a monotonically increasing time structure of the cumula-
tive probability of failure is ensured, which makes the model plausible. Take, for 
example, the calculation of a multiperiod BPM with a prediction horizon of 9 years. 
To perform the failure prediction for the period [t + 1,t + 9], the marginal probability 
of failure in years t + 1; t + 2; …; t + 9 has to be modelled. This implies, at least, a 
series of limitations that should be highlighted:

• The interpretability of the model is greatly compromised. Calculating the pre-
diction of failure in the period [t + 1,t + 9] on the basis of 9 marginal models 
assumes that these 9 models may have different explanatory variables, or, if they 
are similar, the relevance of each is likely to be different in each model. The 
prediction [t + 1,t + 9] may perform well, but its interpretability will be far from 
desirable.

• Each of the 9 models implies a different output to which a probability function, 
different in each of them, needs to be fitted. Each of these adjustments involves a 
risk of bias in the prediction [t +1,   t + 9].

In this context, our proposal is to perform discrete-time multiperiod BPMs with-
out the need to model the marginal probability of failure in each of the periods of the 
prediction horizon, in which only one model directly predicts failure at a given time 
interval in the future. Returning to the previous example, in our proposal the multi-
period BPM with prediction horizon [t +1,  t + 9] will not require models that assess 
the probability of failure at t + 1; t + 2; …; t + 9. Specifically, in our work, mod-
els with prediction horizons of 3, 6 and 9 years (intervals 1–3, 1–6 and 1–9 years 
prior to failure) will be considered. In addition, according to the above, models 
with the same prediction horizon obtained by the following two approaches will be 
compared:
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• Those obtained by modelling the marginal probability of failure, which 
we will call Multi-Model multiperiod Bankruptcy Prediction Models or 
MMBPMs. In these models, to obtain the model with prediction horizon X 
(interval [t + 1,t + X]), the independent BPMs that make predictions at a spe-
cific moment in time, (e.g., 1 year prior to failure or failure in exactly t + 1, …, 
X years prior to failure or failure in exactly t + X) will be used (i.e., X BPMs). 
With these independent BPMs, the probabilities of failure at each specific 
moment will be obtained and, from them, the probability of failure (cumula-
tive probability of failure) at prediction horizon X (multiperiod failure predic-
tion in the interval [t + 1,t + X]).

• Those obtained directly without that modelling, which we will refer to as 
Single-Model multiperiod Bankruptcy Prediction Models or SMBPMs. Con-
sequently, the time structure of the cumulative probability of failure over the 
prediction horizon is not used, providing only the cumulative probability of 
failure over that time interval, in exchange for ease of interpretability.

The Genetic Programming (GP) technique (Koza, 1992; Poli et  al., 2008) 
is used for automatically learning all the prediction models in the different 
approaches. The chosen way to analyse the suitability of SMBPMs is to compare 
their performance with that of MMBPMs on the basis of data after the training 
period. Furthermore, a comparison of the performance of the SMBPMs during 
the training period (evaluated on the test set) with the results obtained in other 
studies will be carried out in order to assess the suitability of the technique used 
(GP).

The objective of this study is to obtain SMBPMs with two main characteristics:

• Performance High predictive power after the learning period, comparable to the 
corresponding MMBPMs.

• Interpretability for decision-making SMBPMs should allow (by applying the 
proposed and appropriate techniques) to explain and make sense of these models, 
as well as help to understand what actions need to be taken to counteract the fail-
ure of a company.

Therefore, the main objective and contribution of this study is to present an alter-
native to the use of annual models for obtaining multiperiod BPMs, easily inter-
pretable for decision-making purposes and with long forecasting horizons (up to 
9 years).

The rest of the article is structured as follows. Section  2 summarizes, in the 
area of business failure prediction, previous proposals on multiperiod BPMs. Sec-
tion 3 details the design of the prediction models, the data used to derive the mod-
els, the set of explanatory variables, the genetic programming technique and the 
software environment. Section  4 focuses on the methods for obtaining MMBPMs 
and SMBPMs. Section 5 details the results of SMBPMs in terms of performance 
and interpretability, with a comparison between MMBPMs and SMBPMs, as well 
as including the comparison of SMBPMs with external references. Finally, Sect. 6 
includes the main conclusions that can be drawn from this study.
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2  Related Works

Early BPMs made predictions 1 year in advance of failure as shown in the work of 
Beaver (1966), Altman (1968) or Edmister (1972). This time horizon is still very 
frequent today (Kim & Upneja, 2021; Muslim & Dasril, 2021; Tsai et al., 2021). In 
any case, the need to expand the prediction horizon appears from the very beginning 
(Deakin, 1972; Wilcox, 1973) and this concern continues to the present day (Altman 
et al., 2020).

This evolution was reflected in the regulations and guidelines that concern finan-
cial institutions. Thus, while Basel II (International convergence of capital measure 
and capital standards: a revised framework) (Basel Committee on Banking Super-
vision, 2004) stipulated that an External Credit Assessment Institution (ECAI) 
should have been established for predicting failure with at least 1 year and preferably 
3 years to be eligible for national supervisors, the guiding principles for the replace-
ment of International Accounting Standards (IAS 39) (Basel Committee on Banking 
Supervision, 2009) recommended financial institutions to estimate the risk of a loan 
over the entire duration of the loan. Basel III (Basel Committee on Banking Supervi-
sion, 2011, 2017) does not change this criterion. On 27 October 2021, the European 
Commission adopted the “Banking Package” (informally known as Basel IV) which 
proposes an overhaul of EU banking rules (the Capital Requirements Regulation and 
the Capital Requirements Directive) from 2025 onwards. In any case, nothing sug-
gests that the criterion that “financial institutions will estimate the risk of a loan over 
the entire duration of the loan” will undergo changes.

In the same sense, the entities that set the accounting rules also established that 
the measure of default risk should be based on the total life of the financial instru-
ment (Financial Accounting Standard Board (FASB), 2016; International Account-
ing Standards Board, 2014).

Therefore, in parallel with the concern to extend the time horizon of prediction, 
the basis for research in multiperiod models arise. Following Blümke (2022), the lit-
erature on modelling multiperiod prediction of failure risk can be divided into three 
main possibilities:

• Survival models. Survival analysis is a set of methods commonly used to analyse 
data on the time elapsed until the occurrence of an event under study, such as the 
time until someone dies of a disease, is promoted in the job, etc. The focus is on 
modelling the prediction of the transition of the event and the time it takes for 
the event to occur.

• In continuous time. With conditional probabilities with Poisson series (Duffie 
et al., 2007), or using the forward intensity approach (Duan & Fulop, 2013; 
Duan et al., 2012) or one of its modifications.

• In discrete time. Sometimes a survival analysis is needed for discrete-time 
data, since, in practice, data is often collected at discrete time intervals, for 
example, days, weeks, and years, which violates the assumption of continuous 
time. On the other hand, the use of discrete time analysis has certain advan-
tages, compared to its continuous-time counterpart.  For example, discrete-
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time analysis has no problems in dealing with multiple events occurring at 
the same point in time, nor does it present problems when the exact time of 
occurrence of the event is unknown (Chava & Jarrow, 2004; Shumway, 2001; 
Traczynski, 2017).

• Models based on transition matrices. The estimation of the probability of transi-
tion (change from one state to another) from one period to another is the cen-
tral focus of these models. The works of Christensen et al. (2004), dos Reis and 
Smith (2018) and Jarrow et  al. (1997) are representative of this possibility, all 
of which focus on the issue of bond rating, as a consequence of the credit risk 
and—ultimately—the problem of business failure.

