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Abstract
In this paper, we analyse the computational advantages of the spherical parametri-
sation for correlation matrices in the context of Maximum Likelihood estimation 
via numerical optimisation. By using the special structure of correlation matrices, 
it is possible to define a bijective transformation of an n × n correlation matrix R 
into a vector of n(n − 1)∕2 angles between 0 and � . After discussing the algebraic 
aspects of the problem, we provide examples of the use of the technique we pro-
pose in popular econometric models: the multivariate DCC-GARCH model, widely 
used in applied finance for large-scale problems, and the multivariate probit model, 
for which the computation of the likelihood is typically accomplished by simulated 
Maximum Likelihood. Our analysis reveals the conditions when the spherical par-
ametrisation is advantageous; numerical optimisation algorithms are often more 
robust and efficient, especially when R is large and near-singular.

Keywords  Correlation matrix · Spherical coordinates · Multivariate probit · DCC-
GARCH model

1  Introduction

Correlation matrices play a central role in a myriad of statistical models and in 
many cases their elements are functions of parameters to be estimated numeri-
cally. In all these cases, Maximum Likelihood (ML) estimation entails the use 
of numerical maximisation algorithms, which can be rather demanding, either 
because of the size of the problem or for the intrinsic difficulty in computing the 
log-likelihood function: these algorithms, in fact, may run into difficulties when 
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the admissible parameter space is a (possibly complicated) subset of ℝm , where 
m is the size of the parameter vector. As we will show, this is precisely the case 
with correlation matrices. Moreover, when ill-conditioned matrices are involved, 
the algorithm may easily get stuck into sub-optimal regions. For this reason, an 
efficient way to parametrise correlation matrices that leads to the maximum com-
putational speed while preserving the highest accuracy is potentially very useful.

In this paper, we investigate the role of the spherical coordinates parametri-
sation (SCP from here on) as an efficient method to tackle this issue: starting 
from the original contribution due to Hoffman et  al. (1972), who show how an 
n × 1 unit-norm vector can be unambiguously expressed in terms of n − 1 angles, 
several articles have applied this idea to the Cholesky factor of the correlation 
matrix. In particular, Rapisarda et  al. (2007) and Rebonato & Jäckel (2011), 
building on previous work by Pinheiro & Bates (1996), proposed the SCP in risk 
management analysis; Pourahmadi & Wang (2015), instead, study the distribu-
tional properties of such transformation. Creal et al. (2011) successfully employ 
spherical coordinates in Generalised Autoregressive Score (GAS) models to study 
dynamic volatilities and correlation in time series with heavy-tailed distribu-
tions. More recently, Loaiza-Maya & Nibbering (2022a) introduce the spherical 
parametrisations for Bayesian multinomial probit models with a factor structure 
in the error covariance and trace restrictions, while Loaiza-Maya & Nibbering 
(2022) extend the framework to multivariate multinomial probit models. As we 
will argue, the advantage of the SCP comes from its ability to turn a constrained 
problem into an unconstrained one.

However, the conditions under which the SCP offers a significant edge in com-
putational statistics remain mostly unexplored: in this article, we investigate this 
issue both in terms of CPU time and of convergence quality using popular models 
in the econometric literature.

We propose one example from financial econometrics, where the correla-
tion matrix for asset returns is an object of primary interest: in the multivari-
ate GARCH literature two widely used methodologies, i.e., the constant condi-
tional correlation (CCC) model by Bollerslev (1990) and the dynamic conditional 
correlation (DCC) model by Engle (2002) require the estimation of a correla-
tion matrix. Specifically, we consider the latter given its prominent application 
in modelling co-volatilites, as for example in Ghosh et  al. (2021) and Ni & Xu 
(2023).

Another case we consider draws from microeconometrics, where correlation 
matrices arise quite naturally in modelling multiple choice problems with multivari-
ate probit specifications (Ashford & Sowden, 1970; Amemiya, 1974; Chib & Green-
berg, 1998).

The rest of the paper is organised as follows: Sect.  2 provides the mathemati-
cal background of the parametrisation. We then give practical examples in Sect. 3, 
starting with a simple exercise based on the Normal and Student’s t distributions 
(Sect.  3.1), followed by more realistic econometric applications, i.e., the DCC-
GARCH model in Sect. 3.2 and the multivariate probit model in Sect. 3.3. Section 4 
concludes.
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2 � Mathematical Background

2.1 � Representation of Correlation Matrices via Spherical Coordinates

Given a set of n variables, a correlation matrix R can be generally described as a 
positive semidefinite symmetric matrix with ones along the main diagonal and its 
ij-th element ( �i,j ) representing the Pearson correlation coefficient between the i-th 
and the j-th variable. As a consequence, it can be defined in terms of m = n(n − 1)∕2 
parameters.

The positive semi-definiteness requirement, however, implies that the admissible 
values for the m off-diagonal elements of R are a very highly nonlinear subset of ℝm . 
Consider for example the case when n = 3:

It can be proven that, for a given value of �1,2 between −1 and 1, the set of values of 
�1,3 and �2,3 that ensure that R is positive semidefinite defines an ellipse in ℝ2 , that is 
a circle when �1,2 = 0 and collapses to a straight line when �1,2 = ±1.

Evidently, numerical procedures such as numerical optimisation or grid search 
are bound to be quite inefficient and computationally costly in cases such as this. 
Therefore, in the context of estimation via numerical techniques, it is often prefer-
able to re-express R as a function of unconstrained terms � ∈ � , where � is a point 
in ℝm and each element of � is freely varying.

In the special case when n = 2 , this is almost universally accomplished by using 
the hyperbolic tangent function, and �1,2 is modelled as �1,2 = tanh (�) . In the gen-
eral case n > 2 , however, this solution is not directly viable, since the mere fact that 
off-diagonal elements of R are less than 1 in modulus does not ensure, per se, posi-
tive semi-definiteness of R.

Following Pelletier (2006), since a correlation matrix is positive semi-definite it 
can always be written as

where C is lower-triangular, with non-negative diagonal entries so as to ensure 
uniqueness. If R has full rank, then C will correspond to the Cholesky decomposi-
tion, but in the semi-definite case some of the columns of C may be zero vectors.

