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Abstract
Contagion arising from clustering of multiple time series like those in the stock mar-
ket indicators can further complicate the nature of volatility, rendering a parametric 
test (relying on asymptotic distribution) to suffer from issues on size and power. We 
propose a test on volatility based on the bootstrap method for multiple time series, 
intended to account for possible presence of contagion effect. While the test is fairly 
robust to distributional assumptions, it depends on the nature of volatility. The test 
is correctly sized even in cases where the time series are almost nonstationary (i.e., 
autocorrelation coefficient ≈ 1 ). The test is also powerful specially when the time 
series are stationary in mean and that volatility are contained only in fewer clusters. 
We illustrate the method in global stock prices data.

Keywords Multiple time series · Volatility · Clustering · Nonparametric test · Sieve 
bootstrap

1 Introduction

With increasing storage space availability, real-time stock prices can now be 
recorded, including short-run spikes triggered by random shocks, e.g., news on a 
revamp of the management of a company, policy adjustment. This may not be an 
issue if stock prices are recorded on lower frequencies (e.g., weekly or monthly) 
since there will be a natural smoothing of irregular movements resulting from aggre-
gation or averaging from higher to lower frequencies. As a result, low frequency 
measurements can lead to losses in valuable information about prices hence, these 
are typically recorded at the real-time level or at least at some intra-day levels. This 
could trigger high frequency time series data to manifest such shocks as conditional 
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heteroskedasticity (volatility). Furthermore, individual securities may behave inde-
pendently, but contagion within a sector, a market, a region, or even globally can 
force a group or all securities to exhibit similar price movement patterns.

Public information shared among the players in the financial market along with 
the impact of regulatory agencies may drive behavior of securities in the market. 
Different stakeholder may utilize the public information differently from others, 
resulting to a stylized behavior of stock prices. It is then imperative for both the 
regulatory agencies and stock market players to assess the spillover effects of certain 
news in a company or on the sector as whole as certain policy options or investment 
strategies can be developed depending on how the market reacts to this information. 
Given high frequency time series data, this phenomenon is viewed as volatility in 
clustered multiple time series data, i.e., while each time series (e.g., prices of dif-
ferent securities) behave independently, the events associated with public informa-
tion available drives the time series into different paths, but a common pattern of 
the movement is taken as the common volatility pattern among multiple time series 
data.

Modeling procedures are available for multiple and multivariate time series data, 
but these are anchored on distributional assumptions about the random shocks and 
are greatly affected by irregularities or stylized facts about the data like volatility. 
Volatility causes perturbation in the dynamic behavior of the process, resulting to 
more complex data generating process causing difficulty in estimation and produces 
chaotic forecasts. Volatility has the potential to divert forecasts away from the direc-
tion of the time series even after the effect of localized perturbation vanished.

The paper is organized as follows: Sect. 2 summarizes previous literature on mul-
tiple time series and volatility; Sect. 3 presents the estimation algorithm and the pro-
posed test for volatility in clustered time series; Sect. 4 discusses results of simula-
tion studies to illustrate the size and power of the proposed test; Sect. 5 presents the 
application of the test to actual data; Sect. 6 summarizes the conclusions.

2  Multiple Time Series, Volatility and Contagion

Arellano and Bond (1991) considered multiple time series data as panel data whose 
common autoregressive parameter and random effect of individual time series were 
estimated using generalized method of moments (GMM). Although the method 
usually fails to converge when the length of time series is larger than the number 
of time series in the panel, Veron Cruz and Barrios (2014) proposed an estimation 
procedure that incorporates maximum likelihood estimation (MLE) and best linear 
unbiased predictors (BLUP) into the backfitting algorithm. Veron Cruz and Bar-
rios (2014) noted that the advantages of the method are affected by the variance of 
the error term (possibly by heteroskedasticity), and to address this problem, Ramos 
et  al (2016) proposed an estimation procedure that is robust to conditional heter-
oskedasticity of the multiple time series. Even in the presence of volatility, Ramos 
et  al (2016) observed improvement in parameter estimates as well as the predic-
tive ability of the fitted model. This is however still affected by localized non-sta-
tionarity induced by the block bootstrap method even if there is really no global 
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heteroskedasticity in the time series. Veron Cruz and Barrios (2014) and Ramos 
et al (2016) are the basis for the postulated multiple time series presented in Sect. 3.

