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Abstract

This paper contributes to the ongoing debate on the nature and characteristics of
the volatility transmission channels of major crash events in international stock mar-
kets between 03 July 1997 and 09 March 2021. Using dynamic conditional correla-
tions (DCC) for conditional correlations and volatility clustering, GARCH-BEKK
for the direction of transmission of disturbances, and the Diebold-Yilmaz spillover
index for the level of volatility contagion, the paper finds that the climbs in external
shock transmissions have long-lasting impacts in domestic markets due to the con-
tagion effect during crisis periods. The findings also reveal that the heavier magni-
tude of financial stress is transmitted between Asian countries via the Hong Kong
stock market. Additionally, the degree of volatility spillovers between advanced
and emerging equity markets is smaller compared to the pure spillovers between
advanced markets or emerging markets, offering a window of opportunity for inter-
national market participants in terms of portfolio diversification and risk manage-
ment applications. Furthermore, the study introduces a novel early warning system
created by integrating DCC correlations with a state-of-the-art deep learning model
to predict the global financial crisis and COVID-19 crisis. The experimental analysis
of long short-term memory network finds evidence of contagion risk by verifying
bursts in volatility spillovers and generating signals with high accuracy before the
12-month crisis period. This provides supplementary information that contributes to
the decision-making process of practitioners, as well as offering indicative evidence
that facilitates the assessment of market vulnerability for policymakers.
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1 Introduction

Volatility is one of the fundamental indicators of risk measures in financial mar-
kets. Estimating volatility at the individual equity level, the broad market level or the
worldwide level has substantial significance for market participants, financial organ-
izations, and policymakers. One of the biggest challenges in generating accurate
volatility prediction is the growing interconnectedness of financial markets in recent
years, due to the globalization and advancements in information technology, which
increases the contagion of shocks between countries and aggravates the impact of
crises. Following the stock market crash of 1987, the debate has been heated among
researchers and policymakers regarding the joint and dramatic turmoil among inter-
national financial markets which are located in different regions and have different
characteristics. More specifically, starting from the early 1990s, the frequency of
financial crises has increased and drastic movements of volatility are being observed,
not only in the originator country but also in the regional and inter-regional mar-
kets. Although the early studies concerning volatility transmission date back to the
aftermath of the 1997-1998 Asian financial crisis,' financial contagion and vola-
tility spillovers across different types of stock markets have become a major area
of interest in the last two decades (Corsetti et al., 2005; Forbes & Rigobon, 2002;
Guo et al., 2011; Jin & An, 2016; Okorie & Lin, 2021).Historically, individual and
institutional investors were willing to extend their investments into foreign emerg-
ing markets to take advantage of portfolio diversification and enhanced risk-return
trade-off. The rationale behind this diversification was primarily the reduced inter-
connectedness between developed and emerging markets, as well as the protection
aptitude of big drawdowns during any possible financial crisis (Bouslama & Ouda,
2014; Thomas et al., 2021). However, a series of financial crises with growing dev-
astating impacts, such as the Asian crisis of 1997, the global financial crisis of 2008,
and the COVID-19 recession of 2020, has shown that all these crises have a feature
in common: the transmission of volatility across regional and global levels due to
the cross-market connections. When these market connections remain steady, the
shocks are transmitted through the linkages and the recovery can be achieved by the
financial and economic activities within the country. However, if the market link-
ages are disrupted after the shocks, the crisis starts to feed itself and the country’s
fundamental economic and financial dynamics would not be enough to contain the
impact of the crisis. In that case, a wider rescue plan with international intervention
would be needed. The latter form of crisis is known as “financial contagion”. Now
that the phenomenon and impacts of financial contagion are broadly known, market
participants’ risk appetite for emerging markets is diminished and growing interest
has been observed among investors for developed markets (Akhtaruzzaman et al.,
2021; Berger & Turtle, 2011; Mensi et al., 2017).

In the recent years, Machine Learning (ML) applications have emerged to deal
with the nonlinear dynamic characteristics and the complex nature of financial

! See Claessens and Forbes (2001) for the survey of notable articles regarding the contagion effect
across countries.
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markets. D’amato et al. (2022) showed that deep learning techniques provide more
reliable results compared to the conventional methods by capturing complex data
interactions. In a similar vein, Song et al. (2023) compared the deep learning with
hybrid ML and traditional econometric forecasting model by using different frequen-
cies and found that the forecasting accuracy of the deep learning is highest including
in correlation analysis and feature importance ranking. Our study extends the above
literature and contributes to the empirical literature of financial econometrics with
volatility transmission channels during three different major crisis events in the last
few decades as well as developing an early warning system (EWS) by using one of
the most sophisticated deep learning algorithms to predict crisis events based on the
obtained transmission channels. Specifically, the novel contributions of the present
paper are as follows:

e In most studies, EWS systems are developed based on return series, while only
a few studies considered the volatility spillover effects between markets. To the
best of our knowledge, the long short-term memory (LSTM) model has not been
covered in the literature to develop EWS-based correlations and transmission
channels among developed and emerging stock markets. Moreover, the dynamic
conditional correlation (DCC) method is integrated with an advanced deep learn-
ing algorithm for the first time to examine the impact of foreign information in a
domestic market during the global financial crisis (GFC) and COVID-19 crises.

e In this study, daily data, which tend to be more responsive compared to lower
frequency data, is obtained from eleven different emerging and developed mar-
kets. The existing literature mainly focuses on Eurozone markets or developed
economies rather than emerging markets. Thus, by covering and analysing the
emerging markets of Asia, we are able to see the progress of changes in terms of
vulnerability of foreign shocks and channels of contagion between emerging and
developed markets during major events.

e As the impact of COVID-19 crisis is still ongoing for many markets, and the
source of crises and the major hubs for transmission channels are different in dif-
ferent crisis events, the present study contributes to the literature by providing a
comparison of interdependencies and the changing intensity of contagion chan-
nels between markets for different periods.

The remainder of the paper is organized as follows. Section 2 presents the litera-
ture review. Section 3 covers the methodological framework, including the machine
learning algorithms and contagion specification, while Sect. 4 provides the data and
preliminary analysis. Section 5 discusses the empirical results of the study. Finally,
Sect. 6 draws the conclusion and suggests directions for future studies.

2 Literature Review
Financial crises have received great attention and become a global phenomenon due

to the increasing turbulences in emerging and developed markets in the recent years.
The characteristics of financial crises tend to reveal themselves in diverse forms

@ Springer



M. Sahiner

and relying on a single definition may lead to a biased results, therefore each crisis
should be studied separately. Laeven and Valencia (2020) identified 151 banking cri-
ses, 236 currency crises and 79 sovereign debt crises during the period from 1970 to
2017, excluding the recent novel COVID-19 crisis which had a devastating impact
on economies and resulted in a global economic recession. Furthermore, political
events, such as the Russia-Ukraine war, create exogenous shocks across different
asset classes and lead heterogenous impacts on global stock markets (Aliu et al.,
2023; Boubaker et al., 2022; Yarovaya & Mirza, 2022). To date, a broad range of
studies have focused on revealing causes, timing, and impacts of financial crises that
break out in different parts of the world. Baig and Goldfajn (1999) studied contagion
effects between five countries of Asia during the crisis period, and their findings
imply that the correlations in exchange rates and sovereign risk spreads jump dur-
ing crisis periods as investors tend to react similarly during turbulent times. Yet, the
contagion effects among equity markets were found to be more tentative. The study
of Jang and Sul (2002) adopted the Granger-causality test and revealed that the con-
tagion effect is more severe between those Asian countries that are more economi-
cally connected. On the other hand, Sander and Kleimeier (2003) investigated the
patterns of Asian crisis using the Granger-causality methodology and found that the
Asian crisis changed contagion patterns between Asia and other related countries
from the pre-crisis to post-crisis period. They concluded that there is no detectable
systematic pattern that favours cointegration of the countries, which contracts with
the results of Jang and Sul (2002). Meanwhile, Fry et al. (2010) proposed a new
model to identify contagion effects via transmission channels of the subprime crisis
using the alterations in high order distribution of returns. The findings of the study
revealed that the correlation-based tests are not able to detect the new channels of
contagion during the crisis periods, unlike proposed co-skewness tests. Idier (2008)
supported the idea of probability of new contagion channels during the subprime
crisis period by adopting Markov switching multifractal model between CAC, DAX,
FTSE and NYSE indices using daily return series. In contrast, Horvath and Petro-
vski (2013) examined co-movements in the European stock markets by using mul-
tivariate GARCH models, and stated that there are no empirical findings to support
any changes in the degree of stock market integrations caused by the GFC among
selected groups of countries. Furthermore, Aloui et al. (2011) show that strong evi-
dence of time-varying dependence and high level of contagion effects exist between
BRIC countries and the US during the global financial crisis. In a separate study,
Min and Hwang (2012) analysed the process of contagion effects by using the
dynamic conditional correlations (DCC) model for the OECD countries and the US
from 2006 to 2010. They found strong evidence of increasing contagion during the
US financial crisis for the UK, Australia and Switzerland stock markets, while lim-
ited volatility and return contagion in the Japanese Stock Market.

