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Abstract
In the present work, the volatility of the leading cryptocurrencies is predicted 
through generalised autoregressive conditional heteroskedasticity (GARCH) mod-
els, multilayer perceptron  (MLP), long short-term memory (LSTM), and hybrid 
models of the type LSTM and GARCH, where parameters of the GARCH family 
are included as features of LSTM models. The study period covered the scenario of 
the World Health Organization pandemic declaration around March 2020 at hourly 
frequency. We have found that the different variants of deep neural network models 
outperform those of the GARCH family in the sense of the hetorerocedastic error, 
and absolute and squared error (HSE). Under the sharpe ratio, the volatility forecast-
ing of a uniform portfolio at long horizons systematically outperforms the stablecoin 
Tether, which is considered here as the risk-free asset. Also, including transaction 
volume helps reduce the value at risk or loss probability for the uniform portfolio. 
Moreover, in a minimum variance portfolio, it is observed that before the pandemic 
declaration, a large proportion of the capital was allocated to bitcoin (BTC). In con-
trast, after March 2020, the portfolio is more diversified with short positions for 
BTC. Moreover, the MLP models give the best predictive results, although not sta-
tistically different in accuracy compared to the LSTM and LSTM–GARCH versions 
under the Diebold–Mariano test. In sum, MLP models outperform most stylised 
financial models and are less computationally expensive than more complex neural 
networks. Therefore, simple learning models are suggested in highly non-linear time 
series volatility forecasts as it is the cryptocurrency market.
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1  Introduction

Given the recent technological revolution, virtual currencies have gained tremen-
dous popularity with individual investors and have increasingly positioned them-
selves as one of the most attractive assets for institutional investors. A cryptocur-
rency is a digital asset encrypted with blockchain technology (Nakamoto, 2008). 
Given that the issuance and transaction of these assets are carried out through 
decentralised networks, they are theoretically immune to interference or manipu-
lation by an authority or government. In particular, this feature makes them dif-
ficult to counterfeit or to spend twice.

Cryptocurrencies have an advantage over fiat money in portability since they 
can be used in international operations with great speed and low cost. In addition, 
they tend to resist inflation, so they have been considered safe-haven assets. One 
of their main characteristics is the variability they present over short periods and 
their atypical behaviour concerning traditional markets. In this study, it is pre-
ferred to model their challenging volatility behaviour.

Forecasting the dynamics of a financial instrument is one of the essential 
ingredients for optimising investment portfolios. Here, we address the scenarios 
of a uniform portfolio in a univariate and multivariate estimation of variance or 
portfolio risk. Neither case is necessary to forecast the returns but only the vola-
tility to obtain the portfolio’s profit. Likewise, special attention is given to the 
transaction volume assuming that the number of times an asset is bought or sold 
affects its price.

The work aims to apply statistical and deep learning techniques to forecast 
the volatility of nine risky cryptocurrencies, considering the price and transac-
tion volume at high frequencies during the onset of the COVID-19 pandemic. 
Thus, we want to answer the following question: does building portfolios through 
the information of statistical, deep learning, and hybrid models, where volume is 
included in the estimation, represent a significant improvement concerning naive 
methods in periods of high volatility?

Specifically, an exploratory study of cryptocurrency assets in terms of their 
volatility in high-frequency periods is sought. In particular, we apply asymmet-
ric generalised autoregressive conditional heteroskedasticity  (GARCH) models. 
The eGARCH exponential model (Nelson, 1991), and the gjrGARCH model 
(Glosten et  al., 1993) are proposed to model the volatility of cryptocurrencies. 
It is interesting to include volume as an exogenous variable in volatility mod-
els and examine the corresponding information. In addition, a relevant point is 
the estimation of DCC-GARCH multivariate volatility models (Engle, 2002) to 
forecast the covariance matrix. In the context of deep learning, long short-term 
memory  (LSTM) models are studied on time series of volatilities. In this way, 
mixed models of the LSTM–GARCH type are compared, adding the parameters 
of the eGARCH and gjrGARCH models. In the final stage, investment strategies 
are constructed: (1) uniform portfolios with univariate forecasts and (2) uniform 
portfolios with multivariate forecasts of the covariance matrix. Finally, the per-
formance of the models is analysed through the variance of both portfolios using 
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statistical, computational, and financial metrics. Specifically, the heteroscedas-
tic absolute error  (HAE), the heteroscedastic quadratic error  (HSE), the sharpe 
ratio  (SR), and the value at risk (VaR) are considered, and the accuracy of the 
prediction is measured through the Diebold–Mariano (DM) test. In the case of 
SR, we have considered the stable-coin Tether as the risk-free asset as the perfor-
mance benchmark.

On the one hand, an extensive literature has shown evidence that GARCH models 
capture the heteroskedastic effects of time series of financial returns  (Cont, 2001; 
Taylor, 1994; Ghysels et al., 1996). For their part, the asymmetric models eGARCH 
and gjrGARCH are a more stylised proposal to model the asymmetric response of 
volatility to negative impacts (Nelson, 1991; Glosten et al., 1993; Hentschel, 1995; 
Harvey & Shephard, 1996). In the case of multivariate models, DCC-GARCH has 
been the most parsimonious proposal to model the covariance matrix due to its small 
number of parameters to be estimated (Engle, 2002). In the case of neural network 
models, recurrent networks have been able to capture time dependencies. In con-
trast, their LSTM successors have solved the stability problem during optimisation. 
Thus, combining both models will enhance the predictive capabilities of the indi-
vidual models in forecasting the volatility of cryptocurrencies (Kim & Won, 2018; 
Makridakis et al., 2018, 2020; Lahmiri & Bekiros, 2019; Kristjanpoller & Minutolo, 
2018; D’Amato et al., 2022).

In this work, hybrid LSTM–GARCH models are used to measure the effect of 
volatility forecasts in the construction of high-frequency cryptocurrency investment 
portfolios. The hybrid model is proposed to capture short-term dynamics and obtain 
predictions that meet the needs of this market. In addition, transaction volume has 
been included as an exogenous variable. Its behaviour and the relationship it pre-
sents in terms of the performance of the forecasts are explored. The results are eval-
uated using metrics that capture the heteroscedasticity, return, and risk of the associ-
ated portfolio and the DM test to determine if the models are significantly different 
in accuracy.

There are several contributions to this study. We forecast high-frequency vola-
tility in cryptocurrency markets using hybrid deep-learning models combined with 
stylised GARCH models. One main differentiating factor is to discuss the forecast-
ing performance of univariate and multivariate uniform portfolios through the VaR 
and the SR metrics. Then, we avoid relying only on statistical tests and computa-
tional error metrics to discriminate the best models. Another contribution is consid-
ering a highly capitalised selection of cryptocurrencies and comparing them against 
an stablecoin. Then, we exemplify the scope of the study on the portfolio alloca-
tion problem between risky assets and the cryptocurrency analogous free-rate asset: 
Tether. We frame our analysis on the turbulent time of the beginning of the COVID-
19 pandemic with a highly systemic risk component. Moreover, we have applied a 
sliding window strategy to avoid biases due to a particularly low or high turbulent 
period of the cryptocurrency market. Our methodology can be applied in general to 
highly non-linear time series and has forecasting implications on simple allocation 
strategies.

In summary, the present work seeks to contrast different univariate and multivari-
ate volatility forecast models through uniform variance portfolios and evaluate their 
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performance through different metrics with a naive model as a reference. We tie to 
the recent evidence in the literature showing that machine learning models do not 
always represent the best results when forecasting financial time series (Makridakis 
et  al., 2018). Finally, the analysis is framed into the beginning of the COVID-19 
pandemic as it is a period of high volatility and because it represents a systemic risk 
scenario on international finances.

