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Abstract
This paper seeks to identify the causal impact of educational human capital on social
distancing behavior at workplace in Turkey using district-level data for the period
of April 2020 - February 2021. We adopt a unified causal framework, predicated
on domain knowledge, theory-justified constraints anda data-driven causal structure
discovery using causal graphs. We answer our causal query by employing machine
learning prediction algorithms; instrumental variables in the presence of latent con-
founding and Heckman’s model in the presence of selection bias. Results show that
educated regions are able to distance-work and educational human capital is a key
factor in reducing workplace mobility, possibly through its impact on employment.
This pattern leads to higher workplacemobility for less educated regions and translates
into higher Covid-19 infection rates. The future of the pandemic lies in less educated
segments of developing countries and calls for public health action to decrease its
unequal and pervasive impact.

Keywords Workplace mobility · Causal structure discovery · Do-calculus · Machine
learning · Instrumental variables · Sample selection

JEL classification: J62 · J68 · C14 · C36

1 Introduction

With the outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 or SARS-
CoV-2 in December 2019, leading to Covid-19, the cumulative number of cases
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reached 596 million and the cumulative death toll has risen to 6.45 million world-
wide as of August 2022. Countries adopted different nationwide and local measures
to mitigate the impact of Covid-19. On April 11, 2020, new daily cases peaked at
5,138 and Turkey implemented a series of partial lockdown episodes that lasted until
the end of May 2020. By the re-opening of business activity in June, daily mobility
soared and accelerated the transmission of the virus. The government reported a record
high daily cases of 30,000, placing Turkey among the top three countries worldwide
as of December the 2nd. This second wave is followed by a semi-restrictive lockdown
period until the beginning ofMarch 2021 after which government started to implement
place-based re-opening and imposed restrictions based on provincial risk levels. This
short-lived re-opening period resulted in a record jump of new daily cases (approx-
imately 60,000), placing Turkey the highest daily case reporting country in Europe
and the second highest in the World. As the country is riding out the fourth wave,
the cumulative number of cases reached 16.7 million and the death toll has risen to
100,000 in Turkey, as of August 2022.

Following the onset of the Covid-19 pandemic, scholarly literature examined the
impact of mobility on the spread of the pandemic. Human mobility manifests as a key
cause of the rapid spillover of the pandemic across European countries (Iacus et al.
2020) and policy measures to control and reduce mobility is an important part of the
containment of the spread of Covid-19 (Cartenì et al. 2020; Kraemer et al. 2020). An
examination of Europe and US policy responses during the first wave of the pandemic
suggests that policy measures to control daily mobility reduce Covid-19 transmission
within two to five weeks (Cot et al. 2021). Specifically, evidence shows that countries
that provide income support to reduce workplace mobility are successful in reducing
Covid-19 transmission (Asfaw 2021). Such policy measures alleviate the burden on
the healthcare system of countries (Anderson et al. 2020; Atkeson 2020).

The existing imbalance in labor markets and the historical origins of disparities
make Turkey a good candidate for understanding the background of the link between
workplace mobility and Covid-19 transmission. This study focuses on extracting,
devising and identifying the causes of mobility and understanding the causal mecha-
nisms at the smallest geographic unit of observation possible (district-level) through
which human mobility can be reduced by policy interventions. We argue that districts
with higher education levels are more flexible in adjusting themselves to distance
work and potentially more likely to realize lower workplace mobility. Identifying the
causes of mobility and the modus operandi of these factors are the building blocks
of sound policy prescriptions to mitigate the detrimental impact of Covid-19 on the
socio-economic environment of localities.

Given the discussions on class-based sources of mobility, the virus is far from being
an equalizer: the pandemic disproportionately affects certain socio-economic classes,
employment groups and industries. While white-collar employees with higher educa-
tion levels are able to distance-work and therefore exhibit lower workplace mobility,
blue-collar and less educated employees whose physical presence in the workplace is
essential continue to work face-to-face to sustain their jobs and income. This results
in higher mobility for the latter working class. Understanding the varying adjustment
capacity of different segments of the society is essential in constructing an adequate
policy mix to mitigate the pervasive and unequal impact of the pandemic.
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Motivated by these facts, our objective is to unravel the role of human capital and
the causal mechanism behind mobility amid the pandemic. We are concerned about
the extent to which education, as a form of human capital, causes changes in mobility.
We also aim to investigate the causal mechanisms and the particular causal process
throughwhich the effect of education on Covid-19mobility comes about. The findings
of our study help identify high-risk groups and guide policy makers to consider social
policies to support the most vulnerable segments of the society.

Various dimensions of the consequences of Covid-19 pandemic have been investi-
gated. Outside of labormarket, a number of papers focus on the impact of the pandemic
on consumer behavior (Safara 2020), stockmarkets (Alsayed 2022; Gupta et al. 2021),
bank demand deposits (Cherrat and Prigent 2022), inter-country Covid-19 incidence
prediction (Basu and Sen 2022) and spatial interactions (Zhang and Zhang 2022)
whereas others focus on gender gap (Ham 2021), labor market structure and occupa-
tional differences (Cortes and Forsythe 2020; Kikuchi et al. 2021). Yet, our knowledge
on the causes of the spread of the pandemic from a labor market perspective is still
limited. Besides, mobility and education are seldom linked at the very local level (dis-
trict) in a causal setup to understand the background of Covid-19 transmission. Local
policy construction, which limits the capacity to mitigate the pandemic, is challenging
because of a lack of district-level data on Covid-19 incidence in countries like Turkey.
Our approach is instrumental for how socio-economic and policy-sensitive factors
can be used to understand the black box behind the local spread of the pandemic.
Therefore, more effort will be required in the future to evaluate the extent to which
socioeconomic and demographic regional composition has explanatory power in order
to assess the gravity of health care crises.

In Sect. 2, we develop a causal framework using a set of directed acyclic graphs
(DAG). Specifically, Sect. 2.1 lays out our background knowledge on the causes of
workplace mobility; Sect. 2.2 performs a constraint-based causal discovery algorithm
to help build a DAG, in conjunction with our knowledge; Sect. 2.3 states our causal
query and search for admissible sets to identify the causal effect of interest using
d-separation and do-calculus that serves as the building blocks of our subsequent
analyses. In Sects. 2.4 and 2.5, we assess our causal query in the presence of latent
confounding and sample selection, respectively. Sect. 3 presents the data and lays out
our empirical strategy. Section4 reports the results; and Sect. 5 concludes. We relegate
a number of robustness checks and sensitivity analyses to the appendix.

2 Causal Graph Analysis

In order to understand the modus operandi of the causes of workplace mobility in
Turkey, we invoke a causal graph analysis using DAG (Pearl 1995, 2000). A DAG
shows the importance of specific types of endogenous variables of a system of causal
relations in a nonparametric framework and consist of a set of nodes and directed
edges where causation is unidirectional (i.e. no reverse causation).

However, the construction of an approximately correct DAG is a complex process.
Even with background knowledge,DAG construction is challenging due to latent con-
founding that may not be known to exist. Further, there may be a plethora of models
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that are compatible with background knowledge and conditional independencies, but
that may lead to entirely different causal inferences (Scheines et al. 1998). For this
purpose, we first lay out our background knowledge to provide theory-justified con-
straints and then use a data-driven causal structure discovery algorithm to help assist
in our DAG construction.

2.1 Background Knowledge

Used throughout the paper, the following notation lists all nodes or causal variables that
we are able to identify, given our research, and that are theoretically good candidates
to examine the impact of education of workplace mobility. The observability of the
node is determined upon the availability of data for that node/variable whose details
are given in Sect. 3.1.

Notation 1 Observable nodes/variables:
M j : workplace mobility at period j (outcome), j = 1, 2, 3
X : education (exposure)
D : population density
N : total population
O : elderly composition
Y : income (wage proxy)
P : lockdown policy measure (period 1 only)
F : fertility
S : sample selection

Notation 2 Unobservable nodes/variables:
W : wages
L : employment (share of blue/white collar or teleworkable/non-teleworkable
employees)
C : past information on confirmed cases or deaths
E : past education policies
U : latent confounder between any two nodes
R : bundle of sample selection constraints

The following fourteen propositions state our background knowledge on observable
and unobservable causes, defined above. Whenever possible, we comment on the sign
of the edge.