More recently, Akhtaruzzaman et al. (2021) analysed contagion effects between
China and the G7 countries by focusing on financial and nonfinancial firms. They
used DCC models to estimate financial transmission channels and the results indi-
cated that China and Japan have been the main transmitters of spillovers during
the COVID-19 crisis period. He et al. (2020) investigated the contagion effects of
COVID-19 on stock markets by applying conventional f-tests and non-parametric
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Mann—Whitney tests. They used daily return data from the stock markets of eight
countries, and the findings revealed bidirectional contagion effects among Asian,
European and American stock markets, and that COVID-19 did not have a nega-
tive effect on the selected stock markets. On the other hand, the study of Wang
et al. (2022) rejects the idea that COVID-19 had no impact on stock markets, as the
empirical results of their study show that the pandemic has led to massive shocks in
international financial markets. They also provided evidence of directional spillover
channels between selected markets, where Chinese and Japanese financial markets
were detected as net spillover recipients, while British and American stock markets
functioned as main spillover transmitters during the pandemic, in contrast to the
results of Akhtaruzzaman et al. (2021).

In addition, Baker et al. (2020) and Ramelli and Wagner (2020) examined the
reaction of stock prices to COVID-19, while Bouri et al. (2021) explored extreme
return connectedness between different asset classes during the pandemic. Abuzayed
et al. (2021) focused on systemic distress risk spillover by using conditional value
at risk (CoVaR) and dynamic conditional correlation (DCC) methods. Their results
indicated that the developed markets in North America and Europe were exposed
to a more marginal risk compared to Asian stock markets during the COVID-19
period.

Deep learning methods have been also increasingly used in the financial market
analysis due to their data-driven and self-adaptive nature. Gunduz et al. (2017) stud-
ied the hourly movements of 100 stocks from the Istanbul Stock Exchange using a
convolutional neural network (CNN) model. A number of technical indicators and
temporal features had been used to train the model, and the experimental results
showed that the proposed algorithm improves the prediction of stock returns com-
pared to the baseline logistic regression. Magsood et al. (2020) extended the data-
set by adding the US, Hong Kong, Turkey, and Pakistan stock exchanges as well
as employing the sentiment analysis from the Twitter dataset. 11.42 million tweets
were analysed and used as an input for the DL. CNN model, which shows that major
events do have impacts on the stocks of selected markets, and deep learning (DL)
models are able to evaluate large datasets and provide significant improvements
to predict patterns of stock movements. Likewise, Kim and Kang (2019) exam-
ined KOSPI 200 index using LSTM, CNN and MLP. The experimental results of
the study show that LSTM provides improved forecasting performance compared
to CNN and ML, as it works better with sequential data compared to others. Simi-
lar results have been obtained by Kim and Won (2018) and Sanboon et al. (2019)
when using DL models on various datasets. A growing number of studies are being
conducted in the financial literature using deep learning models, covering a wide
range of fields including exchange rate prediction (Dautel et al., 2020; Fisichella &
Garolla, 2021; Ni et al., 2019), stock market forecasting (Gao et al., 2022; Hiransha
et al., 2018; Vargas et al., 2017), cryptocurrency analysis (Awoke et al., 2021; Jam-
shed & Dixit, 2022; McNally et al., 2018), and the energy market (Assaad & Fayek,
2021; Fan et al., 2019; Wang et al., 2019; Zhao et al., 2017).

In view of this summary of the existing literature, the present state of research
shows that there are ambiguities in the volatility spillover analysis, and the role
of machine learning methods in the asymmetric shock transmissions remains
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controversial compared to the classical time series approaches. As discussed in
Thakkar and Chaudhari (2021) and Chopra and Sharma (2021), artificial intelli-
gence models possess superior capabilities and require further research to improve
the accuracy volatility forecasts. As far as we are aware, there is no application in
the finance literature that combines the DCC model with an advanced deep learning
algorithm to develop an EWS system for the purpose of crash prediction. In contrast
to previous studies, this paper adopts and builds an advanced LSTM architecture for
each selected period with improved learning rules and optimized hyperparameters,
which may help to the deficiency in internationally accepted standard performance
parameters. Finally, our study offers a timely set of empirical outcomes that are
missing from the previous literature.

3 Methodology
3.1 The Dynamic Conditional Correlation Method

The dynamic conditional correlation (DCC) model, introduced by Engle (2002),
is the generalized version of Bollerslev’s (1990) constant conditional correlation
(CCC) model and is used to estimate volatility spillover and dependencies among
different time series. The DCC model allows us to examine time-dependent con-
ditional correlations as well as large correlation matrices. Since the model’s coef-
ficients are independent from the number of correlated series, it provides more flex-
ibility compared to the earlier models. The methodology can be built on a two-step
procedure. In the first step, the univariate GARCH (1,1) procedure is followed to
obtain the conditional variance of each parameter, while in the second step, the
conditional correlation estimates are conducted by using the standardized residuals
acquired in the first step. Considering this, the mean equations are given as follows:

n n

Ry =+ Y agRoy+ Y BiRyy + 5
=1 =1

n n 1)

Rst = Hs + Z aissr—l + 2 ﬂisfl—l + Est
=1 =1

where f denotes the first country and s indicates the second country. The mean equa-
tions above are used to obtain residual series, which then will be applied to derive
the variance equations as shown:

2 _ 2 2
0 = O+ &y €, + Py, )

2 _ 2 2
Og = &0 + Xs1€51 + ﬂSlo—xt—l

where 6[2 denotes conditional variance, a; and f, indicate ARCH and GARCH terms.
The standardized residuals are denoted by € and « refers the constant term.

Following the data generating process of Engle (2002), the dynamic conditional
correlation procedure can be defined as follows:
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Q,=(1-a-pP+ag_je_ +0O,_, 3)

where Q, represents the covariance matrix with O, =(qs,), P=E [e,ef] and
a+ f < 1. A significant ARCH term («) indicates that the correlations vary appre-
ciably over time, henceforth the spillovers exist among the selected markets. The
GARCH parameter (f) indicates the persistence of the shock to the correlation,
therefore the shock at time # — 1 effects the correlation at time ¢. Although the corre-
lation is mean reverting as a + f§ < 1, it is possible to have a @ + § = 1, which means
the conditional correlation is integrated to the order 1. For further details, see Engle
and Sheppard (2001), and Hafner and Franses (2009).

3.2 The GARCH-BEKK Model

Another approach adopted by the present paper is named by
Baba-Engle—Kraft—Kroner as BEKK model and initially was introduced by Baba
et al. (1990) and Engle and Kroner (1995). The GARCH-BEKK specification
with single lag is defined as follows:

H, =C”C°+D'e,_e, \D+G'H,_|G 4)

where H, is the variance—covariance matrix, D and G are the k X k parameter matri-
ces, C° is the constant matrix with lower triangular vector, and ¢,_; is the lagged
residual term. The restriction applies to constant matrix C° to be the lower triangu-
lar, while the parameter matrices have no restrictions. As the present study focuses
on potential spillover effects between each selected markets, the key point is to
obtain estimated parameters of D and G matrices. Specifically, we would like to see
the linkages among variances of selected markets which is demonstrated by the off-
diagonal coefficients of matrix G. Moreover, the coefficients estimated by the matrix
D provides innovations on volatility. In other words, the off-diagonal elements of
D and G matrices deliver details about “news effect” and “spillover effect”, respec-
tively (Kim et al., 2015). In this regard, the significance of D and G can be used to
assess the degree of shocks and spillovers between selected markets (Li & Maje-
rowska, 2008). Thus, the BEKK model with the bivariate system is utilized, and the
equation is given as follows:

o dy, d &’ €1 -1€2,-1 dy d
H=CC + 11 21)( 1Li-1 , \ 11 912
! <d12 dy, €2 -1€1,-1 55,,_1 dy, dyy
8
+ < 11 821 >H1_1<811 812>
812 822 821 822

More specifically, the expanded form of the conditional variance elements can
be written as:

)
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hllt_d2

2 2 2
11, 1+d21 1 T 2dndy €118 +g11h11r 1+321h22z 1

+ 28118201121
2 2 2 2
hy,=d 2511 1+d22521 |+ 2dpdyE €0y 1+g12h11r 1+322h22z 1

(6)

+ 281182010141

indicates (i, j) element of H, which is the conditional variance, ¢;, refers

where h; s Eis

ij,t
to the (i)™ element of error term g,. In the first equation d,, and g,;, and in the second
equation d,; and g,,, are in the focus in terms of their significance, as they provide
the information about spillover effects between markets. It should also be noted that
the signs of the estimated coefficients here are not important, as the conditional vari-
ance is determined by their squared value. The BEKK model is estimated by max-
imising the quasi-likelihood method under the assumption of conditional normality.