Our analysis has implications in the management of investment portfolios, where 
it is crucial to estimate the variance of the assets in a univariate and multivariate 
manner. Then, to have a better allocation of assets that minimises exposure to risk 
and the probability of loss. Our results suggest using simple learning models to 
improve heteroskedastic errors, drastically reducing computation time compared to 
more elaborate neural network models. Thus, allowing rapid risk management in 
high-frequency scenarios, such as the case of a hypothetical investment fund that 
seeks to diversify into cryptocurrencies.

In Sect. 2, a literature review of volatility forecasts and cryptocurrency markets 
is performed, as well as the recent application of the DM test. Section 3 introduces 
the deep learning models used in this study. Section 4 presents the models of the 
GARCH family. Section 5 presents the elements of portfolio theory and its metrics 
considered in this study. Section 6 describes the data used and performs a prelimi-
nary exploratory analysis. The methodology followed to perform the volatility fore-
casts through the different models is detailed in Sect. 7. Section 8 shows the main 
results and discusses their implications regarding the selected metrics. Finally, in 
Sect. 9, the main findings are summarised, and future lines of research are proposed.

2 � Literature Review

The GARCH volatility models were initially introduced in Bollerslev (1986). 
Engle presents an emblematic financial application that predicts volatility through 
a GARCH(1,1) model for a portfolio composed of the Nasdaq, Dow Jones and the 
ten-year Treasury Bond (Engle, 2001). The VaR was taken as a reference to evaluate 
the proposed solution. Likewise, a class of multivariate GARCH models with the 
dynamic conditional correlation (DCC) property were proposed by the same author 
(Engle, 2002); these models are denoted by DCC-GARCH and have fewer param-
eters than other multivariate implementations of the same type. On the other hand, a 
GARCH model was extended in Lamoureux and Lastrapes (1990) to consider trans-
action volume as an exogenous variable, which showed that adding this variable 
improves the explanatory power of the model. This relationship was also explored 
in the futures market (Najand & Yung, 1991). In addition, the effect of the volatility 
index (VIX) of the Chicago Board Options Exchange (CBOE) Market and the trans-
action volume were compared when modelling them as exogenous variables through 
a GARCH model (Kambouroudis & McMillan, 2016). In this work, as in the stud-
ies mentioned above, the family of GARCH(1,1) models is considered. This choice 
is based on the discussion of Bollerslev (1987), where the author shows evidence 
that a GARCH(1,1) model is more parsimonious than a higher-order autoregressive 
conditional heteroskedasticity(ARCH) model. In this sense, we seek to implement 
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a model with few parameters that correctly captures the dynamics of volatility in 
financial time series.

Notably, in the topic of cryptocurrencies, the study (Chu et al., 2017) is one of 
the first to use different variants of the GARCH model to model the daily returns of 
the seven cryptocurrencies with the highest market capitalisation. In the same sense, 
previous studies have modelled Bitcoin and found evidence of it exhibiting charac-
teristics between gold and the dollar when applying asymmetric GARCH models 
(Dyhrberg, 2016). However, the authors in Baur et al. (2018) replicate the previous 
work reaching the opposite conclusion; that is, the dynamics of bitcoin are very dif-
ferent from those of gold and dollars.

In the area of machine learning, the idea of LSTM has been implemented to pre-
dict directional movements in the shares of the S&P 500, and with this information 
to propose an investment strategy, arguing that it is possible to obtain meaningful 
information even in markets with statistical noise (Fischer & Krauss, 2018). Like-
wise, there are competencies where statistical and learning methods are contrasted 
to evaluate the prognosis of macroeconomic variables, finding that in most cases, 
the classical statistical methods surpass those of learning (Makridakis et al., 2018). 
In cryptocurrencies, recent work has implemented deep learning models to predict 
the direction of Bitcoin by taking into account non-traditional variables and using 
a non-parametric method of variable selection (García-Medina & Luu Duc Huynh, 
2021). Recently, the authors of Banik et al. (2022) built a decision support system 
(DSS) to forecast the Indian stock market based on the LSTM model. However, 
none of these studies have explicitly paid attention to volatility.

A line of work that combines the study of volatility through GARCH and learn-
ing models has led to the proposal of hybrid models to improve the accuracy of 
volatility forecasts. In this direction, the study (Kim & Won, 2018) mixes LSTM 
models with different GARCH models to predict the volatility of the KOSPI 200 
index  (Korea Composite Stock Price Index). A similar methodology was imple-
mented in Quintero Valencia et al. (2019) to forecast the volatility of the dollar to 
Colombian peso exchange rate, where a combination of interest rates and commod-
ity prices are added as exogenous variables.

In this work, to compare forecast accuracy is used the DM test. This test was pro-
posed by  Diebold and Mariano (1995) with the characteristic that forecast errors can 
be non-Gaussian, non-zero mean, serially correlated, and contemporaneously corre-
lated. Initially, the authors illustrate the practical use of the tests with an application 
to exchange rate forecasting between the three-month change in the nominal Dollar/
Dutch Guilder. The test was incorporated as a standard practice for testing models 
in econometrics, to which Diebold criticises in (2015) the applied methodology of 
practitioners. He emphasises that the DB test should be interpreted as comparing 
forecasts, not as comparing econometric models. Also, he pointed out the power loss 
of the pseudo-out-of-sample model comparisons and the limited and unclear benefits 
of following that path. In the context of forecasting financial series using machine 
learning, the authors of  Gu et  al. (2020) modified the DM test. They intended to 
compare the cross-sectional average of the prediction errors of each model instead 
of comparing errors between individual returns and avoid violating the condition of 
weak error dependence. In Mensi et al. (2019) is studied the structural break of price 
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returns of Bitcoin and Ethereum under different models of the GARCH family and 
compared using the DM test. Similarly, the authors of Catania et al. (2019) study 
Bitcoin, Litecoin, Ripple, and Ethereum under several multivariate vector autore-
gressive models with different forms of variation over time, where they also apply 
the DM test to contrast results. On the other hand, the test has also begun to be used 
in high-frequency forecasts of cryptocurrencies (Peng et al. 2018) to evaluate hybrid 
models, as are the support vector regression (SVR) and GARCH type. In the same 
spirit, it has been decided to use the DM test in this study. F.X. Diebold’s discus-
sion (Diebold, 2015) should prevent us from taking the test results as confirmatory 
rather than indicative of the superiority of one forecast over another.

3 � LSTM Deep Learning Models

Machine learning is a field of study in artificial intelligence where algorithms are 
developed so that computers can learn without being explicitly programmed. Deep 
learning methods have gained significant importance in recent years, and the num-
ber of people or organisations that develop them has increased. In addition, the com-
putational resources to perform this type of processing have become more accessi-
ble. In the case of financial series, statistical and econometric methods often present 
difficulties when modelling non-stationary variables or those with complex depend-
encies (Dixon et al., 2015). Fortunately, deep learning techniques can identify and 
deal with these types of complex structures (Fischer & Krauss, 2018).

Artificial neural networks (ANN) are part of machine learning models. Different 
mathematical disciplines guide this research, and these models can be understood 
as function approximation machines designed to achieve statistical generalisation 
(Goodfellow et al., 2016). In general, these models are based on a set of units called 
neurons that interact with each other, sharing information between them. An arti-
ficial neuron or unit receives an input vector x that represents the input or output 
data of the other neurons connected. This information is weighted by multiplying a 
vector of weights w that the algorithm estimates during the learning process. This 
way, an output value or signal f(x) is generated through a transformation function 
g(⋅) known as the activation function. This process can be represented in a simplified 
way through the following expression:

where b is the trend. MultiLayer perceptrons  (MLPs) are the simpler ANNs and 
are usually used as a vanilla model. The architecture of a MLP consists of an input 
layer, a hidden layer and an output layer. In this naive model, each node is a neuron.