Proposition 1 (Required edge) Our main hypothesis is that education (X) affects
workplace mobility (M j ) indirectly through unobservable employment L (X →
L → Mj). L could be the share of blue/white collar employees or the share of
teleworkable/non-teleworkable employees. Higher human capital should increase the

share of white-collar employment (X
+→ L). Teleworkable or white-collar individuals

are more likely to restrict their workplace mobility relative to factory employees whose
physical presence in the work environment is essential or required. Therefore, places
with higher share of white-collar employees should exhibit lower workplace mobility

(L
−→ Mj). Since the sign of every directed path is the product of the signs of the
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edges that constitute that path (VanderWeele and Robins 2010), it must be the case

that higher human capital reduces workplace mobility (X
−→ Mj).

Proposition 2 By virtue of Mincer’s earnings function, educated individuals are more

likely to earn higher wages W (X
+→ W) (Mincer 1958, 1974). Since W is unob-

servable in this model due to lack of data, node Y acts as a measured proxy for W

(W
+→ Y ). This suggests that X

+→ Y . There might be unobservable common causes
of W and X (W ← UWX → X). Examples include skills, ability and intelligence.

Proposition 3 There is no causal relation between W and Mj although places of
higher wageswould show lowerworkplacemobility. Recent evidence shows that work-
ers in lowest paying jobs in the US have less chance to work distantly and are among
the most-affected ones from the pandemic (Papanikolaou and Schmidt 2020). The only
reason we observe an association between wages and workplace mobility is due to
employment, L that causes both wages W and mobility, M j (M j ← L → W).

Proposition 4 (Required edge) One direct objective of policy measure P is to inhibit
Covid-19 transmission in the population through lockdown and stay-at-home orders

(P
−→ M1) (Lytras andTsiodras 2020).However, theremight be latent common causes

of P and M1. For example, past information on confirmed cases or deaths, C, would

cause the government to impose lockdowns and stay-at-home orders (C
+→ P). Past

Covid-19 caseswould also cause individuals to restrictmobility voluntarily (C
−→ M1)

(Chernozhukov et al. 2021).

Proposition 5 Places of greater elderly population share tend to be less mobile
because older individuals are more likely to have to comply with restricted mobil-
ity due to high risk of infection and/or age-induced restrictions on daily activities

(O
−→ Mj). Evidence shows that countries with higher elderly population are at a

greater risk of SARS-CoV-2 infection (Oztig and Askin 2020; Ferguson et al. 2020;
Glynn 2020).

Proposition 6 Following the outbreak, large-scale policy measures, such as lock-
downs, stay-at-home orders, business closures and mandatory mask use may be
implemented based on population density with increases in the population implying

higher density (N
+→ D

+→ P).

Proposition 7 Individuals in populated or high-density areasmore prone to be infected
with SARS-Cov-2 virus (Carozzi 2020). Therefore,we expect dense andmore populated
regions to show lowerworkplacemobility due to high risk of SARS-CoV-2 transmission

in congested areas, (D
−→ Mj

−← N).

Proposition 8 A central dimension of urban economics is the circular links among
urbanization, education and wages (Glaeser andMare 2001). Places of higher density
(D) would show higher wages (W) and higher education levels (X) due to a multitude

of mechanisms: (1) D may be a direct cause of W or X (D
+→ W, D

+→ X) and/or
(2) accumulated human capital and/or wealth may induce individuals to move to
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metropolitan areas (i.e. agglomeration or urbanization effect). This suggests that either

W and/or X is a direct cause of D (W
+→ D, X

+→ D) or W and X are related by a
third factor that causes both (D ← UDW → W and D ← UDX → X).

Proposition 9 Lockdown and stay-at-home-orders were not implemented with the aim
of restricting activity in high-wage clusters. However, provinces in which these policy
measures were implemented would show higher wages (W). A possible explanation
is due to a third factor that causes W and P (W ← UWP → P).

Proposition 10 There is no causal relation between elderly composition (O) and edu-
cation levels (X) although places of higher elderly composition would show lower
education levels. We argue that O and X are related due to latent confounder
(O ← E → X). Examples include past education or past education policies.

Proposition 11 (Instrumental variable) Patriarchal structure (A) directly constrains

education, X (A
−→ X) and indirectly boosts N through raising total fertility, F

(A
+→ F

+→ N).

Proposition 12 (Instrumental variable) Age and therefore higher elderly composition

is a direct cause of lower fertility rates (O
−→ F).

Proposition 13 (Forbidden edges) For the fact that population (P), density (D),
elderly composition (O), education (X) and wage proxy (Y ) are measured prior to
Covid-19 workplace mobility (M) or to lockdowns and stay-at-home orders (P), M
and P cannot be a cause of these variables (M1��→P, M j��→D, M j��→O, M j��→X,
M j��→Y , P��→D, P��→O, P��→X, P��→Y ). Due to our adherence to acyclic associa-
tions, we assume that wage cannot be a cause of education (W��→X) although there
might be latent confounder(s).

Proposition 14 (Forbidden edges, Instrumental variable) Neither fertility nor work-
place mobility is the cause of the other (M j��→F, F��→Mj) and neither density nor
lockdown policy would cause fertility (D��→F, P��→F)

2.2 Constraint-Based Causal Structure Discovery

Our background knowledge is unfortunately half of the story: (1) there might be
more latent confounding than our knowledge might identify; (2) knowledge is yet
to be confirmed by data; (3) even if knowledge had been accurate and conditional
independencies had been confirmed, a very large number of models may be consistent
with them. Constraint-based causal discovery algorithms, in conjunction with our
knowledge, help fill this gap.

Fast Causal Inference (FCI) algorithm is a constrained-based and data-driven algo-
rithm that uses background knowledge and sample data as inputs and allows for latent
confounding (Spirtes et al. 1999, 2000). FCI algorithm consists of two stages: In
the first stage called adjacency phase, the algorithm starts with a complete undirected
graph and performs a sequence of conditional independence tests. If two adjacent vari-
ables are judged to be independent conditional on a subset of observables, then the edge
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between the two is removed. The algorithm then stores the conditioning sets that led
to the removal of an adjacency. In the second stage called orientation phase, FCI uses
these stored conditional sets to orient asmany edges as possible. The output of this two-
step process is a partial ancestral graph (PAG) (Spirtes et al. 2000). Amodified version
of the FCI is the Really Fast Causal Inference (RFCI) algorithm that is faster than but
equally informative as the FCI (Colombo et al. 2012).One downside of causal structure
discovery algorithms is that they cannot identify common latent confounders.1

We use our background knowledge and define a minimal set of required and forbid-
den edges that the resulting PAG should conform to. The required edges are simply
X → Mj (proposition 1) and P → M1 (proposition 4). We also define a minimal set
of forbidden edges. Since all observable and continuous variables (N , O, D,Y ) other
than the outcomeM are observed before lockdown and stay-at-home-orders, the policy
measure P cannot be the cause of N , O, D and Y . Similarly, the outcome M cannot be
the cause of N , O, D,Y , P because both mobility M is a consequence of policy mea-
sure P and all remaining observables are measured prior to M . Finally, there should be
no reverse causation that goes from the wage proxy Y to education X (proposition 13).

We partitioned our workplace mobility measure into three periods on the grounds
that each implies a distinct large-scale policy regime thatmay have a unique behavioral
impact on M . On April 11, 2020, Turkish government imposed a series of lockdowns,
first four of whichwere effective in all 30metropolitans and the province of Zonguldak
and sealed-off inter-province mobility. All restrictions were lifted on June 1, 2020 and
this period lasted until November 30, 2020. On December 1, 2020, a partial lockdown
was introduced, implementing stay-at-home orders onweekdays between 9:00 PMand
05:00 AM and on weekends starting from Friday 09:00 PM until Monday 05:00 AM.
Therefore, the first period is the most restrictive and spans the interval of 11 April - 31
May 2020; the second period is the most lenient and spans the interval of 1 June 2020
- 30 November 2020 and the third period is not as restrictive as the first or as lenient
as the second period and spans the interval of 1 December 2020 - 28 February 2021.