3.3 The Diebold and Yilmaz Spillover Index

The Diebold and Yilmaz (2009) methodological framework is one of the most common
and popular spillover models in the current literature. By adopting forecast error vari-
ance decompositions from the VAR model, it allows assessing news and shocks across
different markets by enabling bidirectional connections among parameters in a single
spillover index. However, one of the main issues in the Diebold and Yilmaz (2009)
model is the structure which is built on the Cholesky decomposition due to the highly
sensitive variable ordering. To overcome of this deficiency, Diebold and Yilmaz (2012)
improved the model to make the forecast error variance decompositions invariant to
the ordering of the variables by adopting the generalized impulse response approach
of Koop et al. (1996) and Pesaran and Shin (1998). Therefore, the revised version of
Diebold and Yilmaz (2012) framework is adopted in this study to examine volatility
spillovers between markets.
Consider a covariance stationary p-th order, N-variable VAR:

P
R, = py+ Z DR, + € (7)
p=1
where R, is a vector of N-variables, implying the volatilities of returns from stock
markets at time t, 2, indicates Nx N coefficient matrix, and €,is an N X 1independ-
ent and identically distributed vector of disturbances with covariance matrix .

One of the fundamental part of the method is the moving average representation of
the VAR which is given by:

R, = po + Z K, ; )
i=0
where the NX N coefficient matrix of K;, which is defined by:
Ki=®lKi—1 +®2Ki 2+ -+ 0 K. (9)

pt=p
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where K|, represents the identity matrix of NXN with K; =0 fori < 0.

The given framework of Diebold and Yilmaz (2012) with the generalized VAR
specification of Koop et al. (1996) and Pesaran and Shin (1998) enables to pro-
duce variance decompositions without relying on the ordering of the variables.
According to the method, the H-step ahead error variance for H = 1,2,...,00
obtained from forecasting the i th parameter that are due to innovations from the
jth parameter for i,j = 1, ... N;andi # j, is defined as:

o Y, Kyod)’
¥,(H) = (10)
S (K, 8K, d)

where 6 is the estimated variance matrix of the vector &, o} is the estimated standard
deviation of the error term ¢ for the jth element, and d; is the the selection vector
with the ith element unity and zero otherwise. Under the generalized decomposulon
the sums of forecast error variance contributions are not equal to 1: Z lI‘U(H) # 1.
Therefore, each entry of the variance decomposition matrix needs to be normalized
by its row sum as follow:

5o M
Y v an

with Zj (H) = land Zw .
izing the contributions of spillover from shocks. We can then calculate the total vol-
atility spillover index as follow:

¥ LW H) N L W(H)
*’N‘*# x 100 = % x 100 (12)
Zi,,‘:l lPij(H)

ij(H ) = N by construction where it allows normal-

TS(H) =

which allows to measure average contribution of spillover from volatility shocks to
other variables. In other words, the total spillover index states the degree of shocks
to volatility spillover between the markets. On the other hand, this method is very
adjustable as the variance decompositions are invariant to the ordering of the param-
eters. Therefore, Diebold and Yilmaz (2012) further introduced the directional spill-
over concept by using the normalized factors of the generalized variance decompo-
sition matrix. The size of the directional spillover received by market i from other
markets j can be measured using the Eq. 13, as follow:

T Uy H) T VD
DS, j(H) = == x 100 = SEE T %100 (13)
X YyH) N

Conversely, the size of the directional spillover transmitted by market i to all
other markets j is given in the Eq. 14, as follow:
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VL YH)
DS,_;(H)= =22 2 w100 =

N ~
Zj:l,i;éj lei(H)
IR N

x 100 (14)

The difference between the aggregate volatility shocks transmitted to market i,
and those gross volatility shocks received by all other markets indicates the net vola-
tility spillover which can be computed as follows:

NS,(H) = DS,_(H) = DS,_(H) (15)

i~j
In other words, the above equation reflects whether a market (country) is a
receiver or transmitter of volatility shocks. Furthermore, the net pairwise volatility
spillover can be calculated as follows:
W(H) W,(H)
NPS;(H) =| = e x 100 =
Zi,z:l lIJI'Z(I_I) Zj,z:l sz(H)

¥, (H) — U ,(H)
———— X100

(16)
which is basically the difference between total volatility shocks sent by market i to
market j and those received by market i from market ;.

We implement the total spillover index in this study to examine interdependence
and spillover activity across selected markets for different crisis and non-crisis peri-
ods as well as presenting the degree of contributions from each market to all remain-
ing markets.

3.4 Early Warning System Via Long Short-Term Memory Model

LSTMs are a specialized category of Recurrent Neural Network (RNN)-based
deep learning models. The LSTM algorithm has a unique ability to learn the order
dependence among sequenced elements, which provides a significant advantage
in time series analysis (Tong & Yin, 2021).> The model was first introduced by
Hochreiter and Schmidhuber (1997), and was later improved by Graves (2013) to
overcome of the long-term dependence problems. A LSTM network consists of a
memory cell, which enables to store information over time, and a special gating
units, namely, input gates, forget gates, and output gates, to control the flow of data.
These gates allow LSTM cells to learn the important parts of a sequence and forget
the less important ones. Therefore, it can identify complexities and non-linearities in
times series data, which offers a key advantage especially during the turbulent times
in stock markets. The structure of a memory cell in an LSTM unit is shown in Fig. 1.

2 The choice of the LSTM algorithm was based on its proven effectiveness and strong performance
on financial time series data in prior research. For further details, see Yan and Aasma (2020), Lu et al.
(2022), and Lee (2023).
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Input Gate

N Ny
(o)

Fig. 1 The structure of a memory cell in LSTM unit

In Fig. 1, x, refers to the input data at time ¢, c, is the vector of the memory cell
and A&, denotes the output vector of the LSTM cell. The estimation procedure of
LSTM network is defined as follows:

Step 1: Estimation of the candidate memory cell

In this step, the value of the memory cell C, is predicted with

C, = tanh[W, (h,_,,x,) + b,] (17)

where W, is the weight matrix, ,_, is the output vector of the LSTM cell at the pre-
vious time, and b, is the bias vector.

Step 2: Estimation of the input gate

The vector of the input gate i, is determined at this stage where it controls the new
information in the current state of the network. It is represented as:

i, =o|W;(h,_.x,) + b,] (18)

where o is the sigmoid activation function, W, is the weight matrix, and b, is the bias
vector.

Step 3: Estimation of the forget gate

In step three, the value of the forget gate f, is computed where it evaluates the
relevancy of past information and remembers only the relevant information at the
current slot while discarding (temporarily) irrelevant data. It is written as:

fi=o[Wi(h_1.x,) + by (19)

where W, is the weight matrix and b, is the bias vector.

Step 4: Estimation of the current state of the memory cell

Given the values of the input gate, the forget gate and the candidate memory cell
in the previous steps, we can now compute the current value of the memory cell ¢,:
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C=frke +i* Ez (20

where c,_, is the previous state of memory cell and “x € refers the dot product which
indicates the operation of the artificial neural network.

Step 5: Estimation of the output gate

In this stage, the value of the output gate o, is calculated where it produces the
output from the network at the current slot. It is represented by:

0, =o[W,(h_.x,) +b,] Q1)

where W, is the weight matrix, and b,, is the bias vector.
Step 6: Estimation of the output of the LSTM unit
In the final stage, the predicted output of the LSTM unit /4, is produced.

h, = o, * tanh(c,) (22)

The internal process of a neuron is performed using the three control gates and
a memory cell which allows the LSTM model to efficiently store, read and update
long period of data.

3.5 Model Construction

In this stage, the optimal LSTM model is constructed for the present study. First, the data
have been split into two periods from 03 July 1997 to 30 July 2009 and from 31 July
2009 to 09 March 2021. Engle’s (2002) dynamic conditional correlation (DCC) model is
conducted for each selected period on a bivariate basis to extract the correlations. Then
obtained correlations are transferred to the LSTM model for training and testing with
the proportion of 80:20 setting. To build the model, one input layer, two hidden layers
consisting of LSTM blocks with sufficient neurons, and a single output layer are chosen.
The sigmoid activation function is adopted for the calculation of the input and output
doors, while tangent activation function is used for the vector creating in cell state. For
the hyperparameter process, the initial learning rate is set to 0.01 and 1000 epochs are
chosen for training the data, but early stopping is applied if there is no improvement after
100 epochs to prevent an overfitting problem (Prechelt, 1998). The reproduction phase
of the model has been performed based on batch weighting, which accumulates changes
in the weight matrix over an entire presentation of the training data set. The weights
are updated by the ADM optimization algorithm. Then in the final stage, based on the
results received during the trials, the early warning system is created using the sigma
method of Sevim et al. (2014).? The signals are triggered in various sigma levels, and in
case of false alarms, the given signals are verified using the evaluation metrics of root
mean square error (RMSE) and mean squared error (MSE) by applying the following
equations:

3 Our EWS forecasts financial crises within a 12-month timeframe to obtain more accurate predic-
tion results by capitalizing on the deterioration of economic fundamentals as a crisis draws near. This
approach also provides early indication of vulnerabilities which is essential for policymakers to imple-
ment proactive measures in a timely manner. For further details, see Bussiere and Fratzscher (2006) and
Sevim et al. (2014).
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(23)

1 A2\ 2
MSE =~ ¥ (o] = 57) (24)
=1
where n denotes the rank of forecasted data, alz is the actual series which is obtained
by the DCC model and 83 is the predicted correlations at time ¢ acquired by using

the LSTM model.