Recurrent neural networks  (RNNs) are a more elaborated class of networks 
specializing in representing and modelling sequential data. This type of net-
work uses its hidden layers to summarize the historical information of a data 
sequence. RNNs implement cycles that allow information to persist over time. 
An RNN unit can be represented by an input xt that generates a value ht , where 

(1)f (x) = g(x ⋅ w) + b,
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in its structure, the output of the state at time t − 1 is the input for the state at 
time t, and the output of the state at time t is the input for the state at time t + 1.

The LSTM model was proposed by Hochreiter and Schmidhuber (1997) and is 
designed to address the problem of long-term dependencies. This model imple-
ments gates that specify the amount of information that passes in each time state 
in such a way that the network discriminates the information that is relevant for 
the next state. This model solves some difficulties encountered in the RNN train-
ing process when calculating the derivatives involved in the optimisation pro-
cess. Unlike a conventional RNN, each neuron has different layers that help to 
filter the information. Specifically, an LSTM unit consists of a memory gate (ct ), 
an input gate (it ), a forget gate (gt ), and an output gate (ot ). In Fig. 1, the gen-
eral structure of the mechanism of an LSTM unit is shown. This figure shows at 
time t, the input xt , the hidden state ht , and c̃t , which determines the amount of 
accepted information or discarded in the status cell. The internal process of an 
LSTM unit can be described mathematically through the following expression

where U and W are weight matrices, b is the bias term, and the symbol * denotes 
element-wise multiplication (Kim & Won, 2018).

(2)gt =�(Ugxt +Wght−1 + bf )

(3)it =�(Uixt +Wiht−1 + bi)

(4)c̃t =tanh(Uxxt +Wcht−1 + bc)

(5)ct =gt ∗ ct−1 + it ∗ c̃t

(6)ot =�(Uoxt +Woht−1bo)

(7)ht =ot ∗ tanh(ct)

Fig. 1   General structure of an 
LSTM unit (García-Medina & 
Luu Duc Huynh, 2021). The 
memory gate is represented as 
ct , the input gate is denoted by 
it , the forget gate is indicated as 
gt , and the output gate is as ot
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4 � GARCH Models

The GARCH model introduced by Bollerslev (1986) can be understood as a combi-
nation of the long-term average value, the volatility information in the previous peri-
ods and the adjusted variance of the model. Explicitly, the conditional variance of a 
GARCH model(q, p) is expressed as

where ut are the residuals, 𝛼0 > 0 , �i ≥ 0 must be met for i = 1,… , q and �j ≥ 0 for 
j = 1,… , p.

In the GARCH models, positive and negative values have a symmetrical effect on 
conditional variance. However, empirical evidence shows that negative returns have a 
more significant impact on the increase in volatility about positive returns of similar 
magnitude (Jondeau et al., 2007). The exponential GARCH model or eGARCH was 
introduced (Nelson, 1991) to improve two aspects of the GARCH model. First, it limits 
the values of the parameters � and � to ensure a favourable variance. Second, it explic-
itly includes an asymmetric volatility response to positive and negative news. In the 
eGARCH model, �2 depends on the size and sign of these changes

where g(zt) = �zt + �[|zt| − �(|zt|)] , in which � and � are real constants. Both zt , 
and |zt| − �(|zt|) are independent and identically distributed zero-mean sequences, 
so �[g(zt)] = 0 . The asymmetry is modelled through the function g(zt) , which has 
the following form:

On the other hand, the gjrGARCH model introduced by Glosten et al. (1993) is an 
extension of the GARCH model that includes an additional term to account for pos-
sible asymmetries. This model alternatively captures the empirically observed fact 
that negative changes at time t − 1 have a more substantial impact on the variance at 
time t than positive changes. The variance in the model gjrGARCH(q, p) is defined 
by

for 𝛼0 > 0 , �i ≥ 0 , �i + �i ≥ 0 and �j ≥ 0 for i = 1,… , q and j = 1,… , p , where

(8)�2
t
= �0 +

q∑
i=1

�iu
2
t−i

+

p∑
j=1

�j�
2
t−j
,

(9)log(�2
t
) = �0 +

q∑
i=1

�ig(zt−i) +

p∑
j=1

�jlog(�
2
t−j
),

g(zt) =

{
(𝜓 + 𝛾)zt − 𝛾�(|zt|) if zt ≥ 0

(𝜓 − 𝛾)zt − 𝛾�(|zt|) if zt < 0

(10)�2
t
= �0 +

q∑
i=1

(�i + �iIt−1)u
2
t−i

+

p∑
j=1

�j�
2
t−j

It =

{
0 if ut ≥ 0

1 if ut < 0
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On the other hand, GARCH models can be modified to introduce exogenous vari-
ables that influence the volatility of returns. In the case of the GARCH(q, p) volatil-
ity model, these variables are added by introducing an extra term as follows (Lam-
oureux & Lastrapes, 1990):

where Vt is the exogenous variable, with the condition that � ≥ 0.
In the multivariate case, we seek to estimate a covariance matrix (Jondeau 

et  al., 2007; Bauwens et  al., 2006). Let us consider a vector of random variables 
xt = (x1,t, x2,t,… , xn,t)

� whose joint distribution is given by:

where �t(�) denotes the n × 1 conditional mean vector, Σt(�) is the n × n conditional 
covariance matrix of the error term ut , and � is the vector of unknown parameters. 
Let Dt be a diagonal matrix of size n × n with conditional variances �2

i
 on the diago-

nal. Thus, the conditional correlation matrix of ut can be represented as

To estimate Rt , it is introduced in Engle (2002) the DCC-GARCH model. In this 
model, the dynamic correlation matrix Rt is represented as follows:

where Q̄ is the unconditional variance matrix of vt = {zi,t∕�i,t}i=1,…,n (Silvennoinen 
& Teräsvirta, 2009) and diag(Qt) is the diagonal matrix of Qt . The matrix Q̄ can 
be estimated through the sample 1

T

∑T

t=1
v̂tv̂

�
t
 , while the parameters �1 and �2 satisfy 

0 ≤ �1 , �2 ≤ 1 and �2 + �2 ≤ 1.

5 � Investment Portfolio

In 1952, Markowitz introduced the concept of the efficient frontier. This was the first 
mathematical formulation of portfolio optimisation. The idea is that investors see an 
expected return as desirable, while the variance of the returns is undesirable. What 
Markowitz demonstrated is the existence of a set of optimal portfolios that maximise 
the expected return given a risk value. This was what he called the optimal frontier 
(Roncalli, 2013).

(11)�2
t
= �0 +

q∑
i=1

�iu
2
t−i

+

p∑
j=1

�j�
2
t−j

+ �Vt,

(12)xt =�t(�) + ut

(13)ut =Σ
1∕2
t (�)zt,

(14)Rt = D
−1∕2
t ΣtD

−1∕2
t = {�t}ij.

(15)Rt =diag(Qt)
−1∕2Qtdiag(Qt)

−1∕2,

(16)Qt =(1 − 𝛿1 − 𝛿2)Q̄ + 𝛿1(vtv
⊤
t
) + 𝛿2Qt−1,
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Let the vector of returns be r = (r1,… , rp) , where each element of the vec-
tor is the logarithmic return of the p instruments in the portfolio. Additionally, let 
w = (w1,… ,wp) be the weights of each asset in the investment portfolio. The return 
of the portfolio is expressed as

On the other hand, portfolio risk is traditionally defined as the variance of returns.

where Σ is the covariance matrix of the returns.
In the case of equally weighted portfolios or uniform portfolios, the weights are 

estimated using the formula

Likewise, for the case of a portfolio of minimum variance, the weights are chosen 
through the expression

In the scenario in which the weights take both positive and negative values, the fol-
lowing analytical solution can be obtained:

There are variants of this solution based on whether leverage  (negative weights) 
or higher or lower weight restrictions are considered. Here, we only consider the 
budget restriction: 

∑n

i=1
wi = 1 . In both scenarios, uniform portfolio and minimum 

variance portfolio, once the portfolio weights are determined, the variance of the 
portfolio is obtained through Eq. 18. This last quantity is modelled and predicted in 
the following sections.

