
Vol.:(0123456789)

Computational Economics (2024) 63:529–576
https://doi.org/10.1007/s10614-022-10351-6

1 3

Computational Performance of Deep Reinforcement
Learning to Find Nash Equilibria

Christoph Graf1,2 · Viktor Zobernig3 · Johannes Schmidt3 · Claude Klöckl3 

Accepted: 10 December 2022 / Published online: 3 January 2023
© The Author(s) 2023

Abstract
We test the performance of deep deterministic policy gradient—a deep reinforce-
ment learning algorithm, able to handle continuous state and action spaces—to find
Nash equilibria in a setting where firms compete in offer prices through a uniform
price auction. These algorithms are typically considered “model-free” although a
large set of parameters is utilized by the algorithm. These parameters may include
learning rates, memory buffers, state space dimensioning, normalizations, or noise
decay rates, and the purpose of this work is to systematically test the effect of these
parameter configurations on convergence to the analytically derived Bertrand equi-
librium. We find parameter choices that can reach convergence rates of up to 99%.
We show that the algorithm also converges in more complex settings with multiple
players and different cost structures. Its reliable convergence may make the method
a useful tool to studying strategic behavior of firms even in more complex settings.

Keywords  Bertrand equilibrium · Competition in uniform price auctions · Deep
deterministic policy gradient algorithm · DDPG · Parameter sensitivity analysis

 *	 Claude Klöckl
	 claude.kloeckl@boku.ac.at

	 Christoph Graf
	 christoph.graf@nyu.edu

	 Viktor Zobernig
	 viktor.zobernig@gmail.com

	 Johannes Schmidt
	 johannes.schmidt@boku.ac.at

1	 Institute for Policy Integrity, New York University, New York, NY 10012, USA
2	 Program on Energy and Sustainable Development (PESD), Stanford University, Stanford,

CA 94305‑6072, USA
3	 Institute for Sustainable Economic Development, University of Natural Resources and Life

Sciences, Vienna, Austria

http://orcid.org/0000-0002-0079-5734
http://crossmark.crossref.org/dialog/?doi=10.1007/s10614-022-10351-6&domain=pdf

530	 C. Graf et al.

1 3

1  Introduction

A fundamental challenge in many applications in economics and social sciences is to
derive counterfactual outcomes of the world—a necessity to, e.g., analyze the impact
of a policy intervention. For many applications, this task is challenging because of
the lack of measurements on certain important variables, potential measurement
errors, or because the underlying mechanisms are complex and poorly understood. If
the exact mechanism of how the world operates is unknown, experiments or causal
statistical models, both in combination with randomization, may be successfully
deployed to derive valid counterfactual outcomes. There exists, however, a subset of
economic problems in which the mechanisms are precisely defined, e.g., auctions.
While the auction platform is typically set up centrally and operates based on a pre-
determined set of rules, participants engage with each other “through” the auction
mechanism. The auction clearing for given offers and bids from participants is typi-
cally trivial to solve; this is, however, usually not true for the derivation of market
participants’ strategies.1

If large comprehensive datasets were available, counterfactual outcomes of auc-
tions could be evaluated using non-parametric structural estimation techniques (see,
e.g., Guerre et al., 2000; Kastl, 2011; Caoui, 2022; Charankevich, 2021). Alterna-
tively, game-theoretic models could be deployed to derive counterfactual outcomes.
However, in practice these models may be computationally challenging to solve
because of their two-stage nature. More precisely, firms competing in an auction
rely on the outcome of the second stage, i.e., the auction clearing.2 A relatively new
approach, that we put to the test in this paper, is to use reinforcement learning to
model strategic interactions in auction-based markets.

In this framework, market participants or players interact through the environ-
ment, i.e., the auction clearing mechanism, with each other using a combination of
experimenting and learning. One advantage is that this approach does not require
any empirical data on behavior of market participants; it only requires the knowl-
edge of how the auction is organized (market rules) and a description of the agents’
objective functions as well as their (physical) capacity limits and costs of produc-
tion. The “data” is then constructed on the fly as a combination of the strategies gen-
erated by the players and the corresponding auction clearing results. This procedure
is related to agent-based models from the field of computational economics (Tes-
fatsion & Judd, 2006) where computational models are applied to less understood

1  Note that the unconstrained static Bertrand equilibrium where players compete in prices can also be
formulated in a two-stage setting where players submit offer prices to an auction which will return the
award, i.e., the possibility to serve demand at the clearing price, to the player with the lowest offer price
or split the demand in case of a tie. Although the two-stage setting seems unnecessarily complicated for
these kind of problems, it will become helpful when we transition to more complex strategic interactions
between players, e.g., if they are capacity constrained.
2  In some cases, for example, if the only “system-condition” is to ensure that supply equals demand,
these problems can be simplified by integrating the equilibrium condition into the first stage. However,
for more complicated auction clearing mechanisms, e.g., locational pricing markets (see e.g., Yao et al.,
2008; Graf & Wolak, 2020), that is no longer the case.

531

1 3

Computational Performance of Deep Reinforcement Learning…

areas (e.g., out-of-equilibrium dynamics). A frequent critique of agent-based models
is that outcomes are driven by the assumptions on how agents are designed (see,
e.g., Hommes, 2006; Deissenberg et al., 2008, who model agents using predeter-
mined decision rules). The fundamental difference in the reinforcement learning set-
ting is that only mild assumptions on the agent’s behavior are encoded, for example,
their intention to maximize their profits given their available production capacity
and production costs. Behaviour in a certain auction environment is then informed
through a combination of randomly exploring the action space and learning from
past experience which actions performed well under which circumstances. Hence,
in reinforcement learning an agent’s behavior is not predefined but arises emergently
from the interplay of environment, competing agents, and the reward mechanism.

The purpose of this paper is to apply deep reinforcement learning to learn stra-
tegic offer behavior in a price competition environment and more generally in uni-
form price auctions where firms are capacity constrained. Specifically, we employ
the deep deterministic policy gradient (DDPG) algorithm (Lillicrap et al., 2015) to
learn an agent’s behavior. This algorithm is capable to tackle fully continuous state
and action spaces. Furthermore, this and similar recent deep reinforcement learning
algorithms have been successfully deployed to master strategic games such as Poker
(Brown et al., 2019), Go (Silver et al., 2016; Schrittwieser et al., 2020), or Starcraft
(Vinyals et al., 2019), and it appears that these algorithms consistently outperform
humans in playing these games. However, to the best of our knowledge, the current
wave of deep learning algorithms has not yet been applied to study strategic behavior
in auctions-based market such as e.g., wholesale electricity markets, and we are con-
fident that, given the algorithm’s performance in (computer) gaming, it will improve
on other heuristic methods such as classical Q-learning (Calvano et al., 2020; Asker
et al., 2021), genetic algorithms (Andreoni & Miller, 1995; Noe et al., 2012), or
particle swarm optimization (Boyer & Brorsen, 2014). As pointed out in Noe et al.
(2012), genetic algorithms exhibit difficulties to reproduce standard Bertrand com-
petition in 1st and 2nd price auctions. Generally, it has been observed that 2nd price
auctions are a challenging environment for self-learning agents (Andreoni & Miller,
1995). The limited feedback on payoffs via experimentation as discussed in Har-
rison (1989) or Merlo and Schotter (1992) has been named as one reason. More
precisely, a bidder’s best-response function often has a “flat maximum” because the
cost of deviating from equilibrium strategies is relatively small (Noe et al., 2012).
Neural networks play a central role in DDPG. These may lead to smoother best-
response functions and allow to store past behavior in an approximated yet efficient
way, which may help to successfully identify equilibria. Furthermore, highly effi-
cient computational libraries are readily available, which allows conducting thou-
sands of iterations of learning for a wide range of meta-parameters, thus enabling
an understanding of if and under which conditions DDPG is able to identify Nash
equilibria.

It is well-known that deep learning algorithms, to realize their full potential in
any given problem domain, rely on a proper choice of learning parameters. There-
fore, this work aims to facilitate the understanding of the parameter settings critical
for the performance of DDPG in our environment. We focus on a relatively simple
economic problem that has an analytical solution in the static case which we use as

532	 C. Graf et al.

1 3

a benchmark. More precisely, we analyze the effect of learning parameter settings
on outcomes in a simple symmetric unconstrained Bertrand duopoly, i.e., where two
firms compete in prices for a fixed level of demand. The Bertrand model can be
analyzed in a one-stage setting following the argument that both firms would com-
pete each other down to their marginal cost. However, it could also be considered
in a two-stage setting where the second stage is the market clearing of a uniform
price auction following the first stage in which firms submit their offers. Because
both firms are assumed to have unlimited capacity, auction clearing will award the
low-offering firm to serve all of the demand.3 The advantage of this setting is that
it paves the way for more realistic cases, for example, when firms are capacity con-
strained as in our second case study. Needless to say, more sophisticated modeling
assumptions, for example, accounting for firms’ production portfolios (multi-unit
auctions), sequential market interactions,4 or including dynamic constraints which
may be relevant in wholesale electricity market settings where conventional genera-
tors have non-convex production functions,5 are relatively easy to integrate into this
framework. However, the purpose of this paper is to first understand the effect of the
parameter settings in the reinforcement learning framework on outcomes. Therefore,
we constrain ourselves at this time to study the two simple cases which we can com-
pare to analytically derived equilibrium outcomes.

Our main findings are that (i) DDPG is a reliable tool to study competition
through auctions in both capacity constrained and unconstrained settings, (ii) DDPG
improves upon established Q-learning and policy gradient methods because it does
not require discretization or strong behavioral assumptions, (iii) convergence rates
can reach up to 99% given optimal parametrization, (iv) convergence depends criti-
cally on choice of memory buffer size and noise decay rate for the unconstrained
case, (v) convergence depends critically on choice of normalization method, learn-
ing rates and memory model in the capacity constrained case, (vi) both the choice of
normalization method and memory model impact the eagerness of agents to engage
in competition and hence have to be seen as modelling choices, even if not imposing
strict decision rules. Our algorithm is open-source and accessible publicly through
our Github repository.6

Calvano et al. (2020) and Asker et al. (2021) are two recent contributions
that pursue a similar goal, that is, to evaluate the effect of parameter settings
on equilibrium outcomes in reinforcement learning methods. Both articles
deploy Q-learning (Watkins, 1989) methods which rely on a discrete state and
action space. However, because all the outputs of different input (space, action)

3  The auction mechanism is equipped with tie-breaking rules that determine what happens if both firms
offer at the same price. In our case, both market participants will serve half of the demand in case of a
tie.
4  Short-term wholesale electricity markets are typically organized sequentially starting with the day-
ahead market and allowing market participants to update their positions until (close to) real-time. For
more details, see, e.g., Ito and Reguant (2016), Graf et al. (2020b), or Graf et al. (2021).
5  See for example Reguant (2014), Graf et al. (2020a), or Jha and Leslie (2020) on the importance of
these issues.
6  https://​github.​com/​ckrk/​biddi​ng_​learn​ing.

https://github.com/ckrk/bidding_learning

533

1 3

Computational Performance of Deep Reinforcement Learning…

combinations must be stored in a so-called Q-table, discretization will always
be coarse in practice given the limitations of computational resources. Instead,
we use a deep-learning framework that allows us to approximate the Q-table and
therefore enables us to work on a continuous state and action space. Moreover,
scaling to larger numbers of features and players will not be possible for methods
that exhibit exponential scaling in the number of features, while deep reinforce-
ment learning has been shown to work in environments with high-dimensional
state and action spaces and a high number of players. An interesting comparison
to our work in the electricity market context is Lago et al. (2021), who deploy an
approximate algorithm called fitted Q-iteration. Albeit not a deep reinforcement
learning approach in the strict sense, they use a similar approximation strategy
that seems to allow them to use more complex state spaces.