4 Data and Preliminary Analysis

The data for the present paper are retrieved from Bloomberg database and cover
closing prices of widely accepted indices from ten Asian stock markets, i.e., the
Nikkei 225 Index (NIKKEI) from Japan, the Hang Seng Index (HSI) from Hong
Kong, the Korea Composite Stock Market Index (KOSPI) from South Korea, the
Taiwan Capitalization Weighted Stock Index (TAIEX) from Taiwan, the Straits
Times Index (STI) from Singapore, the SSE Composite Index (SSE) from China,
the PSE Composite Index (PSE) from the Philippines, the Stock Exchange of Thai-
land Index (SET) from Thailand, the Kuala Lumpur Composite Index (KLCI) from
Malaysia, and the Jakarta Stock Exchange Composite Index (JCI) from Indonesia.
Moreover, the S&P 500 Composite Index (SP500) from the US is also considered to
give a broader perspective during different crisis periods, as the source for the GFC
in 2007-2009 is believed to have been the US (Chan et al., 2019). In order to satisfy
stationarity, closing price series have been converted to return series by taking the
first difference of the log-transformed series using the below formula:

R, =log(P,/P,_,) * 100 (25)

where R, denotes the logarithmic return at time 7. P, and P,_, are the closing price of
the index at time 7 and 7 — 1 respectively.

The full sample period of the study consists of 4726 return data in total, starting
from 03 July 1997 to 09 March 2021. Specifically, the data is split into five different
sub-periods coving both pre-crisis and crisis periods. The Asian crisis period spans
from 03 July 1997 to 29 December 1998 with 315 observations. Pre-GFC period
covers data between 06 January 1999 and 26 June 2007 with 1675 observations,
and the GFC period takes place between 05 July 2007 and 30 July 2009 with 410
return series. Following, pre-COVID-19 crisis period extends from 31 July 2009 to
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10 March 2020 with 2030 observations, and finally COVID-19 crisis period covers
the dates between 11 March 2020 and 09 March 2021 with 283 counts. During the
data cleansing, one of the major challenges is non-synchronous holidays in different
markets, which leads to computation difficulties and negatively affects the output
of the models. To deal with this issue, the return series on these days are taken as
zero, as zero return indicates the actual return on non-trading days (Yarovaya et al.,
2016a). In terms of the selection of the different sub-periods, there is still no consen-
sus in the financial literature regarding the dating of a specific crisis period (Kose,
2011). Furthermore, the dating is also not consistent across papers that study dif-
ferent financial market crises, such as Chiang et al. (2007), Valencia and Laeven
(2008), Baur and Fry (2009), Syllignakis and Kouretas (2011), Kenourgios and
Padhi (2012), and Arghyrou and Kontonikas (2012). Therefore, to identify breaking
points, this paper considers the structural break tests of Bai and Perron (1998, 2003)
and Lee and Strazicich (2013). The structural break tests are applied multiple times
to the full period, and as expected, presence of multiple breaks are identified which
differ from one market to another. Therefore, the identified multiple breaking points
are compared with sharp movements in closing prices for each index to capture the
common patterns. Finally, the chosen dates are divided to pre-crisis and crisis peri-
ods and used as an input for the selected models. Table 18 presents the descriptive
statistics of the daily stock market returns for six different periods. Based on the
result of the Jarque—Bera test statistic, the normality assumption of null hypothe-
ses is rejected in all selected markets, confirming the non-normal distribution in all
series. These results are expected, as returns of equities do not follow normal distri-
bution (Beedles & Simkowitz, 1978). Thus, return distribution is not symmetrical
and the series have either positive or negative skewness. Positive skewness appears
when the median has a smaller value than the mean, while negative skewness occurs
when the median has a greater value than the mean. Eastman and Lucey (2008) sug-
gest that in the event of negative skewness, most returns will be higher than the aver-
age, and therefore market participants would prefer to invest in negatively skewed
equities.

According to the table, majority of the markets present negative skewness dur-
ing the full period, with the only exception of KLCI and SET indices, which indi-
cate positive skewness. The Asian and COVID-19 crisis periods exhibit positive
skewness in seven out of eleven markets (63.6%), while the GFC period and pre-
COVID-19 crisis period indicate negatively skewed returns in all markets. Similar
to the concept of skewness, kurtosis indicates sharp events and can be interpreted
as a gauge of greatest point in both directions. The kurtosis in a normal distribution
is three. A positive kurtosis refers to leptokurtosis, while negative kurtosis demon-
strates platykurtosis. Emenike and Aleke (2012) suggest that high kurtosis values
indicate large shocks in the time series with either type of sign. As is clear from
the tables, the values of kurtosis are only positive in all selected return series which
demonstrate leptokurtosis, and range between 0.654 (NIKKEI during COVID-19
crisis period) and 40.749 (KLCI during the full sample period). The KLCI has the
highest maximum value with 8.799, while the SET has the lowest minimum value
with —6.976 in daily return series. Malaysia’s KLCI Index has the greatest gap
between maximum and minimum values with 8.799 and, —6.185 during the Asian
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crisis period which is also justified by the standard deviation and sample variance.
The value of standard deviation is 1.456% in Malaysia’s KLCI Index which is the
highest among others in all periods. Japan’s NIKKEI and Hong Kong’s HSI Indices
have the smallest gap between minimum and maximum values during the COVID-
19 crisis period and pre-COVID-19 crisis periods, with —1.766% and 1.333%, and
—1.761% and 1.443% respectively. This is also supported by the standard deviation
which is 0.514% for the NIKKEI and 0.247% for the HSI. These results indicate
the lowest volatility compared to others. To sum up: as expected, the stock markets
show lower volatility during the pre-crisis periods, while volatility rises during the
crisis periods.

4.1 Correlation Coefficient Test

One of the most traditional approaches to assessment of stock market dependences
is the estimation of the unconditional correlation coefficient matrix, which is also
known as Pearson’s r. The Pearson product-moment correlation coefficient is a
measure of the strength of a linear association between two variables. The coeffi-
cient number ranges between — 1.0 and 1.0, where a value of 0 indicates that there
is no association between the two markets. A value greater than O indicates a posi-
tive association: that is, as the value of stock index A increases, so does the value
of the stock index B. A value less than 0 indicates a negative association: that is, as
the value of stock index A increases, the value of the stock index B decreases. This
method is often applied by market participants to manage risk exposure, but it is
important to note that the method does not provide any information regarding causa-
tion (Kim et al., 2020).

The Pearson’s correlation coefficient between any two stock markets i and j is
calculated as follows:

Ez—l { (Ri,tRj,t) - (Ri,t)(Rj,t)}

Pi',t =
j \/Et—l{ (Ri,> - (R’ } \/Et_1 { (RJQJ> _ (Rj,t)2} (26)

where R; and R; are vectors of return series of stock markets i and j respectively, and
P is the Pearson’s correlation coefficient.

Table 19 reports the cross-correlation matrices for each selected periods.
According to the results, there is a notable increases in cross-country correlations
during the turbulent periods compared to pre-crises periods. In most cases, Asian
markets are more correlated with each other, compared to the correlation with
the US stock market which is not surprising due to the regional dynamics. On the
other hand, the majority of market pairs are positively correlated except for the
SET index, which can be considered for diversification by international investors
to minimise portfolio risk. The top three market pairs in terms of the magnitude
of correlations are STI-HSI (Pearson’s r of 0.806), STI-KOSPI (Pearson’s r of
0.768) during the GFC period, and SSE-SP500 (Pearson’s r of 0.759) during the
pre-COVID-19 crisis period which indicate high degree of linear dependence and
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possibility of potential contagion. The lowest correlation coefficient is observed
between the SSE and the KOSPI during the Asian Crisis period which is reported
as 0.001. It should also be noted that the cross-market correlations are higher in
the recent years compared to the earlier periods, which is perhaps due to the glo-
balization and increasing financial market integration (Sirimevan et al., 2019; Wu,
2020). In addition, the full sample period provides broader perspective regarding
correlations and indicates some differences compared to the sub-periods. One of
the most notable changes is observed in the NIKKEI, which shows very weak
correlations in crises periods compared to pre-crises periods. Specifically, its
estimated correlations with the US market is virtually non-existent, suggesting a
potential for portfolio diversification and the existence of risk management strate-
gies between US and Japanese equity markets in the long-run. Similarly, Thai-
land’s SET index continues to be a good hedge in the region by negatively cointe-
grating with the major equity markets. The highest degree of correlation is found
between STI and HSI (Pearson’s r of 0.656) during the full period, confirming
the study of Hui (2005). A higher level of long-term correlation between markets
increases contagion risks and limits the diversification window for international
investors. Therefore, examining short-run correlation coefficients among equity
markets is important, since diversification benefits and risk exposure significantly
change during different sub-periods within the region.