It is observed that the common feature of the different approaches, both survival 
models and models based on transition matrices, is that the probability of an event 
occurring depends on the previous event (concept of conditional probability and 
Markov chains associated with transition matrices). Since, in our case, with multipe-
riod BPMs we do not model the probability of state transitions but the prediction of 
an event in a time interval (similar to the survival model), our work could be framed 
within this typology of discrete-time survival models. Therefore, this work will use 
the studies by Duan et al. (2012), Duan and Fulop (2013), Luo et al. (2022) and Orth 
(2013) to evaluate our proposal (Sect. 5.1). All of them deal with multiperiod sur-
vival models based on monthly data from US public companies and their approach 
is closer to the approach of this study than the one corresponding to the transition 
matrices.

3  Design of Prediction Models

Briefly, the main objective in this study is to obtain SMBPMs with prediction hori-
zons of 3 years, 6 years and 9 years (which make predictions in the intervals [1, 3], 
[1, 6] and [1, 9] prior to failure), which have high performance in their predictions 
over time horizons and economic environments other than those of the learning 
period and are interpretable for decision-making. The main aspects involved in the 
design of these models are described in detail in the following subsections.

3.1  Data Sample

This study is based on the empirical analysis of the mortality of medium-sized Span-
ish firms. For the modelling, a population of 11,158 firms (1067 classified as failed 
and 10,091 classified as non-failed) with accounting information from 2005 to 2019 
is available. The accounting information of the companies has been obtained from 
the SABI database (Iberian Balance Sheet Analysis System, https:// www. infor ma. es/ 
en/ busin ess- risk/ sabi) of the company Informa, SA. It should be noted that the size 
of the population is larger than usual in other studies.

On the other hand, information from the Public Insolvency Register (www. 
publi cidad concu rsal. es) and from companies specialised in business reports 

https://www.informa.es/en/business-risk/sabi
https://www.informa.es/en/business-risk/sabi
http://www.publicidadconcursal.es
http://www.publicidadconcursal.es
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has been used to obtain the specific legal information of their failure status. 
The legal information on failure status is available from 1 January 2005 to 31 
December 2020.

The notion of medium-sized companies is understood to refer to the definition 
of micro, small and medium-sized companies, published in the Official Journal 
of the European Union L 124 of May 20, 2003. In the case of this work, the fol-
lowing criteria were applied jointly:

1. Workforce (measured in annual work units) equal to or greater than 50 and less 
than 250.

2. And at least one of the following conditions:

a. Annual turnover greater than EUR 10 million and less than or equal to EUR 
50 million.

b. Annual balance sheet greater than EUR 10 million and less than or equal to 
EUR 43 million.

Due to the peculiarities of some sectors which, among other reasons, use 
specific accounting or valuation criteria, it has been decided to exclude them 
from the study so as not to alter the interpretation of the financial ratios (input 
information for the forecasting models) and distort the results. Efforts have been 
made to minimise the number of sectors to be excluded. The excluded sectors 
were as follows: building construction; civil engineering; specialised construc-
tion activities; financial services, including insurance, reinsurance and pension 
funds; activities auxiliary to financial services and insurance; finally, compul-
sory social security and general government activities. The study has also been 
limited to the following legal forms: public limited companies, private limited 
companies (limited liability companies) and co-operatives.

Observations of failed and non-failed companies from 2005 to 2007 (both 
included) are used to learn the different models (“Observation” means data 
referring to a firm in a financial year). Data from 2008 to 2019 are used to make 
the comparisons between SMBPMs and MMBPMs. This distribution of data is 
entirely intentional and allows to test the suitability of the models when used 
after the learning period and in economic environments clearly different from 
the period in which they were trained. This, together with the length of the com-
parison period, allows more reliable conclusions to be drawn.

In the context of this study, the concept of failure is related to the legal dec-
laration of suspension of payments or bankruptcy. Given the multiple causes 
of failure, the legal declaration of suspension of payments or bankruptcy in 
research is, in the absence of confirmation of the event, the most widely used 
concept in studies of business failure due to its objectivity and concreteness, as 
well as being the most easily applicable based on publicly available information. 
The basic time periods of the study (2005–2007 for learning the models and 
2008–2019 to assess the suitability of the predictions) are developed in a homo-
geneous regulatory environment, as far as the definition of failure is concerned.
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3.2  Genetic Programming

3.2.1  Brief Commentary on Genetic Programming

Genetic programming (GP) (Koza, 1992) is an Evolutionary Computation (EC) 
technique that solves problems automatically without requiring the user to know 
or specify the form or structure of the solution in advance. At a more abstract 
level, it is a systematic, domain-independent method for getting computers to 
solve problems automatically based on high-level knowledge of what “needs to be 
done” (Poli et al., 2008).

EC methods simulate on computer the biological process of natural evolution, 
with natural selection as its driving force. A population of genotypes or individu-
als that encode solutions to a given problem is maintained. The solutions are eval-
uated and assigned a quality, fitness, based on how well they solve the problem. 
In general, these solutions are subjected to different “genetic operators”, which 
modify the genotypes of these solutions, operators such as crossover of genetic 
material between two individuals and mutation of part of the genetic material of 
a solution. The genetic operators are used to define new individuals and the selec-
tion operator is used to determine which individuals will become part of the next 
generation. The selection operator must respect Darwinian natural selection, in 
the sense that the higher the quality, the higher the probability of passing the 
genetic material of an individual to the next generation. This iterated process over 
different generations will obtain solutions that will progressively better solve the 
specific problem they encode. This general process is summarised in different 
algorithms in EC, such as the classical Genetic Algorithms, Evolutionary Strate-
gies and Genetic Programming (Petrowski & Ben-Hamida, 2017).

What is distinctive in GP is that a population of computer “programs” evolves, 
programs that are often represented as decision trees (programs that correspond 
in our application to bankruptcy prediction models). In other words, generation 
by generation, GP transforms—stochastically—populations of programs into new 
and possibly better populations of programs. The steps and genetic operators of 
GP are detailed, for example, in Poli et al. (2008). GP’s ability to obtain programs 
automatically is what gives it great versatility and allows it to tackle problems not 
easily tackled by other evolutionary computation techniques (Petrowski & Ben-
Hamida, 2017).

Not being the aim of this study the comparison of different Machine Learn-
ing (ML) techniques in the problem of business failure prediction, several fea-
tures of GP are appropriate for the objective of obtaining prediction models with 
high and stable performance in the learning and after the learning period. First, 
GP makes no prior assumptions about the explanatory variables of a prediction 
model. Moreover, GP provides a straightforward interpretability of the optimised 
tree/program (Brabazon et  al., 2020). GP also provides an automatic variable 
selection process, always tailored to each particular model. Finally, the ability to 
regulate in some way the complexity of the optimised tree or program, by param-
eterising its depth, the number of nodes or the functions that can be used in the 
search for a solution.
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3.2.2  Genetic Programming Environment—Software

The software used to evolve prediction models by GP has been HeuristicLab 
(HL) (Wagner et al., 2014). This software can be downloaded from its website: 
https:// dev. heuri sticl ab. com/ trac. fcgi/. HeuristicLab was selected because it is 
an extensible and paradigm-independent optimisation environment that strongly 
abstracts the heuristic optimisation process, also with a detailed user interface 
(Wagner et al., 2014).

Briefly, the following process has been followed for the generation of each of 
the BPMs:

• The prediction problem is modelled in HeuristicLab as a Genetic Program-
ming—Symbolic Classification problem.

• HeuristicLab is provided with a training set used in the progression of the evo-
lutionary process (i.e., used to define the fitness of each solution). HL is also 
provided with a test set, consisting of different observations, in order for the 
software to apply the models obtained from the training set to this test set. The 
classification metrics for the selected solution/program will be provided with 
this test set.

3.3  Parameterisation of the Prediction Models

As already indicated, the objective is that the SMBPMs obtained present a high 
performance (similar to that of the MMBPMs) and interpretability for decision-
making in their predictions over temporal horizons and economic environments 
other than those of the learning period. To this end, in line with other authors, 
some decisions have been taken, the most relevant of which are listed below.