The remainder of the paper is structured as follows. In Sect. 2, we provide
a brief exposition of the established methods to represent strategic interactions
including the discussion of analytical and computational methods. In Sect. 3,
we give an in-depth discussion of reinforcement learning’s recent developments
and the recent paradigmatic shift towards deep reinforcement learning. We dis-
cuss both classical reinforcement learning, exemplified by Q-Learning, and
deep reinforcement learning, exemplified by DDPG. In Sect. 4, we start with an
analytical analysis of our main benchmark scenario, where we derive its range
of static Nash equilibria. Our benchmark scenario contains both the capacity
constrained and unconstrained cases. We go on in Sect. 5 to evaluate DDPG’s
performance relative to its known analytical solution. We accompany conver-
gence results, with a thorough investigation of the involved learning parameters
and variational analysis of the parameters. We give recommendation on choices
of learning rates, memory, normalization, memory buffer size and noise decay
rates. We wrap up our results in Sect. 6.

2 � How to Model Strategic Interactions? From Game‑Theoretic
Equilibrium Models to Reinforcement Learning

Game theory (GT) aims to predict outcomes where players interact strategically
with each other. The theory’s scope is wide ranging from economic applica-
tions, over biology to computer science. Nonetheless, GT originated from the
systematic study of various card and board games such as Poker and Chess. In a
strikingly similar development, competitively playing algorithms for computer
strategy games are one of the hallmark successes of reinforcement learning. The
similarities are strengthened by some theoretical works that reformulate training
problems into specific types of games (Schuurmans & Zinkevich, 2016). This
leads us to conclude that both fields have significant overlap despite there com-
pletely different methodological approach, thus making their comparison and
interesting field of study. In the following, we briefly review key ideas of the two
distinct fields and aim to asses how both fields can complement each other.

534	 C. Graf et al.

1 3

2.1 � From Game Theory ...

In order to predict outcomes in a strategic interaction among players, GT relies
on the notion of equilibrium. A game with a unique pure strategy equilibrium
is regarded as strong evidence that players will eventually reach this outcome.
An equilibrium is constituted of strategies that are mutual best responses to each
other, i.e., no player has an incentive to marginally deviate from her strategy given
that the other players are playing their equilibrium strategies. In simple games,
finding pure strategy equilibria involves typically a two-step procedure: (i) derive
best responses of each player, and (ii) find set of overlapping best responses if
they exist. More sophisticated games may be solved analytically (e.g., by deriv-
ing best response functions and finding their interaction) or they can be solved
numerically involving non-convex optimization techniques (see, e.g., Graf &
Wolak, 2020). Best responses always exist but they are not necessarily unique and
in fact best response functions can be complicated objects, that do not necessarily
allow to derive unique pure strategy equilibria.

The hardness of deriving equilibria depends strongly on the specificities of a
game’s formulation. Generally, derivable equilibria tend to be relatively common
in single-round games. For instance, a single round of Cournot competition or
Bertrand competition with differentiated products allow non-trivial closed form
solutions if the functional forms defining costs and demand are favorable. How-
ever, adding dynamics to the one-shot game poses significant challenges. In infi-
nite games or finite games with uncertain termination point meta-strategies, such
as e.g., punishments of non-cooperators—a strategy which would not make sense
in a one-shot game—arise. The issue is even further complicated by the fact that
the efficiency of such meta-strategies depends critically on model parameters
such as the discount rate which in practice is hard to measure. A whole class
of theorems, so-called “folk-theorems,” derive results that can essentially enforce
any of a game’s static equilibria as an equilibrium of the entire extended game
depending on the value of the discount rate (Fudenberg & Maskin, 1986).

In fact, only highly stylized cases support unique equilibria for extended
games. More commonly, we face situations with either infinitely many equilibria
or no pure strategy equilibrium at all. Furthermore, for mixed equilibria exist-
ence results are known, but not necessarily a constructive way to compute them.
The lack of constructive equilibria for repeated games is an unsolved problem
within GT. Due to the abundance of equilibria as predicted by folk theorems, this
is strongly related to the question of equilibrium selection. Consequently, many
heuristic approaches for equilibrium selection exist. Furthermore, refinements of
the Nash equilibrium concept, such as e.g., the requirement of sub-game perfec-
tion, are often used to reduce the number of equilibria. Alas, in the frequent case
of non-unique equilibria, there is no unified theory of equilibria discrimination
that allows to decide which equilibria are more likely or advisable to be played. A
systematic resolution of the issue does not seem imminent and is one of the key
motivations for us to look beyond game theory towards solution concepts from
outside of game theory in order to model mid- to long-term strategic interactions.

535

1 3

Computational Performance of Deep Reinforcement Learning…

Computational methods may very-well complement analytical methods in eco-
nomic settings similarly to the field of evolutionary game theory, where strong ana-
lytical results are available for its standard setting, i.e., mixed infinitely large popula-
tions, strong selection, and weak mutation (Fudenberg & Levine, 1998). However,
these results frequently do not hold if those assumptions are violated and stochas-
tic learning models are used increasingly to explore behavior beyond evolutionary
game theory’s standard assumptions (Adami et al., 2016).

2.2 � ... over Algorithmic Game Theory ...

Classic Game Theory typically concerns itself with analytical derivations, existence,
and uniqueness results of Nash equilibria. It usually does not deliver a theory of
suboptimal and out-of-equilibrium play. Out-of-equilibrium play occurs prior to all
players arriving in a given equilibrium and external influences may require frequent
“re-equilibrations.” GT usually does not address whether the time scales spent in
such an out-of-equilibrium play are short or long. Algorithmic game theory (AGT)
addresses this issue by analyzing whether a given Nash equilibrium can be com-
puted in finite or even short time scales (Roughgarden, 2010).

For instance, this is already illustrated by algorithmic game theory’s analytical
results that particular learning behavior assumptions are able to efficiently learn
specific subsets of equilibria (i.e., best response-dynamics converge to correlated
equilibria, see e.g., Foster & Vohra, 1997; Awerbuch et al., 2008) and no-regret-
dynamics converge to coarse correlated equilibria (Blum et al., 2008). Moreover,
there are results that even Nash equilibria can be found efficiently for specific types
of games such as potential games (Viossat & Zapechelnyuk, 2013). Thus AGT adds
the important quality criterion of computational efficiency to GT’s toolbox.

However, algorithmic game theory’s results stems from theoretical computer sci-
ence with a complexity theoretic flavour, where frequently theoretical algorithms are
used to reason about existence and no-go results. This means that AGT’s notion of
computational efficiency usually equals the complexity theoretic notion of polyno-
mial time computable (Roughgarden, 2010). AGT’s algorithms are not necessarily
always practically efficient or even constructive. As such, AGT’s approach refines
the fixed-point theorem approach, but offers constructive results only in particular
cases.

Furthermore, we are not aware of comparably strong results for bidding games as
we have at our disposal in the case of potential games. We therefore hope to supple-
ment these results with the use of concrete state-of-the-art deep learning algorithms
that are considered practically successful in the Reinforcement Learning community
and critically asses their viability for learning equilibrium strategies.

2.3 � ... to Reinforcement Learning

GT relies on the concept of a Nash equilibrium to predict a given player’s behav-
ior. An alternative solution concept could be to simulate a players behaviour by
providing a learning algorithm that extrapolates from past rounds to future rounds

536	 C. Graf et al.

1 3

and recommends the next move. This move is not necessarily an optimal move, but
it is the move that appears optimal given a certain set of experiences and learning
parameters.

GT relies on mathematical optimization and the theory of metric spaces to iden-
tify mutual best responses, i.e., equilibria. Reinforcement learning (RL) essentially
is a form of educated Monte-Carlo simulation, where randomly simulated moves
are used as a basis for a statistical inference that determines what strategy is the best
conditioned on a player’s history.

There exists a certain trade-off between both approaches here. More precisely,
reinforcement learning algorithms can by design give no guarantee or certificate of
optimality. However, reinforcement learning is versatile and does not require spe-
cific functional forms, like convexity, of the constraints or objective function, that
are common in mathematical optimization. Learning algorithms can either converge
naturally or convergence can be enforced through the choice of hyper-parameters.
The quality of such solutions may vary, especially if convergence is enforced. Nev-
ertheless, once convergence is attained, a strategy is always singled out.

Our main conclusion is that DDPG can find Nash equilibria in our benchmark
scenario. Therefore, DDPG is a useful algorithm in the price competition game: first,
we want to highlight that algorithmic-trading has become a commodity in electricity
market trading (see, e.g., Lehna et al., 2022, and literature references therein), and
we believe that DDPG could be a viable candidate to be deployed in that domain.
Therefore some of the actions performed on real markets may follow DDPG’s logic
in the future. Second, other authors find indeed agreement between NE and human
behaviour in energy market games. Thurber et al. (2015) find experimental evi-
dence that suppliers which have the chance of being pivotal, offer their capacity at
the price cap. Furthermore, the authors find that in a setting where suppliers do not
perceive themselves as being able to influence the market clearing price with their
offers, marginal cost offering by all suppliers prevails. This always coincides with
the DDPG solution for the high-offering player who offers at the price cap, while
the low-offering player typically offers in a limited range including marginal costs
but also a certain interval above. It has to be noted, that this range coincides with the
theoretical predictions.

3 � Reinforcement Learning: From the Q‑table to Deep Neural
Networks

We devote the following section to a discussion of recent advances in the machine
learning domain with a focus on algorithms that we deem best suited to learn strate-
gic bidding in uniform price auctions.

Machine learning is subdivided in supervised, unsupervised, and reinforcement
learning. Unsupervised learning is completely independent of the problem structure
making it versatile but also somewhat limited in scope. It is usually used for classifica-
tion or prediction tasks. Supervised learning in-turn relies on human experts to train
algorithms. In supervised learning, experts discriminate exemplary “training” actions
into good or bad. The algorithm then learns to mimic the provided discrimination into

537

1 3

Computational Performance of Deep Reinforcement Learning…

good and bad and is as such not independent of the modellers input. In our opinion,
the third option, RL, is the most interesting approach for tackling strategic games. It
relies on an exact specification of an reward mechanism, that trains players that seek
to increase their respective reward. In many markets that rely on auctions—electric-
ity markets are no exception to that—the market clearing mechanism is known. That
means, for an exogenous set of offer and bid curves for each market participant, the
market clearing results can be precisely computed. The challenge though, is to derive
how market participants will formulate the offer curves they submit to the market.
Sometimes RL agents are modelled as choosing from a set of pre-specified offer-curves
(Spooner et al., 2018; Lussange et al., 2021), but remember that RL algorithms, in
principle, require only to specify, i.e., hard-code, the reward mechanism. Given that,
equilibrium offer and bid curves may be learned by iteratively submitting curves to the
market clearing mechanism and receiving a response, i.e., a per-round profit value con-
ditional on my submitted curve and the curves submitted by my opponents.