Volatility in time series has been typically assessed by incorporating models for 
conditional heteroscedasticity into the model structure, e.g., autoregressive condi-
tional heteroskedastic (ARCH) model Engle (1982), generalized autoregressive 
conditional heteroskedastic (GARCH), Bollerslev (1986). Other volatility models 
which address issues regarding ARCH- and GARCH-like violation of the non-neg-
ative constraints for the variances are also proposed, e.g., exponential generalized 
autoregressive conditional heteroskedastic model (EGARCH), Nelson (1991). But 
these more general models also encounter issues such as in estimation (due to com-
plex likelihood functions) and in forecasting (since volatility drive forecast errors to 
explode). While volatility can be generalized to any of these models, ARCH (1) was 
used in Sect. 3. The algorithm presented in Sect. 3 can be modified minimally to 
consider a more general volatility model.

The literature on multiple time series and volatility (separately) has been exten-
sive, but a test for the presence of volatility in multiple time series is still open. This 
viewpoint of volatility in a clustered setting can help explain the dynamics of con-
tagion in phenomena governed by certain policies or regulations like the financial 
markets.

Contagion is a phenomenon that is closely intertwined into multiple time series 
and volatility. Contagion in multiple time series results from availability of high 
frequency data (e.g., intra-day) since latent volatility characteristics can actually be 
inferred from realized volatility (see for example McAleen and Medeiros, 2008). 
Financial contagion representing the spillover effect of shocks that fuels systemic 
risk in an economy. Vodenska and Becker (2019) emphasized the need to understand 
the network structure of global financial markets, this will provide the stakeholders 
some insights on the repercussions of shock into the economy and subsequent miti-
gation strategies for the risks can be identified. Extreme events (tail risk) contagion 
in the financial markets as a result of the COVID-19 pandemic was studied by Guo 
et al. (2021) using some indices, these are then used in characterizing the contagion 
channels in the financial markets.

3  Test for Volatility in Multiple Time Series

Knowledge on whether volatility is present or not in the time series offers an oppor-
tunity to better understand the dynamic behavior of the data, thus facilitating mod-
eling and forecasting. Campano and Barrios (2011) proposed a robust estimation 
procedure for time series data that exhibit structural change. Furthermore, Campano 
(2012) proposed a test for volatility in a time series data. Predictive ability of esti-
mated models during tranquil period can be enhanced resulting from robust estima-
tion of the model, noted Campano and Barrios (2011). The aim of this paper is to 
develop a nonparametric test of volatility in a possibly clustered multiple time series 
data. Clustering in multiple time series occurs from the simultaneous jumps (co-
jumps) in prices associated with major news affecting a particular sector, see for 
example Caporin et al. (2017).
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Given N time series each with T  observations, Veron Cruz and Barrios (2014) 
considered the following model:

for i = 1, 2,… ,N and t = 1, 2,… , T  . In a telecommunication setting, Yi,t can be 
the data usage of the ith customer for time t, and �i can be the person-specific vari-
ability in the data usage while ui,t can represent the random shock that exhibit sim-
ilar distributional properties among all subscribers over time. Suppose that the N 
time series is grouped into the m clusters, each with nj elements, N = n1 +⋯ + nm . 
Model (1) is modified to account for clustered conditional heteroscedasticity in the 
error term ui,t as follows:

where �2

kt
 accounts for conditional heteroscedasticity present in cluster k , 

k = 1,… ,m and vt is a white noise process. This implies that the time series within 
each cluster exhibit similar volatility behavior, and volatility models may possibly 
vary across different clusters.