On the other hand, the SR was developed by the Nobel Prize winner William F. 
Sharpe and is used to compare a portfolio’s return, the risk-free rate and its volatil-
ity (Sharpe, 1994). The SR is defined as

where Rf  is the risk-free rate. The higher this value, the better trade-off between 
return and risk associated with the investment.

The VaR is a probabilistic method that measures the potential loss of the portfo-
lio value given a period of time. Specifically, the VaR is the percentage loss of the 
portfolio value that the actual loss is equal to or greater than only � percent of the 
time. That is, there is a probability of � percent that the loss in the portfolio’s value 

(17)R =

p∑
i=1

wiri,

(18)�2 = �
�
��,

(19)w∗
i
=

1

p
.

(20)w∗ = argminw{w
�Σw}

(21)w∗ =
Σ−11

1⊤Σ−11
.

(22)SR =
R − Rf

�2
,
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is equal to or greater than the VaR measure. In our case, we follow the parametric 
approximation for the calculation of the VaR. In general, the VaR is given by

where �t is the square root of the estimated portfolio’s variance and Φ−1(�) is the 
inverse probability function of �.

6 � Data

The prices and transaction volume of the p = 10 leading cryptocurrencies in terms 
of capitalisation  (at the date of capture) are obtained through the application pro-
gramming interface (API) of CoinMarketCap.1 The analysis period is from 
01/01/2020 to 06/30/2020, with a frequency of 5 min. The cryptocurrencies consid-
ered are listed in Table 1.

The data are transformed to obtain the logarithmic returns of the ten price and 
volume series. In the case of missing data, linear interpolation is applied. Next, 
the average returns per hour and the realized variance through the variance of the 
intrahour data are obtained. In this way, time series of average returns are obtained 
and volatility series for both the price and the transaction volume, giving a total of 
n = 4, 368 observations at hourly frequency. In Fig. 2a, the average hourly returns of 
the prices and transaction volume are plotted for each of the currencies studied. At 
the beginning of 2020, the currencies presented low volatility, while in mid-March, 
there was a structural change in the returns, which can be inferred by their increase 
in volatility. We can observe a similar behaviour for the volatility returns shown in 
Fig. 2b.

In Tables  2 and 3, the main statistics for performance concerning price and vol-
ume are presented, respectively. The mean (� ), standard deviation (� ), skew (s), kur-
tosis (� ), and Phillips Perrón (PP) statistics are used to verify the existence of unit 
roots. In addition, the Ljung-Box  (LB) and ARCH LM  (LM) statistics have been 
included in the case of price returns to test the fit of a heteroscedastic model.

In the PP test, the null hypothesis has a unit root at � = 0.01 in all the time series 
considered. The LB and LM tests evaluate the dependence of the second moment 
with a time lag. These have as a null hypothesis that an ARCH process adequately 
fits the data. The test does not reject H0 for any cryptocurrency.

As a complementary part of the exploratory analysis, the partial autocorrelation 
function (PACF) is measured to determine the relevance of applying the GARCH 
heteroscedastic models. In Fig. 3, the corresponding correlogram is plotted for the 
square of the price returns. It can be observed that the values do not stabilise for any 
of the cryptocurrencies considered in this study. In sum, this exploratory data analy-
sis shows preliminary evidence of the heteroscedasticity of the returns of cryptocur-
rencies. This allows us to proceed with the methodology described in the following 
section.

(23)VaR� = −�tΦ
−1(�),

1  https://​coinm​arket​cap.​com/​api/.

https://coinmarketcap.com/api/
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7 � Methodology

The models described in Table 4 are implemented. In each scenario, a window 
sliding of 504 hours is performed, with a window shift of 24 hours. In this way, 
each model is applied to M = 161 windows to forecast the volatility in the hour 
horizon h = {1, 2,… , 24} . For each value of h, the forecasts of the M windows are 
generated. Therefore, an average volatility prediction over times T + 1 , ..., T + 24 
under different market conditions is computed. The average prediction avoids bias 
in selecting a specific time window. Instead, it is intended to show average results 
that capture the periods of high and low volatility as a whole. The specific meth-
odology followed to implement each model (see Table 4) is described below.

Fig. 2   a Hourly average logarithmic return of price. b Hourly average logarithmic return of volume. In 
both cases, the colours for each cryptocurrency is described in the sidebar

Table 2   Descriptive statistics of logarithmic returns of prices: mean (� ), standard deviation (� ), skew (s), 
kurtosis (�)

Column PP represent the Phillips–Perron test, LB the Ljung–Box test, and LM the ARCH LM test
The symbol (*) denote the significance at the 1% level

� � s � PP LB LM

Bitcoin −0.0220 × 10−2 0.3732 −3.3164 84.8543 −62.4678* 0.3935 0.4327
Ethereum −0.000110 × 10−2 0.3595 −2.7697 62.0278 −64.1589* 0.5192 0.6115
Bitcoin Cash 0.0188 × 10−2 0.3337 −1.9304 37.2363 −61.8218* 0.9741 1.1063
Tether −0.0224 × 10−2 0.1455 −0.0979 22.6456 −109.492* 1.6730 0.4826
Litecoin −0.0412 × 10−2 0.3336 −2.016 45.093 −62.9980* 0.4633 0.6237
Eos 0.0337 × 10−2 0.3231 −1.9347 44.6825 −64.6345* 0.8532 0.4467
Binance Coin 0.0633 × 10−2 0.3000 −2.9582 63.9365 −67.3297* 0.1749 0.3892
Bitcoin SV 0.0952 × 10−2 0.3255 3.9356 124.63 −59.8099* 1.7390 0.6918
Stellar 0.0262 × 10−2 0.2897 −1.0965 17.5313 −66.2977* 0.0584 0.9873
Tron 0.1040 × 10−2 0.3574 −2.5815 52.4063 −63.9707* 0.5209 0.5260
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Table 3   Descriptive statistics of logarithmic returns of volumes: mean  (� ), standard deviation  (� ), 
skew (s), and kurtosis (�)

Column PP represent the Phillips–Perron test
The symbol (*) denote the significance at the 1% level

� � s � PP

Bitcoin 0.1976×10−2 0.3065 −0.3516 424.4616 −67.8452*
Ethereum 0.0651×10−2 0.1692 0.2030 10.4398 −58.9243*
Bitcoin Cash 0.0294×10−2 0.2926 −4.4658 126.9292 −51.7996*
Tether 0.1969×10−2 0.3077 −0.2800 16.8439 −46.8008*
Litecoin 0.0375×10−2 0.1401 −0.0564 15.9906 −62.9605*
Eos 0.2207×10−2 0.4393 0.8287 11.4172 −42.8717*
Binance Coin 0.0997×10−2 0.2391 0.7383 35.1063 −60.2495*
Bitcoin SV 0.0383×10−2 0.1699 0.8485 23.8815 −65.7187*
Stellar −0.0120×10−2 0.0949 −0.1625 21.3002 −85.9246*
Tron 0.2275×10−2 0.2621 −0.0908 80.7404 −61.8854*

Fig. 3   PACF of squared logarithmic returns of prices from one to 36 lags
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7.1 � Naive Model

An estimate of the future volatility is constructed using the average of the real-
ized variance during the time windows. In particular, with this procedure, future 
estimates for the portfolio of equal weights are the same for all prediction hori-
zons h = 1,… , 24.