4.2 Unit Root Test

In order to test stationarity of the return series, the Augmented Dickey—Fuller
(ADF) test proposed by Dickey and Fuller (1981) and the Phillips—Perron (PP)
test proposed by Phillips and Perron (1988) were conducted. The following equa-
tion shows the testing procedure for the ADF test regression:

AY,=ay+ pY,_ +a,AY,_ | + a,AY, , + - +a,AY,_, +¢, (27)

where Y is the dependent variable, a, is the constant and p is the lag order of the
autoregressive process. Lag length is determined by minimizing the Schwarz infor-
mation criterion (SIC) until the last lag is statistically significant. The null hypoth-
esis refers Y, series have unit root, which signifies the data is nonstationary if it is
accepted.

The PP method provides a non-parametric approach compared to ADF test by
considering unspecified autocorrelation and heteroscedasticity in addition to the
unit root test. It addresses the issue of serial correlation by modifying the t-test
statistic in the non-augmented DF regression so the asymptotic properties of the
regression will not be impacted. The test equation is given as follows:

AY,=pu+a+@—-DAY,_| +¢, (28)

Table 20 reports the stationarity results of index returns for selected time
frames. According to the results on the table, the test statistic is smaller
than the critical values which allows rejecting the null hypothesis of unit root
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(nonstationary) in both ADF and PP tests at all levels of significance for each
series.

5 Empirical Results

This section presents the empirical implementation of the selected methodologies.
First, the paper investigates transmission mechanisms in tranquil times and com-
pares two pre-crisis periods, which are the Pre-GFC and Pre-CC (COVID-19 crisis)
periods. Next, the three major crisis—namely; the Asian crisis in 1997-1998, the
GFC in 2007-2008 and the COVID-19 crisis in 2020—are compared as the main
focus of this study. Furthermore, we extend the analysis of financial crises by devel-
oping an Early Warning System (EWS) based on a deep learning LSTM model and
predict the dynamic correlation patterns between markets, which is one of the main
contribution of the paper. Finally, we assess the identified correlations, determine
thresholds for “excessive spillover” by using the sigma model and test the given
contagion risk by following the MSE and RMSE loss functions.

5.1 Subsample Analysis: Comparison of Pre-Crisis Periods

Table 1 presents the estimated results of the dynamic conditional correlation (DCC)
method for each pre-crisis periods. In the DCC method, the estimated parameter
alphal indicates the ARCH term, which shows the impact of news from previous
periods on the current conditional correlation. Similarly, the coefficient betal refers
to the GARCH term, which represents the long-run magnitude of persistence in the
conditional correlation.

According to the results, the obtained conditional correlations are positive in
almost all markets for each period, except for the US and Japan stock markets during
the Pre-GFC, and Malaysia during the Pre-CC period. The estimates of alphal and
betal reports significance at 1% level in most cases, which reveals the time-varying
variance and covariance process, thus confirming the non-constant conditional cor-
relations. The joint DCC parameters of a/ and b/ are summed to 0.8862 for Pre-
GFC, and 0.9228 for Pre-CC period which are close to one in both cases suggesting
the correlation structure is considerably persistent. The persistence of correlations is
higher in Pre-CC period compared to Pre-GFC, where similar results are obtained in
individual cases as well. The sum of the alphal and betal parameters are lower than
unity in all selected markets, which indicates mean reverting correlation process. In
other words, if the conditional correlations between two equity markets increase fol-
lowing a negative event in one of the countries, it will again return to the long-run
unconditional correlation path. Overall, this is an expected outcome as two tranquil
periods are compared which also confirms that the DCC model is accurately defined
and able to capture correlation structure among the markets for selected periods.

To further assess the time variation of the volatility spillover across selected mar-
kets, the bivariate GARCH-BEKK method is employed. The Tables 2, 3, 4, and 5
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Table 1 Comparison of DCC estimates

Pre-GFC period

Pre-CC period

Estimate SE t value Prob Estimate SE t value Prob

[SnP_500]. —0.0085 0.0342 -0.2498  0.8027 [SnP_500]. 0.0476  0.0200 2.3803  0.0173
mu mu

[SnP_500]. 0.0179  0.0108 1.6498  0.0990 [SnP_500]. 0.0155  0.0088 1.7698  0.0768
omega omega

[SnP_500]. 0.1066  0.0298 3.5775  0.0003  [SnP_500]. 04161  0.1440 2.8897  0.0039
alphal alphal

[SnP_500]. 0.8695  0.0364  23.8723  0.0000  [SnP_500]. 0.5829  0.1025 5.6880  0.0000
betal betal

[NIKKEI]. -0.0572  0.0408 —1.3996 0.1616 [NIKKEI]. 0.0343  0.0249 1.3768  0.1686
mu mu

[NIKKEI]. 0.0351  0.0180 1.9530  0.0508 [NIKKEI]. 0.0103  0.0065 1.5887  0.1121
omega omega

[NIKKEI]. 0.1410  0.0455 3.1016  0.0019  [NIKKEI]. 0.1340  0.0463 2.8902  0.0039
alphal alphal

[NIKKEI]. 0.8242  0.0454 18.1581 0.0000  [NIKKEI]. 0.8367  0.0535 15.6492  0.0000
betal betal

[HSI].mu 0.0232  0.0441 0.5263  0.5987  [HSI].mu 0.0258  0.0287 0.8993  0.3685

[HSI]. 0.0476  0.0348 1.3648  0.1723  [HSI]. 0.0212  0.0353 0.6026  0.5468
omega omega

[HSI]. 0.1616  0.0640 2.5263  0.0115 [HSI]. 0.0370  0.0617 0.5987  0.0494
alphal alphal

[HSI].betal 0.8079  0.0779 10.3715  0.0000  [HSI].betal 0.8686  0.1986 4.3744  0.0000

[JCI].mu 0.0486  0.0397 1.2229  0.2214 [JCI].mu 0.0140  0.0186 0.7520  0.4520

[JCI].omega 0.0640  0.0500 1.2793  0.2008  [JCI].omega 0.0146  0.0066 22293 0.0258

[JCI].alphal 0.1900  0.0744 2.5530  0.0107 [JCI].alphal 0.1893  0.0832 22742 0.0230

[JCI].betal 0.7492  0.1234 6.0704  0.0000 [JCI].betal 0.7196  0.0832 8.6510  0.0000

[KLCI].mu 0.0045  0.0235 0.1913  0.8483 [KLCI].mu -0.0154 0.0136 —1.1349 0.2564

[KLCI]. 0.0321 0.0149 2.1593  0.0308 [KLCI]. 0.0007  0.0013 0.5419  0.5879
omega omega

[KLCI]. 0.1113  0.0368 3.0270  0.0025 [KLCI]. 0.0607  0.0273 22213 0.0263
alphal alphal

[KLCI]. 0.7447  0.0825 9.0239  0.0000 [KLCI]. 0.9383  0.0185  50.8292  0.0000
betal betal

[KOSPI]l.mu  0.0145  0.0373 0.3899  0.6966 [KOSPIl.mu  0.0279  0.0241 1.1599  0.2461

[KOSPI]. 0.0144  0.0092 1.5675  0.1170  [KOSPI]. 0.0423  0.0232 1.8279  0.0676
omega omega

[KOSPI]. 0.0808  0.0264 3.0562  0.0022 [KOSPI]. 0.1808  0.1327 1.3619  0.0732
alphal alphal

[KOSPI]. 0.9017  0.0245 36.8293  0.0000 [KOSPI]. 0.5858  0.2152 27223 0.0065
betal betal

[PSE].mu 0.0033  0.0341 0.0978 09221 [PSE]l.mu 0.0022  0.0253 0.0866  0.9310

[PSE]. 0.0341  0.0240 1.4189  0.1559 [PSE]. 0.0047  0.0043 1.0930  0.2744
omega omega

[PSE]. 0.1223  0.0634 1.9298  0.0536 [PSE]. 0.0822  0.0412 1.9934  0.0462
alphal alphal

[PSE].betal 0.8239  0.0822 10.0169  0.0000 [PSE].betal 0.9077  0.0285 31.8358  0.0000

[SSE].mu 0.0622  0.0538 1.1548  0.2482 [SSE].mu 0.0238  0.0278 0.8543  0.3929

[SSE]. 0.0175  0.0204 0.8554  0.3923  [SSE]. 0.0082  0.0063 13122 0.189%4
omega omega
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Table 1 (continued)