Now, assume that the volatility model for each cluster is ARCH(1), and that the 
time series within the cluster 

(

nk
)

 share the same set of parameters. Also, suppose 
the common dependence structure of the series is captured by the same parame-
ter � in the dynamic model while the series-specific variation is expressed through 
the random effects ( �i ) for each time series. Clearly, there is a need to estimate the 
parameters shared globally across all the time series, the parameters of the volatility 
model shared within the cluster, and series-specific random effects.

3.1  Estimation Phase

Here, model (2) is estimated in an iterative algorithm based on the backfitting frame-
work. The backfitting algorithm estimates each component sequentially through the 
partial residuals obtained whenever a component has been estimated. Even though 
initially ignoring some components introduces bias in the estimates, such bias 
decreases in the iteration of implementing the algorithm. For model (2), we assume 
three components to be estimated separately, namely, the common autoregressive 
parameter � , the random effects �i and the ARCH(1) parameters per cluster. The ini-
tial estimates for �i are obtained by ignoring the autoregressive and error terms from 
the model. On the other hand, the parameter � is initialized by fitting the residuals 
after removing the first estimated component ( ̂�i ). Meanwhile, the volatility param-
eters are initialized with the residuals obtained after removing the first and second 
estimated components ( ̂�i and �̂  ). Specifically, for the bth iteration:

1. Given previous estimates �̂(b−1) and computed residuals r∗∗(b−1)
i,t

= Yi,t − �̂(b−1)Yi,t−1 , 
estimate the series-specific random effects from the residuals r∗∗(b−1)

i,t
 using the 

BLUP method, i.e., �̂(b)
i

= �̂i since E
(

�i
)

= �i.
2. Compute new residuals:r∗(b)

i,t
= Yi,t − �̂

(b)

i
.

(1)Yi,t = �Yi,t−1 + �i + ui,t, �i ∼
(

�i, �
2

�

)

ui,t ∼
(

0, �2

u

)

(2)Yi,t = �Yi,t−1 + �i + ui,t, �i ∼
(

�i, �
2

�

)

, ui,t = vt�kt, vt ∼ N(0, 1)
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  Rescaling of residuals r∗(b)
it

 by the estimated volatility component �̂2

it
 is not 

necessary since the backfitting algorithm is fairly optimal with additivity of the 
model, see for example Opsomer (2000).

3. Estimate � by �̂(b) from the following bootstrap method sub-steps:

a. For each of the N time series of residuals r∗(b)
it

 , estimate � as the autoregres-
sive parameter and intercept of the residuals using conditional least squares 
to obtain �̂i.

b. Resample from �̂i, i = 1,… ,N , to obtain �̂(b)
= �̂BS(b)  (simple random sam-

ple with replacement of size N , for R replicates). This is an ordinary bootstrap 
since each time series i provided one estimate for the autoregressive param-
eter 

(

�̂i

)

.

4. Compute two forms of new residuals:

  The first form of residuals r∗∗(b)
it

 will be used to estimate the series-specific 
effects �i in the next iteration while the second form of residuals r∗∗∗(b)

it
 will be 

used to estimate the volatility model. Note that the bootstrap intercept is also 
subtracted from the original observations Yi,t in the second form of residuals 
r
∗∗∗(b)

i,t
 . Presence of volatility in the model affects the level of the residuals, and 

by subtracting the bootstrap intercept, stabilization in the levels of the random 
component is achieved.

5. For each time point (t) , the second form of residuals r∗∗∗(b)
i,t

 mimics the behavior 
of the random shocks ui,t . Thus, we use the square of these residuals, 
�̂2

i,t
= û2

i,t
=

(

r
∗∗∗(b)

i,t

)2

 , as an unbiased estimator of the heteroscedastic variance 
�2

i,t
 and the squared shocks u2

i,t
 . Estimate the variance model, e.g., 

(

�2

i,t

)

= �k,0 + �k,1u
2

i,t−1
 (for ARCH (1)) using 

(

û2
i,t
, û2

i,t−1

)

 through ordinary least 
squares (OLS) estimation to obtain �̂(b)

0i
 and �̂(b)

1i
 for each series.