The RFCI algorithm is performed separately for each period on the grounds that
large-scale cross-section-invariant policies that characterized each period (measured),
or any other period-specific events (unmeasured) may have behavioral implications
on how demographic attributes could have affected mobility. This implies that any
edge that distinguishes a PAG of period j from a PAG of period i should include
an incoming arrow to M . For any pair of observables, say A and B that are invariant
across periods (i.e. any node but M), it seems inconceivable to think of a (un)directed
edge between A and B (if any), however it may be defined, to change from period to
period. On the other hand, the outcome M varies across periods. Therefore, it seems
plausible that a discovered (un)directed edge with an incoming arrow to M in period
j does not need to hold in period i .
The results of the causal structure discovery are displayed in Table 1. The RFCI

algorithm uses conditional Gaussian likelihood ratio (CGLR) test to determine con-

1 Causal discovery is performed using Tetrad (version 6.7.1), developed by Joseph Ramsey, ClarkGlymour,
Richard Scheines and Peter Spirtes, available at: https://github.com/cmu-phil/tetrad.
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ditional independence among the observables.2 The second column for each period
shows a synthesis of the edges produced by the algorithm and our knowledge to con-
struct our DAG. Each line in Table 1 shows the type of edge between any pair of
observables for which data are used as input.3 A detailed explanation of the type of
edges is given in footnote of Table 1. Notice that any edge that involves P only appears
for period 1. The reason is that a cross-sectionally-varying policy regime was imple-
mented during period 1 only. Therefore such edges are absent for periods 2 and 3,
indicated by “NA” in Table 1.

Overall, the edges produced by the discovery are by and large in line with our
background knowledge albeit they are not perfectly aligned with our propositions. As
a result, two types of inconsistent patterns emerge. The first type (type I) consists of
those our background knowledge suggests yet not discovered by the algorithm. The
second type (type II) consists of those our background knowledge did not identify
yet discovered by the algorithm. For all type II patterns, we abide by the results of
the discovery. These edges are shown in the last five rows of Table 1. For type I
patterns, we abide by our knowledge whenever such knowledge is either required to
meet conditional independencies in the resulting DAG (type I-A), or strong enough
not to be overruled by the discovery (type I-B). Otherwise, we abide by the discovery.

Remark 1 Type I-A patterns:
Proposition 5 argues that O may cause M and/or they may be confounded. Our

proposition is only confirmed by the discovery in period 3 (O → M). However, as
we show in Sect. 2.3, the edge O → M in period 1 is imposed to meet conditional
independencies.

Proposition 7 argues that N and D are causes of M ; yet the edge N → M is only
confirmed by the discovery in period 2 and the edge D → M is only confirmed in
period 1. The N → M and the D → M edges are retained in both periods.

Remark 2 Type I-B patterns:
For the directed edge between X and M shown in the first row of Table 1, RFCI

algorithm suggests that X is a possibly direct cause of M . However, by virtue of
proposition 1, X indirectly affects M through the unobservable L . As we show in
Sect. 2.3, whether X is a direct or an indirect cause of M has no bearing in our
identification of the causal estimand since L cannot be observed.

For any edge between Y and another observable regardless of whether Y is the head
or the tail of the arrow, Y must be replaced by W → Y in our final DAG because Y

2 For the fact that our sample includes a mixture of continuous and discrete variables in period 1, the
CGLR test is the only available independence test. The CGLR test assumes that the continuous variables
are Gaussian conditional on each combination of values for discrete variables. It works well even if the
Gaussian assumption does not hold strictly. For a sample of continuous variables only, as in periods 2 and
3, another option is the kernel conditional independence (KCI) test. The KCI test is a general independence
test that does not assume any functional form, including the errors. A downside of KCI is that it is slow for
large samples since it relies on bootstrapping.
3 For any given PAG, there might exist a prohibitively large number ofDAGs, each with an identical set of
conditional independencies. Therefore, our background knowledge is crucial at this point in order to reduce
this number to a single DAG for each period that is an approximately correct and accurate representation.
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is defined as a proxy for wages W . Therefore, wages must be a mediator between X
and Y (these edges are given in rows 2, 11 and 13 of Table 1).

Proposition 3 argues that L is a latent confounder of W and M . Since W is unob-
servable, we use the proxy for W in the RFCI algorithm, which is Y . However, causal
discovery does not suggest a latent confounder between Y and M . Our synthesis keeps
this latent confounding in all three periods. As we show in Sect. 2.3, whether Y and
M are confounded by L has no bearing in our identification of the causal estimand.

Byvirtue of proposition 10,we retain a latent confounder between X andO through-
out all of our final DAGs despite such an edge is not discovered by the algorithm in
any period.

By virtue of proposition 11, current fertility will always affect current population
size even though this edge F → N is not discovered by the algorithm.

The final and complete set of edges that we use for each period’s DAGs in the
following section are given in the column labeled “Synthesis” of Table 1.

2.3 Query and the Identification of the Causal Estimand

Do-calculus is a causal inference engine that takes a causal query, Q; a model G
that encodes our understanding about the structural dependencies between the vari-
ables under our study and a dataset and observable probability distributions, Pr (υ | �)
(Hünermund and Bareinboim 2019). Our causal query is to identify the causal effect of
education (X ) on workplace mobility (M). While the identification of the association
between X and M can be achieved by calculating the expected value of M given an
observation of X = x , or E (M | X = x), the identification of the causal effect of
X on M requires a manipulation or intervention on X . This task inquires about the
expected value of M if we make X = x and requires the use of the do-operator that
can be written as E (M | do (X = x)). Our aim is to find a strategy that will enable
us to remove the do-expression so that E (M | do (X = x)) = E (M | X = x). To
obtain E (M | do (X = x)), the causal graph G is modified by performing a surgery
(i.e. removing all arrows going into X ) using the do-calculus. E (M | do (X = x)) can
be inferred in the post-surgery model from the joint distribution of all observables in
the pre-surgery model by conditioning on a set of variables or by statistical adjustment
(Pearl and Mackenzie 2018). The inference engine of our study is displayed in Fig. 1.

Fig. 2a, b and c display the associated causal graph Gj that explicitly shows the
unobservables W and L in the model by a gray filling.4 Unobservable confounding
is further incorporated by the bidirected dashed arcs. Among all unobservables, W
and L are explicitly shown in Fig. 2a, b and c for they are critical descendants of X .
Particularly, L being the mediator in the relationship between X and M provides an
insight into the causal mechanism.

The following simplification transforms Fig. 2a, b and c into an equivalent causal
graph by reducing the clutter of latent variables in the model.5

4 Causal graph analysis was performed using the Causal Fusion (beta testing) software, available at: causal-
fusion.net It is built on the methodology discussed in Bareinboim and Pearl (2016) and developed by Elias
Bareinboim, Juan, D. Correa and Chris Jeong (login required).
5 The only assumption being made about latent variables is that they are non-binary.
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Fig. 1 Inference engine of the study. Note The inference engine is inspired by Pearl and Mackenzie (2018)

Simplification 1 Let A and B be the ancestors and C, D and E be the descendants of
the latent node U in causal graph G. Then, U can be transformed in the following way
such that the resulting DAG (marginalized G ormG) is marginally equivalent (M) to
G.

The equivalent DAGs (mGj) are given in Fig. 2b, d and f. The causal graphs imply
the following sets of conditional independencies respectively for period 1, 2 and 3:

P ⊥⊥ N | D, O
X ⊥⊥ N | D (1)
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Fig. 2 Causal graphs Gj and mGj. Notes M : Covid-19 workplace mobility, X : education, W : wages
(latent), Y : income (wage proxy), L : employment type (latent), P : policy measure, D : population
density, O : elderly composition, N : total population. Bidirected ashed arcs signify latent confounding.
Green nodes denote backdoor-admissible sets
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M2 ⊥⊥ O | D, N , X
X ⊥⊥ N | D (2)

M3 ⊥⊥ D | O, X
M3 ⊥⊥ N | O, X
X ⊥⊥ N | D

(3)

We are interested in the total effect of X onMj . The total effect asks what difference
in workplace mobility will result if one intervenes on the level of schooling. For this
purpose, all backdoor paths, that is, any path from X to Mj that begins with an arrow
pointing to X , should be blocked. For any set to be backdoor-admissible, the following
conditions must hold:

Condition 1 The backdoor admissble set should block every path between X and Mj

that contains an arrow into X.