Let c′
i
 denote the i-th row of C which is here defined as

where ai is an unitary vector of dimension i with positive last element. Hoffman 
et al. (1972)’s intuition was to consider the elements of a′

i
 as a point on an i-dimen-

sional unit sphere, thus guaranteeing the existence of a bijective transformation from 
ai to its i − 1 angles �i . Following Pinheiro & Bates (1996) and Rapisarda et  al. 
(2007), we express such transformation as:

R =

⎡
⎢⎢⎣

1 �1,2 �1,3

�1,2 1 �2,3

�1,3 �2,3 1

⎤
⎥⎥⎦

(1)R = CC�,

(2)c�
i
= [a�

i
0�
n−i

]
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where ai,j is the j-th component of ai and �i,j ∈ [0;�] . In matrix notation,

where the matrix C is characterised via n(n − 1)∕2 angles. By virtue of the bijection, 
Eq. (3) is invertible, so �i,j can be recovered from R via a recursive rule:

By stacking all the �i,j into an m-element vector � , one can therefore define the 
transformation

in which the correlation matrix is expressed as a function of the parameter vector � . 
Note that the formulation above makes it extremely simple to compute the determi-
nant of R via that of its Cholesky factor C1: since C is triangular and C1,1 is identi-
cally 1,

therefore, since |R| = |CC�| = |C|2 , one can compute the determinant of R as

In this way, the admissible parameter space is simply a hypercube in ℝm with length 
side equal to � . Each point corresponds to a valid positive semi-definite matrix R; by 
virtue of Eq. (7), points on the edge of the hypercube map to singular R matrices. As 
we will show in the rest of the paper, the SCP is particularly advantageous in cases 
when R is near-singular, since in those cases numerical algorithms benefit from the 
much more regular shape of the parameter space. We call this representation the “ �
-variant” of the SCP.

(3)ai,j =

⎧
⎪⎨⎪⎩

cos(�i,j) j = 1;

cos(�i,j)
∏j−1

k=1
sin(�i,k) 2 ≤ j ≤ i − 1∏j−1

k=1
sin(�i,k) j = i

C =

⎡
⎢⎢⎢⎣

1 0 0 0 … 0

cos(�2,1) sin(�2,1) 0 0 … 0

cos(�3,1) [cos(�3,2) ⋅ sin(�3,1)] [sin(�3,2) ⋅ sin(�3,1)] 0 … 0

⋮ ⋮ ⋮ ⋮ … ⋮

⎤
⎥⎥⎥⎦

(4)�i,j =

�
arccos(ai,j) j = 1;

arccos(ai,j∕
∏j−1

k=1
sin(arccos(ai,k)) 2 ≤ j ≤ i ≤ n.

(5)R = SCP
�
(�)

(6)|C| =
n∏
i=2

i∏
j=1

sin
(
�i,j

)
;

(7)|R| =
m∏
i=1

sin(�i)
2.

1  The determinant of the correlation matrix has been used in the context of collinearity diagnostics by 
Halkos & Tsilika (2018).
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In some cases, however, it may be helpful for numerical optimisation procedures to 
re-express �i,j via a sigmoid transformation of an unconstrained parameter �i,j : a very 
appealing choice is given by

where Λ(x) is the logistic function defined as exp(x)∕(1 + exp(x)) . By using Eq. (8), 
the parameter space gets mapped to the whole ℝm space. We call this representation 
the “ �-variant” of the SCP.

At this point, the advantages of the SCP with respect to the direct use of R should 
be evident. Moreover, the �-variant allowing for the free variation of the parameter 
between −∞ and ∞ should guarantee a better performance in numerical optimisa-
tion methods with ill-conditioned correlation matrices.

2.2 � The Spherical Parametrisation in a Nutshell

In order to clarify the meaning of the SCP we will briefly go through the parametri-
sation steps for a 2 × 2 nonsingular correlation matrix R,

in which the only unknown parameter is −1 < 𝜌1,2 < 1 . The �-mapping starts from 
the Cholesky factor of R , here defined as,

whose rows, following Eq. (2), are further decomposed as:

Using Eq. (3), we turn a2 into:

where 0 < 𝜔2,1 < 𝜋 . Clearly, this establishes the desired bijection:

The �-parametrisation adds an extra step, that is the bijection between � and the 
unbounded parameter � as in Eq. (8). As a consequence,

Therefore, C is parametrised in terms of � as

(8)�i,j = log
(
�i,j

)
− log

(
� − �i,j

)
⟷ �i,j = � Λ(�i,j)

(9)R = SCP
�
(�)

R =

[
1 �1,2

�1,2 1

]

C =

[
1 0

�1,2

√
1 − �

2
1,2

]

a1 = 1 a2 = [�1,2,
√

1 − �
2
1,2
];

a2 = [cos (�2,1) sin (�2,1)]

�1,2 = cos (�2,1) ⟷ �2,1 = arccos (�1,2)

a2 = [cos (�Λ(�2,1)) sin (�Λ(�2,1))]
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and therefore

Extending the procedure to a 3 × 3 correlation matrix is also rather simple:

where the Cholesky factor is now defined as

The second and the third rows can be written as:

So the Cholesky factor C , as a function of the unconstrained parameter � , becomes

 This parametrisation ensures that � can be picked from any point in ℝ3 and still 
gives rise to a proper Cholesky factor C for a nonsingular correlation matrix R . 
Since the transformation is invertible, any nonsingular correlation matrix R corre-
sponds to one and only one point in ℝ3.

2.3 � Derivatives

The availability of closed-form derivatives is necessary to enhance the computa-
tional speed and accuracy of optimisation algorithms and in the spherical coor-
dinate case these are easily obtainable: the bijections defined via � and � estab-
lish differentiable transformations between the new parameter and the correlation 
matrix R.