Pre-GFC period Pre-CC period
Estimate ~ SE t value Prob Estimate ~ SE t value Prob
[SSE]. 0.0597  0.0308 1.9361  0.0529 [SSE] 0.1120  0.0619 1.8103  0.0703
alphal alphal
[SSE].betal 0.9257  0.0400  23.1514  0.0000 [SSE].betal 0.8686  0.0508 17.0945  0.0000
[STI].mu -0.0128 0.0339 -0.3777 0.7056 [STI].mu 0.0217  0.0175 1.2416  0.2144

[STI].omega  0.0291  0.0211 1.3779  0.1682 [STIl.omega  0.0054  0.0056 0.9617  0.3362
[STI].alphal 0.1394  0.0576 2.4201  0.0155  [STI].alphal 0.1864  0.1030 1.8090  0.0704

[STI].betal 0.8211  0.0759 10.8130  0.0000  [STT].betal 0.8018  0.1064 7.5352  0.0000

[TAIEX]. 0.0061  0.0377 0.1617  0.8715 [TAIEX]. 0.0329  0.0207 1.5890  0.1121
mu mu

[TAIEX]. 0.0190  0.0113 1.6793  0.0931 [TAIEX]. 0.0075  0.0133 0.5607  0.5750
omega omega

[TAIEX]. 0.0786  0.0247 3.1747  0.0015 [TAIEX]. 0.0747  0.0773 0.9666  0.0338
alphal alphal

[TAIEX]. 0.8961  0.0258  34.7737  0.0000 [TAIEX]. 0.8641  0.1786 4.8388  0.0000
betal betal

[SET].mu 0.0024  0.0137 0.1146  0.7957 [SET].mu 0.0719  0.0310 2.8834  0.0721

[SET]. 0.0270  0.0250 1.7003  0.0756  [SET]. 0.0032  0.0492 0.4950  0.4550
omega omega

[SET]. 0.0456  0.0135 3.2874  0.0022 [SET]. 0.0351  0.0566 0.5771  0.0407
alphal alphal

[SET].betal 0.9301  0.0233 19.4565  0.0000 [SET].betal 0.9491  0.1133 8.8198  0.0000
[Joint]dccal 0.0172  0.0043 1.6824  0.0025 [Joint]dccal 0.0108  0.0015 5.0103  0.0022
[Joint]dccb1 0.8690  0.0423  20.5234  0.0000 [Joint]dccbl 0.9120  0.0816 11.1810  0.0000

This table presents volatility and dynamic correlations between selected markets. From the results ‘mu’
stands for the overall mean and ‘omega’ denotes intercept term. Alphal represents the arch term and
estimates the impact of initial shocks, while betal represents the garch term and estimates the long-run
volatility impact of a conditional correlation or shocks

report the estimation results of GARCH-BEKK models for each tranquil period.
The estimated coefficient a;; represents the ARCH term, indicating “news surprises”
among equity markets. Furthermore, the estimated GARCH term parameter, §;,
depicts the persistence of innovations between markets (Kim et al., 2015). These
two coefficients indicate the volatility spillovers among the equity markets as well
as highlighting the persistence of shocks between each other. Both the “news effect”
and “volatility spillover” helps us to analyse possible transmission mechanisms
either within the region of Asia or with the US. In all given tables below, the p-val-
ues are indicated in parentheses under each one of the estimated parameters, while
the significance level is denoted with asterisks. Finally, it should be noted that, the
correct readings of tables are from rows to columns. For example, the news effects
of SP500 to the remaining equity markets can be followed in the first row. In other
words, the markets in the rows indicate the “source” of spillover, while the recipi-
ents of the shocks are reported in the columns. According to the empirical results,
similar characteristics of financial stress have been evidenced during both pre-cri-
sis periods. Specifically, the role of the US and Hong Kong is strong in terms of
the volatility transmission channels, where they both contribute to the volatility of
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remaining stock markets with a great extent. However, the emerging markets of Asia
are somehow more immune to these news shocks and volatility spillover effects such
as Thailand and China. Statistical significance of coefficients is limited in both peri-
ods, mostly in 10% level. A two way relationship between selected equity markets is
also observed in both periods where China and Korea are leading in terms of inter-
dependencies with the rest of the countries. Past news about shocks in the equity
markets of Japan and Hong Kong positively affect the current conditional volatil-
ity of the remaining markets, while previous news for Singapore and Taiwan have
a negative impact on the current volatility on the rest of the markets. Besides, the
current conditional volatility of one market depends not only on its own past volatil-
ity but also past volatility of the other market, confirming interdependencies among
each other.

The in-depth analysis of volatility transmission channels and contagion effects
across stock indices is conducted by applying the Diebold and Yilmaz (2012) frame-
work in Tables 6 and 7. According to the empirical results in the given tables, the
estimated Total Spillover Index is 19.033% during Pre-GFC period, while the mag-
nitude of the total volatility spillovers during Pre-CC period is slightly higher with
22.025% which supports the earlier findings of DCC model. In terms of the contri-
bution to others (spillovers), the Hong Kong Stock Market is the most influential
during the Pre-GFC period with 2.736% which corroborates the earlier findings of
Chow (2017). It is an expected outcome since Hong Kong is considered as inter-
national financial hub of Asia with significantly larger equity market capitaliza-
tion to GDP ratio compared to other Asian countries. On the other hand, the US
records the highest outward volatility spillover with 9.894% during the Pre-CC
period which is in line with the study of Rapach et al. (2013). Taiwan is surprisingly
one of the major contributors of spillover among Asian markets during the Pre-CC
period which is consistent with the findings of Yarovaya et al. (2016b). The outward
spillover contribution from Thailand has the lowest degree for both selected periods
which indicates it is the least influential among all.

The contribution from others column presents the sensitivity degree of external
shocks for each market. Based on the outcome of Tables 6 and 7, Hong Kong and
Singapore have the highest sensitivity to inward volatility spillover during the Pre-
GFC period with 4.410% and 3.796% respectively. Similarly, the impact of volatility
spillovers from all foreign markets to a domestic market have the largest reported
values for China and Singapore during the Pre-CC period with 3.822% and 3.928%
respectively. It should be noted that China was one of the least sensitive countries
to external shocks during the Pre-GFC period, while it has become one of the most
sensitive during the Pre-CC. One of the reasons behind this dramatic change is that
the Chinese market was shielded by restrictions for international market participants
in early stages, while it became more accessible for foreign investors in recent years
as revealed by Fernandez et al.’s (2016) de-jure measure of equity market liberaliza-
tions. On the other hand, Thailand is one of the least vulnerable countries to external
news in both periods with Korea during the Pre-GFC period and Malaysia during
the Pre-CC period.

Turning to cross-country spillovers, the obtained record in tables indicate that the
US is one of the leading volatility transmitters in both periods followed by Hong
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Kong in first pre-crisis period and Taiwan in second pre-crisis period. Furthermore,
the volatility spillover amongst mature markets is positive and larger which indicates
stronger cross-market interdependence and financial linkages amid these markets.
Nevertheless, the cross-market volatility spillovers between emerging markets of
Asia are trivial in most cases or even virtually non-existent. These findings are in
line with the work of IMF (2016) that developed financial markets are more prone to
high level of integrations with each other compared to emerging markets.

Overall, the Asian markets tend to receive volatility transfer from the intra-
regional and inter-regional level prior to crises. The reported values of pairwise vol-
atility spillovers also indicate growing interconnectedness between markets which
increase the exposure of portfolio risk for market participants. However, the degree
of volatility spillovers among advanced and emerging equity markets is less com-
pared to the sole spillovers between advanced market or emerging markets, offering
a window of opportunity for international market participants in terms of portfolio
diversification and risk management.

5.2 Subsample Analysis: Comparison of Crisis periods

One of the major contributions of the present paper to the empirical finance litera-
ture is the analysis of volatility transmission channels across equity markets dur-
ing the different crisis periods. In examining this phenomenon, the Asian crisis, the
GFC, and the COVID-19 crisis periods are separately covered in this section and
in-depth investigation of information transfer channels is conducted and compared
in intra- and inter-regional levels as well as in cross-market context. As the interpre-
tation of the rows and columns within the tables are provided and explained in the
previous section, the same logical perspective applies when interpreting given tables
in the present section.