Condition 2 No node in the backdoor-admissible set is a descendant of X.

Consequently, the sets�1 = {D, N , O, P},�2 = {D} and�3 = {O}, respectively
for periods 1, 2 and 3, given in Fig. 2b, d, f satisfy conditions 1 and 2 and are backdoor-
admissible. It would be a disaster to control for Y , since Y is a descendant of X
in all three graphs, violating condition 2. For better visualization, all DAGs, causal
estimands and the associated models in this paper are color coordinated with red
indicating the outcome, blue indicating the exposure, green indicating the minimal set
of backdoor-admissible nodes or variables, magenta indicating instrumental variable,
orange indicating selection variable and black indicating other nodes or variables.

Theorem 1 The causal effect of X on Mj is identifiable from a distribution over the
observed variables Pr

(
D, X , Mj , N , O, P,Y

)
. The causal estimand of the total effect

of X on Mj , is obtained by a backdoor adjustment with minimal admissible set � j

for any period j = 1, 2, 3 and is given by the formula:

Pr
(
Mj | do (X)

) =
∑

� j

Pr
(
Mj |X ,� j

)
Pr

(
� j

)
(4)

where �1 = {D, N , O, P}, �2 = {D} and �3 = {O}.
Proofs are given in section S.1.1 of the appendix. The backdoor-admissible sets� j

are minimal in the sense that one may additionally adjust for N or O or {N , O} in
period 2; and D or N or {D, N } in period 3.

2.4 Latent Outcome-Exposure Confounding

The causal graphs Gj do not account for the possibility of latent confounders that
cause both X and Mj . These unobservables render the causal effect of X on Mj
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Fig. 3 Causal graphs mGZ
j : IV setup. Notes M : Covid-19 workplace mobility, X : education, W : wages

(latent), Y : income (wage proxy), L : employment type (latent), P : policy measure, D : population
density, O : elderly composition, N : total population, F : fertility rate (instrument). Green nodes denote
backdoor-admissible sets, magenta nodes denote IV-admissible sets

unidentifiable without imposing stronger assumptions, such as shape restrictions or
distributional assumptions. This situation is given in the causal graphs mGZ

j , shown
in Fig. 3. The bidirected dashed arc between X and Mj in Fig. 3a, b and c indicates a
latent common cause that confounds the relationship. There is a backdoor path from X
to Mj (X������Mj ) and it cannot be blocked since the confounder is unobservable.
When backdoor adjustment is not possible, one can obtain the causal effect of X on
Mj by an adjustment with an IV-admissible set Z . For Z to be IV-admissible, the
following conditions must hold:

Condition 3 The set {Z | •} is d-separated from Mj in GX .

Condition 4 The set {Z | •} is d-connected to X .

Condition 5 No node in the set {Z} is a descendant of X.
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Condition 6 No node in the set {•} is a descendant of X.

Remark 3 For all periods, conditions 3 and 4 are satistifed by the rules of d-separation
(Verma and Pearl 1988). It states that F andM1, Z = {F, O} andM2 and F andM3 are
independent of each other given X , and that F and X are d-connected (not d-separated)
conditional on {D, N , O, P} in period 1; Z = {F, O} and X are d-connected (not
d-separated) conditional on {D, N } in period 2; and F and X are d-connected (not
d-separated) conditional on O in period 3.

Theway a potential IV-admissible set Z is positioned in causal graphmGZ
j relies on

our background knowledge only because its validity is untestable. Stated in proposition
11, we expect fertility rate to be (strongly) correlated with education. Further, we do
not conceive any channel through which fertility might be associated with workplace
mobility other than education.

For all periods, conditions 5 and 6 are also satisfied because neither F nor
{D, N , O, P} in period 1; neither Z = {F, O} nor {D, N } in period 2 and neither F
nor O in period 3 is a child or a descendant of X . It would be a disaster to control for
Y because doing so violates conditions 3 and 6. Hence, the causal effect of X on Mj

can be identified in the presence of latent outcome-exposure confounding. O is the
minimal adjustment set and one can additionally control for D in period 3.

Causal graphs GZ
2 do not imply any conditional independencies; however, GZ

1
implies the following conditional independency:

N ⊥⊥ P | D, F, O (5)

With an IV-admissible variable F or a set Z = {F, O}, the causal effect of X on
Mj can be estimated only parametrically using instrumental variables methods. With
a continuous instrument set Z , an exposure X and an outcome M , the IV estimand at

period j is βI V , j = Cov(Z j ,Mj)
Cov(Z j ,X)

.

2.5 Selection Bias

Selection bias is a common threat to valid causal inference that jeopardizes identifica-
tion. It occurs when information on the members of a population that possess specific
characteristics is the only observed phenomenon (Hünermund and Bareinboim 2019).
For example, Covid-19 mobility measures are reported if user settings and connec-
tivity allowed and if privacy thresholds have been met. When the quality and privacy
thresholds are not met, these mobility measures are not available for that district.
This creates selection bias since sampled and non-sampled districts are likely to be
systematically different from each other.

We capture selection in our causal graphs by explicitly modeling the sample selec-
tion mechanism. This situation is given in causal graphs mGS,j in Fig. 4, with two
additional nodes over Fig. 2b, d and f: The first of these is the double-circled node S,
which takes the value of 1 if the district is sampled and 0 otherwise. The second is
the node R, which represents the bundle of constraints that determine which districts
are selected and which are not. This bundle may include whether the individual has a
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Fig. 4 Causal graphs mGS,j. Notes M : Covid-19 workplace mobility, X : education, W : wages (latent),
Y : income (wage proxy), P : policy measure, D : population density, O : elderly composition, N : total
population, L : employment type (latent), S : sample selection (=1 if selected), R : bundle of constraints
(e.g. broadband access, connectivity, privacy) (latent). Green nodes denote backdoor-admissible sets

smart phone and GSMdata available for roaming, allow user settings andmeet privacy
thresholds. In our context, they represent the proportion of individuals having smart
phone or GSM data or the proportion of individuals that meet privacy thresholds etc...

Although R is unobservable, a number of factors are likely to cause changes in
R. First, a higher elderly composition (O) contributes to a lower likelihood of being
selected because these individuals are less likely to use smartphones or GSM data
(O → R). On the other hand, higher density (D), higher population (N ), higher
income (Y ) and higher education levels (X ) are likely to increase one’s propensity to
use GSM data and smartphone (D → R, N → R,Y → R, X → R).

Remark 4 The causal effect of X on Mj is recoverable from selection-biased data.
The following theorem ensures recoverability of eq. (4) from selection-biased data
that preserves the nonparametric nature of causal graph and follows the recoverability
conditions of Bareinboim et al. (2014); Bareinboim and Tian (2015).

Theorem 2 Given external data on D, N , O, P for all districts i = 1, . . . , N, the
causal effect of X on Mj is recoverable from selection-biased data by a generalized
adjustment and is given by the formula:
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Pr
(
Mj | do (X)

) =
∑

� j

Pr
(
Mj |X ,� j , S = 1

)
Pr

(
� j

)
(6)

where �1 = {D, N , O, P}, �2 = {D} and �3 = {O}.
Proofs are given in section S.1.2 of the appendix.

3 Empirical Strategy

3.1 Data and Sample

Our research uses a mix of provincial (Nomenclature of Units for Territorial Statis-
tics 3 - NUTS-3) and district-level cross-sectional data that comes from the Turkish
Statistical Office (Turkstat 2019b, c, a, 2020) and the Google mobility report (Google
2020), covering 973 districts in 81 provinces in Turkey in 2020. A detailed description
of our dataset is given in Table 2.