7.2 � GARCH Models

In the case of the eGARCH, eGARCH-Vol, gjrGARCH, and gjrGARCH-Vol 
models, the volatility is predicted directly in terms of the portfolio’s performance 
of cryptocurrencies with uniform weights. In the case of the models that include 
volume, the volume returns index is constructed by taking the average volume 
returns of the individual variables. This index represents the volume return of the 
uniform portfolio and is included as an exogenous variable in the corresponding 
models.

In the case of the DCC-eGARCH and DCC-eGARCH-Vol models, it is neces-
sary to estimate the portfolio’s volatility in two steps. First, the covariance matrix is 
estimated, where an eGARCH model is specified for each variable, and the corre-
sponding DCC model is estimated with it. In the case of the model with volume, the 
volume return is included in each individual specification of the eGARCH model for 
all variables. In the second step, the variance of the portfolio is computed through 
Eq. 18 considering uniform weights.

The models are estimated for the order  (1,1) in all cases. In addition, Student’s 
t-distribution is assumed for the residuals, and the model of the mean is speci-
fied as constant. For the estimation of the parameters, the libraries rugarch and 
rmgarch in the software R are used.

7.3 � Deep Learning Models

The MLP and LSTM deep learning models are trained with the variance of each 
asset. In addition, the volatility data are structured in a supervised learning format. 
Thus, given the series of volatilities x1,… , xn , we proceed to create a matrix X that 
serves as an independent variable of the model and a variable y as the dependent 
variable, that is, the variable to be predicted. Let n be the size of each of the real-
ized variance series and m be the size of the samples in X. In this way, to obtain 
the forecast of volatilities h = {1,… , 24} steps forwards, the following matrices are 
constructed:

(24)X =

⎡⎢⎢⎢⎣

x1 x2 … xm
x2 x3 … xm+1
⋮

xn−m+1 xn−m+2 … xn

⎤⎥⎥⎥⎦
y =

⎡⎢⎢⎢⎣

xm+1 … xm+24
xm+2 xm+25
⋮

xn+1 … xn+24,

⎤⎥⎥⎥⎦
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where samples have size m = 72 . With the n = 504 observations, the matrices X and 
y are divided into training, validation and testing subsets of sizes 383, 48, and 1, 
respectively.

Likewise, the input data are scaled in [0, 1] to streamline the learning process. In 
the training and validation, the hyperparameters are optimised in a mesh. Specifi-
cally, the set of values is considered for the batch sizes [24, 48, 72], with the sigmoid 
activation function. The combination of parameters that decreases the mean square 
error is used during the validation. These optimal parameters are used in the test set, 
and 10 model runs are performed to avoid biases due to the stochastic nature of the 
model. Finally, the average of the nine predictions is calculated, and this average is 
considered the estimate of the volatility in each step of the horizon h = 1,… , 24.

In the case of the LSTM-Vol models, the procedure is similar to that described 
above. The radical difference is how the volume returns index is included as a fea-
ture of the model. Explicitly, this is done by extending the number of columns of the 
matrix X in Eq. 24. In both models, LSTM and LSTM-Vol, the procedure is carried 
out through the libraries TensorFlow and keras in Python. In Fig. 4a, b, the 
architecture followed for the LSTM and LSTM-Vol models is presented, where how 
the volume index is introduced to the deep learning model can be explicitly seen. 
The MLP model is used as a vanilla approach, where it is set simply by an input 
layer, a hidden dense layer of 10 neurons, and an output layer for the predictions.

Table 5   Asymmetric GARCH 
model coefficients added as 
features of the LSTM learning 
model (see section 4 for further 
details)

Parameter Description

�0 Trend
�1 Residual coefficient
�1 Conditional volatility coefficient
� Asymmetry coefficient

Fig. 4   Architectures used to predict volatility over time T + 1,… ,T + 24 . Here, �rt represent the realized 
variance at time t, and �T+h represent the predicted volatility at T + h . a LSTM models. b LSTM-Vol 
models. c LSTM–GARCH models. From bottom to top the flow diagram is the same in all cases. First 
the input layer, then several hidden layers, and at the top the output layer



1528	 A. García‑Medina, E. Aguayo‑Moreno 

1 3

7.4 � LSTM–GARCH Models

In the case of the LSTM-eGARCH and LSTM-gjrGARCH hybrid models, the 
methodology is similar to that described for the LSTM models. The main differ-
ence is that the parameters estimated in the GARCH models for a uniform portfo-
lio are now included as additional features, that is, the parameters of the eGARCH 
and gjrGARCH models. Specifically, the coefficients added to the hybrid models are 
described in Table 5. The model includes these parameters by extending the number 
of columns of matrix X in Eq. 24. In this case, the GARCH parameters are not scaled 
as is done in the preprocessing of the returns. To estimate the models, the libraries 
of R and Python mentioned in the previous sections are used. In Fig. 4c, the archi-
tecture followed for the LSTM-eGARCH and LSTM-eGARCH-Vol models is pre-
sented, where the procedure to include the GARCH parameters is explicitly shown. 
In practical terms, the input layer receives the four characteristics given in Table 5 
and the value of the historical volatility as in the other simple LSTM models.

7.5 � Metrics

To compare the performance of each of the models presented in the previous sec-
tion, the metrics HAE, HSE, SR, and VaR are evaluated, and the DM test is applied 
to determine if there are significant differences in the prediction accuracies of the 
different models. The HAE and HSE are defined at the prediction horizon h and 
window T by the following expressions:

where �2
predicted

(T + h) is the estimated variance over time T + h , and �realized(T + h) 
is the realized variance at time T + h . Different values of T represent different time 
windows or financial scenarios. The HAE and HSE are metrics designed to capture 
the heteroscedastic effect of the time series. Therefore, it is more natural and fair to 
use these versions since our object of study is the volatility forecast.

The SR and VaR are defined in the portfolio section. Defined in terms of the pre-
diction horizon h and window T take the following forms:

(25)HAE(h, T) =‖1 −
�2
predicted

(T + h)

�2
realized

(T + h)
‖,

(26)HSE(h, T) =

(
1 −

�2
predicted

(T + h)

�2
realized

(T + h)

)2

(27)SR(h, T) =
R(h, T) − Rf (h, T)

�2
predicted

(h, T)

(28)VaR�(h, T) = − �predicted(h, T)Φ
−1(�),



1529

1 3

LSTM–GARCH Hybrid Model for the Prediction of Volatility in…

where �predicted is computed by Eq. 18 in the particular case of multivariate DCC-
GARCH type models. These financial metrics are included to compare the perfor-
mance of the forecasts in a possible application, such as the allocation of capital in 
investment portfolios.

On the other hand, suppose that we have two forecasts y(1)
T+h

, y
(2)

T+h
 at horizon h. We 

want to know which prognosis is better concerning predictive accuracy. The objec-
tive is to select the forecast with the smallest error measure and determine if this 
difference is significant or simply due to the specific choice of data in the sample. 
Given the actual time series yT+h and the estimation ŷT+h , the prediction error is

In this way, the loss associated with the forecasts is a function associated with the 
forecast error denoted by g(e(i)

T+h
) . The loss differential between two forecasts is 

defined as

Thus, two forecasts have the same precision at horizon h if and only if the expected 
value of dT+h is zero for all T. This condition is the null hypothesis in the DM statis-
tic, which is expressed at horizon h by the formula (Diebold & Mariano, 1995)

where d̄ =
1

M

∑M

T=1
(g(e

(1)

T+h
) − g(e

(2)

T+h
)) and f̂d(0) is a consistent estimator of fd(0) , 

which denotes the spectral density of the loss differential at frequency 0.