6. For cluster k , estimate the volatility parameters �k,0 by �̂(b)

k,0
 (the mean of �̂(b)

0i
 , 

i = 1,… , nk ) and �k,1 by �̂(b)

k,1
 (the mean of �̂(b)

1i
 i = 1,… , nk ). Here, �̂(0)

0i
 and �̂(b)

1i
 are 

the individual ARCH (1) parameter estimates of ith time series. This implies that 
different ARCH(1) parameters are estimated for each cluster.

Then, we iterate from Step 1 until convergence, e.g., when parameter changes 
in-between iteration by less than the tolerance level �.

3.2  Testing for Volatility

Given parameter estimates from the Estimation Phase,

1. Reconstruct variance components for each resample through

Yi,t − �̂�(b)Yi,t−1 and r
∗∗∗(b)

it
= Yi,t − �̂�

(b)

i
− �̂�(b)Yi,t−1
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2. Generate u∗
i,t

 from N
(

0, �̂2

i,t

)

.
3. Compute replicates of Yit as Y∗

i,t
= �̂Y∗

i,t−1
+ �̂i + u∗

i,t

4. Estimate parameters from each replicate of the data using the Estimation Phase 
presented above.

The proposed algorithm is based on the sieve bootstrap, see for example, Buhl-
mann (1997). The algorithm derives the empirical distribution of the parameters in 
the model through a sieve bootstrap method, the distribution is then used in making 
decisions pertaining to the hypothesis being tested.

Multiple clusters are tested simultaneously. To control the familywise error rate 
(FWER), size � of the test is adjusted to �∕m (Bonferroni correction) where m is the 
number of clusters, see for example, Wright (1992). Given the bootstrap replicates, 
(

�

2m

)th

 and 
(

1 −
�

2m

)th

 percentiles of �̂k,1 s is computed and are used to test the sig-
nificance of the parameter estimate for each cluster. Non-inclusion of zero in the 
interval provides enough empirical evidence against the null hypothesis (i.e., no sig-
nificant volatility) while inclusion of zero indicates no evidence against the null 
hypothesis. For the variance model, �k,1 = 0 indicates no volatility (assuming ARCH 
(1) model). Hence, the test is equivalent to the null which is absence of volatility of 
specific model, e.g., ARCH (1) again the alternative that volatility of specific model 
exists.

The method discussed above assumes that clusters are identified. Existence of 
clusters (number of clusters and membership of time series to a cluster) can be pos-
tulated by the analyst, e.g., stocks that are more likely involved in a possible conta-
gion. Alternatively, number and cluster membership can be determined statistically 
through time series clustering, see for example, Aghabozorgi et al (2015).

4  Simulation Study

We designed a simulation study to investigate the computational optimality of the 
test. Some conditions about the data generating process are controlled, and this 
includes: number of time series (N = 50), length of each time series (T = 50); autore-
gressive parameter ( �=0.6, 0.95 to represent stationary and near nonstationary time 
series, respectively); mean of random effect ( �i = 0 ); constant standard deviation of 
random effect across all time series; number of clusters (1 or 5, absence or presence 
of clustering, respectively); ARCH parameters [ 

(

�k0 = 1, �k1 = 1
)

-presence of vola-
tility, 

(

�k0 = 1, �k1 = 0
)

-absence of volatility]; and when there are 5 clusters, 1 or 3 
of the clusters are set to exhibit an ARCH(1) type of volatility. In all cases, level of 
significance is set at (� = 0.05).

The data was simulated with Eq. (2) as the data generating process. Random vari-
ables are first generated from the corresponding distribution. The white noise pro-
cess vt was generated from the standard normal distribution. After initialization of 

(

�̂�2

i,t

)

= �̂�k,0 + �̂�k,1û
2

i,t−1
.
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the time series, repetitive substitution of previous values, assumed parameters, cur-
rent and past values of random components to Eq. (2) is done until 2 T time points 
are generated. The first half of the simulated time series are dropped as this might 
have been influenced by initial values.

The nonparametric test is compared to a parametric test based on ARCH (1) 
model where each time series is treated in a univariate context. The parametric test 
for volatility is based on the likelihood ratio test, see for example, Engle (1982). The 
goal of the comparison is to assess whether knowledge of clustering can contribute 
in detecting group volatility. Power and size comparisons between parametric and 
nonparametric tests for various scenarios are summarized in Table 1.