Google workplace mobility data show the change in the length of stay at workplace
compared to a baseline, measured before the outbreak. This baseline is the median for
the corresponding day of the week during the fiveweeks between January 3 and Febru-
ary 6, 2020. For each period, we calculated the median value of workplace mobility
(Mj ), which is shown in the top of Table 2. Expectedly, period 1 is characterized by a
sharp decline in workplace mobility with an average median percentage change from
the baseline of −41.55 percent. Within two weeks following the end of lockdown, the
total number of cases reached 14,297 and the total number of deaths in this two-week
period was only 267. During the most lenient phase (period 2), there was still a reduc-
tion in workplace mobility, although conspicuously lenient relative to period 1.Within
two weeks following the end of this period, the total number of deaths was a whopping
2900. Finally, the third period average is somewhere between the first two periods,
with an average median percentage change of about -23 percent. Notice that the min.
and the max. values of workplace mobility show howwildly it varies, especially in the
second period with a range that indicates increases in workplace mobility. The density
distribution of workplace mobility at each period is displayed in Fig. 5.

Turkish Statistical Office does not report district-level or provincial data on wages.
Our socioeconomic measures consist of a wage proxy (income per capita) and our
causal variable of interest, education (X ), measured by mean years of schooling
between the ages of 25-64. As noted above, in the absence of data on wages, the
next best alternative is to gather data on district-level income. However, per capita
income levels are measured at the province level due to lack of data on district-level
income. Years of schooling in 2019 ranges between 5 to 13 years with an average
of about 8.5 years of education. Our policy measure is exclusive to period 1 and is a
multi-valued discrete variable that represents the proportion of days under lockdown
in province i between 11 April and 31 May 2020.6 The last row shows descriptive
statistics for the instrumental variable that we consider in Sect. 3.3.

6 There were a total of seven episodes of partial lockdowns in Turkey between 11 April and 31 May 2020.
The first four partial lockdowns were implemented in 31 provinces between 11 April and 3 May 2020. The
fifth partial lockdown covered only 24 provinces on 9-10 May 2020. The sixth partial lockdown covered
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Fig. 5 Density of workplace mobility by period

Table 3 Conditional independence test, causal graphsmGj andmGZ
j

DAG Period 1 Period 2 Period 3

mGj P ⊥⊥ N | D, O (0.9540) M2 ⊥⊥ O | D, N , X (0.2632) M3 ⊥⊥ D | O, X (0.9256)

X ⊥⊥ N | D (0.4383) X ⊥⊥ N | D (0.1112) M3 ⊥⊥ N | O, X (0.8406)

X ⊥⊥ N | D (0.1157)

mGZ
j N ⊥⊥ P | D, F, O (0.9248) - -

Notes: Statistics in parenthesis show the p-values for the null hypothesis of conditional independency of
the corresponding conditional independency implied by causal graph Gj and GZ

j

Our next task is to check the consistency of the conditional independencies implied
by causal graphs Gj and GZ

j andmGZ
j ) against those in the data. If these conditional

independencies are unsupported by the data, causal graphs Gj should be revised.
For the fact that d-separation relationships should hold by construction after causal
discovery and that our background knowledge help orient undirected/undecided edges,
the conditional independencies should be consistent. We test the implied conditional
independencies, respectively given in eqs. (1)-(3) and eq. (5) against those of the
data. The results, respectively reported in Table 3, show that the null hypothesis of
conditional independency cannot be rejected even at 10% significance level.

15 provinces between 16 and 19 May 2020, and the seventh lockdown covered all 81 provinces between
23 and 26 May 2020. We created a binary variable that takes the value of 1 if a lockdown is imposed in
province i at day t . Then this binary variable is averaged for each province over the period of 11 April -31
May 2020 to create our multi-valued discrete policy variable.
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3.2 Machine Learning (ML) algorithms

In the absence of latent exposure-outcome confounding, the causal effect of educa-
tion on mobility can be estimated using ML algorithms. These tree-based ensemble
algorithms have a number of advantages over the others. First, they are nonparametric
and do not require distributional assumptions about the data. Second, they can handle
skewed, multi-modal or categorical variables. Third, they are quite robust to overfit-
ting, multicollinearity, outliers and noise in the data. We provide a brief overview of
three algorithms to answer our causal query.

Given causal graph mGj, our empirical strategy uses multiple decision trees to
estimate the expected value of M | do (X) in three types of ensembles called bag-
ging (Random Forests), boosting (Gradient Boosting Machine) and a third ensemble
that uses both (Extreme Gradient Boosting). Random forests, developed by Breiman
(2001), is an ensemble technique for regression and classification that uses bootstrap
aggregation, or bagging. Bagging is a combination of bootstrapping and parallel deci-
sion trees. It is built upon obtaining B bootstrap resamples of the training sample with
replacement, growing a large tree, and averaging predictions from all of the trees. In
the context of regression, this amounts to taking the mean of the B predictions. This
procedure decreases the variance without increasing the bias.

In order to estimate the test error of the model, we invoke k-folds cross-validation
(CV) technique. For this purpose, we split the data into K folds. For each iteration, we
bootstrap K − 1 folds for training to generate B bootstrap resamples and hold one out
for testing. For each bootstrap sample, we build a tree, generate “bagged” predictions
for each K−1 folds, compute an accuracymeasure from these predictions, and average
the K accuracy measures.

Generalized boosted model or gradient boosting machine (GBM), developed by
Friedman (2001), repeatedly fits decision trees to improve the accuracy of the model.
For each new tree, a random subset of all the data is selected using the boosting
method. Boosting is a sequential machine learning algorithm that combines multiple
weak learners (a model that predicts slightly better than random) into strong learners
(a model that accurately predicts the outcomes). The most remarkable advantage of
boosting is its ability to bypass the bias-variance tradeoff. While a highly complex
model leads to a low bias at the cost of a high variance, less complexmodels do just the
opposite. However, since the expected squared error is the sum of the squared bias and
the variance, both cases lead to larger total errors. Boosting has the ability to decrease
both bias and variance. For each new tree, GBM iteratively reweights the data so that
data which was poorly modelled by previous trees has a higher probability of being
selected in the new tree. This leads to a reduced bias. By averaging weak learners, it
also decreases the variance compared to a single weak learner.

Extreme gradient boosting (xgboost), developed by Chen and Guestrin (2016), is
an ensemble technique that uses both bagging and boosting. While Random Forest is
non-sequential, xgboost is a sequential machine learning algorithm that combines
multiple weak learners into strong learners. With boosting, decision trees are repeat-
edly fit to improve the accuracy of the model. This allows the algorithm to learn from
prior iterations and to correct the errors in the previous ones.
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3.3 Instrumental Variables (IV)

Remark 3 of Sect. 2.4 showed that there are IV-admissible sets in all periods and that the
causal effects are identified.With a continuous outcomeMj and a continuous treatment
X given causal graphsmGZ

j , we fit a linear model via IV/GMM that takes into account
the endogeneity of X (i.e. the correlation between X and the unobservable confounder).
The first- and the second-stage regressions for each period j are respectively given
as:

Xi = μ j + Zijα + �i jδ j + ui j (7)

Mi j = η j + β j X̂i + �ijγ j + υi j (8)

where i denotes districts, i = 1, . . . , N , Xi denotes mean years of schooling, Mi j

denotes workplace mobility of district i at period j where j = 1, 2, 3, � j is a 1 × k
vector of included instruments that consists of �1 = {D, N , O, P} in period 1 (see
Fig. 3a), �2 = {D, N } in period 2 (see Fig. 3b) and �3 = {O, D} in period 3 (see
Fig. 3c), Z1 and Z3 are the total fertility rate (F) as the single excluded instrument,
Z2 is a 1× 2 vector of excluded instruments that consists of total fertility rate (F) and
old dependency ratio (O) and ui and υi are the respective stochastic disturbance terms
that comprise idiosyncratic shocks, measurement errors in X and Mj and aggregation
errors.7

3.4 Heckman’s Sample SelectionModel

Table 4 shows in fact that sampled and non-sampled districts are systematically dif-
ferent from each other at every period. In Sect. 2.5, the explicit modeling of selection
mechanism (causal graphs GS,j) showed that the causal effect of X on Mj , that is
E