3.3.1  Explanatory Variables

There is no consensus on the appropriate explanatory variables for a BPM. 
Although financial ratios are frequently used and have been shown to be effec-
tive in predicting business failure (du Jardin, 2009), many authors advocate the 
inclusion—usually together with financial ratios—of different explanatory varia-
bles. Some of the lines followed are shown below, without any intention of being 
exhaustive:

• Variables related to payment behaviour (Altman et  al., 2015; Ciampi et  al., 
2020).

• Variables related to taxes (specifically the difference between accounting income 
and disposable income) (Noga & Schnader, 2013).

• Variables related to the company not related to financial ratios (e.g., age and 
audit reports) (Altman et al., 2015, 2020; Dakovic et al., 2010).

• Macroeconomic variables (Altman et al., 2015, 2020; Cybinski, 2001).

https://dev.heuristiclab.com/trac.fcgi/
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Several authors offer a more detailed view of the sets of explanatory variables 
used (Altman et  al., 2015, 2020; du Jardin, 2017; Ratajczak et  al., 2022). Gener-
ally, the selection of explanatory variables aims to improve the performance of the 
model. In our case, in addition to this objective, we intend to make the models inter-
pretable, in the sense of facilitating decision-making. If among the explanatory vari-
ables there are variables on which the company has no capacity to act (e.g., the age 
of the company, the national unemployment rate, GDP growth, etc.), this interpret-
ability is totally compromised, since the model does not facilitate decision-making 
as it is based on explanatory variables that do not allow the company to act on them 
(Altman et al., 2015, 2020; du Jardin, 2017; Ratajczak et al., 2022).

On the other hand, some authors (Beaver et al., 2005; Das et al., 2009; Tian et al., 
2015) have found that some financial ratios constructed solely from accounting 
data contain relevant information about the risk of future failure. It has also been 
observed (Tian et al., 2015) that the importance of such ratios for predicting future 
failure, relative to market-based explanatory variables, increases as prediction hori-
zons increase. Market variables are more useful in the short term than in the long 
term.

On the basis of the above (sufficiency of the financial variables) and some of the 
objectives of the study (interpretability for decision-making), the use of market vari-
ables is ruled out, so that the explanatory variables of the model are calculated from 
the data provided by the annual accounts of the companies and are mostly financial 
ratios.

The explanatory variables to be used were chosen on the basis of two criteria:

• The first criterion refers to the ratios selected on the basis of the relevance 
reported in the literature and their presence in the predictive models tested in 
previous work.

• The second criterion covers other variables obtained from the annual accounts 
and which refer to other aspects that are little used (e.g., variations in magni-
tudes or variations in ratios) or very infrequent or novel in this type of work (e.g., 
degree of decomposition of the balance sheet, those referring to productivity or 
those referring to fraud).

A number of works have been relevant in the above selection process, the main 
ones being—in no order of precedence—those of: du Jardin (2010), Bellovary et al. 
(2007), Altman and Sabato (2007), Altman et  al. (2015), Yardeni et  al. (2019), 
Beneish (1999) and Tian and Yu (2017).

To summarize, the initial set of explanatory variables can be grouped as follows:

• Liquidity and solvency: 18 ratios
• Financial structure: 14 ratios
• Profitability: 12 ratios
• Efficiency: 11 ratios
• Turnover: 7 ratios
• Variations in magnitudes: 3 ratios
• Contribution: 2 ratios
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• Interest expenses: 5 ratios
• Size: 4 variables
• Growth: 1 ratio
• Changes in ratios: 2 ratios
• Degree of decomposition: 3 variables
• Productivity: 4 ratios
• Fraud: 11 variables

Thus, a total of 97 explanatory variables are used, which refer to a broad spec-
trum of aspects considered, a priori, to be relevant in business failure. It is necessary 
to highlight the large number of explanatory variables included in this study, which 
is much higher than that usually used in this type of studies. Moreover, in the case 
of GP, the ability to automatically (and intrinsically) select the relevant explanatory 
variables is an advantage over other ML techniques. That is, the selection pressure 
of the evolution of the final optimized programs/trees also involves an automatic 
determination of the relevant input variables to the prediction/classifier program.

3.3.2  Functions Used in the Evolved GP Programs

In this work, we have opted for the exclusive use of the arithmetic functions (addi-
tion, subtraction, multiplication and division) in the evolved GP programs (BPM 
models). The use of only the arithmetic functions has two additional effects on the 
results offered compared to the other options:

• Solutions are more interpretable, in the sense that the solution results provided 
by artificial intelligence can be better understood by human experts, in line with 
so-called explainable artificial intelligence (XAI).

• Solutions are simpler and this, as Finlay points out—cited by du Jardin and 
Séverin (2012)—, directly affects the stability of the predictive power of a solu-
tion over time, because the more complex a classifier is, the more often it must 
be re-estimated. This does not mean giving up the performance of the models. 
Balcaen and Ooghe (2006) conclude that simple models can gain significantly in 
classification accuracy compared to complicated models, due to the 80/20 Pareto 
rule and the law of diminishing returns.

3.3.3  Transformation of variables

The set of input variables will not be used with their original values, but will be 
transformed by standardising them according to the logistic distribution (Eq. 1). For 
this purpose, the mean and standard deviation of each of the variables in the period 
2005–2007 will be used.

(1)F
X
(x; �, s) =

1

1 + e−(x−�)∕s
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In line with other authors (du Jardin, 2017; Nyitrai, 2019; Tascon et al., 2018), 
this transformation aims not only at standardisation, but also at quantifying how the 
financial health of the firm varies over time (by referring the values of the period 
2008–2019 to the mean and standard deviation of the learning period 2005–2007).

3.3.4  Extension of the Training Period

We take the Laitinen (1991) idea of trying to capture the evolution of the explana-
tory variables by extending the range of the data used to create the model and by 
introducing time variations explicitly among these explanatory variables (e.g., 
among others, groups of variables such as variation in magnitudes, changes in ratios, 
degrees of decomposition, incorporate time variations of period t versus t-1). This 
idea is also pointed out by Shumway (2001) when the author comments about static 
models, indicating that the characteristics of most firms change from year to year. 
These (static models) ignore data on healthy firms that eventually go bankruptcy.

3.3.5  GP Parameterisation Overview

The most relevant parameters (using, where appropriate, the HL nomenclature) are 
listed in Table 1 together with their values/options. Some parameters are the usual 
values set in HeuristicLab (such as Solution Creator and Model Creator), while the 
others (such as Tournament window size, Population Size, Generations, Mutation 

Table 1  GP parameters

GP parameter Value/option

Explanatory variables As outlined in Sect. 3.3.1
Variable transformation Logistic distribution
Evaluator (fitness function) Mean squared error (between predicted and real values)
Solution creator Probabilistic tree creator
Symbolic expression tree grammar Arithmetic functions
Maximum depth 10 (maximum depth of the tree/program)
Maximum length 100 (maximum number of nodes in the tree − symbolic classifica-

tion model)
Maximum generations 100
Mutation probability 15%
Population size 1500
Selector Tournament—Window size: 8 (used in mutation and crossover)
Positive class 1 (failed companies)
Elites 1 (only the best solution is retained between generations)
Crossover Subtree Swapping Crossover at the crossing point)
Mutation Multi Symbolic Expression Tree Manipulator (allows for different 

types of mutation)
Model creator Accuracy Maximizing Thresholds (the returned solution is the one 

that uses as classification threshold the one that maximises the 
percentage of success in the training set)
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Probability, Maximum Depth and Maximum Length in evolved trees) were experi-
mentally selected to provide solutions with high classification performance.

This selection in these last parameters was performed with a standard/usual 
sweep of parameters in Evolutionary Computing. In this procedure, first a finite set 
of the values of each of the parameters is taken into account (e.g., discrete mutation 
rates between 1 and 50%, a low and a high rate for mutations). Second, for the sweep 
of the values in a parameter, the values of the other parameters are set to a standard 
or default value. Finally, the configuration of parameter values is chosen as the one 
that provides solutions with the highest classification performances according to the 
application interest (the highest normalized Gini coefficient over the estimated val-
ues using the test set, as detailed later in Sect. 4). Furthermore, given the stochastic-
ity of the GP evolutionary process, a large number (1000) of independent GP runs 
(for each parameter configuration) are considered to determine the best solutions.