4.1  Single Cluster, No Volatility

If all time series forms a single cluster, the nonparametric test is correctly-sized 
regardless on whether the time series are stationary (in mean) or nearly non-sta-
tionary. The parametric test is also correctly-sized when the time series is station-
ary in mean. However, size of the parametric test is distorted when the time series 
approaches nonstationarity in mean. This is not the case in the nonparametric test 
since all replicates under near nonstationarity failed to reject the null hypothesis of 
no volatility.

4.2  Single Cluster, Volatility (ARCH) is Present

ARCH-type volatility model is induced to the simulated time series in cases where 
there is only a single cluster. The nonparametric test that considers all time series to 
provide evidence against the null hypothesis of no volatility yield very high power 
compared to the parametric counterpart that considers each time series individually, 
regardless of the state of stationarity in mean. In cases where the time series are 
stationary in mean, the nonparametric test was able to provide evidence against the 

Table 1  Simulation results for scenarios without misclassified time series in a cluster

Scenario Autoregressive 
parameter ( �)

Power of the test Size of the test

Nonparametric Parametric Nonparametric Parametric

Single Cluster 0.6 1.0000 0.3762 0.0117 0.0224
Single Cluster 0.95 0.9081 0.2193 0.0000 0.0681
5 Clusters, Only 1 Cluster 

with Volatility
0.6 0.6250 0.4110 0.0078 0.0236

5 Clusters, Only 1 Cluster 
with Volatility

0.95 0.2711 0.2410 0.0042 0.0648

5 Clusters, With 3 Clusters 
with Volatility

0.6 0.5854 0.3852 0.0061 0.0213

5 Clusters, With 3 Clusters 
with Volatility

0.95 0.1383 0.2288 0.0000 0.0600
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null hypothesis for all replicates of the simulated data, while very low power was 
observed in the parametric test. As the time series approaches nonstationarity, both 
the nonparametric and parametric tests suffer a decline in power, but the decline in 
power of the parametric test is much larger than the decline in power of the nonpara-
metric test (still exhibiting a reasonable power).

4.3  5 Clusters, Volatility (ARCH) is Present in 1 Cluster

Assuming 5 clusters, without inducing volatility in the simulated time series, both 
parametric and nonparametric test are correctly-sized. However, when the time 
series approaches nonstationarity, the parametric test already suffers from size dis-
tortion since the procedure relies heavily on the stationarity in mean assumption. 
This is not the case for the nonparametric test that is still correctly-sized even if 
the time series approaches near-nonstationarity. When volatility is induced in sim-
ulated time series in one cluster (time series in four other clusters do not contain 
volatility), the nonparametric test exhibit over 20% advantage in power compared to 
the parametric test in time series that are stationary in mean. When the time series 
approaches nonstationarity, both the parametric and nonparametric tests have lower 
power, the nonparametric test though still have relative advantage over the paramet-
ric test.

4.4  5 Clusters, Volatility (ARCH) is Present in 3 of the Clusters

Both the parametric and nonparametric tests are consistently correctly-sized when 
all the time series in 5 clusters exhibit stationarity in mean. The parametric test 
however, exhibit distortion in size when the time series in all clusters approaches 
nonstationarity in mean, this is not the case for the nonparametric test which is 
still correctly sized even when the time series approaches nonstationarity. As vola-
tility is induced in three of the five clusters, the nonparametric test still has over 
20% advantage in terms of power over the parametric test. Power of both paramet-
ric and nonparametric tests suffer as the time series across all clusters approaches 
nonstationarity.

4.5  Misclassified Time Series

To verify robustness of the test to possible misclassification of time series into a 
cluster, a cluster of 50 time series with volatility is deliberately contaminated with 
some time series that does not exhibit volatility. Furthermore, similar cluster of 
50 time series without volatility contaminated with some time series that actually 
exhibit volatility.