Moreover, Sirignano and Cont (2019)—similarly to our work—address economic
competition using a continuous deep learning framework. Specifically, Sirignano and
Cont (2019) propose a supervised learning algorithm that predicts stock markets.

3.1 � Reinforcement Learning

We briefly review reinforcement learning’s key concepts (see, e.g., Sutton & Barto,
2018, for additional details on the concept).

Reinforcement learning’s goal is to determine an optimal action given a certain
state, while drawing only on the information of a sequence of past rewards. In order
to capture the inherent time-structure of RL, we define a time index t. Let us write
the action at time t as at , the state at time t as st , and the reward received at time t by
R(at, st) depending on at and st . We do not specify a and s closer by intention, since
their exact meaning depends on the specific problem. However, we point out that they
are not necessarily integers or even single numbers, they could be vectors or chosen
from an continuous interval. Similarly, infinite time sequential optimization tries to
maximize a value

that is essentially a time averaged discounted objective function, where 0 ≤ 𝛾 < 1
is a discount factor required to enforce (1)’s convergence. In infinite time sequen-
tial optimization, there are various tools such as dynamic programming to explicitly
evaluate (1) if possible. Nonetheless, this can be a non-trivial task. RL shares the
same aim as the field of mathematical optimization, but can be considered an alter-
native methodological approach. Hence, the goal of RL is to converge towards

for all s or at least approximately find at such that

(1)V(s0) ∶=

∞∑

t=0

max
at

� tR(at, st)

(2)argmax
a

R(a, s),

538	 C. Graf et al.

1 3

In RL an action is determined from a sequence of rewards and actions a0,… , at
taken in specific states s0,… , st by means of a learning rule. Sequential optimization
problems can be decomposed by means of the (infinite) Bellman equation as

Solving (4) involves several well-known challenges. First, infinite time horizon
problems do require a so-called discount factor � to become solvable. The important
modelling choice of � is common to all approaches relying on (4) and not limited
to RL at all. Similarly, game-theoretic folk theorems (Fudenberg & Maskin, 1986)
encounter the problem of solutions relying sensitively on the choice of � . Second, if
no closed form solution is known for (4), computationally solving an infinite expres-
sion is not feasible. Therefore, it is common practice to solve relaxed versions of
(4) to obtain approximately optimal solutions. In essence, all reinforcement learning
methods are specifications how to approximate V(st) in (4) from a given history of t
actions and states.

3.2 � Q‑Learning

The main model-free approach to estimate V is the family of temporal difference
learning algorithms. Its most well-known member is so-called Q-learning (Watkins,
1989). Q-learning’s core assumption is that the state action space is discrete and that
the discounted cumulative reward function V(st) can thus be represented as a table
or matrix whose values contain the possible rewards originating R(at, st) from any
combination of S states and A actions. If such a table were available, finding optimal
actions for a state reduces to reading of the maximal value in a column correspond-
ing to the state of interest.

Q-learning’s key strategy is to find a matrix representation of V(st) through an
update rule

where Q is an initially arbitrary matrix of size S × A , � is the so-called learning rate
and � the discount factor. Repeated application of (5) will eventually lead to conver-
gence towards R(st, at) + � maxat Qt(st+1, at) if R remains stationary and all values of
Qt(st, at) are updated alike. R(st, at) + � maxat Qt(st+1, at) is the first order approxi-
mation of the Bellman equation (4), hence under the assumptions of stationarity,
ergodicity, and sufficiently many iterations, the matrix Q is expected to converge
towards an approximation of V.

(3)
∞∑

t=0

� tR(at, st) ≈ V(s0).

(4)
V(s0) ∶=

∞∑

t=0

argmax
at

� tR(at, st) = R(a0, s0) +

∞∑

t=1

argmax
at

� tR(at, st)

=R(a0, s0) + �V(s1).

(5)Qt+1(st, at) = (1 − �)Qt(st, at) + �[R(st, at) + � max
a

Qt(st+1, a)],

539

1 3

Computational Performance of Deep Reinforcement Learning…

Q-learning usually selects the action that has the maximal value in the Q-table,
but ergodicity is only ensured by sometimes playing a random move instead (chosen
with probability � the exploitation-exploration parameter). Typically, � is decreased
throughout the run-time of the algorithm until it reaches a lower threshold. This
allows for easier convergence after many iterations. The speed of the decrease in � is
termed the decay rate.

Under ideal conditions, Q-learning can thus reliably approximate the Bellman
equation. However, Q-learning’s fundamental prerequisites can be hard to ensure in
practice. For instance, stationarity of rewards is a strong assumption in general, but
also particularly when studying auctions. Q-learning is traditionally used by single
agents. Especially, in the multi-agent case relevant for auctions, competing agents
essentially form a dynamic state space that makes it hard to ensure stationarity (Bu
et al., 2008; Foerster et al., 2016). In addition, it becomes more difficult to attain
ergodicity and to achieve short running times as the state-action space becomes
larger. This means that fine discretizations of the state space leads to unfavourable
scaling in the number of features and can lead to humongous state-action spaces
even in relatively simple models. Furthermore, memory requirements constrain
modelers to use rather coarse model descriptions in practice (see Table 1). Aside
from scaling considerations, we want to close this sections with a cautionary tale
stemming from theoretical considerations in Operations Research. It is self-evident
that discretization of state spaces introduces rounding errors. Naturally, a discrete
and continuous algorithm will be operating in slightly different scenarios due to
their respective action spaces. Hence, Q-learning will in-fact play a slightly distorted
discretized version of the more general continuous game. The fineness of the dis-
cretization directly influences the number of ensuing equilibria. For instance, even
straight-forward discretized Bertrand games are examples that exhibit 2–3 equilibria
depending on the choice of discretization, while the continuous Bertrand game is
actually unique (Asker et al., 2021).

Sometimes discretization is justified with the perceived negligibility of small
rounding errors. Nonetheless, discretization alters the underlying problem funda-
mentally. For instance, a discretized linear program becomes an integer linear prob-
lem whose solution can be arbitrary far away from the originally continuous prob-
lem, regardless of the possibly small magnitude of the rounding errors (see IP Myth
1 in Greenberg, 2010). Hence, discretization is not necessarily a stable operation and
can alter a problem’s solution which may bias Q-learning’s outcomes.

Table 1 gives a non-exhaustive overview of very recent reinforcement learn-
ing implementations of multi-agent reinforcement learning in economic settings.
Table 1 compares the relation between a paper’s area of study and the granularity
of state and action representation. Domain summarizes what scenario the paper
describes. We contrast algorithms for competition in abstract oligopolies, electric-
ity markets and stock markets. Action and state space scope details how states and
actions are modelled. Action spaces are either defined as (i) choosing predefined
strategies that directly compute bid prices from averages, minima and maxima of the
latest observed prices (Spooner et al., 2018; Lussange et al., 2021), or by (ii) picking
from a discrete scale of prices (Aliabadi et al., 2017; Calvano et al., 2020; Viehmann
et al., 2021; Asker et al., 2021). While (i) is a behavioral restriction and hence not

540	 C. Graf et al.

1 3

Ta
bl

e 
1  

C
om

pa
ris

on
 o

f r
ec

en
t a

rti
cl

es
 a

pp
ly

in
g

Q
-le

ar
ni

ng

a  D
em

an
d

is
 o

nl
y

us
ed

 in
 fe

w
 sc

en
ar

io
s w

ith
 u

ns
pe

ci
fie

d
gr

an
ul

ar
ity

. G
ra

ph
s s

ho
w

 p
os

si
bl

e
gr

an
ul

ar
iti

es
 o

f 5
 o

r 1
00

.
b  Lu

ss
an

ge
 e

t a
l.

(2
02

1)
 e

m
pl

oy
s a

 d
is

cr
et

iz
ed

 A
ct

or
-C

rit
ic

 d
es

ig
n,

 w
ith

 a
 F

or
ec

as
t (

i.e
.,

C
rit

ic
) a

nd
 a

 T
ra

de
 (i

.e
.,

A
ct

or
) a

lg
or

ith
m

 in
te

ra
ct

in
g

to
ge

th
er

. T
he

 ta
bl

es
 li

sts
 b

ot
h

st
at

e
an

d
ac

tio
n

sp
ac

es
.

c  A
ll

ac
tio

ns
, s

ta
te

s,
fo

re
ca

sts
 a

nd
 b

id
-a

sk
 p

ric
es

 a
re

 a
gg

re
ga

te
d

fro
m

 ti
m

e
se

rie
s i

nt
o

a
lo

w
, m

id
, a

nd
 h

ig
h

cl
as

si
fic

at
io

n.
 E

xa
ct

 p
ric

es
 a

re
 th

en
 c

om
pu

te
d

by
 p

re
de

fin
ed

 ru
le

s

V
ie

hm
an

n
et

 a
l.

(2
02

1)
C

al
va

no
 e

t a
l.

(2
02

0)
A

sk
er

 e
t a

l.
(2

02
1)

A
lia

ba
di

 e
t a

l.
(2

01
7)

Lu
ss

an
ge

 e
t a

l.
(2

02
1)

b
Sp

oo
ne

r e
t a

l.
(2

01
8)

D
om

ai
n

Se
qu

en
tia

l e
le

ct
ric

ity

m
ar

ke
ts

 (m
ul

ti-
un

it
au

ct
io

ns
)

B
er

tra
nd

 d
uo

po
ly

B
er

tra
nd

 o
lig

op
ol

y
El

ec
tri

ci
ty

 m
ar

ke
ts

(m

ul
ti-

un
it

au
c-

tio
ns

)

St
oc

km
ar

ke
t

St
oc

km
ar

ke
t

A
ct

io
n

sp
ac

e
sc

op
e

Si
ng

le
 p

ric
e-

off
er

 p
er

un

it
Si

ng
le

 p
ric

e-
off

er
Si

ng
le

 p
ric

e-
off

er
Si

ng
le

 p
ric

e-
off

er
Vo

la
til

ity
 a

nd
 v

al
ue

fo

re
ca

st
(c

rit
ic

),
pr

ed
efi

ne
d

bi
dd

in
g

str
at

eg
ie

s (
ac

to
r)

Pr
ed

efi
ne

d
bi

dd
in

g
str

at
eg

ie
s

A
ct

io
n

bo
un

ds
[0
,
1
0
]2

B
er

tra
nd

- t
o

m
on

op
ol

y
pr

iz
e

[0
.1
,
1
0
]

[9
,
4
5
]

[0
,
2
]3

 (c
rit

ic
) [
0
,
2
]2

(a

ct
or

)
[0
,
9
]

A
ct

io
n

ste
p-

si
ze

1
Sc

al
e-

de
pe

nd
en

t
0.