Results in Table 8 reports the correlation dynamics based on the DCC model.
Based on the obtained empirical values, the conditional correlation relationship is
positive in most of the selected markets for each period. However, there are some
exceptions such as Malaysia during the Asian crisis period; the US, Japan, Sin-
gapore, and Thailand during the GFC period; and the Philippines, Singapore, and
Thailand during the COVID-19 crisis period. Moreover, the coefficients of alphal
and betal report significance in 10% level in most cases which reveal the time-
varying variance and covariance process, thereby confirming the non-constant
conditional correlations. The joint DCC parameters of a/ and bl are summed to
0.9140 for the Asian crisis period, 0.8762 for the GFC period, and 0.5506 during the
COVID-19 crisis period suggesting the correlation structure is considerably persis-
tent. On the other hand, the ARCH parameter is the strongest during the COVID-19
crisis period (0.0284), while it is the weakest during the Asian crisis period (0.0021)
which indicates shocks are remarkably stronger in the recent periods compared to
earlier crises. However, there is a different story for individual cases as the magni-
tude of crisis impacts and exposure to shocks vary for each market. Furthermore, the
GARCH parameter is significantly lower during the COVID-19 crisis period com-
pared to earlier crises which exhibits the degree of reduced volatility. The sum of
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the alphal and betal parameters are lower than unity in all selected markets, which
implies the existence of dynamic conditional correlations. In other words, if the con-
ditional correlations between two equity markets increase following a negative event
in one of the countries, it will again return to the long-run unconditional correlation
path. Overall, the empirical DCC findings of present study are in line with Gupta
and Guidi (2012) where they analyse the time varying co-movements of Asian mar-
kets and we can confirm the existence of correlations over time and the presence of
contagion effect during different crisis periods among selected markets.

Tables 9, 10, 11, 12, 13, and 14 present the results from bivariate GARCH-BEKK
model for pairs of each stock market. The news surprises based on a;; coefficient is
presented in Tables 9, 11, and 13. Additionally, volatility transmission channels are
represented by coefficient ﬁ,:,- in Tables 10, 12, and 14 for each crisis period.

The behaviour of volatility spillovers during the Asian financial crisis can be
seen in Tables 9 and 10. According to the estimated results, the presence of strong
volatility spillover channels was identified. Countries that transmit increased spill-
overs during the Asian financial crisis are also the most severely impacted ones.
Specifically, Indonesia and Hong Kong indicate sizeable news and volatility spillo-
ver effects to the rest of the region. It is also interesting to notice that Indonesia
and Hong Kong are main recipients of volatility shocks during this period as well
as the Philippines. On the other hand, Japan and the US seem to be very immune
to the external shocks together with China. However, the case of China is differ-
ent due to the restrictions on foreign capital movements as mentioned in the ear-
lier section. Moreover, there is significant bi-directional volatility spillover among
some cross-market pairs, such as Japan and Malaysia, Singapore and Thailand as
well as China and Hong Kong. The impact of USA on the continent of Asia is rather
limited in terms of shock and volatility spillovers, indicating minimal financial risk
propagation during the crisis. Finally, most of the parameters are significant in vari-
ous levels, suggesting long lasting financial distress among pairs. It should also be
mentioned that the financial linkages are stronger between the equity markets of
Southeast Asia compared to the stock markets of Far East Asia.

Next, we investigate the cross-market linkages during the GFC period which is
considered one of the most significant financial shocks in the post-war period (Edey,
2009). The picture during the GFC period is different compared to the Asian crisis,
since the epicentre of the crisis is the US which is the biggest economy and main
financial hub of the world. According to Tables 11 and 12, the US is the biggest
contributor of the financial distress as expected, and the most affected countries are
the emerging markets of Asia, especially Malaysia, the Philippines and Singapore.
Similar vulnerability is also detected in Taiwan, yet with a lower magnitude com-
pared to the aforementioned markets. It is very interesting to note that Japan, Hong
Kong and China are the least impacted ones. Two-way volatility spillover effect is
found between some markets, including the US and Taiwan, Korea and Indonesia,
and Singapore and Hong Kong. Moreover, co-movements between Singapore and
Indonesia are rather weak, signifying reduced risk for international portfolio manag-
ers. The findings of the GFC period are mostly in line with the study of Hesse and
Frank (2009) in terms of interdependencies within the region.
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Finally, the recent COVID-19 crisis period is investigated in Tables 13 and 14.
The estimated results are mixed compared to the earlier crisis periods. The main
transmitter of news shocks and volatility spillovers is Hong Kong, while the role of
China on other markets continue to be limited. The magnitude of financial distress is
severely increased for some countries such as Japan and Taiwan which is most prob-
ably due to the strict lockdown measures and government policies in these countries
(Zehri, 2021). Notably, China is neither net transmitter nor net recipient of shocks
and spillovers during the crisis period, which is very surprising as the crisis started
in China. The effect of financial market of China seems to be minimal which con-
tradicts with the findings of Fu et al. (2021), yet it is in line with the study of Zehri
(2021) as the heavier magnitude of financial stress transmits via Hong Kong. Less
parameters are statistically significant compared to the earlier crises, which indicate
there will be no long-lasting effects. Bi-directional relationships exist between Japan
and the US, and Singapore and Thailand, while two-way volatility spillover effect is
found between most of the markets such as Korea and Indonesia, Taiwan and China,
as well as Malaysia and the Philippines. It should also be mentioned that, the finan-
cial interlinkages and spillover channels are stronger within the markets of Far East
Asia compared to the Southeast Asian economies, implying different crisis charac-
teristics than the Asian crisis period or the GFC period. In general terms, the equity
markets of Asia as well as the US are profoundly succumbed to strong volatility
spillovers, from both peripheral and core stock markets. The news shocks turn into
important and enduring stress transmission, so that it can be said that the financial
sector is one of the most volatile and susceptible to increasing financial distress and
episode of financial catastrophes.

In order to provide a better understanding of the direction and intensity of vola-
tility spillovers across selected markets, Diebold and Yilmaz (2012) methodology
based on generalized VAR specification is employed. The detail analysis of volatil-
ity transmission mechanisms between markets is depicted in Tables 15, 16, and 17
for each selected subperiod. The reported total volatility spillover index is lowest
during the Asian financial crisis with 19.033%, while it is the highest during the
COVID-19 crisis period with 39.671%. The index is equal to 28.582% during the
GFC crisis period, suggesting some co-movements between markets, yet larger per-
centage of external shocks between markets is explained by idiosyncratic shocks.
When it comes to the magnitude of Contribution to Others, Hong Kong is the source
of the largest volatility transmission in the region, especially during the GFC period,
confirming the earlier results by GARCH-BEKK model. The US has the highest val-
ues for Asian and COVID-19 crisis periods, while the contribution of Thailand is
lowest among all, supporting the earlier findings of Wang and Liu (2016). Conse-
quently, the strength of regional spillovers is higher than the intensity of interna-
tional volatility spillovers.

Based on the obtained results, it can be said that the greater number of markets
react to their own shocks, such as, Japan during the GFC period with 8.930%, and
Thailand during the Asian and COVID-19 crisis periods with 8.643% and 8.797%
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respectively, making them the least dependent markets in the sample. On the other
hand, Singapore is the least independent among all with less than 3.0% forecast
error variance in GFC and COVID-19 crisis periods, indicating the lowest reaction
to domestic shocks. The column Contribution from Others reports notable results
in terms of sensitivity to foreign news shocks. According to the tables, Singapore is
one of the highest spillover recipients in each crisis period, followed by Hong Kong
during the Asian crisis period, the Philippines during the GFC period, and Korea in
the COVID-19 crisis period. Japan and USA are the two immune countries regard-
ing external financial distress with the lowest sensitivity level. In terms of pairwise
spillover channels, Hong Kong and USA are net contributors of volatility shock
propagations, while China, Thailand, Taiwan and the Philippines are the net recipi-
ents of cross-country shocks. As a result, these findings display important implica-
tions in terms of portfolio diversification opportunities especially in the developed
equity markets of Asia since the impact of external shocks are limited compared to
the emerging economies. However, the lower dependency to foreign shocks reduces
the chances of estimating volatility of these markets based on external news trans-
mission. Therefore, developed markets might be considered in terms of risk man-
agement perspective, but risk averse investors should be more careful when invest-
ing in emerging markets of Asia as external shocks might create larger declines due
to the phenomenon of meteor shower effect proposed by Engle et al. (1990).

5.3 LSTM Based Early Warning System: Experimental Evaluation

In the final section, a comprehensive experimental evaluation is conducted by apply-
ing the LSTM based early warning system during the GFC and COVID-19 crisis
periods separately. In order to understand the precision and robustness of the pro-
posed model with empirical evidence, we evaluate the LSTM model based on two
stages. In the first stage, the early warning signals are identified based on the varying
sigma levels in accordance with Sevim et al. (2013) and Sevim et al. (2014), and in
the second stage the accuracy of the signals are tested with RMSE and MSE error
criteria. Two different LSTM model is created to improve the prediction capabil-
ity for two distinct phases and to avoid the model learning from dissimilar paths.
Therefore, the training process of the model covers two different periods for each
crisis. The data from 03 July 1997 to 29 August 2006 is used for training to estimate
the GFC period, while the period of 31 July 2009 and 10 March 2017 is used in the
training process to predict COVID-19 crisis period. However, as we want to reveal
potential spillovers effect before the actual crisis begins, our testing period starts
before each crisis to identify potential transmission channels. Lastly, since the main
focus of the study is the Asian markets, the early warning detection analysis is con-
ducted based on Hong Kong stock market as it is identified as the centre of shock
transmissions during the crisis periods based on the empirical results in the previous
section.
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Fig. 2 Prediction of correlations based on LSTM network for the GFC period
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Fig.2 (continued)
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Fig. 3 Prediction of correlations based on LSTM network for the COVID-19 Crisis period
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Figure 2 depicts the graphical representation of EWS analysis for each pair of mar-
ket with the Hong Kong’s Hang Seng index during the GFC period. The red line shows
the real correlation paths based on Dynamic Conditional Correlation method, while the
blue line indicates the correlations based on LSTM predictions. The absolute value of
sigma parameter ranges between 1.5 and 3 according to the empirical finance literature
(Tarantino & Cernauskas, 2009) where it represents a heuristic value to improve the
signal performance. The threshold values are based on the various sigma levels where
absolute values of higher sigma levels indicate expected persistence of potential volatil-
ity spillovers. Based on obtained results, the proposed model is able to generate sig-
nals well before the actual contagion began, except for the Hong Kong and Japan case
where the first signal was detected only a few months ago. The prediction capability of
the LSTM for information transmission channels is also strong and close to the actual
path in most cases, except for the later stages in Singapore and China. In some cases,
such as the US and Japan, the model signals several times within the 12-month period
before the crisis occurs which is highlighting the potential risk of financial contagion
between markets.