Figure 1, in the subsequent Sect. 5.3, includes an example of a program evolved 
according to all these aspects.

4  Methods of Obtaining MMBPMs and SMBPMs

To obtain each of the necessary temporal prediction models, an experiment is per-
formed again with 1000 independent GP runs, given the stochasticity of the GP evo-
lutionary process. From the 1000 evolved programs, a selection is made to choose 
the final evolved program corresponding to each of the prediction models consid-
ered in the study.

Specifically, in any GP experiment, the best models (evolved GP programs) 
correspond to those with the highest normalized Gini coefficient on the estimated 
values using the test set, after a filtering in which only solutions with True Posi-
tive Rate (TPR) + True Negative Rate (TNR) greater than a threshold are taken into 
account. This is intended to rule out—at least partially—those solutions with high 
AUC (Area Under the ROC Curve) thanks to its value in “extreme zones” in their 
ROC (Receiver Operating Characteristic) curve (i.e., in the extreme zones in the 
ROC Curve: high TPR and FPR—False Positive Rate, low TPR and FPR). On the 
contrary, the solutions that are no discarded are forced to go through a certain area 
of   the ROC curve (at least one of its points), which can be called the area of inter-
est. The final objective is to use the filter to detect—from the point of view of the 
work—the best solutions of each GP experiment. This approach is neither new nor 
strange in the medical field (Dodd & Pepe, 2003; McClish, 1989).

Three SMBPMs are considered in this study: SMBPM 1–3 (predicting failure at 
time interval 1–3 in the future), SMBPM 1–6 and SMBPM 1–9. Alternatively, 3 
MMBPMs: MMBPM 1–3, MMBPM 1–6 and MMBPM 1–9 are also considered to 
predict failure at the same time intervals.

The MMBPMs are defined from the conditional probabilities of the annual 
BPMs that predict failure at t + 1, t + 2, …, t + 9. For example, MMBPM 1–3 uses 
3 independent BPMs that predict failure at t + 1, t + 2 and t + 3, which will allow 
to obtain the conditional probabilities (corresponding to the 3 BPMs) to define the 
MMBPM with prediction horizon 1–3. Similarly, MMBPM 1–6 uses 6 independent 
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BPMs that predict failure in the corresponding 6 years in the future and MMBPM 
1–9 uses 9 independent BPMs that predict failure in their corresponding 9 years in 
the future. Consequently, 9 independent GP experiments are performed to obtain the 
9 best BPMs to define the 3 MMBPMs considered (MMBPM 1–3, MMBPM 1–6, 
MMBPM 1–9).

In the case of SMBPMs, 3 independent SMBPMs are evolved, which predict fail-
ure at time intervals 1–3, 1–6 and 1–9. Therefore, 3 independent GP experiments 
are performed to obtain the best SMBPMs in these 3 time intervals considered 
(SMBPM 1–3, SMBPM 1–6, SMBPM 1–9).

From the annual models, the failure probabilities must be obtained so that—by 
means of the calculation of conditional probabilities—the MMBPMs with predic-
tion horizons 1–3, 1–6 and 1–9 years prior to failure can be defined. To do this, for 
each of the annual prediction models (1, 2, … and 9 years before failure), a probabil-
ity distribution has to be fitted to the estimated values (output values of the model). 
To select the distribution that best fits the values estimated by each of the annual 
models, the results obtained by more than 30 distribution types are compared. The 
selection is made according to the maximum likelihood estimation method and the 
Kolmogorov–Smirnov test. In parallel, a Gaussian Mixture Model (GMM) is fitted 
to the estimated values of each of the annual models, the main characteristics of 
these models being the following:

• Inference algorithm: maximum expectation—MS (Dempster et al., 1977).
• Selection criterion: Bayesian information criterion—BIC (Schwarz, 1978).
• Mixture model with equal or different variance.
• Number of classes: 2.
• A posteriori probability: via the MAP rule (Maximum A Posteriori) (Bassett & 

Deride, 2019).

For each annual BPM, the fits obtained by the two methods (probability dis-
tribution adjustment and GMM posteriori probabilities) are compared and the 
best one is chosen. It should be noted that in the 9 annual prediction models, the 
probability distribution adjustment has shown better results than the probabilities 
obtained by means of GMM. In this way, the failure probabilities for each annual 
prediction horizon will finally be available, which will allow the calculation of 
the MMBPMs to be compared with the SMBPMs.

The time period in which the models are analysed in the learning period is 
2005–2007, both inclusive. The number of observations used in the analysis in 
the learning period is as follows:

• Model 1–3:

o Training set: 242 observations classified as failures and 242 observations 
classified as non-failures.

o Test set: 242 observations classified as failures and 22,088 observations clas-
sified as non-failures.
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• Model 1–6:

o Training set: 677 observations classified as failures and 677 observations 
classified as non-failures.

o Test set: 676 observations classified as failures and 21,653 observations clas-
sified as non-failures.

• Model 1–9:

o Training set: 1013 observations classified as failures and 1013 observations 
classified as non-failures.

o Test set: 1014 observations classified as failures and 21,317 observations 
classified as non-failures.

As indicated above, the training set drives the evolution of optimized programs 
(prediction models), while the test set is used to select the best final models.

5  Results

The results analyse the 6 considered multiperiod models:

• 3 MMBPMs (with prediction horizons 1–3, 1–6 and 1–9) obtained by means 
of conditional probabilities of the annual BPMs.

• 3 SMBPMs (with prediction horizons 1–3, 1–6 and 1–9 years prior to failure).

Two comparisons are performed: i) SMBPMs are compared with external ref-
erences with data from the learning period. ii) The performance of SMBPMs is 
compared with that of MMBPMs. In the latter case, the comparison includes data 
after the learning period, using data corresponding to a wide period with differ-
ent economic environments. Finally, SMBPMs have the important advantage of 
interpretability for decision-making and here two interpretability possibilities are 
considered for decision-making with evolved SMBPMs.

5.1  Performance of the Models in the Learning Period. Comparison with External 
References

It is not easy to relativise the performance of SMBPMs in the learning period 
largely because of the scarcity of external references (that use multiperiod mod-
els). Moreover, each external reference has used a different dataset and a different 
classifier, among the most relevant differences. Although the comparison is in all 
cases performed on the test set, this does not guarantee that the comparison is 
performed homogeneously since, for example, it may use different performance 
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measures (Chandrashekar & Sahin, 2014). In any case, it may be interesting to 
approximate whether or not the proposed models perform acceptably.

The AUC and the accuracy in the learning period (measured on the test set) of 
the proposed SMBPMs is as follows:

• Model 1–3: AUC 89.80%; Accuracy 98.92%.
• Model 1–6: AUC 84.06%; Accuracy 96.98%.
• Model 1–9: AUC 80.13%; Accuracy 95.47%.

As an external reference to compare and relativise the accuracy of SMBPMs, 
we will use the results of different models (MMBPMs) up to 5  years prior to 
failure:

• Luo et al. (2022) with parametric family learning through deep neural models.

o Prediction horizon: 1–36 months prior to failure. Accuracy: 74.76%.
o Prediction horizon: 1–60 months prior to failure. Accuracy: 65.32%.

• Orth (2013) with time-varying covariates and log-logistic model in conditional 
distribution.

o Prediction horizon: 1–36 months prior to failure. Accuracy: 82.83%.
o Prediction horizon: 1–60 months prior to failure. Accuracy: 79.31%.

• Duan et al. (2012) with a forward intensity approach and non-financial compa-
nies.

o Prediction horizon: 1–36 months prior to failure. Accuracy: 66.98%.

• Duan and Fulop (2013) with the partially-conditioned forward intensity approach 
and non-financial companies.

o Prediction horizon: 1–36 months prior to failure. Accuracy: 68.20%.