The derivative of vec(R) with respect to � is

C =

[
1 0

cos
[
�Λ(�2,1)

]
sin

[
�Λ(�2,1)

]
]

R = CC� =

[
1 cos

[
�Λ(�2,1)

]
cos

[
�Λ(�2,1)

]
1

]

R =

⎡
⎢⎢⎣

1 �1,2 �1,3

�1,2 1 �2,3

�1,3 �2,3 1

⎤
⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎣

1 0 0

�1,2

�
1 − �

2
1,2

0

�1,3

�2,3−�1,2�1,3√
1−�2

1,2

�
1 − �

2
1,3

+
(�2,3−�1,2�1,3)

2

1−�1,22

⎤
⎥⎥⎥⎥⎦

a2 = [cos(�2,1) sin(�2,1)]

a3 = [cos(�3,1) cos(�3,2) sin(�3,1) sin(�3,1) sin(�3,2)]

C =

⎡⎢⎢⎣

1 0 0

cos
�
�Λ(�2,1)

�
sin

�
�Λ(�2,1)

�
0

cos
�
�Λ(�3,1)

�
cos

�
�Λ(�3,2)

�
sin

�
�Λ(�3,1)

�
sin

�
�Λ(�3,1)

�
sin

�
�Λ(�3,2)

�
⎤⎥⎥⎦
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where I is a n × n identity matrix and ⊗ denotes the Kronecker product. Equation 
(10) can be rewritten more compactly via the commutation matrix Kn as2

To compute �vec(C
�)

��

 , we will use the decomposition in unitary vectors of Eq. (2), 
therefore it suffices to derive �ai

��

 . This element can be obtained quite efficiently via 
recursion noting that Eq. (3) corresponds to:

As a consequence,

where e′
j
 is a standard basis vector, that is the j-th row of the identity matrix. �qi,j

��

 is 
derived iteratively as,

Finally, to get the derivative with respect to � , it is possible to invoke the chain rule 
and multiply �R

��

 by ��
��

 . This last quantity follows from Eq. (8) as

(10)
𝜕vec(R)

𝜕𝜔

=
𝜕vec(CC�)

𝜕𝜔

= (I ⊗ C)
𝜕vec(C)

𝜕𝜔

+ (C⊗ I)
𝜕vec(C�)

𝜕𝜔

𝜕vec(R)

𝜕𝜔

= (I + Kn)(I ⊗ C)
𝜕vec(C�)

𝜕𝜔

ai,j = qi,j cos(𝜔i,j) j < i

ai,j = qi,j j = i

qi,j+1 = qi,j sin(𝜔i,j) j < i

qi,1 = 1

�ai,j

��

=
�qi,j

��

cos(�i,j) + qi,j

� cos(�i,j)

��

=
�qi,j

��

cos(�i,j) − qi,j sin(�i,j)e
�
j

=
�qi,j

��

cos(�i,j) − qi,j+1e
�
j

�qi,j+1

��

=
�qi,j

��

cos(�i,j) sin�i,j + qi,j cos(�i,j)e
�
j

�qi,1

��

= 0�

��i,j

��i,j

= �Λ(�i,j)[1 − Λ(�i,j)]

2  The commutation matrix K
n
 is a n2 × n

2 matrix satisfying vec(C�) = K
n
vec(C) , where C is an n × n 

matrix. See for example Magnus & Neudecker (1999), Section 3.7.
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3 � Simulation Evidence

In this section, we present three examples of estimation via numerical ML where 
we compare the three parametrisations under analysis: the traditional one for R , in 
which the likelihood is directly parametrised in terms of r = vech(R) , and the � - and 
�-variants described in Sect. 2.1.

3.1 � Normal Versus Student t Log‑Likelihood

As a first example of the practical consequences of using the SCP, we analyse a very 
simple case, where the elements of the correlation matrix are the main estimated 
parameters.

Suppose we have a sample v1, v2,… , vT of independent and identically distrib-
uted (iid) observations from a n-variate standardised normal distribution: the total 
log-likelihood has the following form:

The expression above can be rewritten as

where R̂ is the sample correlation matrix and tr(⋅) is the trace operator. Naturally, R̂ 
is a sufficient statistics and maximising the expression above implies that the ML 
estimator is simply the sample correlation matrix R̂.

Suppose, however, that one wants to employ numerical methods for maximising 
(11): if the chosen starting point for R is the identity matrix, any gradient-based pro-
cedure will converge immediately to the maximum in one iteration, on account of 
the fact that the score in R = I is exactly proportional to vec

(
I − R̂

)
.

If the log-likelihood is written in terms of � using Eq. (7),

the above does no longer hold, and the number of iterations needed to reach conver-
gence depends on the data and is therefore unpredictable.3 As a consequence, in this 
case the SCP should be inferior to the traditional parametrisation in terms of both 
CPU time and number of iterations employed by the optimiser.

Suppose now to analyse the same setup, where the normal distribution is replaced 
by a multivariate Student’s t with � degrees of freedom. The log-likelihood to opti-
mise is

l(R) = const −
T

2
log |R| − 1

2

T∑
t=1

v�
t
R−1vt

(11)l(R) = const −
T

2

[
log |R| − tr(R̂R−1)

]

(12)l(�) = const −
T

2

m∑
i=1

[
log(sin(�i)

2)
]
− tr

[
R̂ ⋅ SCP

𝜔
(�)−1

]

3  The same applies to the �-variant.
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where �(⋅) is the log of Euler’s Gamma function. In this case, anticipating the behav-
iour of gradient-based methods is impossible and the SCP may benefit from the 
more regular parameter space induced by � or �.

In order to shed light on the relative merit of the SCP compared to the traditional 
parametrisation, we simulate the vt process for both distributions in several different 
scenarios: we set T = 500 observations and three different sizes for the vector vt , 
that is n = {5, 10, 20} . For the simulated t distribution, we use � = 5 so as to make 
the density markedly different from a Gaussian one. As for the correlation matrix, 
we use

with � = {0, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99} to investigate cases closer and closer to 
singularity. For each design we simulate 100 Monte Carlo iterations, keeping track 
of the elapsed CPU time and the number of maximiser iterations used for conver-
gence, in this case BFGS with numerical derivatives4; in all cases, the starting point 
was R = I.5

Table  1 shows the average CPU time and number of BFGS iterations for the 
normal log-likelihood maximisation: as predicted, the traditional parametrisa-
tion achieves the best results. The BFGS iterations needed to converge amount to 
2 in almost all cases, save the most complex ones, where the size of the parameter 
space and the near-singularity of R probably contaminated the precision of numeri-
cal derivatives.6 As for CPU time, both the � - and �-variants exhibit worse perfor-
mance, although the actual penalty in term of actual CPU time is much less severe 
than the one in number of iterations.