1
9–

10
[lo

w
, m

id
, h

ig
h]

3
9

str
at

eg
ie

s
A

ct
io

n
sp

ac
e-

si
ze

1
0
2

15
1
0
2

3
⋅
4
⋅
4
=
4
8

3
3
 (c

rit
ic

) 3
2
 (a

ct
or

)
10

St
at

e
sp

ac
e

sc
op

e
M

ar
gi

na
l p

ric
e,

 v
ol

um
e

w
ei

gh
te

d
av

er
ag

e
pr

ic
e,

 a
nd

 to
ta

l
de

m
an

da

Si
ng

le
 ro

un
d

m
em

or
y

N
on

e
N

on
e

Pa
st

va
lu

e
an

d
va

ri-
an

ce
s (

cr
iti

c)
 S

to
ck

-
m

ar
ke

t i
nd

ic
at

or
s

(a
ct

or
)

St
oc

km
ar

ke
t i

nd
ic

at
or

s

St
at

e
ste

p-
si

ze
1

Sc
al

e-
de

pe
nd

en
t

N
on

e
N

on
e

[L
ow

, m
id

, h
ig

h]
c

Ti
le

 c
od

e
St

at
e

sp
ac

e
si

ze
1
0
2
 ( ⋅

 d
em

an
d)

1
5
2

1
1

3
3
 (c

rit
ic

),
3
3
⋅
2
2

(a
ct

or
)

32

St
at

e-
ac

tio
n

sp
ac

e
si

ze
1
0
4

1
5
3

1
0
2

48
3
9
=
7
2
9
 (c

rit
ic

),
3
3
⋅
2
2
⋅
3
3
≈
8
⋅
1
0
5

(a
ct

or
)

32
0

541

1 3

Computational Performance of Deep Reinforcement Learning…

model-free, (ii) could in principle be model free. However, the action spaces tend
to be relatively constrained both in range and granularity with action spaces includ-
ing 10–100 distinct actions, that may equally lead to a behavioral restriction of
the agents. Naturally, modelling choices have to be made. We describe those both
for action and state spaces with respect bounds, space-size, and step-size. Bounds
denote upper and lower limit of the modeled space. Space-size is the number of
elements in the space. Finally, step-size denotes the distance between individual ele-
ments. We employ the convention, that we write a given state’s size as product of
its individual constituents (i.e., 10 × 10 = 102 labels a space containing two distinct
features with 10 possible values each). Whether a given number of state-action pairs
appears sufficient, depends on the desired accuracy and modelling domain. The
employed state-action spaces tend to reside in the order of 102–105 (Calvano et al.,
2020; Viehmann et al., 2021). Despite the relatively large magnitude of the compos-
ite state-action space, the resolution of individual features remains relatively modest
typically ranging from 1 to 10 units, unless trivial state spaces are involved. The
number of distinct features (i.e., actions or state space elements) usually is less than
3. However, even slightly older papers can be found that exhibit action spaces of less
then 100 elements (Aliabadi et al., 2017).

Overall, we have discussed several challenges experienced within classical rein-
forcement learning exemplified by Q-learning. Not all of these challenges can be
expected to be easily overcome by deep learning. For instance, non-stationary state
spaces are a recognized problem of the notoriously hard multi-agent games that
seem unavoidable from an algorithmic perspective and remain common to all rein-
forcement learning methods, be it classical or deep.

However, other issues can very well be addressed by deep learning. Consider,
either Q-learning’s problematic state-action space scaling or its possible discretiza-
tion errors. Both are intimately tied to Q-learning’s natural discreteness and can be
remedied through the application of deep learning methods. Although there exist
deep learning approaches for discrete problems as well (for instance, DQN, Mnih
et al., 2015) or Lussange et al., 2021), we will go on to elaborate on the possibilities
of natively continuous algorithms in the following section.

3.3 � Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) extends Q-learning by two key con-
cepts: neural networks and actor-critic design.

First, when opting for a neural network based design, we forfeit the idea to explic-
itly storing information about any possible state action combination. This is desir-
able whenever the state-action space grows larger. Some problems may be well-rep-
resentable with coarse discretizations and these are exactly those where Q-learning
will perform well. Alas, many naturally occurring quantities such as temperature
or quantities of energy are inherently continuous parameters. Even essentially dis-
crete parameters such as prices may require very fine discretizations if adressed in
full-generality (i.e., down to cent scale). For such problem domains, neural network

542	 C. Graf et al.

1 3

based designs allow to represent continuous as well as almost continuous domains
easily.

If Q(st, at) grows too large to memorize and process efficiently, one could be sat-
isfied with finding a parametrized family of functions that guarantees

for a non-linear function C, a sufficiently small � and a fixed set of parameters
�1,… ,�p , where we require p ≪ S ⋅ A (i.e., there are significantly less weights
required, than needed for an exhaustive state space description). We call this neu-
ral network C the Critic network and �1,… ,�p its weights. (6) states that C is an
approximation of the Q-table Q, that is in turn an approximation of the problems
discounted cumulative reward function V obtained from the Bellman equation. This
would allow us to store comparable amounts of information with much less param-
eters. In principle, many function families can attain this, however neural networks
have been proven to always fulfill (6) if p is large enough by the so-called universal
approximation theorem (Cybenko, 1989).

This allows us to make the approximation

where we do only memorize a finite number of parameters �1,… ,�p and not neces-
sarily the possibly many at and st arising in complex state-action spaces. Moreover,
a function allows for continuous outputs, thus paving the way for continuous state-
action spaces.7

However, a further complication arises when moving to continuous action spaces.
The evaluation of (7)’s left hand side is straight forward. In particular, it is easy to
evaluate the maximum maxa Q(st+1, a) since Q is just a finite table. In Q each row
(or columns) is simply a finite list, that can efficiently be sorted to retrieve its maxi-
mal element. In contrast, if a is interpreted as a continuous input parameter of the
neuronal network C, we are faced with supa C(�1,… ,�p, st+1, a) , where we have to
take a supremum over infinitely many values of a. This is a non-trivial optimization
problem instead of simply sorting a list.

In order to circumvent this problem, we introduce another neural network A that
maps from the state space to the action-space and may depend on another set of
weights ��

1
,… ,��

r
 . We call A the Actor network. This is only one possible design

choice to solve the issue, but it is the hallmark of so-called actor-critic methods.
Instead of a neural network one could assume a functional form of A that allows for

(6)min
𝜔1,…,𝜔p

∑

t

||C(𝜔1,… ,𝜔p, st, at) − Q(st, at)||2 < 𝛿,

(7)
(1 − �)Q(st, at) + �[R(st, at) + � max

a
Q(st+1, a)]

≈ (1 − �)C(�1,… ,�p, st, at) + �[R(st, at) + � sup
a

C(�1,… ,�p, st+1, a)],

7  Note, that (7)’s RHS is a proper generalization of its LHS, in the following sense: The LHS is only
sensible for discrete values of a. In contrast, the RHS approximation of (7) makes sense for continuous
a, but is equally sensible for discrete a. Consequently, both variants are applied within RL. If (7)’s a is
taken discrete, the algorithm is called “Deep Q-Learning (DQN),” while for continuous a we call it a
“Deep Deterministic Policy Gradient (DDPG)” algorithm.

543

1 3

Computational Performance of Deep Reinforcement Learning…

efficient solution of the maximization problem, but that would be more similar to
so-called policy gradient methods. The idea of the neural network based approach is
that by updating

iteratively the actor becomes an approximation of the function mapping states to
ideal moves, thus

Overall, we simplify (7) to

leaving us with the actor-critic update rule. If the actor network is chosen to output a
single deterministic value at for each input state st , we obtain the update rule that is
characteristic for a deep deterministic policy gradient (DDPG) learning algorithm.

4 � Price‑Competition in a Symmetric Capacity Constrained Duopoly

In order to test the performance of our algorithms to derive Nash equilibria in a
strategic bidding context, we first discuss our benchmark scenario. We deliberately
chose a simple framework that has an analytical (static) solution but at the same
time captures the nature of price competition in a sealed bid uniform price auc-
tion setting. Overall, we aim to asses the performance of a continuous reinforce-
ment learning algorithm (DDPG). Consequently, the benchmark scenario should
have a straight forward continuous formulation. Moreover, we do not want to limit
our analysis to the relative performance of our algorithm with any particular set of
competing algorithms but we desire some form of absolute performance measure.
Hence, we require a benchmark scenario that is analytically solvable. We have kept
the scenario simple so that all Nash equilibria can be computed by hand. This allows
us to comment on every equilibrium and analyze how hard it is to find respectively.

We study the following scenario: Assume two identical players, i and j, compet-
ing against each other in prices. Both players control a capacity qi = qj = q > 0
allowing them to commit to produce a homogeneous product. Both players have
equal marginal cost ci = cj = c ≥ 0 . Players participate in a uniform price auction
setting by submitting price offers. We write the price offers without loss of general-
ity as pi ≤ pj ≤ p . Offer prices are constrained by a price cap ( p ). If both players
were submitting the same offer prices to the market, each player may sell one-half of
the total demand (“tie breaking rule”). We furthermore assume inelastic demand D,
that we require to be within q < D < 2q to ensure non-trivial solutions.

For any given set of parameters ( q, c, p,D ) and the tie break rule as described
above, we can compute an interval of Nash equilibria. We derive the Nash

(8)sup
��
1
,…,��

r

∑

t

C(�1,… ,�p, st,A(�
�
1
,… ,��

r
, st))

(9)sup
a

C(�1,… ,�p, st, a) ≈ C(�1,… ,�p, st,A(st)).

(10)(1 − �)C(�1,… ,�p, st, at) + �[R(st, at) + �C(�1,… ,�p, st,A(st))],

544	 C. Graf et al.

1 3

equilibria in Proposition 1. There, we find and characterize a non-trivial range of
equilibria that is well above the marginal costs of the players.

This allows us to contrast numerical results against a well understood back-
ground. We have conducted all our numerical simulations with the following set
of parameters, q = 50, c = 20, p = 100 , and D = 70 , unless specified otherwise.
We emphasize that the condition q < D < 2q is crucially needed for the existence
of non-trivial Nash equilibria. Alternatively, one may consider either the “uncom-
petitive” case 2q ≤ D or the “ultra-competetive” case D ≤ q.

In the “uncompetitive” case all capacity is sold, regardless of the players
behavior. Consequently, all strategies, where at least one player offers at the price
cap are within equilibrium. We consider this case to be a trivial case, that we do
not discuss further.