Note that the horizons in these external references are not completely coin-
cident (with the intervals considered in the SMBPMs) and that they do not reach 
the 1–9 year horizon, for which no external multiperiod BPM references have been 
found. However, it is easy to see that the accuracy of SMBPMs is very high with 
respect to the benchmarks used.

Assessing and relativising the AUC of SMBPMs is more difficult since no exter-
nal AUC references are available for MMBPMs. However, the AUC of SMBPMs 
can be relativised by comparing with the AUC of BPMs at different years prior to 
failure (which make predictions for a specific moment in time rather than a time 
interval). As an external reference we will use the synthesis compiled by Ratajczak 
et al. (2022). This work includes, among other sections, the analysis of the predictive 
capacity of different models up to 5 years prior to failure. The study by Ratajczak 
et al. (2022) contains references in which the capability of the models is measured in 
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terms of AUC. The study by Altman et al. (2015) is also used as a reference. Table 2 
shows the AUC for BPMs in different years prior to failure.

Although this is not a comparison, but a relativisation, the performance of 
SMBPMs in terms of AUC (during the learning period and evaluated over the test 
set), presents a very high value. For example, the SMBPM with the longest predic-
tion horizon (Model 1–9) presents an AUC of 80.13%, which is higher than that of 
any BPM that makes predictions 3 years before the failure.

5.2  Performance of SMBPMs and MMBPMs After the Learning Period

The performance of SMBPMs is now compared with that of MMBPMs. The com-
parison metric will be AUC and will be made on the basis of data after the learning 
period.

The time periods in which the models are analysed after the learning period are:

• Model 1–3: From 2008 to 2017, both inclusive. Therefore, for example: with the 
2008 data, failure is predicted in the years 2009–2011, with the 2009 data, fail-
ure is predicted in the years 2010–2012, and with those of 2017 failure is pre-
dicted in the years 2018–2020.

• Model 1–6: From 2008 to 2014, both inclusive.
• Model 1–9: From 2008 to 2011, both inclusive.

These periods are the maximum possible based on the availability of data 
referring to failure in this study (until 2020) and present clearly different eco-
nomic environments from that corresponding to the learning period (2005–2007). 
This, together with the breadth of these periods, means that the conclusions 
obtained from the results of the comparisons are much more reliable and well-
founded than those obtained from a single comparison on the test set considering 
only the learning period.

The number of observations used in the analysis after the learning period is as 
follows:

• Model 1–3: In total there are 81,556 observations, of which 1533 are observa-
tions classified as failures (corresponding to observations from 1 to 3  years 
prior to failure, i.e., data on companies that fail within 1 to 3 fiscal years fol-
lowing the date of the observation) and 80,023 are observations classified as 

Table 2  AUC for bankruptcy 
prediction models in different 
years prior to failure

Years to failure

1 (%) 2 (%) 3 (%) 5 (%) 7 (%) 9 (%)

Altman et al. (2015) 88 82 78 76 73 69
Climent et al. (2019) 82 88 80
du Jardin (2017) 83 80 79 77
Tian et al. (2015) 84 73 68 59
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non-failures. This means that observations classified as failures account for 
1.88% of all observations.

• Model 1–6: in total there are 56,756 observations, of which 2338 are observa-
tions classified as failed and 54,418 are observations classified as not failed.

• Model 1–9: in total there are 32,205 observations, of which 2093 are observa-
tions classified as failed and 30,112 are observations classified as not failed.

The figures are different because of two basic circumstances: i) the length of 
the temporal horizon of the post-learning period, which is different in each of the 
models and ii) basically referring to observations of failed firms, the absence of 
annual accounts as the end of a failure process approaches (Balcaen & Ooghe, 
2006).

The following tables (Tables 3, 4 and 5) show the annual AUC of the SMBPMs 
and MMBPMs for each of the prediction horizons. Both multiperiod alternatives are 
applied with the information data corresponding to fiscal years 2008 and later, ana-
lysing the AUC data in several consecutive fiscal years and after the period used in 
the training, also analysing the comparison between both alternatives.

In summary, the following can be observed:

• The average AUCs of SMBPMs are slightly lower than those of MMBPMs, 
although the differences are minimal (the largest difference occurs at the predic-
tion horizon 1–3 years prior to failure and is, on average, − 1.26%).

• This difference (always in favour of MMBPMs) decreases significantly as the 
prediction horizon increases (in the prediction horizon of 1–9  years prior to 
failure the difference is, on average, − 0.20%). This is almost always the case in 
each of the years considered (the percentage difference in favour of MMBPMs in 
2008 for a prediction horizon 1–3 is greater than the same for the 1–6 horizon, 
and the latter is greater than that for the 1–9 horizon). The only exception is 
2009, where the prediction horizon 1–6 has the lowest difference.

• On average, there is no significant deterioration in the SMBPM performance 
(measured in terms of AUC) when SMBPMs are applied after the learning 
period. The AUCs in the learning period (measured on the test set) of SMBPMs 
are (as indicated above): Model 1–3: 89.80%; Model 1–6: 84.06% and Model 
1–9: 80.13%. Consequently, in the prediction horizon 1–3 years prior to failure, 
there is a deterioration of 4.01% (considering the average AUC after the learning 
period shown in Table 3, 86.20%). Similarly, the deterioration is 0.25% on pre-
diction horizon 1–6 and becomes an improvement of 2.45% on horizon 1–9.

• The AUCs obtained by the SMBPMs are stable over time. The highest Pearson’s 
coefficient of variation is 2.26% on the prediction horizon 1–3 years prior to fail-
ure.

In many problems, including the prediction of business failure, regardless of the 
total AUC of a solution, it is relevant to analyse the AUC in a certain area of the 
ROC curve, since when evaluating a ROC curve, there are two areas that describe 
the behaviour of that solution in “extreme” situations:
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Table 3  AUC per year—prediction horizon 1–3

SMBPM1_3 (%) MMBPM1_3 (%) % variation

2008 88.5560 89.4848 − 1.04
2009 86.3706 88.7280 − 2.66
2010 85.2801 86.6378 − 1.57
2011 83.8990 86.0003 − 2.44
2012 84.2928 86.7106 − 2.79
2013 84.1778 88.4229 − 4.80
2014 85.4971 86.4364 − 1.09
2015 85.6623 86.4512 − 0.91
2016 88.5845 86.0889 2.90
2017 89.6638 88.0271 1.86
Average (years) 86.1984 87.2988 − 1.26
Pearson’s coefficient of 

variation
2.2589 1.3558

Table 4  AUC per year—prediction horizon 1–6

SMBPM1_6 (%) MMBPM1_6 (%) % variation

2008 83.6049 83.8420 − 0.28
2009 84.9926 85.2670 − 0.32
2010 85.0496 85.4767 − 0.50
2011 82.9702 84.3972 − 1.69
2012 83.2531 84.3513 − 1.30
2013 83.5879 84.7677 − 1.39
2014 83.4995 83.0984 0.48
Average (years) 83.8511 84.4572 − 0.72
Pearson’s coefficient of 

variation
0.9157 0.8985

Table 5  AUC per year—
prediction horizon 1–9

SMBPM1_9 (%) MMBPM1_9 (%) % variation

2008 81.4053 81.5666 − 0.20
2009 82.4991 83.1306 − 0.76
2010 83.4991 82.9969 0.61
2011 80.9419 81.3191 − 0.46
Average (years) 82.0863 82.2533 − 0.20
Pearson’s 

coefficient of 
variation

1.2091 0.9927
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• The area on the right, where the True Positive Rate (TPR) is high, accompa-
nied by a high False Positive Rate (FPR). In this area, the acceptance rate of 
the model (when the model labels an observation as negative, rate measured as 
(True Negatives + False Negatives) / Total of samples)) is at low values, reaching 
0% when both TPR and FPR are 100%.

• The area on the left, where low TPR and low FPR coexist. In this case, the 
acceptance rate is very high (reaching 100% if TPR and FPR are 0%), which 
makes the application of the model useless because it is not discriminatory.