With 50 time series simulated to exhibit volatility, one time series (2%) or five 
(10%) time series that does not exhibit volatility were included. Provided that the 
time series are stationary (autoregressive parameter of 0.60), the test is able to 
identify volatility for all replicates. Relatively lower power (80%) is obtained when 
autoregressive parameter is 0.95.
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The test is still able to detect even with only one (2%) or five (10%) time series 
with volatility are induced in a cluster of 50 time series. The chance of detect-
ing volatility increases with more time series that actually exhibit volatilities in a 
cluster. Thus, regardless of the actual number of time series that exhibits volatil-
ity, the test is capable of detection of such. See Table 2 for details.

5  Application in Stock Market Price Indices

Contagion is a common event in stock markets usually resulting from interde-
pendence among securities and among stock brokers. Volatility is another styl-
ized fact among indicators that characterizes behavior of the market, often moni-
tored at very high frequencies by various stakeholders. Lyocsa and Horvath 
(2018) noted that there is evidence of contagion from the US stock market to 
Japan, United Kingdom, France, Germany, Hong Kong, and Canada. They further 
noted that contagion is not just a crisis-specific event, but is present in the market 
all the time. Dewandaru et al. (2018) further observed that during the major crisis 
in European equity markets, contagion effects generated short-term shocks, also 
noted that there is evidence that the most recent US subprime crisis is brought 
about by contagion effect. These short-term shocks can easily drive volatility of 
key market indicators like prices.

We used prices of stocks traded in the European and US markets to investi-
gate presence of volatility associated with contagion effect. Regional contagion 
can cause volatility among stock market prices in the region. In understanding 
the dynamic behavior of stock prices, time series data of prices of 30 stocks 
are postulated to cluster into European (19 stocks) and US (11 stocks) regions. 
Daily prices during 2011–2016 period are used in the analysis. The European and 
US markets and the period 2011–2016 were selected because of the contagion 
reported in the literature in these regions within the period. All stocks prices with 
available data from Yahoo Finance (https:// finan ce. yahoo. com/ quote/ DATA.L/ 
histo ry?p= DATA.L) are include for the illustration discussed in this section.

Table 2  Simulation results for scenarios with misclassified time series in a cluster

Scenario Autoregressive parameter ( �) P
(

RejectingH
0

)

No Volatility (2% with Volatility) 0.60 0.1162
No Volatility (10% with Volatility) 0.60 0.4731
No Volatility (2% with Volatility) 0.95 0.2062
No Volatility (10% with Volatility) 0.95 0.2513
With Volatility (2% No Volatility) 0.60 1.0000
With Volatility (10% No Volatility) 0.60 1.0000
With Volatility (2% No Volatility) 0.95 0.8077
With Volatility (10% No Volatility) 0.95 0.7913

https://finance.yahoo.com/quote/DATA.L/history?p=DATA.L
https://finance.yahoo.com/quote/DATA.L/history?p=DATA.L
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5.1  Original Time Series Data

Six of nineteen European stocks are plotted in Fig. 1, while six of the eleven stocks 
in the US market are plotted in Fig. 2. While there are some periods where volatil-
ity seems to exists, this can potentially be masked by overall nonstationarity. From 
Table  3, The original time series data both from the European and US markets 
exhibit nonstationarity, most of the estimated autoregressive parameters are 0.99 or 
0.98, smallest value was in a stock in the US market where autoregressive parameter 
is 0. 937.With the original time series data, nonstationarity in mean is dominating, 
so that the parametric test for volatility failed to reject the null hypothesis of no vola-
tility for all time series, see Table 3 for details.

Using the estimation procedure for clustered time series data described in Sect. 3, 
parameters of the mean and variance models are estimated per cluster and presented 

Fig. 1  Time plot of some European stock prices

Fig. 2  Time plot of some US stock prices
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in Table  4. In the multiple time series framework, we assumed similar model for 
the mean of the time series. The common autoregressive parameter is estimated at 
0.9863, which is within the values of estimated autoregressive parameters (univari-
ate) for the individual time series in Table 3.