8 � Results

This section describes the results obtained in terms of the metrics specified in the 
methodology. The forecasts of each of the models proposed in Table 4 are compared 
with the variance of a uniform portfolio, denoted as the realized variance. The uni-
form portfolio is built with the cryptocurrencies described in Table 1 except Tether, 
which is considered the risk-free rate Rf  in the SR metric. For the calculation of the 
VaR, the inverse function is estimated based on the 5% quantile. In the DM test, the 
null hypothesis is that there is no difference in the accuracy of the volatility predic-
tion between one model and another.

The GARCH family models last 5854.06 s (approximately 1 h and 37 min) on 
an Intel® CoreTM i5-8250U CPU @ 1.60 GHz × four cores. In the case of the 
deep learning models, it has taken 228,910 s (2 days, 15 h, 35 min and 10 s) to 
run all 24,150 configurations (5 models x 161 windows x 3 batch values x 10 
realizations) in parallel using an Intel® Xeon(R) Gold 6254 CPU @ 3.10GHz × 
eight cores. Figure 5 shows two typical learning curves for the MLP and LSTM-
gjrGARCH models at window 161 and batch size of 72. It can be seen that the 

(29)e
(i)

T+h
= ŷ

(i)

T+h
− yT+h, i = 1, 2

(30)dT+h = g(e
(1)

T+h
) − g(e

(2)

T+h
).

(31)DM(h) =
d̄√

2𝜋 f̂d(0)∕M

,
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number of epochs is different since we have used the criterion of stopping the 
learning process once a local minimum is reached to avoid overfitting problems.

Figure 6 shows the volatility estimate of each of the models considered through-
out the time windows analysed. Due to space, the results are offered only for the 
representative horizons, where h = {1, 6, 12, 24} . The forecasts are averages over the 
M = 161 time windows. For comparison terms, the y-axis is logarithmically scaled, 
and the realized variance of a uniform portfolio is included. It can be observed that 

Fig. 5   A typical learning curves at window 161 and batch size 72 for a MLP. b LSTM-gjrGARCH

Fig. 6   Prediction of volatility for each time window. a horizon T + 1 . b horizon T + 6 . c horizon T + 12 . 
d horizon T + 24 . The ID Model of the sidebar is described in Table 4. The realized variance is repre-
sented by a gray dashed line
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the deep learning models recover the dynamics of the realized variance. However, 
the original values present higher orders of magnitudes than the results obtained by 
the volatility models. This can be observed in the predictions for the horizon T + 24 , 
shown in Fig. 6d. A peak is observed in the prognosis of the deep learning models 
that differ significantly from the GARCH family models. Likewise, a natural group-
ing can be observed in the models according to their type. For example, the naive 
model usually exhibits smooth behaviour over time but is of greater magnitude than 
the other models. This model does not recover all the changes in volatility, which is 
expected due to its nature. On the other hand, the univariate models of the GARCH 
family present a similar dynamic but with values lower than the realized variance 
in most of the windows. Similarly, multivariate GARCH models generally show 
a common dynamic, although of an even smaller magnitude. This occurs because 
they are associated with a portfolio of minimum variance. Note that the models that 
include both pure and hybrid learning are the closest to the realized variance in mag-
nitude. In general, most models recover the dynamics globally; when there is high or 
low variance, the models capture it, although usually to a lesser extent.

Figure 7 shows the behaviour of the metrics through the M = 161 time windows 
at the horizon T + 1 . We can see that in specific periods the metrics explode, mainly 
at times of highest volatility. For example, atypical values are observed around the 
financial turbulence of March 2020 derived from the announcement of a pandemic 

Fig. 7   Metrics through the M = 161 time windows at T + 1 . a HAE. b HSE (c) SR. d VaR
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by the World Health Organization(WHO). Due to these outliers, instead of averag-
ing the metrics over all the windows, we have taken their median with the value that 
characterizes the performance of the models over time. Thus we have denoted by 
MHAE, MHSE, MSR, and MVaR, the median over the M=161 time windows of the 
HAE, HSE, SR, and VaR metrics, respectively.

In Table  6, the results for the MHAE in the selected prediction horizons are 
shown. It can be observed that the results in the naive case are the least favour-
able. For the other models, errors of the same magnitude are presented, although 
the results obtained by the MLP model show the lowest errors at T + 1 , T + 6 and 
T + 12 , while the DCC-eGARCH model present the lowest MHAE at T + 24 . On 
the other hand, notably, there is no significant increase in errors when increasing the 
prediction horizon for any model. In Table7, the results corresponding to the MHSE 

Table 6   MHAE

The best scores for each selected forecast horizon are highlighted

Model/prediction T + 1 T + 6 T + 12 T + 24

Naive 0.9923 1.5329 1.3407 1.2643
eGARCH 0.7181 0.6572 0.7051 0.7193
eGARCH-Vol 0.762 0.715 0.7616 0.7373
gjrGARCH 0.7047 0.6519 0.6895 0.6719
gjrGARCH-Vol 0.7078 0.6636 0.7174 0.7021
DCC-eGARCH 0.7102 0.6425 0.6976 �.����

DCC-eGARCH-Vol 0.7518 0.6861 0.7359 0.7247
MLP �.���� �.���� �.���� 0.6695
LSTM 0.5667 0.7008 0.6575 0.7047
LSTM-Vol 0.5692 0.7018 0.6648 0.7018
LSTM-eGARCH 0.5675 0.7017 0.6582 0.6993
LSTM-gjrGARCH 0.5691 0.7007 0.6554 0.7051

Table 7   MHSE

The best scores for each selected forecast horizon are highlighted

Model/Prediction T + 1 T + 6 T + 12 T + 24

Naive 0.9847 2.3496 1.7974 1.5984
eGARCH 0.5157 0.4319 0.4972 0.5174
eGARCH-Vol 0.5807 0.5113 0.58 0.5436
gjrGARCH 0.4966 0.4249 0.4754 0.4515
gjrGARCH-Vol 0.5009 0.4403 0.5147 0.4929
DCC-eGARCH 0.5044 0.4128 0.4867 0.4378
DCC-eGARCH-Vol 0.5651 0.4707 0.5415 0.5251
MLP �.���� �.���� �.���� �.����

LSTM 0.3211 0.4911 0.4323 0.4967
LSTM-Vol 0.324 0.4926 0.4419 0.4926
LSTM-eGARCH 0.322 0.4923 0.4333 0.489
LSTM-gjrGARCH 0.3239 0.491 0.4295 0.4972
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are presented. Given this metric, the naive model again presents the worst perfor-
mance by one order of magnitude. On the other hand, the models that involve deep 
learning exhibit a performance with lower errors than that of the GARCH models at 
T + 1, T + 6 and T + 12 . In all prediction horizons, the MLP model yields the best 
results, yet comparable to the other deep learning models.

The performance of each of the portfolios with respect to the MSR is shown in 
Table 8. In this case, at T + 1 and T + 6 the Naive model present the highest SR, 
which is desirable in this metric. Nevertheless, the values at these horizons of pre-
dictions are negative. On the contrary, at horizon T + 12 and T + 24 the best result is 
obtained by the DCC-eGARCH-Vol model with positive values. Hence, the results 
imply that an investment strategy with a longer time horizon generates a higher 
Sharpe ratio most of the time. The results also imply that the uniform portfolio per-
formance is worse or better than only investing in Tether, depending on the expected 
variance at different forecasting horizons. Then, a potential investor should trade on 
the selected cryptocurrencies at long and Tether at short horizons, considering our 
high-frequency frame.