In the case of the prediction of business failure, it will generally be interest-
ing to focus attention on the central areas of AUC, excluding the aforementioned 
extreme zones. The following tables (Tables 6, 7 and 8) show the behaviour of 
the different SMBPMs and MMBPMs for each of the prediction horizons and 
years of analysis at different intervals in the central part of the ROC curve. The 
intervals analysed have been set completely arbitrarily and in terms of the model 
acceptance rate. AUC is measured in terms of TPR and FPR, but to each level 
of TPR and FPR corresponds a model acceptance rate, since the complementary 
of TPR is False Negative Rate and the complementary of FPR is True Negative 
Rate. The intervals analysed are as follows:

• Interval 1: Model acceptance rate between 90 and 10%.
• Interval 2: Model acceptance rate between 80 and 20%.

In these tables, the best average (years) and maximum values for each of the 2 
intervals are highlighted in bold. It is clear from these tables that the slight dif-
ference in favour of MMBPMs is diluted as soon as different areas of the curve 
are analysed at different prediction horizons, without it being possible to draw a 

Table 6  AUC per year and interval of acceptance rate—prediction horizon 1–3

SMBPM1_3 MMBPM1_3

Interval 1 (%) Interval 2 (%) Interval 1 (%) Interval 2 (%)

2008 54.1394 47.6832 56.9370 50.7718
2009 63.5194 52.7493 62.3928 55.7457
2010 67.8708 55.2896 71.2170 42.1746
2011 68.6251 48.2818 70.5411 45.0194
2012 68.4094 37.9707 54.5264 48.3229
2013 62.3879 55.5707 73.6249 51.8310
2014 63.0031 54.6704 63.0900 55.5595
2015 61.5981 54.6016 54.6610 47.9323
2016 55.3193 48.5251 55.2143 52.4807
2017 69.3008 41.9792 67.2778 38.0501
Average (years) 63.4173 49.7322 62.9482 48.7888
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conclusion about the superiority (in terms of performance) of any of the ways of 
defining multiperiod BPMs.

5.3  Interpretability of the Models

This section examines the interpretability of SMBPMs and their ability to facilitate 
informed decision-making.

There is no single definition of interpretability. A simple definition is given by 
Kim et  al. (2016) when the authors indicate that interpretability is the degree to 
which a human being can consistently predict the outcome of the model. To increase 
the confidence and transparency of the models, Miller (2019) indicates two comple-
mentary approaches:

• Generate decisions in which one of the criteria taken into account during the 
calculation is how well a human could understand the decisions in the given con-
text, which is often referred to as explainability or interpretability.

• Explicitly explaining decisions to people, which is called explanation. In our 
case, the explanation of the predictions of the predictors/classifiers (generally 
usable for individual predictions, i.e., referred to an observation).

Table 7  AUC per year and interval of acceptance rate—prediction horizon 1–6

SMBPM1_6 MMBPM1_6

Interval 1 (%) Interval 2 (%) Interval 1 (%) Interval 2 (%)

2008 68.3303 54.7500 62.5770 52.2689
2009 68.9857 53.7986 70.0183 53.6640
2010 67.1858 47.9664 69.2234 55.2308
2011 64.4916 53.7080 70.1329 52.2445
2012 61.7091 52.4025 58.5920 52.9089
2013 59.9845 54.5609 71.2851 48.5525
2014 61.5765 47.5253 57.7694 51.6197
Average (years) 64.6091 52.1017 65.6569 52.3556

Table 8  AUC per year and interval of acceptance rate—prediction horizon 1–9

SMBPM1_9 MMBPM1_9

Interval 1 (%) Interval 2 (%) Interval 1 (%) Interval 2 (%)

2008 68.2607 52.5729 67.0689 51.9052
2009 69.7080 53.3848 61.3066 54.2810
2010 66.2388 51.8106 66.3054 53.4941
2011 67.3729 51.5698 67.4866 52.0316
Average (years) 67.8951 52.3345 65.5419 52.9280
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The first approach has been considered with the choice of the tool itself (GP). GP 
provides a straightforward interpretability of the optimised tree/program. As Braba-
zon et al. (2020) indicate, GP can provide human-readable solutions.

In our view, the interpretability of the proposed multiperiod BPMs—SMBPMs—
should not be limited only to the ability to understand how they work, but should 
encompass explanation—basically of individual predictions—in two main ways: 1) 
explaining how a situation has been reached (projection into the past) and 2) facili-
tating the identification of what actions to take in the future, from a present situation 
and with a given objective, e.g., avoiding prediction of failure (projection into the 
future).

The full development of this approach is completely beyond the scope of this 
study, but the basic lines are outlined to show that the SMBPMs analysed are inter-
pretable in the above sense. The approach proposed in this study is limited exclu-
sively to building interpretation models with the following features:

• Post hoc (the model will be analysed after the training period).
• Specific to each model. The interpretation of the GP solution for each of the 

models is specific to each model, since the explanatory variables may be differ-
ent and their relationship will also be different from one model to another.

• Particular to each prediction. The method of interpretation will explain an indi-
vidual prediction, although generalizations can be made by aggregation of indi-
vidual predictions.

One of the peculiarities of BPMs whose explanatory variables are based on 
financial statements is that these explanatory variables, although not necessarily 
correlated (in the statistical sense), can do have relationships between them. For 
example, a reduction in fixed liabilities may result in a reduction in assets (if the 

Fig. 1  SMBPM 1–6 solution in hierarchical format
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source of financing is not replaced by another of the same amount). This prevents 
the marginal analysis of the explanatory variables, since it is not in accordance 
with reality. This is the reason for using an interpretation method based on the 
joint variations of explanatory variables. On the other hand, it should be remem-
bered that the information available is limited to the large magnitudes of the 
financial statements and are positions at the end of each financial period. This 
will make interpretability coarse-grained for decision-making, but it will be suf-
ficient to explain the model in adequate detail, although not in full detail.

The proposed method of interpretation and its scope are briefly outlined below. 
The model used as an example is the one corresponding to a prediction horizon 
1–6 years prior to failure. The solution of SMBPM 1–6 in hierarchical format is 
shown Fig. 1.

In Fig. 1, the input variables are denoted in HL as r112_log_XX, where “XX” 
refers to the specific input variable (from the 97 indicated in Sect.  3.3.1) and 
“log” corresponds to the logistic distribution standardisation used in the varia-
bles. These explanatory variables used in the solution (SMBPM 1–6) are shown 
in Table 9.

Briefly, the method of interpretation will be based on analysing the model 
under the following conditions in order to facilitate interpretability and 
explanation:

• The elementary magnitudes that define the explanatory variables will be ana-
lysed (e.g.: Current Liabilities, Cash and Total Assets will be analysed, instead 
of the ratio (Current Liabilities − Cash) / Total Assets.

• Untransformed elementary magnitudes (in monetary units, employees, etc.) will 
be analysed. The model calculates explanatory variables, limits them and trans-
forms them according to the logistic distribution.

Table 9  Explanatory variables 
of SMBPM 1–6

Name Definition

r112_log_5 Current liabilities / Total assets
r112_log_24 Total debt / Total assets
r112_log_27 (Current liabilities − Cash) / Total assets
r112_log_40 Operating income / Total assets
r112_log_42 Funds from operations / Total liabilities
r112_log_43 Operating result / Total assets
r112_log_59 Accounts payable / Total sales
r112_log_62 Current liabilities / Total sales
r112_log_63 Financial expenses / Total sales
r112_log_65 Interest expense percent of equity
r112_log_67 Interest expense percent of net income
r112_log_69 Financial expenses / Total debt
r112_log_89 Log (Total assets)
r112_log_96 Number of employees
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• Simple and homogeneous scenarios (joint variations of explanatory variables) 
will be considered. These scenarios are not the only possible ones nor are they 
necessarily disjoint with each other.