The Bonferroni corrected CI for the European market do not include 0, indicat-
ing that as a cluster, the European market exhibits volatility. Note that consistent 
with results of simulation studies, the parametric test failed to provide empirical evi-
dence on the existence of volatility, while the nonparametric test was able to recog-
nize empirical evidence of joint volatility (possibly caused by contagion) among the  

Table 3  Univariate analysis of 
30 time series data

Stocks Cluster AR (1) Estimate p value of parametric 
test assuming ARCH 
(1)

gdaxi Europe 0.991521 0.452747
ftseanthl Europe nonstationary –
ftseantoi Europe 0.987608 0.211045
ftsebal Europe 0.992843 0.755044
ftsebatsl Europe 0.993605 0.895994
ftsegknl Europe 0.985435 0.148366
ftsecnal Europe 0.986601 0.715972
ftsepfgl Europe 0.996475 0.247612
ftsepnsl Europe 0.995587 0.965042
ftseprul Europe 0.993537 0.639695
ftserbl Europe 0.996969 0.729532
ftserrl Europe 0.987278 0.97215
ftsesdrl Europe 0.990858 0.052396
ftseshpl Europe 0.992136 0.189234
ftseskyl Europe 0.973691 0.838058
ftsessel Europe 0.951328 0.303283
ftsestjl Europe 0.996451 0.767607
ftsetscol Europe 0.994495 0.549249
ftsevodl Europe 0.989421 0.937241
gspc US 0.997792 0.66884
ixic US 0.997112 1.19E-07
nasdaq US 0.998013 0.284526
nya US 0.990934 0.149703
rut US 0.993939 0.508075
snp US 0.997792 0.66884
ta US 0.969655 0.829248
tsx US 0.956174 0.17366
xax US 0.937966 0.912286
bvsp US 0.972485 0.082685
dji US 0.996645 0.421252
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stocks in the European market. The Bonferroni corrected CI for the US market 
includes 0, hence, even the nonparametric test failed to recognize empirical evidence 
of the existence of group volatility among the stocks in the US market. Power of the 
nonparametric test diminish when the time series are nearly nonstationary.

5.2  First Differenced Time Series

The parametric test for volatility suffers from size distortion when the time series 
approaches nonstationarity, which is not the case in the nonparametric test. Also, 
power is reduced even in the nonparametric test as the time series approaches non-
stationarity, but with greater reduction in power for the parametric test. First differ-
ences of the time series are obtained to mitigate presence of nonstationarity. Time 
plots of six stocks in the European market are given in Fig. 3 and the time plots of 
six stocks in the US market are given in Fig. 4. Both clusters now exhibit stationary 
behavior and volatility has become more visually evident.

Univariate analysis was done with the individual (first-differenced) time series, 
estimates and results of parametric tests for volatility are summarized in Table 5. 
All first differenced time series are now stationary. In fact, many of the time series 
are actually random walk since no dependence structure is evident from the first dif-
ferenced time series. Only four stocks in the European market and two stocks in the 

Table 4  Estimate of the 
common autoregressive 
parameter and the ARCH (1) 
parameters per region

* Bonferroni corrected 95% Confidence Interval

Autoregressive
Parameter ( ̂�)

Volatility Slope
Coefficient ( ̂α k,1)

European US

0.9863 2.980
(0.4245,3.4143)*

− 0.021
(− 0.1476, 0.1731)*

Fig. 3  Time plot of some first differenced European stock Prices
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US market still exhibit dependencies after first differencing. The parametric test for 
volatility identifies only one time series in the European and one in the US market to 
exhibit volatility.

We also used the estimation procedure for clustered data described in Sect.  3 
for the first differenced time series. Parameters of the mean and variance models 
are estimated per cluster and presented in Table  6. From the multiple time series 
assumption, the common autoregressive parameter is estimated to be − 0.0809, 
within the range of values of the autoregressive coefficients from the univariate anal-
ysis in Table 5.