Similarly, the results for the MVaR are shown in Table 9. Note that all values 
are negative by definition. In this case, the best results are consistently shown 
by the univariate eGARCH-Vol models for the horizons considered. They are 
an order of magnitude higher than the naive model and considerably lower than 
the deep learning models. The results are remarkable since we can infer that the 
transaction volume reduces the portfolio’s losses at a tolerance of 5%. In other 
words, it is essential to include the volume information in the volatility forecast to 
better management of a hypothetical uniform allocated portfolio.

Next, the comparison of the residuals according to the DM statistic is pre-
sented. The null hypothesis of this test is that Model 2 (M2) has greater precision 
than Model 1 (M1), and the alternative is that Model 1 (M1) has greater accuracy 
than Model 2  (M2). The null hypothesis is rejected if the p-value is less than 

Table 8   MSR

The best scores for each selected forecast horizon are highlighted

Model/prediction T + 1 T + 6 T + 12 T + 24

Naive −�.���� −�.��� 0.0216 0.0872
eGARCH −0.0312 −0.3141 0.1727 0.5287
eGARCH-Vol −0.0328 −0.358 0.1816 0.5482
gjrGARCH −0.0261 −0.3053 0.1918 0.5378
gjrGARCH-Vol −0.0196 −0.226 0.1444 0.4408
DCC-eGARCH −0.0198 −0.2331 0.1763 0.4797
DCC-eGARCH-Vol −0.0261 −0.2778 �.���� �.����

MLP −0.0204 −0.1222 0.0519 0.2381
LSTM −0.0208 −0.0872 0.0442 0.1912
LSTM-Vol −0.0208 −0.0873 0.0444 0.1911
LSTM-eGARCH −0.0207 −0.0873 0.0441 0.1913
LSTM-gjrGARCH −0.0208 −0.0872 0.0444 0.1908
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� = 0.1 . In Tables 10, 11, 12, and 13, the results to horizons T + 1, T + 6, T + 12 , 
and T + 24 are shown, respectively.

In these tables, the rows represent Model 1, and the columns represent Model 
2. When making the row/column comparison, the cell is highlighted if Model 1 
has greater forecasting accuracy than Model 2. We can observe in Table 10 that in 
the estimation of T + 1 , the DCC-eGARCH (E6) and all the deep learning mod-
els (E8-E12) do not reject the null hypothesis when compared to any other model. 
On the other hand, Table 11 show at horizon T+6 that the MLP, LSTM-Vol, and 

Table 9   MVaR

The best scores for each selected forecast horizon are highlighted

Model/prediction T + 1 T + 6 T + 12 T + 24

Naive −0.102 −0.102 −0.102 −0.102
eGARCH −0.0136 −0.0155 −0.0159 −0.0166
eGARCH-Vol −�.���� −�.���� −�.���� −�.����

gjrGARCH −0.0139 −0.0162 −0.0167 −0.0171
gjrGARCH-Vol −0.0134 −0.0149 −0.015 −0.0157
DCC-eGARCH −0.0168 −0.0173 −0.0177 −0.0188
DCC-eGARCH-Vol −0.0134 −0.0137 −0.0139 −0.014
MLP −0.0557 −0.0563 −0.0558 −0.0573
LSTM −0.0565 −0.0596 −0.0567 −0.0566
LSTM-Vol −0.0566 −0.0599 −0.0567 −0.0564
LSTM-eGARCH −0.0565 −0.0595 −0.0565 −0.057
LSTM-gjrGARCH −0.0567 −0.0594 −0.0567 −0.0564

Table 10   Comparison of residuals of the different models with the Diebold–Mariano test at horizon 
T + 1

The cell value is 1 if Model 1 (M1) has greater forecasting accuracy than Model 2 (M2), and zero on the 
contrary

M1 / M2 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

E1 1 0 0 0 0 0 0 0 0 0 0 0
E2 1 1 1 1 1 0 0 0 0 0 0 0
E3 1 0 1 0 0 0 0 0 0 0 0 0
E4 1 0 1 1 0 0 0 0 0 0 0 0
E5 1 0 1 1 1 0 0 0 0 0 0 0
E6 1 1 1 1 1 1 1 0 0 0 0 0
E7 1 1 1 1 1 0 1 0 0 0 0 0
E8 1 0 0 0 0 0 0 1 0 0 0 0
E9 1 0 0 0 0 0 0 0 1 0 0 0
E10 1 0 0 0 0 0 0 0 0 1 0 0
E11 1 0 0 0 0 0 0 0 0 0 1 0
E12 1 0 0 0 0 0 0 0 0 0 0 1
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LSTM-gjrGARCH are the only ones for which the null hypothesis is not rejected 
concerning all the other models. For the case T + 12 , Table 12 show that there is not 
significative evidence that any model surpasses those in the class of deep learning 
models (E8-E12) according to the DM test. A similar behaviour is found at horizon 
T + 24 (see Table 13). Note that the naive model rejects the null hypothesis of bet-
ter accuracy about the GARCH family models at this horizon. In general, it is found 

Table 11   Comparison of residuals of the different models with the Diebold–Mariano test at horizon 
T + 6

The cell value is 1 if Model 1 (M1) has greater forecasting accuracy than Model 2 (M2), and zero on the 
contrary

M1 / M2 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

E1 1 0 0 0 0 0 0 0 0 0 0 0
E2 0 1 0 0 0 0 0 0 0 0 0 0
E3 0 1 1 1 0 0 0 0 0 0 0 0
E4 0 1 0 1 0 0 0 0 0 0 0 0
E5 0 1 1 1 1 0 0 0 0 0 0 0
E6 0 1 1 1 0 1 0 0 0 0 0 0
E7 0 1 1 1 1 1 1 0 0 0 0 0
E8 1 1 1 1 1 1 1 1 0 0 0 0
E9 1 1 1 1 1 1 1 0 1 0 0 0
E10 1 1 1 1 1 1 1 0 1 1 1 0
E11 1 1 1 1 1 1 1 0 0 0 1 0
E12 1 1 1 1 1 1 1 0 0 0 1 1

Table 12   Comparison of residuals of the different models with the Diebold–Mariano test at horizon 
T + 12

The cell value is 1 if Model 1 (M1) has greater forecasting accuracy than Model 2 (M2), and zero on the 
contrary

M1 / M2 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

E1 1 0 0 0 0 0 0 0 0 0 0 0
E2 0 1 1 0 0 0 0 0 0 0 0 0
E3 0 0 1 0 0 0 0 0 0 0 0 0
E4 0 1 1 1 1 1 1 0 0 0 0 0
E5 0 1 1 0 1 0 1 0 0 0 0 0
E6 0 1 1 0 1 1 1 0 0 0 0 0
E7 0 0 1 0 0 0 1 0 0 0 0 0
E8 1 1 1 1 1 1 1 1 0 0 0 0
E9 1 1 1 1 1 1 1 0 1 0 0 0
E10 1 1 1 1 1 1 1 0 0 1 0 0
E11 1 1 1 1 1 1 1 0 0 0 1 0
E12 1 1 1 1 1 1 1 0 0 0 0 1



1536	 A. García‑Medina, E. Aguayo‑Moreno 

1 3

that the models of the GARCH family are not significantly more accurate than the 
deep learning models. Even among the latter, we have no evidence to lean towards 
one or the other; that is, they are statistically equivalent in accuracy.

One possible application of variance forecasting is in the context of asset alloca-
tion in an investment portfolio. For this purpose, we construct a portfolio of mini-
mum variance using Eq. 21 and the forecasts of the covariance matrix of the DCC-
GARCH models. Figure 8 shows the change in portfolio allocations for each time 
window at the forecast horizon T + 1 . Note that the only restriction considered in 
the allocation of weights is their sum must be equal to one. Therefore, it is expected 
that there are allocations with negative weights in the portfolios associated with the 
DCC-GARCH and DCC-GARCH-Vol models. Our results reveal the transition from 
the long to the short position of BTC, which coincides with the declaration of a pan-
demic by WHO. Also, BTC allocated the highest proportion of capital before March 
2020; after that, there was a more diversified allocation of assets in the portfolio. 
Hence, we observe investors’ typical tendency to diversify in times of high volatility 
and financial turbulence.