In contrast, the “ultra-competetive” case D ≤ q essentially renders the capacity
constraint irrelevant and thus reduces to standard Bertrand competition, where
both players offering their marginal costs constitutes the equilibrium strategy in
this case. Although the predictions for the standard model of Bertrand competi-
tion are well-known ( p∗

i
= p∗

j
= c ), this case is not necessarily trivial when the

goal is to learn this outcome through a black-box method. We believe that com-
plying with game-theoretical predictions for the special case of (non-capacity)
constrained Bertrand competition is an important minimum requirement in order
to trust a learning algorithm. Therefore, we include it in our discussion of the
results later on.

If we would discretize the players action space, the two player condition allows
us to easily visualize the games payoffs as a bimatrix. Moreover, this discretization
matches the discrete action space of Q-learning. Computing Nash equilibria can be
done straightforward from the bimatrix. Each best response can be read of row-wise
and column-wise. We find all equilibria precisely, where row- and column-wise
best responses match. In contrast, computing the equilibria of the continuous case
requires a thorough analysis. Our scenario is chosen precisely such that this effort
remains low, however in more general scenarios we have no guarantee of analytical
solvability.

Proposition 1  Consider an uniform price auction with two participants and eligible
offers that may be placed in the interval

[
−∞, p

]
 . If both participants offer a fixed

quantity q of an indistinguishable product, whose production involves a constant per
unit production cost of c and the demand D lies within q < D < 2q , then there exist
w.l.o.g. a number of tuples of equilibrium strategies pL < pH . The range of lower
equilibrium offer prices being all pL with

and the unique higher equilibrium offer price pH being

is the auctions range of Nash equilibria.

(11)pL ≤ (p − c)
(D − q)

q
+ c,

(12)pH = p,

545

1 3

Computational Performance of Deep Reinforcement Learning…

Proof  Let us start by identifying the player’s best responses. We begin by case dis-
tinction, either pL = pH or pL ≠ pH holds. In case of pi = pj the tie breaking rule
applies and each player receives pL

D

2
= pH

D

2
 Since any player could improve his

profit to pHq by minimally lowering his offer and thus selling its whole capacity,
offering pL = pH can not be a best response for any player.

Hence, without loss of generality, we can assume pL < pH (thus allowing us to
interpret L, H as low and high offering respectively). Let us consider the action of
the high offering player pH . pH is a best response if the high-bidder H can neither
gain by increasing or decreasing its offer.

Since the high-bidder is the price setting player, we can write the profit of the
high-bidder as �H = (pH − c)(D − q) ≤ (p − c)(D − q) . Thus the high-bidder can
always increase its payoff by increasing its offer, unless it offers at the price cap.
This makes offering at the price cap the only candidate for a best response of the
high-bidder.

It remains to discuss, whether the high-bidder can improve its profit by lower-
ing its offer. Lowering ones offer can only increase ones profit, if one undercuts the
competition and thereby gains a large share of the market. This means that in order
for pH = p to be a best response the following equation has to hold:

otherwise the high-bidder might gain by undercutting the low offering player. For
the low-bidder in-turn, all prices below the price cap yield the same profit and offer-
ing at the price cap leads to a tie that decreases its profit. Therefore, the low-bidder
is too playing a best response. Hence, if Eq. (13) holds both player are playing a best
response and thus a Nash equilibrium.

Therefore, the high offering player is completely fixed, however the low playing
player has a range of possible equilibrium strategies. To characterize these, we go on
to reformulate the above condition to

Now considering that q, c,D and p are fixed by our assumptions, we have found a
closed representation of pL being in equilibrium and the statement to be shown fol-
lows. 	� ◻

We briefly comment on the implications of Proposition 1. First, we see that the
interval of equilibria depends on production costs, the ratio of sales and the price
cap.

In our case the assumption of completely inelastic constant demand leads to
the price cap being the only constraining factor on the offer prices of the high
offering players. If demand was elastic the consumers would put an implicit price
cap and therefore constrain the suppliers in their ability to determine the mar-
ket clearing-price. Note that the high offering player needs to be always bounded
from above as required in Eq. 13.

(13)(pL − c)q ≤ (p − c)(D − q),

(14)(pL − c) ≤ (p − c)
(D − q)

q
.

546	 C. Graf et al.

1 3

5 � DDPG Learning in Uniform Price Auctions

Deep Deterministic Policy Gradient learning (DDPG) is a successor of classical RL
(Q-learning) allowing for continuous action and state spaces. Clearly, storing all
function evaluations in a Q-table becomes infeasible in a continuous setting. There-
fore the Q-table is only approximated using neural networks. DDPG employs a so-
called Actor-Critic design. Hence, actions and states qualities are evaluated by two
differing neural networks: the Actor network and the Critic network respectively.
For example in the bidding context, the actors submit offer prices and the critics
collect the offers and past rewards in order to predict future hypothetical profits.
Once all offers are submitted, the market clearing determines winners and losers of
the auction and awards revenues to the agents. Agents process this information and
update their neuronal networks to incorporate the new information gained by the
current auction.

DDPG is a well-tested and successful algorithm, that has performed well in con-
trol tasks in a range of continuous environments, [e.g., several robot motion control
tasks (Zhang et al. 2021), autonomous driving (Yi 2018)]. In this section, we pro-
ceed to demonstrate that DDPG can also learn strategic behavior in continuous envi-
ronments such as uniform price auctions. Moreover, we give a detailed presentation
of our DDPG implementation and discuss the impact of relevant design choices such
as learning rate, memory and normalization methods.

Run-time ends are usually not determined by a convergence criterion but by fixed
iteration numbers (i.e., 100,000 or 20,000). However, we employ convergence crite-
ria for the evaluation of statistics. Convergence is always understood with respect to
the underlying game-theoretic Nash equilibrium. The Nash equilibrium is provided
by Proposition 1 for the capacity constrained case and by the 2nd lowest produc-
tion cost in the unconstrained case. We average the last 5000 actions and compare
their deviation from the game-theoretic prediction. Simulations with averages that
lie within a tolerance of 2 standard deviations of the minimal noise are considered
converged. Note, that we employ an adaptive noise with larger standard deviation in
the beginning and a lower standard deviation towards the end of the run-time.

We deploy DDPG to explore its efficacy to find equilibria in a competitive bid-
ding environment. There is not yet a standardized protocol that assesses these com-
plex algorithms and one of our contributions is a first framework to perform such an
analysis. Furthermore, we regard DDPG as a particularly successful instance of the
much larger family of deep learning algorithms. We believe that our results can be
taken as exemplary for treating the much broader question of deep learning’s effi-
cacy for simulations of strategic bidding behavior.

In order to test DDPG, we rely on the simple but non-trivial benchmark exam-
ple described in Sect. 4, with an analytical solution. This is important because it
allows us to classify whether we successfully learned an equilibrium outcome. We
interpret convergence towards an equilibrium outcome as a sign of successful learn-
ing. Finally, we perform statistics on the strategies the algorithm converged to after
a fixed learning period. The basic benchmark scenario is kept constant in order to
evaluate the influence of several parametrizations of the algorithm.

547

1 3

Computational Performance of Deep Reinforcement Learning…

One of the main challenges of assessing reinforcement learning algorithms
in general is their dependence on a number of user-defined “hyper-parameters.”
Already for simple Q-learning, parameters such as learning rate, discount rate,
and exploration-exploitation parameters will affect the algorithm’s speed and
convergence. When approximating the Q-function by a neural network, addi-
tional parameters, such as the memory buffer size, need to be chosen. The DDPG
framework consists of two neural networks, hence, all the aforementioned param-
eters will affect solution quality and solution performance but the benefit of this
approach is that it is able to treat continuous state-action spaces.

There is no generally agreed prescription on how to select hyper-parameters,
however, specific problem domains have distilled their experience into broad
design guidelines for selecting these parameters. For instance, image recognition
has nowadays been associated with convolutional neural network architectures
(CNN’s) and image generation is typically relying on generative adverserial net-
works (GAN’s). Employing this kind of methods to market equilibrium problems
is relatively new and therefore we can not draw on any such prescriptions. Our
design philosophy is to closely mimic the parametrization of the seminal paper
that introduced continuous actions-space deep learning (Lillicrap et al., 2015).

This design was chosen because it has demonstrated versatility and efficiency
in continuous control problems. We deploy the concept provided by Lillicrap
et al. (2015) because an established deep reinforcement learning design for deci-
sion making in economics has yet to be developed. The problems in Lillicrap
et al. (2015) usually are controlling for a small number of parameters with differ-
ent but continuous action space ranges (i.e., bearing, throttle, brake). This setting
is similar to our auction market problem where market participants can choose
price, quantity, or both.

It is worthwhile to reexamine the network design of Actor and Critic depicted
in Fig. 1. Here it is apparent that the Actor is slightly simpler in design as opposed
to the asymmetric design of the Critic. The Lillicrap et al. (2015) design rec-
ognizes that the Critic processes more complex inputs (both states and actions)
than the Actor (only states). This difference is mirrored by the inputs of the Actor
taking two different paths through the network. Indeed, the processing of state
space information traverses identical layers in the Actor and the upper branch of
the Critic alike. In contrast, the input actions traverse a smaller rectified linear
units (ReLU) layer. This design implicitly assumes that it is easier to encode the
impact of one’s actions (as we do have control over them) than the impact of
environmental influences (where a large number of confounders may be present).
We believe that this economical approach in representing actions is advantageous
if the agent controls a small number of distinct actions such as a single-unit price
offer.

We precisely list all relevant hyper-parameters that are related to deep learning
in Sect. 5.3. In Sect. 5.5, we systematically vary the most relevant hyper-parameters
and report which changes have been beneficial to derive equilibrium outcomes in
bidding problems. It is our hope to contribute thereby to building up similar domain
specific recommendations for deep learning in energy systems analysis as are cur-
rently available for image recognition.

548	 C. Graf et al.

1 3

5.1 � Main Benchmark Scenario: Capacity Constrained Bertrand Competition

We briefly recapitulate the structure of our benchmark scenario detailed in Sect. 4.
Our setting consists of a duopoly competing in offer prices. The competition takes
place through an uniform price auction mechanism. The auction mechanism has
the objective to maximize welfare given the firm’s offer prices and returns a single
(uniform) market clearing price and market clearing quantities for both players. We
assume that both players have a fixed capacity and submit offer prices simultane-
ously to the auction mechanism. The static game has a continuum of equilibria that
can be described analytically. In the learning context however, the one-shot game
will be iterated many times and agents may learn how to optimally navigate in such
a setting.