(
Mj | do (X)

)
is recoverable from selection-biased data. In this section, we explore

another estimation strategy that imposes stronger assumptions but may be used when
E (M | do (X)) is not recoverable. To deal with sample selection, we estimate the
following Heckman model separately for each period j via maximum likelihood:

Mi j = η j + β j Xi + �ijγ j + υi j (9)

Si j = α j + ϕ j Xi + λ j Yi + �ijτ j + ui j (10)

where� j is a 1×k vector of backdoor-admissible variables in period j , Si j denotes
non-random selection at period j = 1, 2, 3 and Yi denotes the natural log of per capita
GDP.Workplacemobility in period j is observed ifα j+ϕ j Xi+λ j Yi+�i jτ j+ui j > 0

7 Based onmGZ
3 of Fig. 3c, as long as the linear IV model for period 3 includes O as the control variable in

both stages of the IV, D and N may additionally be controlled for and doing so would not violate backdoor
admissibility rules. In the final estimation of eqs. (7) and (8) for j = 3, we control for �3 = {D, O} for
the fact that N is highly correlated with D. However, for j = 2, causal graph mGZ

2 of Fig. 3b dictates
that �2 = {D, N } should be controlled for for backdoor admissibility even though this might create
multicollinearity bias. In our preliminary analysis with F being the instrument, we ran eqs. (7) and (8)
controlling for O , {O, D}, {O, N } and {O, D, N } and obtained similar results on the causal effect estimate
of X on M3.
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where corr
(
υi j , ui j

) = ρ j . Based on causal graphs GS,j of Fig. 4, Y affects the
likelihood of observing mobility due to reasons mentioned in Sect. 2.5 but must not
appear in the outcome (Mj ) equation. This exclusion restriction is shown by the
inclusion of Y in eq. (10). If ρ j �= 0, the standard regression methods yield biased
estimates in eq. (9).

4 Findings

Based on our identification strategy of Sect. 2.3, Sect. 4.1 reports the results of the
nonparametric analyis using ML algorithms, ignoring the possible endogenous nature
of education, X . Based on our identification strategy of Sects. 2.4 and 2.5, Sects. 4.2
and 4.3 respectively report the results of the parametric analysis using IV model to
account for the endogenous nature of X and Heckman’s model to account for sample
selection.

4.1 ML Algorithms

The total effect of education X on workplace mobility M at period j , that is
E

(
Mj | do (X)

)
, is shown in Figs. 6, 7 and 8, respectively for random forests, gener-

alized boosted model and extreme gradient boosting. Figures6b, 7b and 8b show the
observational distributions and Figs. 6a, 7a and 8a show the “experimental” distribu-
tions, generated from the former using reweightingmethods such as inverse probability
reweighting. The descriptive statistics of the “experimental” and observational distri-
butions are given in Tables S.1, S.2 and S.3 of the Appendix.

Both the “experimental” and the observational data are obtained using a sampling
with replacement performed 500 times. The average of these values is computed to
obtain, E

(
Mj | do (X)

)
and E

(
Mj | X)

for fifty equidistant values of X (i.e. incre-
ments of 0.1553) along with a 95% confidence interval obtained via basic bootstrap
(also known as reverse bootstrap percentile interval).8 For cross-validation, both ML
algorithms employ 2 folds for training the sample and hold 1 fold for testing for a total
of 3 folds.9

8 The confidence interval of the basic bootstrap is 2θ̂ − θ∗
1−α/2, 2θ̂ − θ∗

α/2, where θ̂ denotes the mean and

θ∗
1−α/2 denote the 1−α/2 percentile of the bootstrapped θ∗ (See Davison and Hinkley 1997, eq.5.18 p.203;
Tibshirani and Efron 1993, eq. 13.5 p.171 and Hesterberg 2015 eq. 3 p.381). The confidence interval of the
basic bootstrap converges at a rate of

√
N (i.e. it is first-order accurate). For the problem of constructing a

confidence interval for the sample mean, the bootstrap t interval can also be used. The confidence interval
of bootstrap t is θ̂ − SEq1−α/2, θ̂ − SEqα/2, where SE and q1−α/2 respectively denote the standard
error calculated from the original sample and the 1 − α/2 percentile of the bootstrap t-distribution (See
Davison and Hinkley 1997, eq.5.7 p.194; Tibshirani and Efron 1993, eq. 12.22 p.160 and Hesterberg 2015
eq. 4 p.381). While some advocate the use of bootstrap t interval for it is shown to have optimal properties
(Hesterberg 2015), this interval provides the same asymptotic correctness and narrower empirical coverage
compared to basic bootstrap in finite small samples (Yonghan Jung, personal communication, January 10,
2021). The observational and the “experimental” distributions for each of the ML algorithms using the 95%
confidence intervals obtained via bootstrap t are available upon request.
9 See section S.3 of the appendix for the sensitivity of our results to other fold values.
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Fig. 6 Causal effect of X on M , Random Forests. Note Each experimental distribution shows the effect of
intervening on education on the expected change in workplace mobility relative to baseline. Each observa-
tional distribution shows the effect of education on the expected change in workplace mobility, conditional
on education. The prediction algorithm uses three folds for cross-validation at 5% significance level. The
shaded area shows 95% basic bootstrap interval. The “experimental” distribution over the variables is
generated by reweighting the observational distribution
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Fig. 7 Causal effect of X on M , Generalized Boosted Model. Note Each experimental distribution shows
the effect of intervening on education on the expected change in workplace mobility relative to baseline.
Each observational distribution shows the effect of education on the expected change in workplace mobility,
conditional on education. The prediction algorithm uses three folds for cross-validation at 5% significance
level. The shaded area shows95%basic bootstrap interval. The “experimental” distribution over the variables
is generated by reweighting the observational distribution
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Fig. 8 Causal effect of X on M , Extreme Gradient Boosting. Note Each experimental distribution shows
the effect of intervening on education on the expected change in workplace mobility relative to baseline.
Each observational distribution shows the effect of education on the expected change in workplace mobility,
conditional on education. The prediction algorithm uses three folds for cross-validation at 5% significance
level. The shaded area shows95%basic bootstrap interval. The “experimental” distribution over the variables
is generated by reweighting the observational distribution
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For all three prediction algorithms for a given period, the “experimental” distribu-
tions are similar to each other; however, they are different from their observational
counterparts as a consequence of the fact that E

(
Mj | do (X)

) �= E
(
Mj | X)

given
causal graph mGj (See eq. (4)). On the other hand, the “experimental” distributions
across periods show conspicuous differences in the ranges of M , albeit they are still
similar to one another in the range of X . Between 11 April and 31May 2020 (period 1)
that covers the period from the first episode of lockdown to the reopening of businesses,
the reduction in the mean workplace mobility following an intervention on education
are the largest (between -30 to -50 percent). Between 1 June and 30 November 2020
(period 2) that covers the period from the reopening of businesses to partial lockdown,
there is still a reduction in workplace mobility although this change is relatively small
(from about -5 to -20 percent). Finally, between 1 December 2020 to 28 February
2021 (period 3) that covers the period of the onset of partial lockdown, the expected
reduction inworkplacemobility relative to the baseline is somewhere between those of
periods 1 and 2 (between -15 to -35 percent). For all prediction algorithms and periods,
the “experimental” distributions indicate that intervening on education, X , (i.e. doing
X ) lowers the expected change in workplace mobility relative to the baseline. Notice
that for the generalized boosted model in Fig. 7b, the experimental distributions are
flat for regions with an average schooling equivalent to at most a secondary school
degree (X < 7) and an average schooling equivalent to at least a high school degree
(X > 12).

Our results show that the causal impact of education varies each period, with the
highest impact in the first wave; themost restrictive period. The estimate for the second
period of “back to normal” with no direct public policy shows that regions with higher
education levels are continuing to work remotely. On the contrary, without any direct
pharmaceutical intervention, less educated districts are back at workplace and their
ability to work remotely is limited.