The results for the t distribution (Table 2) show a much different picture: the SCP 
dominates uniformly the traditional parametrisation both in terms of BFGS itera-
tions and of actual CPU time. The relative advantage of the SCP seems to increase 
with the � parameter, thus suggesting that the main factor is the different shape of 
the parameter space (an ellipsoid for the traditional parametrisation and a hypercube 

l(R, �) = T

[
�

(
� + n

2

)
− �

(
�

2

)
−

n�(� − 2)

2
−

1

2
log |R|

]
+

−
� + n

2

T∑
t=1

[
1 +

1

� + 2
v�
t
R−1vt

]

�ij = �
|i−j|

4  BFGS is one of the most widely used numerical optimisation methods in econometrics. See Nocedal 
& Wright (2006), Section 6.1, for a formal description of the method and an analysis of its properties. 
We used the BFGS implementation provided in the free software package gretl using all the default 
settings.
5  In each simulation, both the traditional parametrisation and the �/�-variants reach exactly the same 
maximum.
6  In theory, one iteration should suffice. However, gretl reports two function evaluations: the initial 
one for computing the score and a second one for ascertaining convergence.



	 R. Lucchetti, L. Pedini 

1 3

for the SCP—see Sect.  2.1); the size of the problem seems also to affect results, 
although to a lesser degree.

3.2 � Example II: The DCC Model

In financial econometrics the analysis of conditional covariance matrices is the 
key ingredient for studying asset volatility. In particular, the DCC specification as 
originally proposed by Engle (2002) aims primarily to model time-varying condi-
tional correlations starting from standardised returns: let xt = [x1,t, x2,t,… , xn,t] be 
the vector of asset returns, with t = 0, 1,… , T  and let define the excess of return 
as ut = xt − E(xt ∣ It−1) where It−1 denotes the information set at time t − 1 . The 
covariance matrix of ut is

Table 1   Average CPU time and average BFGS iterations in ML estimation: Normal distribution case

Each design is simulated 100 times assuming 500 observations for each v. Bold denotes the minimum 
value

CPU time BFGS iter

Traditional � � Traditional � �

n = 5

� = 0.00 0.013 0.012 0.020 2.000 4.880 7.450
� = 0.25 0.013 0.014 0.022 2.000 8.360 11.010
� = 0.50 0.013 0.016 0.024 2.000 13.840 14.730
� = 0.75 0.012 0.018 0.025 2.000 18.580 18.680
� = 0.90 0.014 0.022 0.034 2.000 20.350 23.740
� = 0.95 0.013 0.023 0.030 2.000 26.710 21.830
� = 0.99 0.013 0.027 0.031 2.020 35.180 24.310
n = 10

� = 0.00 0.294 0.291 0.398 2.000 6.250 8.760
� = 0.25 0.287 0.294 0.408 2.000 10.060 12.150
� = 0.50 0.308 0.347 0.455 2.000 19.050 18.260
� = 0.75 0.293 0.415 0.511 2.000 46.380 35.520
� = 0.90 0.303 0.443 0.590 2.000 53.190 51.470
� = 0.95 0.301 0.444 0.588 2.000 56.900 55.080
� = 0.99 0.313 0.521 0.627 3.390 80.320 59.640
n = 20

� = 0.00 14.638 16.457 20.635 2.000 7.8500 10.000
� = 0.25 14.711 16.828 20.888 2.000 11.960 13.170
� = 0.50 15.019 17.729 21.692 2.000 23.440 20.610
� = 0.75 14.969 18.770 23.300 2.010 51.910 53.620
� = 0.90 14.786 19.888 24.575 2.250 83.800 85.820
� = 0.95 18.193 27.039 32.176 2.640 122.33 106.52
� = 0.99 28.432 43.982 51.195 7.890 163.38 142.33
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where Rt is the n × n dynamic correlation matrix and Vt = diag(h1,t, h2,t,… , hn,t) is 
the diagonal matrix of conditional variances.

Usually, the hi,t are modelled via univariate techniques. The dynamic correlation is 
further rewritten as Rt = Q̃

−1∕2
t QtQ̃

−1∕2
t  where:

where Γ,A,B are n × n parameter matrices, �t is the standardised return vector 
with elements �it = ui,t∕

√
hi,t and ⊙ denotes the Hadamard (element-by-element) 

(13)E(ut−1u
�
t−1

∣ It−1) = V
1∕2
t RtV

1∕2
t

(14)Qt = Γ + A⊙ (𝜂t−1𝜂
�
t−1

− Γ) + B⊙ (Qt−1 − Γ)

(15)Q̃t = diag(Q11,t,Q22,t,… ,Qnn,t)

Table 2   Average CPU time and average BFGS iterations in ML estimation: Student’s t distribution case

Each design is simulated 100 times assuming 500 observations for each v. Bold denotes the minimum 
value

CPU time BFGS iter

Traditional � � Traditional � �

n = 5

� = 0.00 0.059 0.053 0.061 14.500 14.690 16.570
� = 0.25 0.062 0.056 0.067 16.600 15.950 19.260
� = 0.50 0.067 0.060 0.071 19.880 18.510 22.240
� = 0.75 0.078 0.066 0.076 26.280 22.920 25.630
� = 0.90 0.112 0.076 0.102 46.990 28.800 41.960
� = 0.95 0.117 0.099 0.109 49.460 44.540 45.790
� = 0.99 0.145 0.103 0.114 64.100 46.840 48.350
n = 10

� = 0.00 1.065 1.007 1.096 15.310 15.500 18.040
� = 0.25 1.115 1.037 1.126 21.390 17.970 21.020
� = 0.50 1.335 1.109 1.176 43.630 26.270 26.320
� = 0.75 1.482 1.384 1.331 55.920 54.130 39.810
� = 0.90 1.591 1.414 1.492 68.760 58.430 57.660
� = 0.95 1.726 1.441 1.543 82.000 61.330 62.960
� = 0.99 2.543 1.535 1.607 158.29 70.880 69.200
n = 20

� = 0.00 20.743 20.158 22.304 18.770 17.950 19.770
� = 0.25 21.389 20.326 22.600 30.000 20.590 23.120
� = 0.50 23.290 21.048 22.964 66.500 33.490 30.350
� = 0.75 27.402 22.684 24.311 153.45 74.940 60.930
� = 0.90 30.770 24.101 26.526 218.68 107.28 109.20
� = 0.95 32.716 27.202 28.404 252.34 165.19 136.10
� = 0.99 36.699 29.386 30.255 324.99 213.70 171.56
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product.7 The Γ parameter, in particular, corresponds to the unconditional correla-
tion matrix E(�t��t ) which is here reparametrised in terms of spherical coordinates.

In this section, we provide some evidence on the computational advantages of 
the SCP in a DCC-GARCH model when highly correlated series are used. We will 
compare the performance of both the � - and the �-variants [Eqs. (4) and (8), respec-
tively] with respect to the traditional case.