We assume symmetry, i.e., both players are identical in terms of cost and maxi-
mum capacity of 50 they control. Both players are assumed to always offer their full
capacity and may submit offer prices in a continuous interval that we have normal-
ized between [−100, 100] . We assume a production cost per unit of 20 and constant
inelastic demand of 70.8

We parameterized our benchmark model such that demand is strictly larger than
each firm’s capacity. Hence, both firms will have positive market clearing quanti-
ties. However, due to the uniform pricing auction setting, the marginal firm, i.e., the
firm that will set the price, will produce less than the infra-marginal firm. Hence, the
trade-off in this game is between setting the price but selling less, and being infra-
marginal (not setting the price) but selling full capacity. Clearly, the latter strategy
will dominate in terms of per-unit profit given one player is setting a high price
and that both players are symmetric. We find that equilibrium strategies typically

Fig. 1   Schematic representation of neural network architecture. Notes: The actor network (Panel a) uses
one layer to process state information, subsequently performs one coarse graining step and uses a tangens
hyperbolicus layer to normalize outputs between [−1, 1] . Critic architecture (Panel b) is similar, although
action input is directly fed into layer 2. The output layer is linear. All hidden layers use rectified linear
activation units functions

8  Most of these assumptions can be relaxed easily to model more realistic cases. However, the main
purpose of our paper is to test specifications of the algorithms that is why we have chosen an analytically
tractable benchmark scenario.

549

1 3

Computational Performance of Deep Reinforcement Learning…

converge to states where one player is offering at the price cap and the other one far
below—a behavior consistent with the analytical equilibrium description.

In the completely symmetric scenario, which agent ends up as high- or low bid-
der is a the result of a complex interaction of network initialization, the random
seeds, initial exploration and the learning rate. On average both players end up
50% as high-bidder and 50% as low-bidder. However, this dependence on random-
ness stems essentially from the strong symmetries of the benchmark scenario. In
the main benchmark scenario, we mostly refrained from “favoring” a player, except
in the asymmetric production cost scenario, where the low-bidding player is deter-
mined by the more favourable cost structure.

The advantage of deploying DDPG to the problem rather than Q-learning is
that the former is able to handle continuous action spaces rather than only discrete
actions spaces. Nonetheless, with the right parameterization, we achieve a reli-
able convergence of the DDPG algorithm despite the continuous action space. For
instance, in Fig. 2 we depict the learning progression of a well-tuned DDPG run.

DDPG also remains effective in finding equilibrium outcomes. Figure 3a, b
depict the share of 100 test runs that have terminated in a Nash equilibrium state.
The blue, green, and red line describe runs with differing normalization schemes
(see Sect. 5.4.2), the height of these lines intersection with the orange Nash equilib-
ria border is the ratio of runs that converged to equilibrium within 15,000 episodes.9
There, we see that the best performing method (i.e., layer normalization, red line)
achieves convergence rates of 100% and 99% in the small and large state space case
respectively. Therefore, it is evident from Fig. 3a, b that it is possible to attain reli-
able convergence in continuous state-action spaces with DDPG.

5.2 � Alternative Benchmark Scenario: Unconstrained Bertrand Competition

The ratio between demand and the capacities of the agents is a critical parameter.
We have discussed the details in Sect. 4, where we argued that the most interest-
ing case is q < D < 2q , as covered in our standard benchmark case. Nonetheless,
0 < D ≤ q is worth a brief discussion, since it reduces the problem to an uncon-
strained Bertrand duopoly. It is well-known that the only equilibrium in this case
is the one, where both players offer their marginal costs. Albeit, being of minor
theoretical relevance, reproducing the behavior of Bertrand competition constitutes
an important first validation of our algorithms agreement with established theory.
Indeed, some computational methods turned out to have problems reproducing the
theoretic predictions of Bertrand competition. For instance, Noe et al. (2012) report
that genetic algorithms tend to not converge to Bertrand equilibria in a single unit
setting, regardless of 1st or 2nd price auction designs and both with fixed and uncer-
tain valuations. In contrast, DDPG turns out to reproduce theoretical predictions.

9  An episode corresponds to a single round of submitting offers and subsequent market clearing.

550	 C. Graf et al.

1 3

In a slight departure from our standard benchmark case, we have performed
a couple of algorithm runs implementing a standard Bertrand duopoly with
q1 = q2 = D = 50 instead of our standard choice q1 = q2 = 50,D = 70.

In essence, we find that DDPG converges towards marginal costs in the stand-
ard Bertrand duopoly as expected. These findings remain robust under differ-
ing cost-structures and player numbers. In Fig. 4, Panel (a)–(c), we have chosen a
duopoly with symmetric marginal costs , purely due to reasons of convention (i.e.,
c1 = c2 = 20 ). This represents the standard situation, when studying Bertrand com-
petition. DDPG converges completely analogously with different symmetric cost
levels and asymmetric costs. For instance, asymmetric costs scenarios (we simulated
the case c1 = 0 and c2 = 20 ) converges reliably too.10 That being said, DDPG con-
verges to the higher of the two production costs, which generalizes the case of sym-
metric costs consistently.

More generally, for oligopolies with more than two firms the above still holds. As
long as every company can satisfy the demand on its own, DDPG converges towards
the 2nd lowest marginal costs. In other words, the firm with the 2nd lowest marginal
cost will price-constrain the firm with the lowest marginal cost. Hence, the cost
structure does not affect convergence and multi-player behavior is consistent with
duopoly behavior. We want to remark that Bertrand competition with asymmetric
cost structure is a prime example where continuous algorithms such as DDPG out-
perform discrete algorithms such as Q-learning. For instance, lets call the smallest
difference between two discrete actions the action step-size, �d . The action step-size

Episode

O
�e

r P
ri

ce

Price Cap
Nash Equilibrium
O�er Player 1
O�er Player 2

Fig. 2   Exemplary learning progression. Notes: The figure shows the development of offer prices in a
duopoly. Each point corresponds to a players offer price in a given episode. The figure shows differ-
ent phases of the learning progress throughout an exemplary DDPG run. We can distinguish: a Episode
0–2000: random exploration, exploration of action space limits; b episode 2000–4000: competition and
exploration of opponents reactions; c episode 4000–7000: initial relaxation to equilibrium with high vari-
ance; d episode 7000–9000: attempted exploration of alternative strategies; e Episode over 9000: final
stabilization to equilibrium with low variance

10  Our simulation found that 17 out of 20 runs converged.

551

1 3

Computational Performance of Deep Reinforcement Learning…

effectively introduces an error of up to �d if c2 does not directly intersect with the
discretized offers. For large �d this is of relevance, since we know that the number
of states to explore goes to infinity as �d → 0 . Hence, discrete algorithms exhibit a
clear precision run-time trade-off in this case. For instance, the largest action step-
size found in our literature discussion of Q-learning reaches up to $10/MWh (see
Table 1 or Table A.11, Appendix A, in Aliabadi et al., 2017).

However, there exists a caveat: the speed of convergence. Indeed, it is sometimes pos-
sible that resulting offer prices approach the marginal costs at a speed leading to conver-
gence times of roughly 100,000 episodes. Well parametrized runs of capacity constrained
Bertrand duopolies typically do not exceed convergence times of 20,000 episodes.

Moreover, we were able to identify at least two criteria that control the convergence
times of unconstrained duopolies: the size of the memory buffer and the noise decay
rate. Indeed, this case makes it particularly apparent that the size of the memory buffer
needs to be chosen carefully. Both too large and too small buffer sizes negatively impact
the convergence of the “easy” unconstrained problem. Similarly, the noise decay needs
to be adjusted, this finding is however expected (well-known as exploration-exploita-
tion trade-off) and similar in all RL algorithms. We discuss the details in Sect. 5.6.

We want to remark that (even extremely) slow convergence to an equilibrium
(such as marginal costs in unconstrained Bertrand competition) by no means con-
tradicts any fundamental game-theoretical predictions because GT does not predict
how or how fast an equilibrium will be found. GT solely predicts that eventually
players ought to arrive and remain within equilibrium. It may well be the case that
certain equilibria are relatively slow to learn despite having well-known theoretical
justifications.

(a) Empty state space (excluding last actions) (b) Small state space (including last actions)

Fig. 3   Distribution of Offer-heights depending on Normalization. Notes: We compare 100 unnormal-
ized (blue), batch normalized (green), and layer normalized (red) DDPG runs in the benchmark scenario
described in Sect. 4. Panel a depicts runs with empty state space and Panel b depicts runs with explicit
state space information about last round actions. We plot cumulative densities with respect to offer
height, thus showcasing the distribution of the low-offering player offers. Offers left of the yellow bar
correspond to an equilibrium strategy. The graphs plot the percentages of all offers that attained at least
the indicated height. Note that the offer price was re-scaled to its actual range after normalization

552	 C. Graf et al.

1 3

O
�e

r P
ric

e

(a) 50,000 Round Replaybuffer

O
�e

r P
ric

e

(b) 5,000 Round Replaybuffer

O
�e

r P
ric

e

(c) 500 Round Replaybuffer

Fig. 4   DDPG convergence times of unconstrained bertrand games depending on replaybuffer size. Notes:
Figures show the influence of replaybuffer size on convergence in an “ultra-competitive” scenario, where
D ≤ q . Each panel depicts the fastest converging DDPG run out of 10 identical runs. Here, the conver-
gence times are from top to bottom a above 100,000 episodes, b around 50,000 Episodes, and c around
20,000 episodes, hence convergence times are decreasing with smaller replay buffer sizes 

553

1 3

Computational Performance of Deep Reinforcement Learning…

5.3 � Tuning Parameters

DDPG is considered a so-called actor-critic method, thus it uses two neural networks
(the actor and the critic network) in parallel with possibly differing design choices.
Hence, DDPG requires a large set of parameters to be tuned. A relevant contribution
of our work is to evaluate sensible values and relevant parameters for the problem
domain of uniform price auctions. However, due to the many possible interactions
between parameters a selection has to be made, which parameters are investigated
in detail and which are held constant. We have deemed the following parameters to
be most relevant and thus studied their significance in Sect. 5.5 through a variational
analysis, in particular, the actor learning rate, the critics learning rate, inclusion of
last rounds actions in the state space, and several action normalization schemes.

While we held replay buffer size fixed in the main benchmark scenario (capac-
ity constrained Bertrand competition), we performed a variational analysis of replay
buffer size for the unconstrained Bertrand duopoly. Moreover, we have found signifi-
cant differences between constrained and unconstrained Bertrand duopolies. Indeed,
in the unconstrained case we have found the replay buffer size to be the decisive
parameter alongside the noise decay rate, although these have not been relevant for
convergence in the constrained case.

Apart from these variational analyses, the following parameters, chosen almost
entirely in accordance with Lillicrap et al. (2015), have been held fixed: the choice
of an almost empty state space except for the inclusion or exclusion of last rounds
actions, the optimizer, actor network design including depth and hidden layer, critic
network design including depth and hidden layer, soft-update rate, � , noise, and the
use and size of a replay buffer. We have summarized our choice of parameters in
Table 2 and depicted the overall structure of our neural network architecture and the
flow of reward-action-signals in Fig. 5.