The performance of the forecasts is in line with what is found in Kim and Won 
(2018) for the volatility forecast of the KOSPI 200 stock index. However, their 
models are neither compared to vanilla MLP models nor in the context of crypto-
currencies. On the other hand, the recent competition (Makridakis et  al., 2020) is 
favourable to hybrid models, but they do not compare with cryptocurrencies nor 
price volatility. In fact, in its previous version (Makridakis et al., 2018), it had been 
concluded that statistical models outperformed learning models in macroeconomic 
time series. Also, the work (Lahmiri & Bekiros, 2019) predicts the price of Bit-
coin, Digital Cash and Ripple using chaotic neural networks. However, they do not 
compare with traditional and naive methods or analyse volatility. Further, the work 

Table 13   Comparison of residuals of the different models with the Diebold–Mariano test at horizon 
T + 24

The cell value is 1 if Model 1 (M1) has greater forecasting accuracy than Model 2 (M2), and zero on the 
contrary

M1 / M2 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

E1 1 1 1 1 1 1 1 0 0 0 0 0
E2 0 1 1 1 0 0 1 0 0 0 0 0
E3 0 0 1 0 0 0 0 0 0 0 0 0
E4 0 0 1 1 0 0 1 0 0 0 0 0
E5 0 1 1 1 1 0 1 0 0 0 0 0
E6 0 1 1 1 1 1 1 0 0 0 0 0
E7 0 0 1 0 0 0 1 0 0 0 0 0
E8 0 1 1 1 1 1 1 1 0 0 0 0
E9 1 1 1 1 1 1 1 0 1 0 0 0
E10 1 1 1 1 1 1 1 0 0 1 0 0
E11 1 1 1 1 1 1 1 0 0 0 1 0
E12 1 1 1 1 1 1 1 0 0 0 0 1
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(Kristjanpoller & Minutolo, 2018) is more in line with our object of study. They 
analyse hybrid models to forecast the volatility of bitcoin and find favourable results 
for Artificial Neural Network-Generalised AutoRegressive Conditional Heteroske-
dasticity (ANN-GARCH). Although the approach of the hybrid models is slightly 
different, and in our case, we analyse a portfolio instead, the results coincide in 
favouring the deep learning models but not the vanilla MLP models as in our case. 
Moreover, in D’Amato et al. (2022), the authors propose the Jordan Neural Network 
model to forecast the volatility of Bitcoin, Ripple and Ethereum. Their work found 

Fig. 8   Allocation weights per instrument on the minimum variance portfolio at horizon T + 1 through the 
analysed windows. a DCC-eGARH predictions. b DCC-eGARCH-Vol predictions. The budget restriction ∑n

i=1
wi = 1 , is considered in all cases
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positive results concerning simpler models, although they do not consider the vanilla 
MLP version. To summarise, it can be inferred that the performance of the models is 
closely linked to the object of study. Cryptocurrencies are much more volatile than 
traditional markets, which may be why hybrid models do not work as expected.

9 � Conclusions

We explored different models for volatility forecasting in the cryptocurrency market. 
The study period covered the financial turbulence of March 2020, when the World 
Health Organization (WHO) declared that the sanitary situation derived from the 
COVID-19 virus was a pandemic. In this sense, the cryptocurrency market, like tra-
ditional markets, experienced high volatility, representing an atypical period of sys-
temic risk and, therefore, an increase in the complexity of the dependencies to be 
modelled.

Surprisingly, the median of the heteroscedastic metrics HAE and HSE reveal bet-
ter performance for vanilla MLP models, yet comparable to the simple and hybrid 
deep learning models of LSTM and LSTM–GARCH. Particularly at T+1, a clear 
distinction in performance can be seen between the models of the GARCH family 
and the deep learning models. In general, the latter outperforms the former under 
these metrics.

Further, the performance of forecasts is evaluated in the context of univariate and 
multivariate uniform variance portfolios through the SR and VaR. Here we consider 
as a free-rate asset the stablecoin Tether and set a level of loss of � = 0.5 . Interest-
ingly, we have found that the median of SR is negative for horizons T+1 and T+6 
and positive for horizons T+12 and T+24. Also, we find that the naive models give 
better results for T+1 and T+6, while the DCC-eGARCH-Vol model maximises the 
SR for T+12 and T+24. Hence, the results imply that an investment strategy with 
a longer time horizon generates a higher Sharpe ratio. On the contrary, investors 
should allocate the capital to the risk-free asset Tether in the short horizon.

In the case of VaR, the lowest losses were found when we forecasted with the 
eGARCH-Vol models at the selected horizons. Therefore, including transaction vol-
ume information helps reduce losses in the portfolio. Nevertheless, we must be cau-
tious with these two metrics since we are using data within the sample, and compar-
isons between models are only helpful to evaluate which reproduces the best-desired 
characteristics.

We have analysed the error residuals according to the DM statistics for the 
selected horizons. In general, GARCH family models are not found to be signifi-
cantly more accurate than deep learning models. Even among the latter, we have no 
evidence to lean towards one or the other; that is, they are statistically equivalent in 
accuracy. In sum, the DM test favours the predictions obtained by the LSTM models 
for most of the prediction horizons.

One of the applications of this work is in the context of the allocation of assets 
in a portfolio of minimum variance or minimum investment risk. We illustrate the 
T+1 case, where we find a large proportion of capital assigned to BTC before the 
pandemic declaration. While from March, the portfolio becomes more diversified 
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in the predictions of both DCC-eGARH and DCC-eGARCH-Vol. In short, there is 
a clear phase transition from a period highly dominated by BTC to a period where 
investors prefer diversifying their portfolios. The radical change from long to short 
positions in BTC is observed. So this type of forecast could serve as a thermometer 
in the face of financial turmoil in general. The allocation change of BTC is an unex-
pected finding and has exciting risk management implications that should be studied 
more carefully.

The evidence of our work leans towards a vanilla learning model as the preferred 
to model the volatility of high-frequency cryptocurrencies. The MLP outperforms 
the more stylised statistical models of the GARCH type. Even more surprising, 
LSTM and hybrid models do not show significant improvement over the vanilla neu-
ral network model. Further, including transaction volume showed improvements by 
reducing VaR. The unexpected result suggests that the increased parameters esti-
mated by the more elaborated deep learning models destabilise the solutions and 
increase the prediction error. Then, using simple learning models in the volatility 
forecast of highly non-linear time series is suggested. On the one hand, MLP outper-
forms the most stylised models as the family GARCH. At the same time, MLP is not 
computationally as expensive as the LSTM models while keeping the same level of 
accuracy.

Future work can be extended in different aspects. Within finance, it would be 
interesting to analyse portfolio optimisation techniques by including additional con-
straints in a multistage manner and exploring risk metrics that consider more general 
distributions of returns. In the line of time series, the models of the GARCH family 
can be explored exhaustively using other specifications. In terms of machine learn-
ing, there is a wide field of work. Regarding the model selection, it would be desir-
able to perform tests with different architectures and hyperparameters, considering 
a more significant amount of information, both for the size of the input sequence 
and the dataset in general. It would be interesting to integrate data preprocessing, 
feature selection, and classification strategies as proposed in Pustokhina et al. (2021) 
to improve the methodology of our study. Even more, implementing hybrid models, 
including dynamic parameters of the GARCH models, is of great relevance to tack-
ling real applications. Finally, we are interested in exploring more flexible models of 
deep learning to model the covariance matrix in the multivariate context.
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