From Table 6, the Bonferroni corrected CI for the European market do not include 
0, indicating that as a cluster, the European market exhibits volatility. Similar is true 
for the US market, the Bonferroni corrected CI also precludes zero, indicating pres-
ence of volatility among the clustered time series. Recall that the simulation study 
indicates higher power for the nonparametric test when the individual time series 
are stationary. While the parametric test for volatility in Table 5 identifies only one 
time series to exhibit volatility, the nonparametric test in Table 6 provides empirical 
evidence that clustered volatility is present in both the European and US markets.

6  Conclusions

Given clustered time series data, a nonparametric test for volatility is proposed, this 
accounts for the possible contagion effect among time series in the same cluster. 
The simulation study illustrate that the test is correctly-sized even when the multi-
ple time series approaches nonstationarity. The test is powerful if volatility is con-
tained in fewer clusters only, a resemblance of localized contagion effect. As con-
tagion causing volatility become global in nature, i.e., as more clusters are affected 
by volatility, even the nonparametric test exhibits low power. Note however that 
widespread volatility, i.e., practically all time series manifest volatility behavior, 
is also the case where volatility often becomes more obvious even visually. The  

Fig. 4  Time plot of some first differenced US stock prices
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Table 5  Univariate analysis 
of 30 time series data (First 
Differenced)

Stocks Cluster AR (1) Coefficient p value of parametric 
test assuming ARCH 
(1)Estimate p value

gdaxi Europe − 0.07667 0.171013 0.484642
ftseanthl Europe − 0.15284 0.006077 0.962022
ftseantoi Europe − 0.10686 0.059935 0.363237
ftsebal Europe − 0.10563 0.059022 0.625738
ftsebatsl Europe − 0.01579 0.779105 0.965093
ftsegknl Europe − 0.17087 0.002034 0.459401
ftsecnal Europe − 0.07678 0.170875 0.726868
ftsepfgl Europe − 0.04521 0.421263 0.255153
ftsepnsl Europe − 0.11653 0.037212 0.821268
ftseprul Europe − 0.0874 0.120066 0.632106
ftserbl Europe − 0.08967 0.109265 0.598744
ftserrl Europe − 0.03911 0.486438 0.980128
ftsesdrl Europe − 0.02777 0.621233 0.052873
ftseshpl Europe − 0.03354 0.552309 0.24739
ftseskyl Europe − 0.08359 0.135394 0.747185
ftsessel Europe − 0.1061 0.058469 0.275747
ftsestjl Europe − 0.1211 0.030172 0.877905
ftsetscol Europe − 0.05697 0.31021 0.769745
ftsevodl Europe − 0.00777 0.890174 0.936011
gspc US − 0.0936 0.094255 0.604614
ixic US − 0.17454 0.0016 0.008302
nasdaq US − 0.14845 0.007587 0.975516
nya US − 0.10032 0.072651 0.401013
rut US − 0.04546 0.418536 0.479858
snp US − 0.0936 0.094255 0.604614
ta US 0.032897 0.55791 0.899131
tsx US − 0.08347 0.136433 0.377397
xax US − 0.08884 0.113139 0.608238
bvsp US − 0.01567 0.780449 0.110908
dji US − 0.09195 0.100237 0.360457

Table 6  Estimate of the 
common autoregressive 
parameter and the ARCH (1) 
Parameters per region (First 
Differenced)

* Bonferroni corrected 95% Confidence Interval

Autoregressive
Parameter ( ̂�)

Volatility Slope
Coefficient ( ̂α k,1)

European US

-0.0809 33.85
(1.2952, 27.4435)*

1.02
(0.8197, 1.5156)*
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nonparametric test offers a method of testing volatility in multiple time series that 
exhibit clustering, and that volatility spillover is contained only in few clusters. In 
the presence of contagion, whether local or global, the nonparametric test can bene-
fit from the simultaneous evidence that all time series can provide against absence of 
volatility. A clear understanding of presence of volatility will facilitate identification 
and estimation of models that can generate reliable forecast of indicators involved, 
hence, better risk management in sectors that manifest such volatile behavior like 
the financial markets.

A more general abstraction of volatility in clustered multiple time exhibiting a 
generalized behavior can further enhance tools that could better understand features 
of some complicated phenomenon.
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