Table 2   Model and hyper parameters

Model environment parameters General hyper parameters

Capacities ( q) 50 Soft-update rate ( �) 0.001
Marginal costs (c) 20 Discount rate ( �) 0.99
Price cap ( p) 100 Max memory size 50,000
Demand (D) 70 Batch size 128

Total runs 100
Episodes per run 15,000

Noise hyper parameters Neural network hyper parameters

Mean ( �) 0 Learning rate actor 0.0001
Variance ( �) 0.1 Learning rate critic 0.001
Regulation coefficient 10
Decay rate 0.001

554	 C. Graf et al.

1 3

5.3.1 � State Space

The most fundamental modelling choice in any RL algorithm is how the state-action
space is modelled. In our setting the action space is the set of possible offer prices
that can be submitted to the market clearing algorithm. In terms of the state space
it is less clear what should be encoded in order to capture the dynamics of an envi-
ronment. We believe that including richer state spaces is a very promising line of
future research, but have decided to keep state information limited to keep the analy-
sis tractable. Consequently, the state was chosen to be almost empty with one excep-
tion: the offer prices submitted to the market clearing of the previous period. We
emphasize that all environment parameters (i.e., capacity, marginal costs, price cap,
and demand) have been kept constant, but have not been included explicitly within

Fig . 5   Depiction of the employed multi-agent neural network architecture. Notes: We depict the interac-
tion between agents and environment in our uniform price auction scenario. Each agent is equipped with
two neural networks: the critic and the actor. In each round the critic processes the actual rewards and
produces future reward estimates, that are in turn fed to the actor who uses them to determine their offer
prices. In case of explicit state space memory, all neural networks receive last rounds offers as state space
information. All agents submit their offers to the environment. The environment combines all submitted
offers with demand information and a market clearing subroutine. The market clearing determines the
market price, sold quantities and revenue. Revenue is turned into profit within the environment by sub-
tracting costs. Here, profit translates to the reinforcement learning notion of reward. Finally, rewards and
last turn offers are relayed back to the agents, who use it to determine next rounds offers. This completes
a single learning cycle

555

1 3

Computational Performance of Deep Reinforcement Learning…

the state space. Hence, all information regarding the environment parameters is
learnt instantly during the algorithm without input from our side. Although DDPG
includes a parallel memory mechanism (the replay buffer), we opted to explicitly
include this information in the state space. Indeed, we find that such an explicit rep-
resentation of memory impacts the resulting behavior.

5.3.2 � Optimization Routine

Deep learning algorithms rely on solving numerous successive optimization prob-
lems when updating neural networks, hence the choice of solver is relevant for the
algorithms behavior.

We have employed the ADAM solver (Kingma & Ba, 2015). ADAM is not only
used in Lillicrap et al. (2015) but can currently be considered as the state-of-the-art
implementation of stochastic gradient descent that is employed throughout the deep
learning community. ADAM’s popularity comes from the fact that it is an adap-
tive solver which adjusts initial learning rates and hence promises to work robustly
within a range of learning rates. Nonetheless, we find significant influence of learn-
ing rates on the convergence of the algorithm.

Moreover, we comment on the common observation that ADAM’s performance
is not scale independent. In our opinion this is an undesirable side-effect. However,
this effect seems not be limited to the ADAM solver but is consistently reported
throughout the deep learning community (van Hasselt et al. 2016). This leads to
the counterintuitive fact that problem hardness is affected by the absolute values of
the encountered rewards and actions. Nonetheless, we acknowledge ADAM’s preva-
lence in the deep learning community. Most deep learning practitioners therefore
employ a down-scaling of the relevant parameters prior to learning and a subse-
quent re-scaling after learning to match the environments scaling again. We follow
this common practice and find considerable impact of re-scaling in general and the
employed scaling method in specific.

5.3.3 � Actor and Critic Network Design

The neural network of the Actor consists of four layers, where the first layer is the
input layer corresponding to the size of the state, and the second and third are recti-
fied linear units (ReLU) layers. The hidden layer has a size of 400 input nodes and
300 output nodes. An actor network needs to output an action. The final tangens
hyperbolicus layer reduces the output to one node, since each agent can only place
one offer per episode. The choice of the tangens hyperbolicus activation function
may seem exotic at first glance, however it is motivated by mapping any desired
interval to the [−1, 1] interval. This re-normalizes the action space to a value range,
where the ADAM (Kingma and Ba 2015) optimizer operates reliably. Therefore, the
actor network’s output is a normalized action and needs to be re-normalized to make
sense within the context of the environment.

The Critic neural network consists of three layers, where the size of the first layer
is the size of the state, the second ReLU layer is also 400 plus the size of the action
vector, the third layer has also a size of 300 and the last layer has the size of the

556	 C. Graf et al.

1 3

action vector, since a Q-value for every value within the action vector is needed.
Therefore, the critic has a certain asymmetry in design. State information traverses
a one layer deeper network than action information. Including the action only from
the second layer is suggested by the authors of the DDPG algorithm (see Lillicrap
et al., 2015).

All neural network weights are initialized by PyTorch standard initializa-
tion. The employed initialization differs slightly between layer types. Tanh layers
are by default initialized by Xavier initialization, while ReLU layers use Kaiming
initialization.

5.3.4 � Noise

Noise is an essential part of any RL algorithm as it enforces exploration. In princi-
ple, the output of a neuronal network is always deterministic. For instance, an Actor
neuronal network will always recommend the same action (in our case the offer
price) given the same state space. To ensure that the algorithm also explores alterna-
tive strategies, noise is introduced. Noise is a normal distributed variable with mean
zero and parametrized variance that is added to the actor recommended action. Typi-
cally, the variance of the noise is set to a high initial level which decays11 over time
until a minimal noise variance level is reached.

Lillicrap et al. (2015) originally used an Ohrensteil-Uhlenbeck noise, but recent
research showed that a normally distributed Gaussian noise performs just as well
(Fujimoto et al., 2018). Hence, we have opted for Gaussian noise, since it can be run
with fewer hyper-parameters thus facilitating isolation of relevant parameters.

We decided to use normally distributed Gaussian noise with mean � = 0 and var-
iance � = 0.1 . Additionally we apply a regulation coefficient to move the mean, to
enlarge the starting noise to further ensure that the whole action space is explored
adequately. To make sure that the algorithm converges with time, there is also a
decay rate applied to the noise. The decay ensures that the noise gets smaller with
each episode, until a defined minimum noise setting is reached.

5.3.5 � Replay Buffer

Another feature of DDPG is the replay buffer. A replay buffer stores a (typically
large) number of past rounds. In our case up to 50,000 rounds are stored in the mem-
ory buffer. Initially, the buffer is empty and every action is stored within the buffer.
The memory buffer is managed according to the first-in, first-out principle i.e., once
50,000 memorized actions are stored, every new action is saved in the buffer, at the
expense of deleting the oldest memorized action to adhere to the memory limit.

In the standard benchmark scenario the replay buffer was a fixed parameter with
size 50,000. In this case the buffer is chosen so large, that memory constraints
should not influence the algorithms outcome. It is possible that the large buffer size

11  The decay rate is yet another parameter of the RL algorithm.

557

1 3

Computational Performance of Deep Reinforcement Learning…

may have slowed convergence, but due to us being able to attain convergence with
proper learning rate choices, we opted not to vary the buffer size.

Neural networks do not contain an exact description of past rounds, but are
adapted iteratively by minimizing their predictions deviation from a set of target
states in each update that learns new incoming information. This allows neural net-
works to remain small, when scaling up the size of the state-action space, with only
minor prediction losses. However, neural networks of DDPG should incorporate
both new information, but also be able to retain past knowledge. For this reason,
every update of a neural network randomly draws a number of old rounds from the
memory buffer. The replay buffer aims to statistically represent the past. Then the
network is adapted to attain minimal loss on the new rounds and the rounds drawn
from the memory buffer.

The replay buffer is yet another feature of deep reinforcement learning meth-
ods. In contrast, classical reinforcement learning such as Q-learning usually has no
directly corresponding type of memory. In Q-learning, memory can also be included
into the state space. However, the replay buffer is in fact a second type of memory,
alongside a possible inclusion of for instance last round actions into the state space.
Experiments lacking an explicit memory representation in terms of state space can-
not be said to be truly memory-less. Informally, the replay buffer may be seen as a
type of approximate “long-term” memory, while the state space memory may be
closer to an exact “short-term” memory. An in-depth analysis of the exact interrela-
tion between both memory processes is left to future research.

5.4 � Variational Analysis of Learning Parameters

This section covers the impact of parametrization on DDPG’s performance. We
will see that correct parametrization is vital to the performance of DDPG, hence
we believe that recommendations on best practices in domain specific parameter
choices will be a significant contribution. In order to make an informed parameter
choice, we vary the following parameters: learning rate actor, learning rate critic,
normalization methods, and state space memory. We analyze the the variations
effect on the frequency of found Nash equilibria, which is our main figure of merit.
Overall, we vary the two learning rates against each other and the normalization
methods against each other. All these are once performed with and without explicit
state space memory.

5.4.1 � Learning Rates

A priori it is not clear how to set the learning rates in both of DDPG’s neural net-
works nor whether they should be the same. Therefore, we vary the actor and critic
learning rates independently and around the recommended values in Lillicrap et al.
(2015). More specifically, we vary both learning rates in the interval [1e−2, 1e−5]
with four equidistantly chosen learning rate steps per order of magnitude. Conse-
quently, each interval is traversed in a resolution of 13 settings. This means that we
have explored 169 learning rate combinations. Each learning rate setting has been

558	 C. Graf et al.

1 3

run 10 times independently with identical parameter settings. We have performed
statistics on the number of runs successfully converging to equilibrium strategies
after 15,000 iterated episodes and summarized the outcomes in Fig. 6.

The heatmaps in Fig. 6 show the respective learning rate of the actor and critic
networks against the percentage of found equilibrium strategies. Color code blue
[red] corresponds to high [low] shares of successful conversions to equilibrium
strategies. The two heatmaps in Fig. 6 depict the differences between a memory-less
empty state space (Panel a) and a small state space that solely stores the actions of
the last round (Panel b).

Generally speaking, we find that rates of high convergence are concentrated in
the upper left quadrant of the heatmap. This quadrant corresponds to actor learning
rates below 0.0025 and critic learning rates above 0.0025. Choosing learning rates
of the actor and the critic to be either very small or very large impairs convergence.
Furthermore, the diagonal representing balanced choices does yield sub-optimal
convergence results with best results on the 0.001 × 0.001 field. While large values
of actor learning rates above 0.0025 appear consistently detrimental, with a surpris-
ingly sharp border between 0.001 and 0.0025, critic learning rates may be chosen
more tolerantly.