4.2 Instrumental Variables

Table 5 reports the first- and the second-stage results of a linear IV model, along
with the diagnostics reported at the bottom for each period in order to address latent
confounding.10 Education is instrumented by total fertility rate in period 1 and 3, and
by total fertility and old dependency ratio in period 2. The statistically significant IV
coefficients in the first-stage regressions along with high first-stage F statistics show
that the excluded instruments have high explanatory power. The Anderson-Rubin
weak instrument-robust inference test (Anderson and Rubin 1949) result given at the
bottom of Table 5 suggests that the coefficient of education is negative and statistically
significantly different from zero at conventional test levels in all periods.

The IV-admissible set in period 2, Z2 = {F, O} includes two instruments, namely,
total fertility rate and the old dependency ratio. Therefore, the overidentifying restric-
tions can be assessed by the Hansen J statistic reported at the bottom of column
(2.2) of Table 5. The Hansen J statistic shows that the instruments are uncorrelated
with the unobservable factors of workplace mobility and are correctly excluded from

10 We use ivreg2 command (Baum et al. 2003, 2007) in Stata 15/MP (Stata Corp.).
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Table 4 Mean comparison by sample selection

Mean Difference
S = 1 S = 0 (s.e)

Period 1 (N = 456)

Natural log of density (D) 5.26 3.16 −2.10∗∗∗ (0.09)

Old dependence ratio (O) 15.99 27.82 11.83∗∗∗ (0.62)

Natural log of total population (N ) 11.55 9.45 −2.10∗∗∗ (0.05)

Natural log of per capita income (Y ) 10.71 10.49 −0.22∗∗∗ (0.02)

Mean years of schooling (X ) 9.14 7.89 −1.25∗∗∗ (0.06)

Period 2 (N = 493)

Natural log of density (D) 5.15 3.11 −2.04∗∗∗ (0.08)

Old dependence ratio (O) 16.50 28.21 11.72∗∗∗ (0.65)

Natural log of total population (N ) 11.45 9.39 −2.06∗∗∗ (0.06)

Natural log of per capita income (Y ) 10.71 10.48 −0.22∗∗∗ (0.02)

Mean years of schooling (X ) 9.06 7.87 −1.18∗∗∗ (0.06)

Period 3 (N = 493)

Natural log of density (D) 5.15 3.11 −2.04∗∗∗ (0.08)

Old dependence ratio (O) 16.49 28.22 11.73∗∗∗ (0.65)

Natural log of total population (N ) 11.45 9.39 −2.06∗∗∗ (0.06)

Natural log of per capita income (Y ) 10.71 10.48 −0.22∗∗∗ (0.02)

Mean years of schooling (X ) 9.06 7.87 −1.19∗∗∗ (0.06)

Notes: Standard errors in parentheses. *** denotes statistical significance at 1 percent level

the outcome equation.11 Thus, the IV diagnostics provide evidence that the excluded
instruments can be used to isolate the causal effect of education on mobility.12

Next, we estimate the causal effect of X on Mj , given causal graphsmGZ
j and the

IV model and calculate E
(
Mj | X)

for fifty equidistant values of X as before and
obtain an original sample. Using the original sample, we perform a sampling with
replacement 500 times and obtain a bootstrapped sample from which the mean is
calculated along with a 95% confidence interval. The results are displayed in Fig. 9.

For all periods, education level has a negative causal impact on workplace mobility,
supporting the main argument of the paper. However, the confidence interval for the
expected change in workplace mobility in period 3, relative to the baseline, includes
zero and is statistically indistinguishable from zero if district education is set anywhere
below 7 years of education. This finding supports our argument, suggesting that in the
third period, characterized by lenient and barely enforced restrictions, chances are low
to be employed in flexible, remote jobs in regions with an average years of schooling
below 7 years. Less educated segments of the society are typically employed in blue-
collar jobs and are unable to benefit from a policy that aims to preserve public health
by allowing some flexibility via remote working in the labor market.

11 We use weakiv command in Stata (Finlay et al. 2013) for additional diagnostics, available at: http://
ideas.repec.org/c/boc/bocode/s457684.html
12 Section S.5 of the appendix provides sensitivity analyses for latent confounding and invalid IV.
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Fig. 9 Causal effect of X onM , linear IV.Note E (M | X) is themean of the bootstrapped (500 replications)
values accounting for endogeneity, obtained from a linear IV model (See Sect. 3.3). The shaded area shows
the 95% basic bootstrap interval

4.3 Heckman’s Sample SelectionModel

Columns (X.1) and (X.2) of Table 6 respectively report the estimates for the selection
and the outcome equations of Heckman model for each period in order to address
selection bias.13 The Wald test of independency reported at the bottom of Table 6
shows that the use of Heckman selection model is justified for the first two periods
with a negative error correlation of −0.75 and −0.38 respectively. On the other hand,
the error correlation is −0.19 and evidence shows that the selection and the outcome
equations are independent in period 3. The coefficient on the natural logarithm of per
capita GDP in columns (X.1) of Table 6 indicates that income is an important factor
in the selection mechanism. In columns (X.2) of Table 6, the magnitude of the impact
of education on workplace mobility is aligned with our expectations and with the
period-specific large-scale lockdown regimes although the differences in the size of
the estimates are trivial: it is lowest (in absolute value) in period 1 during which a full
lockdownwas imposed; highest in period 2 of no lockdown and somewhere in between
in period 3 during which a partial lockdown was in effect. All in all, every additional
year of schooling translates into 3 percentage points drop in workplace mobility.

Given causal graphs GS,j and the outcome equation of the Heckman model,
E

(
Mj | X)

for fifty equidistant values of X is displayed in Fig. 10 along with a 95%
basic bootstrap confidence interval. Again, for all three periods, workplace mobility

13 Heckman’s sample selection models are estimated using Stata 15/MP (Stata Corp.).
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is decreasing upon intervening on education; however, the confidence interval for the
expected change in workplace mobility in period 2, relative to the baseline, includes
zero and is statistically indistinguishable if district education is set anywhere below 10
years of education. Given that period 2 is devoid of any lockdown measure, districts
with an average years of schooling equivalent to a university or higher degree maintain
decreasing workplace mobility relative to the baseline.

The causal effect of education (X ) on mobility (M) is likely to be mediated by the
unobservable employment (L), X → L → M and declines in workplace mobility due
to higher educational human capital are unlikely to realize if one considers the nature of
the occupation (i.e. adjusting for L in Fig. 2 if observed). In otherwords, the only reason
we observe declining workplace mobility as a result of accumulated human capital
is probably due to the fact that educated individuals are more likely to be employed
in white-collar jobs and are therefore able to distance-work and hence exhibit lower
mobility. However, those with below-university or high-school degree are clustered
within blue-collar or non-teleworkable occupations that require them to show up in
the workplace. This pattern results in higher workplace mobility for individuals with
limited human capital that translates into higher rates of Covid-19 infections. Although
we cannot prove this because L is unobservable, anecdotal evidence suggests that an
overwhelming proportion of Covid-19 infections are workplace-related, exacerbated
by infecting family members at home.

5 Conclusion

Educational human capital is an important cause of district-level workplace mobility
in Turkey. In an attempt to identify this causal effect, our analysis faces a number of
threats to the validity of causal inference with purely observational data. In order to
address these challenges, we first combine our theoretical knowledge and a data-driven
causal structure discovery algorithm to build a number of causal graphs that make our
assumptions transparent and tractable. Then, we identify the causal estimand with
and without latent confounding and with sample selection. For each causal model, we
assess whether the causal query can be answered using do-calculus. We show that in
the absence of latent confounding, the causal effect of educational human capital on
workplace mobility can be identified via do-calculus and estimated using a host of
ML algorithms.

Judea Pearl notes that “an IV earns its instrumental qualities by virtue of its posi-
tion in a DAG.” In order to deal with latent outcome-exposure confounding, we adopt
this view and incorporate total fertility rate as a potential IV into our DAG. Although
instrument validity is untestable, we substantiate the validity of the IV by our knowl-
edge and provided a sensitivity analysis for latent confounding as well as for invalid
IV (See section S.5 of the appendix). Results from both sensitivity analyses indicate
that latent confounding is very likely; however, the null hypothesis of no effect can be
rejected in favor of a negative impact of education on changes in workplace mobility
even if the IV is invalid.