5.3.1  Explanation of the Evolution from the Past to the Present

The first challenge at the interpretability level is to explain how from a starting situa-
tion in the past the present situation (or another one in the past after the first one) has 
been reached. For illustrative purposes only and in a simplified way, a company is 
taken to exemplify the process: in this case, the one labelled #1694 and two instants 
in time (e.g., 2008 and 2010), to see what kind of explanation should be required 
from the model.

With data from company #1694 in 2008, SMBPM 1–6 prediction model offered 
an estimated value of 0.4018, which was in the 56th percentile of the total estimated 
values corresponding to the 7822 observations in 2008. In this case, and given the 
structure of the model, a lower estimated value indicates a better relative position 
(lower probability of failure) and a lower percentile.

The data for company #1694 in 2010 brought the value estimated by SMBPM 
1–6 to 0.2323, which was in the 36th percentile according to the 2008 intervals. Per-
centiles are used as an indicator because it allows the estimated value to be relativ-
ised. On the other hand, it is chosen to maintain the limits of the percentiles in those 
corresponding to 2008, which allows to relativise the estimated value with respect to 
a common base of analysis—2008—with which the comparison is made. There is 
the option to calculate the 2010 percentile taking into account the estimated values 
of the model in 2010, but this does not provide information for comparison with the 
position in 2008 (e.g., it is possible to maintain an estimated value of an observation 
the same in 2008 and 2010, but the respective percentiles could vary if we calculate 
them with respect to 2008 and 2010 if the rest of the observations vary in estimated 
value). Therefore, percentile analysis is used to support interpretation.

We now proceed to analyse the variation from the initial position in 2008 to that 
corresponding to 2010. To do this, basic techniques of causal analysis are used that 
help to know what happens to a variable (estimated value) when others are changed 
(basic magnitudes).

The first step might be to disaggregate the total change in the estimated value 
according to the main groups of the available annual financial statements (variations 
related to balance sheet, variations related to employees, variations related to sales 
and other variations). The objective is to focus on the major causes of variation. 
Each of these groups is actually the aggregation of a set of more detailed variations. 
For example, variations related to balance sheet comprise changes in fixed assets, 
fixed assets depreciation rate, total debt, cost of the debt and others (e.g., balance 
sheet rates).

Now we take, for example, the case on variations related to employees (which 
includes the variation in the number of employees and the variation in the cost of 
employees). To calculate the impact on the estimated value of this change relative to 
employees, the value of the number of employees and the cost per employee of 2008 
will be replaced by those corresponding to 2010, keeping the rest of the concepts in 
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the values of 2008. This substitution leads to a new estimated value. The variation of 
the estimated value obtained after replacement with respect to the estimated value of 
2008 is made in two different ways: i) in percentage of variation with respect to the 
estimated value of 2008 and ii) obtaining the percentile of the estimated value with 
the substitution and calculating its difference in percentage points with respect to the 
corresponding value estimated in 2008—prior to the substitution –. The summary of 
the variation by large groups is shown in Table 10.

Table 10 includes as a reference the row “Total”, which corresponds to the varia-
tion of the estimated value (the output of the model of prediction) from the position 
in 2008 (0.4018) to that corresponding to 2010 (0.2323) in percentage (− 42.19%) 
and percentile (from 56th in 2008 to 36th in 2010). Remember that, given the struc-
ture of the model, a lower estimated value indicates a better relative position (lower 
probability of failure). Also, in Table  10 the joint variations of the above groups 
have been ignored, this together with the fact that the proposed GP models are not 
linear (so they are not subject to the principle of superposition, which means that 
the behaviour of the system is not expressible as the sum of the behaviours of the 
descriptors), causes that the sum of the variation of the different groups does not 
coincide with the total variation. In any case, the main causes are quite clear. The 
main cause of the improvement in the estimated value has been changes in the bal-
ance sheet.

Continuing with the same example, the variations in balance sheet can be ana-
lysed up to the level that the available information allows. In more detail, the 
changes in balance sheet could be broken down as follows:

• Variation in fixed assets.
• Variation in the depreciation rate of fixed assets.
• Variation in total debt.
• Variation in the cost of debt.
• Other variations on the balance sheet (current assets and their breakdown, equity, 

etc.).
• Other balance rates.

The analysis can be made more precise by checking the data in the annual 
accounts. For instance, following the previous example of the company labelled 
#1694, it can be concluded that the improvement generated has its origin in a 

Table 10  Explanation of 
evolution from past to present—
analysis of the main variations 
of groups of variables

% variation esti-
mated value

Percentile 
variation

Variations related to balance sheet − 39.92 − 19
Variations related to employees − 7.44 − 4
Variations related to sales 4.97 2
Other variations 0.85 0
Total − 42.19 − 20
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decrease in the size of the company in the amount of 15,601.63 thousand euros 
(most of which—14,944.91 thousand euros—corresponds to indebtedness). Based 
on the available breakdown of the data, it can be seen that this decrease is reflected 
in a lower value of property, plant and equipment (− 7581.15 thousand euros), 
a decrease in stocks (− 2154.07) and debtors (− 8023.05) and an increase in other 
liquid assets (2156.64). This, together with the variations in amortisation rates and 
costs of debt, justifies 19 points of negative variation in the percentile (with respect 
to the 20 points of variation of the reference “Total”, as shown in Table 10) or the 
39.92% decrease in the estimated value (with respect to the 42.19% decrease consid-
ering the Total variation shown in Table 10).

5.3.2  Explanation of Future Actions

In this section we will now exemplify the decision-making process by taking the 
data of another company (e.g., the one labelled #17) and the 2014 data. The appli-
cation of SMBPM 1–6 to such data provides an estimated value of 0.2284 which is 
in the 44th percentile of the estimated values corresponding to the 8289 observa-
tions of 2014. We will now consider changes in variables or sets of related variables 
grouped into “scenarios” to analyse the change in that percentile.

A number of simple scenarios (which incorporate the variation of a “central vari-
able” and a set of elementary magnitudes that vary with it) can be defined and the 
marginal impact of each of them analysed. Note that this scenario definition is inde-
pendent of the previous variable group definition. In this way, future opportunities 
to move away from failure as well as future threats to the company can be recog-
nized. The scenarios considered in this study are not exhaustive, but they are com-
mon enough to provide a clear vision of how to generalize interpretability for future 
decision-making.

The percentages of variation of the main variable of each scenario have been cho-
sen for illustrative purposes, to capture a wide range of variation. A key point to 
note is that each scenario involves the joint variation of several variables. Take, for 
example, the scenario called “Restructuring of total indebtedness (reduction of cur-
rent liabilities and transfer to long term liabilities). The restructuring limit will be 
the amount of the balance of financial debts” and considered in the results shown in 
Table 11. The financial debts (which is a subset of current liabilities or short term 
liabilities) would be the central variable. In this example, this scenario implies the 
reduction of current debts (via reduction of financial debts) and the increase of long-
term liabilities, while the rest of the variables remain fixed, including the value of 
the cost of the debt. If such a restructuring is estimated to modify the cost of debt, 
this cost of debt should also change. The idea is that a scenario captures variations 
in a set of variables related to each other by the scenario assumptions, while the rest 
of the variables remain constant.

For illustrative purposes only, the data included in Tables  11 and 12 show the 
variation in the percentile position when applying SMBPM 1–6 to company #17 
with 2014 data, when the central variable is changed in a given percentage (note that 
the variation of a central variable has effects on the rest of the variables associated 
with that scenario). The tables show the results (variation in the percentile position) 
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when negative variations (in the central variable) are applied in 4 different scenarios 
(Table 11) and positive variations are applied in 3 other scenarios (Table 12), all of 
them chosen arbitrarily. Moreover, these variations of the central variable of each 
scenario (e.g. total indebtedness, financial debts, bank long-term liabilities, etc.) are 
considered with different percentages of variation (values corresponding to each col-
umn in the tables).