The Data Generating Process (DGP) follows Eq. (15), where we opt for the so-
called “scalar” specification of the parameter matrices A and B,

where a = 0.2 and b = 0.7 . We do so for three reasons: first, the fact that a + b = 0.9 
implies that correlations are highly persistent, but the DGP is quite far from values 
that would imply nonstationarity; moreover, since we focus on the performance of 
the SCP for modelling Γ , we want the DGP to contain as few parameters as pos-
sible, apart from Γ itself. Finally, the scalar specification is widely used in empirical 
practice.

The correlation matrix Γ we use is

We simulated n = 10 asset returns over a time horizon of t = 1,… , 1024 . The stand-
ardised returns �t are here defined as

where Ct is the Cholesky factor of Rt and �∗
t
= (�∗

1,t
,… , �∗

10,t
) with �∗

it
∼ t(6) , where 

t(6) denotes a Student t distribution with 6 degrees of freedom. We choose this dis-
tribution so as to have a degree of “fat tails” in our simulated data similar to that 
typically found in daily financial time series.

The conditional variances are modelled as univariate GARCH(1, 1) as follows,

where we set � = 0.02 , � = 0.03 , � = 0.95 . The return uit is defined via �∗
it
 as 

uit =
√
hit�

∗
it
 . Again, these parameters are meant to resemble the persistence feature 

typically observed in real data.
We generated 100 datasets from the DGP above8 and then estimate a DCC 

model each time, using the three different parametrisations. Given that the likeli-
hood for this model may often have multiple local maxima, we first checked that 
each technique yielded the same maximum. We then compared CPU time for the 

(16)Qt = Γ + a(�t−1�
�
t−1

− Γ) + b(Qt−1 − Γ)

Γij =

{
0.9 i ≠ j

1 i = j

(17)�t = Ct�
∗
t

(18)hit = � + �u2
i,t−1

+ �hi,t−1

7  Equation (15) is the most common representation of a DCC model, however extensions are provided 
among the others by Cappiello et al. (2006) and Aielli (2013).
8  During the Monte Carlo exercise some of the univariate GARCH models could not be estimated 
because of numerical issues. We skipped these occurrences in order to ensure 100 valid replications.
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DCC model with the traditional parametrisation and for the � - and �-variants of 
the SCP. ML estimation is performed via the BFGS algorithm, using numerical 
and analytical derivatives, as per Caporin et al. (2020). All three methods reach 

Table 3   Main summary 
statistics for the CPU time for 
the DCC model

100 simulations. Δ(� ) is defined as CPU(no)−CPU(�)

CPU(no)
 where CPU(no) 

and CPU(�) are the CPU times for the traditional parametrisation 
and the �-variant, respectively. Δ(� ) is defined similarly. CPU time 
is in seconds

Mean S.D. Median Minimum Maximum

Numerical score
traditional 379.52 41.87 366.79 332.51 565.61
�-variant 353.93 8.11 352.68 339.15 379.4
�-variant 349.64 12.10 347.15 331.95 416.63
Δ(�) 0.06 0.08 0.03 − 0.09 0.39
Δ(�) 0.07 0.08 0.06 − 0.06 0.39
Analytical score
Traditional 132.78 14.42 127.52 118.14 203.61
�-variant 125.50 3.36 125.98 118.14 136.02
�-variant 124.46 4.08 124.03 116.69 142.11
Δ(�) 0.05 0.08 0.02 − 0.05 0.39
Δ(�) 0.05 0.08 0.03 − 0.06 0.38

Fig. 1   Boxplots for the time performances of the three methodologies. Numerical derivatives
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exactly the same log-likelihood maximum in both the numerical and analytical 
case. As for CPU times, Table 3 collects the main summary statistics,9

Table 3 shows that the SCP leads to an evident speed-up with respect to the tradi-
tional case in the numerical derivative example: the average gain is about 30 s, which 
corresponds to the 6–7% relative change for the � - and �-variants with respect to the 
standard parametrisation, denoted respectively as Δ(� ) and Δ(� ). Moreover, standard 
deviations are much smaller for the SCP. This may not seem a great improvement in 
itself, but in fact the advantages of the SCP emerge more clearly by considering the 
distributions of CPU times for the different scenarios in Figs. 1 and 2.

Both figures show the boxplots for elapsed CPU time for the three different alter-
natives (Fig.  1 with numerical and Fig.  2 with analytical derivatives): the distri-
butions for both SCP versions are much less widespread, with thinner right tails, 
especially in the � case. In other words, in the DCC case SCP is not only faster in 
most cases, but also offers more predictable computing time. As for the relative per-
formance of the two SCP variants, no clear winner emerges: the �-version uses on 
average slightly less CPU time, while the results for the �-variants appear to be more 
concentrated and predictable. All these results are qualitatively identical between the 
numerical vs analytical score scenarios.

Fig. 2   Boxplots for the time performances of the three methodologies. Analytical derivatives

9  Running the same simulations on different hardware, we obtained slightly different but qualitatively 
equivalent results. This is a consequence of the fact that OpenBLAS (Wang et al. 2013), the linear alge-
bra library we used, is heavily optimised for different processor architectures, and results may be subject 
to slight changes depending on the hardware on which the simulation is performed.
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A more formal way to asses the computational superiority of the SCP can be car-
ried out via simple t-tests. We compare the log CPU time for the various methods, so 
that results can be read as relative speed differences. Results are reported in Table 4: 
both the �-variant and the �-variant show significant differences with respect to the 
traditional parametrisations. Interestingly, on the third and sixth rows we also report 
the difference between the two SCPs: the �-variant appears to be superior with a 
statistically significant difference.

We also experimented with other maximisation algorithms in common use in 
computational econometrics, the Newton–Raphson method and the limited-memory 
variant of BFGS, L-BFGS (Morales & Nocedal, 2011), by running a small Monte 
Carlo simulation with 10 iterations: the Newton method converged in all cases but 
was almost 6 times more costly in terms of CPU time with respect to the standard 
BFGS method. The differences between parametrisations, instead, were rather simi-
lar to the benchmark case: the �-variant was 11% faster than the traditional one in 
the numerical derivative case, while the �-variant was 8% faster. The L-BFGS, in 
this scenario, exhibited convergence issues. We report the result for the Newton case 
in Table 5.