The nature ofmissing observations on district-levelworkplacemobility points out to
a selection bias problem. For this purpose, we first assess whether the do-expression
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can be recovered from selection-biased data. Then, we invoke a Heckman sample
selection model in situations in which the causal effect is not recoverable. Despite the
use of observational data, our methodological framework help formulate and answer
our causal query.

All three cases unequivocally show a strong and robust causal impact of educa-
tion on social distancing in Turkey. Districts with higher education levels are able to
adjust themselves to Covid-19 outbreak by decreasing daily workplace mobility. On
the contrary, we find strong evidence that higher workplace mobility, relative to base-
line, persists in less educated districts even under periods of mild non-pharmaceutical
interventions (NPI). For regions with higher education levels, there is a clear, endoge-
nous restriction of workplace mobility, lubricated by the ability to distant-work. These
findings point out to the lack of equality and the vulnerability against Covid-19. Given
the developing nature of the Turkish economy and the existence of a spatial duality
across its territory, our findings are likely to set a precedent for other developing coun-
tries with similar developmental problems. As the global struggle with the pandemic
continues, cross-country differences in the response stand as an important challenge
for policy makers. Actions that disregard local imbalances in the response and mitiga-
tion capacity of developing countries stand as an obstacle for the full cohesion across
the globe.

Themajor takeaway of our study is two-fold. First, despite higher risks of infections
at work, greater physical presence or higher mobility at workplace, being the prevalent
behavior due to the type of employment that is determined by low education levels,
undermine public health efforts to contain the spread of the virus. Second, our study
helps accelerate the changing paradigm toward incorporating graphical causal models
in applied economics. Graphical causal models are not a panacea to causal inference;
however, they are powerful and transparent tools to assess potential threats to inference,
interventions and counterfactuals.

Some of the propositions and prior constraints on the causal structure are grounded
in individual characteristics. However, our analyses are based upon ecological aggre-
gates due to lack of individual-level data. A fundamental limitation of this study is
that working with ecological aggregates of individual level characteristics with causal
processes operating at the individual level may induce aggregation bias leading to
ecological fallacy, that is, the causal relationships between mobility and educational
attainment for the individual does not imply the same relationship will hold for the
district.

First, the aggregates in this study are based on geography and district boundaries
in Turkey depend on a complex set of factors such as topography or growth prospects.
Second, our outcome variable, mobility, is not a determining factor of the individual’s
residential choice. Individuals are more likely to factor in employment opportunities,
market access, prospects for higher wages and demographic attributes in this choice.
Third, the direction of causal effects estimates from aggregate data are aligned with
those of the individual causal processes although the magnitude may differ. We con-
jecture that as long as the model is correctly specified, the aggregation bias should not
be severe. We have no way of quantifying this bias; therefore our results should be
interpreted in the shadow of these limitations.
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Fig. 10 Causal effect of X on M , Heckman sample selection model. Note E (M | X) is the mean of the
bootstrapped (500 replications) values accounting for selection bias, obtained from a Heckman model (See
Sect. 3.4). The shaded area shows the 95% basic bootstrap interval

An important dimension of Covid-19 pandemic is the vulnerability of different
segments of the society. During the first year of the pandemic, various measures were
proposed to smooth out the unequal impact of the pandemic. Social cash transfers,
incentive support programs to businesses, fiscal and monetary measures to mitigate
the economic impact at the macro level has been a challenge worldwide (Elgin et al.
2020). How Covid-19 creates an unequal environment at the local level remains to be
explored. Human capital has been the root cause of economic development for decades
(Benhabib and Spiegel 1994). The main mechanism is the productivity and technolog-
ical advances as an outcome of rising education level. This growth-enhancing impact
is an important motivation for many studies that investigate the economic implications
of human capital differences. For one, lockdown measures and stay-at-home orders
have large economic costs (Deb et al. 2022). These costs are even larger for workers
with less ability to adjust to remote working, highlighted by the rising remote work-
ing experiences among more educated segments of the population (Foucault et al.
2020). In contrast, blue collar workers with lower education level are not able to con-
tinue working on a remote basis. This translates into job and income losses for the
uneducated. Disregarding the local differences limits the effectiveness of social and
economic policies during the pandemic. Our study allows us to define the causal mech-
anisms to understand how educational human capital influences mobility. It highlights
the importance of human capital not only as the main determinant of economic growth
but also as a core catalyst that smooths out the impact of Covid-19 on labor markets.
Our results suggest that higher human capital at the local level is the cause of lower
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mobility, which in more educated districts, limits the exposure to the ongoing waves
of Covid-19. First, the existing regional human capital differences translate into a
potential vulnerability disparity between developed and less developed regions. This
raises a concern about the capacity of healthcare system in less developed regions.
Second, as the less educated population is less likely to adapt to remote working, they
face higher job and income loss during the pandemic. This results in higher economic
vulnerability for regions with lower human capital development and stands as one
of the most striking long-term economic implications of the vulnerability disparities.
These two points set the ground for a potential polarization between developed and
less developed regions in countries with higher disparities.

The impact of educational human capital on mobility is a key tool for an inclusive
policy mix in the long-run and for the future of the pandemic. Identifying the local
variation in educational human capital is an important departure point for determining
the vulnerability against Covid-19 pandemic. Although our research does not directly
assess the role of geography, the spatial dimension is critical in designing effective
policy measures to mitigate the overall impact of the pandemic.

Another limitation of our study in terms of the breadth of policy prescriptions is the
unavailability of district- or provincial-level data on employment structure and Covid-
19 cases and deaths. Several causal questions of contemporary policy that we were
unable to tacklemight have been assessed had district-level employment and Covid-19
infection data been available. Prominent examples include how employment structure
could have affected social distancing behavior or health outcomes amid the pandemic
or how educational human capital can help contain the spread of the virus by changing
behavior through various channels.

Following vaccination efforts, a growing body of literature discussed how vacci-
nation and other NPIs are being carried out in a harmonized manner. Recent studies
assert that in addition to large effects that decrease Covid-19 transmission (Alagoz
et al. 2021), vaccination has other effects on human behavior through increasing daily
mobility and less willingness to use masks (Iftekhar et al. 2021; Kim and Lee 2022).
This partially results from the belief of a new normalization with rising vaccine effec-
tiveness. Moreover, vaccination also imposes a loosening of public restrictions that
indirectly increases individual daily mobility. Vaccination, mobility and vaccine effec-
tiveness are relatedwith each other (Guo et al. 2021). Despite the success in decreasing
Covid-19 transmission, its effectiveness is lower with weak NPIs. Therefore, vacci-
nation and mobility should be used in a cohesive way to control the transmission
of Covid-19 even after the vaccination surge (Huang et al. 2021). These aspects can
assign changes in vaccine-related human behavior a potential role for understanding
the link between human capital and mobility. However, we argue that this potential
does not exist or is negligible. Even though the ongoing clinical vaccine trials are on
public spot, there were no approved vaccine during the first two periods of our study.
The first authorized vaccine (Sinovac) in Turkey was administered on January 13,
2021. While this might have some positive effects on people’s perception of the future
of the pandemic, it is naïve to predict that this will have a mobility-increasing impact
in Turkey. One reason is the slow growth of vaccination uptake in Turkey during the
early 2021, exacerbated by supply-related issues with Sinovac. Second, there was a
sharp fall in the effectiveness of Sinovac - the dominant vaccine in Turkey by that

123



830 F. Bilgel and B. C. Karahasan

time - with the rise of new variants during the early 2021.14 Therefore, even if vaccine
announcements have had any impact on human behavior and mobility, it would have
been limited in the Turkish case, especially during the early 2021.

As of 2022, vaccination is spreading out in the developed core and it would take
more time for developing and less developedworld to reach a level that will bring a sus-
tainable normalization at workplace. Therefore, localities that fail to adjust to remote
working due to low educational human capital are potential sources of a prolonged
pandemic.While local variations in vulnerability can be a challenge at the country level
in the short run, a full normalization at the global level seems unwarranted without a
proper understanding of the spatial sources of the pandemic’s evolution.
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