It can be observed that the improvement (reduction) in the estimated value 
(decrease in the percentile) would be through one of the following alternatives:

• Reduce the number of employees without affecting the operation (operating 
income).

• Investing in property, plant and equipment (as productive assets) with an increase 
in long-term liabilities.

• Increase the number of employees resulting in an increase of operation (operat-
ing income).

On the contrary, the increase in the number of employees without leading to an 
improvement in operating income becomes the cause that can most worsen the esti-
mated value (increase the estimated value and the percentile).

It should be remembered that the proposed interpretability approach is local and 
explains only individual predictions (for a particular company in a particular finan-
cial year). These explanations are not, to any degree, generalizable either to other 
companies with observations in the same year, nor to the same company with data in 
other years, etc.

Table 12  Explanation of future actions—positive percentage variations in different scenarios

Percentile variation in the predicted value Percentage of variation of the central 
variable

1,00% 5,00% 10,00% 25,00% 50,00%

Increase in property, plant and equipment (considered as a 
non-productive asset) with increase in long-term liabilities

0 0 0 0 0

Increase in property, plant and equipment (considered as a 
productive asset) with increase in long-term liabilities

− 2 − 10 − 18 − 34 − 38

Increasing the number of employees without affecting 
production

1 5 9 23 40

Increasing the number of employees affecting production − 1 − 7 − 12 − 23 − 29
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6  Discussion and Conclusions

This study analyses the suitability of SMBPMs as an alternative to MMBPMs with 
three different prediction horizons (multiperiod models 1–3, 1–6 and 1–9). The 
study focuses on analysing the behaviour of the models after the learning period 
with the following perspectives:

• Performance.
• Interpretability for decision-making.

The main conclusions are, without priority, the following:

• Multiperiod BPMs for a given time horizon can be obtained directly and without 
resorting to obtaining intermediate models.

The SMBPMs presented (Model 1–3, Model 1–6 and Model 1–9) are obtained 
without the need for intermediate models and with no appreciable decrease of 
performance compared to models obtained on the basis of conditional probabil-
ity (MMBPMs). Additionally, the SMBPMs obtained with GP are perfectly inter-
pretable and allow future decision-making.

If, for example, Model 1–6 is considered, this model would allow us to calcu-
late a probability of failure in the 1–6 years range. If this probability is calculated 
on the basis of the conditional probability in exercises 1, 2, 3, …, 6, it involves 
fitting six probability functions, instead of one, with the risk of error that this 
may entail. On the other hand, the interpretability of a joint and/or conditional 
probability of 6 exercises would most likely suffer severely due to the difficulty in 
locating the relevant variables in the global prediction horizon 1–6.

• Multiperiod BPMs with long-term prediction horizons are possible.

From the analysis of the degree of deterioration of the AUC after the learn-
ing period, it can be concluded that the results question the idea of deterioration 
of the performance produced by the use of the model after the learning period. 
Table  13 summarizes the AUC results of the SMBPMs for the three prediction 
horizons considered (previously detailed). The AUCs obtained in the differ-
ent prediction horizons do not show significant differences with respect to those 
achieved in the learning period.

Table 13  Average (years) of the AUC of the proposed SMBPMs

In the learning period (measured on 
the test set) (%)

After the learning period 
(%)

% variation

SMBPM 1–3 89.80 86.20 − 4.01
SMBPM 1–6 84.06 83.85 − 0.25
SMBPM 1–9 80.13 82.09 2.45
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This fact is more significant because the comparison is performed with respect 
to average AUCs obtained after the learning period, which are calculated on the 
basis of an average with wide observation periods. These periods range from 4 
(Model 1–9) to 10 (Model 1–3) financial years. On the other hand, the AUCs 
after the learning period not only do not vary excessively with respect to those of 
the training period, but remain stable over time (as shown above in Tables 3–5).

• SMBPMs enable justified decision-making.

The interpretability of models is particularly useful when it can explain and 
inform future decisions aimed at counteracting the prediction of the BPM. This 
aspect allows a nuance to be introduced into the “black box” label of the pro-
posed models. Consider, for example, a financial institution. The estimated value 
of company #17 in 2014 and its position (44th percentile, example considered in 
the previous Sect. 5.3.2.) would allow:

• Decide whether to take risks—or not—in the company (depending on the 
acceptance rate set by the financial institution).

• If the risk has already been assumed, the estimated value will serve to:
  ○ Detect warning signals (e.g., increase in the estimated value—probability 

of failure—since the date of risk assumption) and know the reasons for this 
change.

  ○ Design corrective measures, which can be proposed to the company (e.g.: 
propose to the company to reduce non-productive employees, offer financing to 
increase size and operation, etc.).

  ○  Decide on proposals by the company. If the company presents a liability 
restructuring plan, a decision can be made on the basis that the model does not 
estimate that this would substantially change the estimated value (the percentile 
does not change). That is, it is not the solution to improve the estimated value. 
On the other hand, if the firm submits a plan to reduce the number of non-pro-
ductive employees, on the basis that the model estimates that such a plan will 
improve the estimated value (decrease the percentile), it may decide to accept 
such a plan.

It is interesting to note here that Directive (EU) 2019/1023 of the European Par-
liament and of the Council (2019) of 20 June 2019 on restructuring and insolvency 
(EU-DRI), article 3, requires Member States to provide tools for early warning of 
insolvency. Consequently, these tools should serve as a warning to debtors at risk of 
insolvency so that they can take prompt action to avoid insolvency. This approach of 
the interpretability of SMBPMs allows not only for early warning, but also for the 
optimisation of corrective actions.

• The financial variables of the company are sufficient to obtain highly effective 
and interpretable multiperiod BPMs.
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The proposed models are capable of making highly effective predictions in a sta-
ble and sustained way over long periods of time and with highly changing environ-
mental conditions between them (as those observed in the period 2008–2019, the 
post-learning period analysed in this study). All this without resorting to explana-
tory variables other than those that can be obtained from the financial statements of 
the company. This, in addition to corroborating the idea put forward by Tian et al. 
(2015), allows the solutions to be interpretable with the proposals presented, by 
excluding variables over which the company has no capacity to act. The works of 
Beaver et al. (2005) and Das et al. (2009) point along the same lines of the adequacy 
of financial variables.

• GP is shown to be a suitable ML technique for obtaining multiperiod BPMs.

The choice of the technique, for implementing and learning the models, is not 
a trivial issue, although it is not the aim of this work. The suitability demonstrated 
by GP is given by the degree of compliance (by the models obtained with GP) with 
the proposed objectives of deterioration, stability, efficiency and interpretability. It is 
possible that other ML techniques can achieve similar results, but GP demonstrates 
its good performance for the proposed challenge of high predictive power, as evi-
denced by the accuracies obtained in the learning period by the SMBPMs at the 
different prediction horizons (using GP), which are much higher than those of the 
available external references (obtained with other techniques). Also, the AUC of 
SMBPMs is very high when relativised to the AUC of BPMs that make predictions 
at a specific point in time (not in a time interval). As shown in Sect. 5.1, for exam-
ple, SMBPM 1–3 provides an AUC of 89.80%, while the maximum value in the 
external references considered in the comparison for BPMs 1 year prior to failure is 
88%. In the case of SMBPM 1–6 and SMBPM 1–9, they provide an AUC of 84.06% 
and 80.13% versus the best value of 80% in BPMs 3 years prior to failure.

In summary, the present study shows a way of obtaining multiperiod BPMs 
(SMBPMs) which, without detriment to the performance compared to models 
obtained by joint probabilities (MMBPMs), presents a notable advantage: interpret-
ability for decision-making. Moreover, the study addresses long-term prediction 
(1–9 years), with remarkable results (the AUC of SMBPMs for 1–9 years prior to 
failure in the training period is 80.13%, even higher than 80% of conventional mod-
els 3 years prior to failure). Although it has been shown how SMBPMs can be used 
in decision-making, a line of future development is to further develop this study of 
interpretability for decision-making, seeking a more detailed causal analysis that can 
be considered as standardised.
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