3.3 � Example III: The Multivariate Probit Model

The multivariate probit model (Ashford & Sowden, 1970) arises as a natural exten-
sion of the probit model in the case of dependent binary outcomes. More formally, 

Table 4   Mean difference tests 
for CPU time

Heteroskedastic-robust standard errors are used. *significant at size 
0.10, **significant at size 0.05, ***significant at 0.01

Mean diff S.E. t-ratio

Numerical score
Trad. versus � − 0.0648 0.0099 − 6.541***
Trad. versus � − 0.0773 0.0097 − 7.992***
� versus � − 0.0125 0.0026 − 4.768***
Analytical score
Trad. versus � − 0.0517 0.0093 − 5.570***
Trad. versus � − 0.0602 0.0090 − 6.675***
� versus � − 0.0085 0.0022 − 3.794***

Table 5   Average CPU time 
(in seconds) for the three 
parametrisations in the DCC 
example: Newton–Raphson case

Numerical score Analytical score

traditional 2225.5 785.2
�-variant 2026.6 721.5
�-variant 1958.0 684.4
Δ(�) 8% 8%
Δ(�) 11% 13%
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let yi = [yi,1,… , yi,l] denote a set of l binary variables for the i-th individual, with 
i = 1,…N.

The multivariate probit model can be written as a generalisation of the ordinary 
probit model as

where �(⋅) is the indicator function, zi is a vector of k covariates (that we assume 
common to all binary responses for the sake of simplicity and without loss of gen-
erality) and �i,j is the disturbance term. Similarly to the univariate probit model, the 
scale of �i,j is unidentified, so to achieve identification the covariance matrix of � 
must be normalised to a correlation matrix R, as illustrated by Chib & Greenberg 
(1998). Estimation of the unknown � and R parameters is performed via ML: the 
computation of the multivariate normal probability is generally handled via simula-
tion methods such as the GHK algorithm (Geweke, 1989; Hajivassiliou & McFad-
den, 1998; Keane, 1994). The computational burden, however, can be far from being 
negligible especially when the correlation matrix is near singular. For this reason, 
we propose to use spherical coordinates in the estimation of R.

In order to assess the numerical properties of the various parametrisations, we 
set up a simulation experiment as follows: we consider a medium-sized multivariate 
probit model, with l = 5 binary outcomes over N = 1024 observations. The scenar-
ios we consider for the correlation matrix R are of the form

where we set � over the following grid: � = {0.5, 0.75, 0.9, 0.95} so as to consider 
progressively more ill-conditioned cases.

For the covariates, we chose a simulation design whose purpose is twofold: on the 
one hand, we wanted to mimic a real-life, albeit simple, problem; on the other hand, 
we want our covariate to be helpful in giving the log-likelihood enough curvature to 
overcome possible identification problems. For these reasons, we define zi as a four-
variate vector, whose first element corresponds to an intercept and the other ones to 
random entries from a standard Gaussian distribution. The coefficients �j are set as 
random draws from a Uniform U(−1, 1) for all variables except the constant terms,10 
which takes values over the grid �1,j = {−0.5; − 0.25;0;0.25;0.5} with j = 1,… , 5 . 
Finally, for each correlation matrix R we simulate the data generating process 100 

(19)y
∗
i,j
= z�

i
�
j
+ �

i,j

(20)y
i,j
= �

[
y
∗
i,j
> 0

]

(21)� ∼N(0,R)

�ij =

{
� i ≠ j

1 i = j

10  For simplicity and convenience the final values are rounded to one decimal.
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times, allowing the random uniform coefficient � to vary between iterations, so that 
we avoid cases where the result is dependent from a particular � realisation.

As for the estimation part, ML is performed via simulated Maximum Likelihood 
using the GHK algorithm. Again, to explore the sensitivity of the results to differ-
ent choices, we use four different specifications for the pseudo random draws used 
in the GHK simulation, i.e., two uniform sequences (denoted by U) and two Halton 
sequences (denoted by H) of length, respectively, 100 and 500. The maximisation 
algorithm is the stock version of BFGS as provided by the gretl package. Initial 
values are calculated by running individual probit models for each dependent vari-
ables and using the estimated � vectors. The sample correlation matrix for the gener-
alised residuals (see Gourieroux et al., 1987) is used as a starting point for R.

The first main result is reported in Table  6: for the traditional parametrisation 
and the �-variant the numerical optimiser often failed to converge when � is large 
and the U/H sequences for the GHK are short. Conversely, the �-variant seems more 
robust to the GHK initialisation conditions and to the possible ill-conditioning of R 
since it converges in most cases, apart from a few ones when � = 0.95 : we conjec-
ture that this may be explained by the unboundness of the � space, which is fully 
exploited from the optimisation procedure the more the true parameter � is near its 
extremum.

Tables 7 and 8 show summary statistics on the number of BFGS iterations needed 
for convergence, conditional on convergence having taken place at the same maxi-
mum11: the � - and especially the �-variant provide marginally better results (the 

Table 6   BFGS convergence 
failures

At each correlation choice � correspond 100 data generating process 
replications

U = 100 H = 100 U = 500 H = 500

� = 0.50 Traditional 0.000 0.000 0.000 0.000
� 0.000 0.000 0.000 0.000
� 0.000 0.000 0.000 0.000

� = 0.75 Traditional 0.000 1.000 0.000 0.000
� 1.000 1.000 0.000 1.000
� 0.000 0.000 0.000 0.000

� = 0.90 Traditional 18.000 17.000 13.000 9.000
� 19.000 22.000 32.000 29.000
� 0.000 0.000 0.000 0.000

� = 0.95 Traditional 81.000 81.000 71.000 71.000
� 75.000 71.000 74.000 77.000
� 3.000 10.000 2.000 1.000

11  In some cases, the exact maximum point found in the three cases considered was different up to 
numerical noise. As a criterion for judging this aspect, we consider a maximum “qualitatively similar” 
across the three parametrisations when: all three alternatives have reached exactly the same maximum 
or, in case of different results, the difference between the value of the maximised log-likelihood is within 
0.25.
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means are comparable), but much more regular and more robust to outliers than the 
traditional parametrisation, as shown by the standard deviation and the order statis-
tics. This is very much in line with the experiments performed in the two previous 
subsections. Again, the advantage that the SCP offers appears to increase with the 
degree of correlation.