The picture is slightly different during the COVID-19 crisis period as presented in
the Fig. 3. The test results of the model are stronger compared to the GFC period, thus
making the risk contagion predictions highly accurate. As we can see in the blue lines,
the LSTM model predicted most of the significant correlations and triggered alert well
before the crisis occurs. Although, we focus on the COVID-19 crisis, one thing that
should also be mentioned here is the trade war between China and the US in 2018
which caused a rapid decline in major stock market indices all around the world in early
2018. Specifically, in February 2018, the S&P 500 wiped out $2.8 trillion, while global
indices had lost more than $5 trillion. The huge jumps in risk contagion during that
time can be seen in the figure below, especially in the correlations with China, Tai-
wan, Malaysia and Indonesia. The models were able to predict the unexpected shock
transmission in advance and signalled potential contagion effect. In some cases, multi-
ple signals were detected such as Hong Kong and Japan, and Hong Kong and Taiwan
cases. When it comes to the COVID-19 crisis period, the proposed model identified
financial distress among market pairs and signalled for the potential crisis event. How-
ever, the EWS system did not signal within the last 12-month period before the crisis
occurred, which might be due to the unidirectional volatility spillovers from China to
Hong Kong as revealed by Ahmed et al. (2021). Apart from that, we obtain strong evi-
dence supporting the high degree of efficacy and generalization capacity of the pro-
posed deep learning system.

Finally, the predictions are tested by using the RMSE and MSE criteria for each cri-
sis period as shown in Table 21. Based on the given empirical results, it can be clearly
said that the proposed model provides extreme accuracy regarding volatility contagion
effects between selected pairs. Specifically, the estimated correlations with Korea and
the Philippines stock markets have smallest values for MSE criterion during the GFC
period, followed by Malaysia with 0.7%. On the other hand, the prediction results
are more superior for China and Korea during the COVID-19 crisis period based on
the MSE loss function. Moreover, the highest error rate among all selected markets
is found in the correlation series with Taiwan Stock Market based on MSE in both
periods. Although the general failure rate is slightly higher in RMSE series, similar
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results are found. When two crisis periods are compared in terms of model accuracy,
the results draw a more complicated framework as it is hard to evaluate the clear supe-
riority. It should be noted that the accuracy of the predictions is highly dependent on
the architecture of the deep learning model and training process. According to the train
scores, there are no distinct differences for the predicted series except for Indonesia
during the GFC period and Taiwan during the COVID-19 crisis period. In these two
series, the model provides the largest error rates which may lead a bias for the testing
period. Yet, the test scores are less affected, confirming the predictive accuracy of the
proposed model.

6 Conclusion

Increased incidence of financial crises in the last few decades has reignited inter-
est in the role of financial linkages and crisis prediction models. Moreover, the
pace of globalisation in the international financial markets has raised the question
of whether interconnectedness between markets, a source for volatility transmis-
sion and possible contagion risk, can provide an early warning signal for crises.
This paper examines volatility transmission channels across ten Asian markets
and the US market for three different crisis periods and two calm periods by
applying DCC, GARCH-BEKK, and Diebold-Yilmaz spillover index. In addition,
we developed an early warning system to predict financial crises using the LSTM
algorithm based on deep learning approach.

The empirical results indicate that the climb in external shock transmissions
has long lasting impacts in domestic markets due to the contagion effect during
the crisis periods, leading a more permanent surge in volatility spillovers across
markets. Compared to the calm periods, all selected equity markets exposed
intensified volatility spillovers during the crisis periods, confirming the findings
of Suleman et al. (2017). However, it is revealed that the degree of volatility spill-
overs among advanced and emerging equity markets is less compared to the pure
spillovers between advanced markets or emerging markets, offering a window of
opportunity for international market participants in terms of portfolio diversifica-
tion and risk management. Thus, the outcome of the present study is not only rel-
evant to academics, but also to a wide range of investors. On the other hand, the
proposed EWS system identified intensifying volatility transfers and generated
signals within the last 12-month period before crises occur, suggesting important
implications for policy makers since they need to take economic decisions during
the crises times to prevent irreversible impacts on the broad economy due to the
financial contagion. Of equal importance are the implications for risk and asset
management practitioners, due to the fact that diversification advantages may
continue to exist in turbulent periods.

The contribution of this paper to the field of empirical finance and existing lit-
erature is three-fold. First and foremost, this study explores all key relevant crises

@ Springer



Volatility Spillovers and Contagion During Major Crises:...

periods in the last three decades, including the recent COVID-19 crisis where there
are still huge gaps due to the ongoing impacts. Therefore, the present study con-
tributes to the literature by providing comparison of interdependencies and chang-
ing intensity of contagion channels between markets for different periods. Second,
the magnitudes and directions of volatility spillovers are verified for each selected
calm and turbulent episodes, which offer key information for investors and financial
regulators in terms of diversification benefits and macroeconomic stability. Third,
instead of following earlier studies, we developed a novel EWS system and success-
fully predicted correlations and transmission channels with high accuracy, providing
supplementary information that contributes the decision-making process of practi-
tioners, as well as offering indicative evidences that facilitate the assessment of mar-
ket vulnerability to policy-makers. Finally, the effectiveness and reliability of the
LSTM model is confirmed with two different loss function to avoid false signals.

In a nutshell, the framework introduced here improves our ability to empiri-
cally evaluate as well as quantify volatility spillover and contagion channels in
terms of financial market perspective. Furthermore, the proposed deep learning
method in the present paper, allows us to identify and predict financial conta-
gion risk across selected countries. Consequently, the model provides signifi-
cant implications, not only for government related institutions, but also for mar-
ket participants in terms of possible contagion risks between selected markets.
Thus, through the provided analysis in this study, policymakers can concentrate
volatility transmission channels and make use of the model to maintain the finan-
cial stability, while market participants can benefit for managing their portfolio
allocations and limit their risk exposure. Although the present study adopts wide
range of Asian markets with a large dataset, the methodology here can be applied
to EMEA region or different financial instruments; such as energy, bonds, cur-
rencies or cryptos after appropriate modifications. The main limitation of the
study was accessing older data specifically for the emerging markets of Asia, and
non-synchronous holidays in different markets which required special attention.
Therefore, a further direction can be drawn by extending the data and parameters
to propose an adaptive or coactive network based hybrid models. The value of
such novel developments remains to be examined in future research endeavours.

Appendix

See Tables 18, 19, 20 and 21.
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Table 21 Comparison of accuracy for prediction results

GFC period Train score Test score COVID-19 crisis Train score Test score
RMSE MSE RMSE MSE period RMSE MSE RMSE MSE
HSI&SP500  0.036  0.013 0.022 0.016 HSI&SP500 0.017 0.009 0.011 0.009
HSI&TAIEX 0.07  0.051 0.084 0.057 HSI&TAIEX 0.082 0.040 0.064 0.038
HSI&STI 0.021 0.011 0.016 0.010 HSI&STI 0.062 0.038 0.048 0.026
HSI&SSE 0.057 0.036 0.045 0.037 HSI&SSE 0.011 0.007 0.009 0.005
HSI&PSE 0.015 0.007 0.012 0.006 HSI&PSE 0.026 0.014 0.016 0.014
HSI&NIKKEI 0.025 0.014 0.016 0.014 HSI&NIKKEI 0.078 0.045 0.055 0.010
HSI&KOSPI  0.012  0.006 0.009 0.004 HSI&KOSPI 0.013 0.006 0.010 0.008
HSI&KLCI 0.013  0.007 0.009 0.007 HSI&KLCI 0.069 0.038 0.049 0.028
HSI&JCI 0.089 0.046 0.069 0.038 HSI&ICI 0.057 0.023 0.041 0.033
HSI&SET 0.021 0.017 0.018 0.011 HSI&SET 0.067 0.056 0.049 0.015
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