Table 7   BFGS iterations summary statistics with {U,H} = 100

For comparability, the results here presented are computed solely on the Monte Carlo iterations where 
all the three algorithms have jointly converged and where the log-likelihood achieved was qualitatively 
identical

U=100 H=100

Traditional � � Traditional � �

� = 0.50

Mean 40.980 38.910 37.280 40.960 38.980 37.080
S.D. 2.1788 0.55222 0.65258 2.0934 0.58569 0.61431
I quartile 40.000 39.000 37.000 40.000 39.000 37.000
Median 40.000 39.000 37.000 40.000 39.000 37.000
III quartile 42.000 39.000 38.000 42.000 39.000 37.000
Min 37.000 37.000 36.000 38.000 38.000 36.000
Max 49.000 41.000 39.000 49.000 41.000 39.000
� = 0.75

Mean 43.747 41.636 38.879 43.908 41.408 37.857
S.D. 3.5524 2.2877 1.8198 3.3339 1.8210 1.0841
I quartile 42.000 40.000 38.000 42.000 40.000 37.000
Median 43.000 41.000 38.000 43.000 41.000 38.000
III quartile 44.000 42.000 39.000 44.000 42.000 38.000
Min 41.000 39.000 36.000 40.000 39.000 36.000
Max 66.000 59.000 46.000 63.000 54.000 43.000
� = 0.90

Mean 52.000 49.364 42.606 52.119 49.015 40.552
S.D. 7.1209 11.753 6.1039 10.911 8.2416 5.1088
I quartile 47.000 46.000 39.000 47.000 45.000 38.000
Median 49.500 47.000 40.000 49.000 47.000 39.000
III quartile 55.250 49.000 45.000 51.000 50.000 41.000
Min 45.000 41.000 37.000 43.000 41.000 37.000
Max 81.000 124.00 73.000 97.000 96.000 77.000
� = 0.95

Mean 57.889 51.444 42.222 63.500 53.000 41.286
S.D. 9.7397 5.3877 3.1535 17.566 6.2880 2.0542
I quartile 53.000 47.500 40.000 52.750 48.000 40.000
Median 56.000 50.000 41.000 58.000 52.000 41.000
III quartile 57.500 55.500 44.500 67.000 56.750 42.250
Min 50.000 46.000 40.000 45.000 44.000 39.000
Max 83.000 62.000 49.000 113.00 66.000 47.000
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Considering the CPU timings, reported in Tables 9 and 10, we find very similar 
results: on average, the � - and the �-variants yield a slight advantage, but offer much 
more predictable performance, with thinner-tailed distributions. This happens uni-
formly across the four different GHK setups we chose for the uniform sequences.

Similarly to the DCC experiment, we considered the other optimisation algo-
rithms (Newton–Raphson and L-BFGS) in a small Monte Carlo experiment with 
10 replications. The Newton method showed convergence rates similar to the 

Table 8   BFGS iterations summary statistics with {U,H} = 500

U=500 H=500

Traditional � � Traditional � �

� = 0.50

Mean 40.610 38.940 37.040 40.900 38.960 37.060
S.D. 1.9483 0.54717 0.54901 1.9771 0.60168 0.61661
I quartile 39.000 39.000 37.000 40.000 39.000 37.000
Median 40.000 39.000 37.000 40.000 39.000 37.000
III quartile 41.000 39.000 37.000 42.000 39.000 37.000
Min 38.000 38.000 36.000 38.000 37.000 36.000
Max 48.000 41.000 38.000 48.000 41.000 38.000
� = 0.75

Mean 43.434 41.798 38.303 43.889 41.253 37.990
S.D. 2.1767 5.6766 1.6931 3.6194 1.3427 1.2817
I quartile 42.000 40.000 37.000 42.000 40.000 37.000
Median 43.000 41.000 38.000 43.000 41.000 38.000
III quartile 44.000 42.000 39.000 44.000 42.000 39.000
Min 41.000 39.000 36.000 40.000 39.000 36.000
Max 55.000 96.000 49.000 67.000 46.000 44.000
� = 0.90

Mean 50.419 51.274 41.452 52.108 49.569 41.231
S.D. 8.4340 15.472 5.0528 13.586 9.8900 5.0768
I quartile 46.750 45.000 39.000 47.000 45.000 39.000
Median 48.000 47.000 40.000 49.000 47.000 39.000
III quartile 51.000 51.000 43.000 51.000 52.000 42.000
Min 45.000 41.000 37.000 43.000 42.000 37.000
Max 98.000 144.00 71.000 128.00 114.00 71.000
� = 0.95

Mean 64.538 51.923 44.077 55.600 59.733 42.867
S.D. 14.327 5.2830 3.3531 8.8544 15.746 3.7007
I quartile 53.500 48.000 41.000 51.000 51.000 40.000
Median 62.000 51.000 44.000 53.000 54.000 42.000
III quartile 73.500 56.000 47.000 56.000 57.000 43.000
Min 50.000 43.000 40.000 46.000 47.000 40.000
Max 95.000 62.000 49.000 84.000 96.000 54.000
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BFGS ones; on the contrary the L-BFGS encountered several failures for the tra-
ditional parametrisation when high correlations were involved. In particular, the 
traditional parametrisation always failed to converge with � = 0.90 or � = 0.95 . 
The CPU time performance deteriorated dramatically for the Newton method, 
with the spherical parametrisations (especially the �-variant) faster than the 

Table 9   CPU time summary statistics with {U,H} = 100

For comparability, the results here presented are computed solely on the Monte Carlo iterations where 
all the three algorithms have jointly converged and where the log-likelihood achieved was qualitatively 
identical

U=100 H=100

Traditional � � Traditional � �

� = 0.50

Mean 6.2066 5.8500 5.7383 6.1828 5.8471 5.6965
S.D. 0.35451 0.17330 0.12877 0.34971 0.19345 0.13941
I quartile 5.9650 5.7394 5.6675 5.9450 5.7334 5.6117
Median 6.1288 5.8206 5.7303 6.0674 5.8144 5.6803
III quartile 6.3630 5.9216 5.8336 6.3446 5.9417 5.7649
Min 5.6731 5.3946 5.4681 5.7278 5.5102 5.4289
Max 7.4626 6.4041 6.2023 7.5806 6.6740 6.5071
� = 0.75

Mean 6.9143 6.6408 6.4047 6.9091 6.5672 6.2017
S.D. 0.61285 0.43407 0.32084 0.56742 0.35483 0.16423
I quartile 6.6005 6.3903 6.1793 6.5931 6.3738 6.0752
Median 6.7858 6.5637 6.3206 6.7456 6.5173 6.1674
III quartile 6.9553 6.8332 6.5551 6.9713 6.6566 6.2891
Min 6.3267 6.1500 5.8937 6.2173 6.0957 5.8760
Max 10.652 9.7300 7.5371 10.097 8.8088 6.8628
� = 0.90

Mean 8.6327 8.3307 7.3265 8.6045 8.2311 6.9275
S.D. 1.1539 1.9601 1.0262 1.8492 1.3835 0.86993
I quartile 7.7541 7.6908 6.7623 7.7181 7.6140 6.5585
Median 8.2689 7.9127 6.9379 8.0368 7.8683 6.6895
III quartile 9.1932 8.2410 7.6752 8.4806 8.4427 6.9738
Min 7.3591 6.9371 6.4003 7.1779 6.8964 6.3074
Max 13.028 20.577 12.526 16.301 16.291 13.147
� = 0.95

Mean 9.7577 8.7661 7.3320 10.611 8.9705 7.1438
S.D. 1.8447 0.92064 0.47786 2.9685 1.0535 0.34466
I quartile 8.8159 8.0626 7.0042 8.7785 8.0932 6.8834
Median 9.3376 8.6396 7.0710 9.6750 8.7754 7.0923
III quartile 9.6880 9.4912 7.6770 11.274 9.6071 7.2715
Min 8.3330 7.7790 6.9444 7.5995 7.5431 6.7753
Max 14.528 10.545 8.3554 19.114 11.204 8.0951
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traditional. The L-BFGS method was also slower than the standard BFGS, espe-
cially for high values of � : when convergence was achieved for the traditional 
parametrisation, it reported better CPU performances than the SCP variants. In 
this regard, however, we remark upon the fact that SCP granted much better con-
vergence results. For the sake of brevity, we report in Table 11 the average CPU 
time in seconds for the � = {0.50, 0.75, 0.90} cases (owing to their overall null or 
small convergence failure rate), with U = 100.

Table 10   CPU time summary statistics with {U,H} = 500

U=500 H=500

Traditional � � Traditional � �

� = 0.50

Mean 27.030 25.738 25.034 26.957 25.584 24.827
S.D. 1.3859 0.71106 0.46008 1.3373 1.0589 0.47628
I quartile 26.191 25.253 24.707 26.038 25.121 24.465
Median 26.707 25.742 24.998 26.689 25.511 24.814
III quartile 27.453 26.057 25.284 27.682 25.849 25.135
Min 24.986 24.306 24.243 24.720 24.078 23.898
Max 32.897 28.215 26.437 32.592 33.782 26.205
� = 0.75

Mean 30.408 29.642 27.961 30.351 28.832 27.378
S.D. 1.8021 4.2164 1.1749 2.8122 1.2168 0.85045
I quartile 29.264 28.372 27.262 28.956 27.985 26.832
Median 30.096 29.129 27.734 29.532 28.739 27.229
III quartile 30.918 29.665 28.320 30.744 29.433 27.752
Min 27.750 26.644 26.373 28.059 26.355 25.781
Max 39.203 69.294 35.009 47.797 32.855 30.929
� = 0.90

Mean 37.283 38.772 31.858 37.979 36.831 31.189
S.D. 6.1026 11.329 3.8355 9.8541 6.9649 3.7292
I quartile 34.376 33.896 29.877 34.051 33.289 29.409
Median 35.745 35.883 30.633 35.394 35.097 29.919
III quartile 37.591 38.427 32.851 36.906 38.913 31.662
Min 32.803 30.546 28.513 31.136 30.642 27.908
Max 72.220 105.37 54.170 91.358 80.588 53.257
� = 0.95

Mean 48.602 39.882 34.287 41.443 45.114 32.974
S.D. 11.016 3.9696 2.5256 6.6010 11.945 2.7778
I quartile 40.088 36.539 31.815 38.223 38.298 31.111
Median 47.989 39.281 34.209 39.806 40.752 32.329
III quartile 55.001 42.666 36.396 41.661 43.622 33.210
Min 37.545 33.911 31.259 34.409 35.285 30.627
Max 72.610 47.912 38.275 62.779 72.656 41.219
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To summarise the whole experiment, the SCP in the form of the �-variant 
achieves the best results for high values of � , especially in terms of ensuring that 
convergence takes place at all: in those cases where comparison is possible, it guar-
antees the best numerical performance.

4 � Conclusion and Directions for Future Research

Efficient parametrisations in optimisation problems can be very effective. In the 
context of statistical and econometric models the estimation of correlation matrices 
poses several issues given the nature of the correlation matrix itself.

In this paper, we analysed the usage of the spherical coordinates representation: 
following the previous contributions by Pinheiro & Bates (1996) and Rapisarda 
et al. (2007) we have applied the SCP to some widely used econometric models.

We provide three examples, ranging across different use cases: apart from a few 
exceptions, the SCP enhances numerical optimisation of log-likelihood functions, 
both in terms of stability and numerical performance, especially so when the corre-
lation matrix is badly conditioned. Of the two alternative parametrisations proposed 
here, both SCP methods improve on the traditional approach but the relative gain 
depends on the context.

Clearly, the scope of the SCP could be extended to models not considered here. 
For example, one could consider estimating the DCC model with fat-tailed innova-
tions. It would also be interesting to extend the results presented here for the mul-
tivariate probit model to the multinomial probit model, especially in the light of 
its potential for computational complexity (see e.g., Fares et al., 2018). That case, 
however, would be considerably more complex as the natural parametrisation for the 
multinomial probit involves a matrix in which diagonal elements may be different 
from 1 (see e.g., Train, 2009, Section 5.2).

Table 11   Average CPU 
time (in seconds) for the 
parametrisations in the 
multivariate probit example: 
Newton method and L-BFGS

Newton L-BFGS

� = 0.50

Traditional 50.35 10.91
�-variant 53.72 14.57
�-variant 47.53 17.89
� = 0.75

Traditional 78.63 21.61
�-variant 71.68 30.83
�-variant 54.94 41.08
� = 0.90

Traditional 95.36 NA
�-variant 88.13 74.29
�-variant 71.68 102.38
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In conclusion, the SCP appears to be a powerful tool for dealing with estima-
tion procedures involving correlation matrices, especially in ill-conditioned cases. 
Numerical performance is better and, estimation is still possible in limiting cases 
that would be impossible to handle otherwise.

5 � Computational Details

All experiments have been run in the econometric software gretl. In particular, 
we have used the 2022c release, installed on a Linux machine.
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