The general pattern is similar in both heatmaps, however it is evident that the blue
region of convergence is significantly smaller in the larger state space case in Fig. 6,
Panel (b). This shows a visible impact on convergence despite a relatively modest
growth in absolute state space size of two extra-variables. Furthermore, it demon-
strates that in our specific context, supplying additional information is not necessar-
ily beneficial. Although the smaller region of convergence is a drawback, we point
out that this does not imply that the algorithm converges to a lesser degree with more

Fig. 6   Rate of convergence to Nash equilibrium with varying learning rates. Notes: Plots of convergence
rate of 10 DDPG runs per pixel depending on actor and critic learning rate. Panel a shows an empty state
space, while panel b is otherwise identical but contains last rounds actions explicitly in the state space.
Blue corresponds to high and red to low convergence rates. Panel a Shows overall more blue pixels than
panel b indicating that more complex state spaces are more sensitive to a correct choice of learning rates.
Nonetheless, both Panel (a) and panel (b) contain pixels with 100% convergence rates, implying that
with correct parameter choices, complete convergence is possible even with the larger state space of
panel (b)

559

1 3

Computational Performance of Deep Reinforcement Learning…

state-information. In fact, this is more indicative of the algorithms sensitivity to para-
metrization. Both panels in Fig. 6 reach maximal convergence rates well above 90%.
This means that in both panels there exist parameter choices that lead to almost guar-
anteed convergence. However, the number of learning rate combinations that lead to
convergence above 90% is lower in Panel (a) than Panel (b). This in turn means, that
there are less parameter combinations that lead to reliable convergence in Panel (b), i.e.,
the case with state space memory. Hence, well-calibrated algorithms converge reliably
regardless of state space size, while ill-calibrated algorithms fail to converge. What
differs is the number of learning-rate combinations that reach high-convergence rate.
Large state spaces work well with fewer learning-rate combinations, thus they are more
sensitive to the choice of learning parameters. Therefore, increasing size of the blue
areas in the Fig. 6 can be interpreted as a measure of increasing robustness. This indi-
cates a relation between state space size and learning parameter robustness.

We have discussed the upper left quadrant in Fig. 4 at length. However, there
remains the lower right corner, where we too see convergence in some settings. This
corner is starring very low actor learning rates such as 0.01 combined with very
low critic learning rates in the order of 10−5 yielding modest convergence rates. Fur-
thermore, we find that most of these runs are situated on the extreme edges of the
action spaces. This is illustrated in Fig. 7, where we contrast the rate of convergence
with small state space against the offer-distribution of the low-offering player. We
only depict the offer prices of the lower offering player because in equilibrium the
high-offering player is supposed to offer at the price cap. Therefore, in equilibrium
only the low-offering player has freedom to vary his offer prices. In the lower right
corner of Fig. 7, Panel (a) and (b), we see the following pattern: the blue-colored
area of converged runs in Panel (a) mirrors the red pattern of extremely low offers in
Panel (b). Hence, large actor learning rates combined with small critic learning rates

Fig. 7   Relating rate of convergence to winning offer-distribution. Notes: Panel a plots the convergence
rate of 10 DDPG runs per pixel depending on actor and critic learning rate. Panel b plots instead the
average of the 10 runs lower offers. Blue corresponds to high and red to low convergence rates. We can
see a similar curved shape in both panels. Typically, low convergence rates correspond to both players
offering near the price cap. In contrast, while the top-left and bottom-right corner are both convergent in
Panel (a), the offer distribution differs significantly in Panel (b). All runs were performed in benchmark
scenario 4

560	 C. Graf et al.

1 3

effectively lead to a form of equilibrium selection that favours extremely low offers.
It is not entirely clear whether this is desirable convergence in the lower right quad-
rant results from true learning of the equilibrium. It is possible that these choices are
related to “being stuck” at the lower action spaces border. Therefore, we regard the
convergence in the lower right quadrant as a less desirable outcome than the conver-
gence in the upper left corner.

To summarize, we find setting the critic learning rate larger than the actor learn-
ing rate is beneficial in our setting. While there is a significant range of valid actor
learning rates, typically large learning rates are beneficial for the speed of conver-
gence, if convergence is attained at all. Staying within the 10−3–10−4 range delivered
the best results. We also point out that the inclusion of state variables is a delicate
choice. Our results show that it is possible to attain competitive convergence rates
with more complex states. However, the relevance of a correct choice of parame-
ters increases too. Relevant state parameters should be included together with care-
ful inspection of the learning parameters, but we believe that less-informative or
even redundant state variables would have a detrimental effect on the algorithm’s
performance.

5.4.2 � Normalization Schemes

One of the methodological differences between classic reinforcement learning
(Q-learning) and deep learning is the strong prevalence of normalization methods
within the latter.

Most machine learning practitioners report significant scale dependencies on
the magnitude of the input parameters, when applying deep learning techniques
(van Hasselt et al., 2016). This surprising effect means that it may be more effec-
tive to learn from inputs in an interval [0, 1] than [0, 1000]. These scale dependen-
cies are observed consistently throughout differing problem domains (Hinton et al.,
2012; Krizhevsky et al., 2012), even apparently scale-invariant problem domains.
Therefore, down scaling of input data prior to learning and re-scaling to the real
problem domains scale after learning is standard practice within the deep learning
community.

The potential dependence of model outcomes on normalization distinguishes
deep learning from classical methods that is why we provide an in-depth analysis
of the impact of normalization on learning. We contrast unnormalized data with the
two most relevant normalization schemes: batch normalization (Ioffe & Szegedy,
2015) and layer normalization (Ba et al., 2016). Note, that within DDPG in each
step of learning, several neural networks are adapted to a batch of several generated
observations. Each individual observation is represented by a vector, where each
component represents a feature of the state-action space. Batch normalization curbs
the variance between several input vectors (i.e., samples) and layer normalization
reduces the variance between the components (i.e., features) of an individual input
vector. This means that batch normalization normalizes separately each individual
feature’s range over several observations. In contrast, layer normalization normalizes
the features within a single observation. All three normalization approaches are once
applied to a problem formulation without state variables (i.e., only actions as inputs)

561

1 3

Computational Performance of Deep Reinforcement Learning…

and a formulation that includes last rounds action as state-variables (i.e., “single
round memory”) as elaborated in Sect. 5.3.1.

Figure 3a, b contrast the impact of different types of normalization schemes and
state space memory information on the number of learnt equilibrium strategies for
the low-offering player. The figures of merit depict the percentage of offers within
equilibrium. In order to collect statistics, all normalization schemes have been iter-
ated 100 times. Remember that equilibrium outcomes in our setting are character-
ized as one player offering at the price cap and its opponent offers below the thresh-
old given in (11). The threshold is determined by the parameters of the game, i.e.,
price cap, marginal costs, and the ratio of capacity to residual demand. For our
standard model parameters (see Table 2), this threshold is calculated as
(p − c)

(D−q)

q
+ c = (100 − 20)

70−50

50
+ 20 = 52 . We depicted the threshold as the yel-

low vertical line in Fig. 3a, b. The three remaining lines in each figure represent the
cumulative density function, i.e., the distribution of offers derived by differing nor-
malization schemes ordered by their offer height. The intersection point between
one of these lines and threshold (yellow) is key, because its height on the y-axis
gives the percentage of equilibrium compatible offers. Here, the higher the point of
intersection on the y-axis, the better.

We find that in the memory-less case (Panel a) with small state space, layer
normalization (red, approximately 100%) outperforms “no normalization” (blue,
approximately 99%) as well as batch normalization (green, approximately 77%). In
Panel (b), we conduct the analysis, explicitly including the last round of actions into
the state space. As before, layer normalization (red, approximately 98% ), outper-
forms the unnormalized scheme (blue, approximately 93%) and batch normalization
(green, approximately 92%). Layer normalization has consistently performed best
in our setting and is thus recommendable with the caveat that even unnormalized
runs performed relatively well. Batch normalization performed worst. However, we
find the strong sensitivity of batch normalization to the increased state space size
remarkable. We reemphasize that the increase in size of two additional state vari-
ables is relatively small compared to state spaces size common in e.g. the ATARI
domain (Mnih et al., 2015). Nonetheless, batch normalization improved its perfor-
mance by at least 20%, while the other methods got slightly less efficient. This moti-
vates us to conjecture, that batch normalization might proof robust when scaling-up
the state space complexity. Moreover, the relatively good performance of unnormal-
ized runs might be lost in larger state space, since even a small increase notably had
a relevant effect on the unnormalized runs.

Aside from the impacts of normalization on rates of equilibrium convergence,
we observe remarkable qualitative differences in the arising offer distributions. For
instance, batch normalization exhibits a much flatter offer distribution compared
to the unnormalized case at almost identical rates of convergence in the large state
space case (see Fig. 3b). In the memory-less case, the difference in distribution is
even more pronounced, albeit the large difference in convergence makes the distri-
butions overall less comparable.

In our setting layer normalization performed best. However, the impact of fur-
ther increases in state space size seems a promising line of research, since it seems

562	 C. Graf et al.

1 3

to impact the performance significantly and real-world problems are expected to be
equipped with large state spaces. Furthermore, normalization choices influence the
arising offer distributions even at similar rates of convergence. Hence, normalization
choices should not be taken solely on a technical basis but consideration is neces-
sary that they also affect equilibrium outcomes.

5.4.3 � State Space and Memory

In Sects. 5.4.1 and 5.4.2 we have shown that larger state spaces do not necessarily
lead to better convergence behavior in our setting, at least not in the relatively simple
case where state space information is given by past behavior of all agents. It seems,
that larger state spaces are more error prone than smaller state spaces.

In order to test this hypothesis more rigorously, we consider a test-case of a clas-
sic Bertrand duopoly in which both firms are identical, except that one company
includes last rounds offers into its state space and the other not. Figure 8 depicts the
results of 100 rounds of competition in such a duopoly. The y-axis plots the ratio
of won rounds to total rounds by the agent that has access to the offers of the last
round. The x-axis depicts the influence of increasing an agent’s initial exploration
rate. Specifically, we set the standard deviation of the initial noise to 10, 15, 20, and
30. The entire bar (blue and green) depicts the percentage of runs, where the agent
with memory earns more than its rival (i.e., “wins”). The blue bar shows all cases
where the player with memory won and both players are playing a best response,
hence have already equilibriated. Hence, if the green bar is above 50%, the availabil-
ity of memory led to an advantage.

Noise Variance

Won
rounds
(%)

Fig. 8   Asymmetric state space memory. Notes: The figure depicts the outcome of competition between
an agent with state space memory and an agent without. The state space memory contains last rounds
offers. The agents are otherwise identical competing in a duopoly. The height of the entire bar (blue
and green area) depicts the rate of games, where the agent with memory earned more than its rival (i.e.
“won”). Green indicates that the agent with memory wins and the resulting outcome is also a Nash equi-
librium. The opposing player has no information on past offers in the state space. However, both players
are equipped with a “memory buffer.” The figure illustrates that larger memory in the state space depends
on the variance of the noise and is not always advantageous

563

1 3

Computational Performance of Deep Reinforcement Learning…

Intuitively, one might believe that more information is a strict advantage and
should always benefit an agent. However, Fig. 8 shows that this is not always the
case. In our simulations, the agent with no additional information performed bet-
ter for some parameter settings. Indeed, for weak noise variance of about 10, larger
memory is a disadvantage. Interestingly, stronger noise variance seems to counteract
this tendency. It can be concluded that the relationship between available state infor-
mation and algorithmic success is complex. This reemphasizes our findings from
Sects. 5.4.1 and 5.4.2 that a larger state space is not necessarily advantageous.

5.5 � Qualitative Analysis

So far we have tried to remain as quantitative and explicit as possible when
assessing the performance of DDPG to derive equilibrium outcomes in uniform
price auctions. We complement this assessment with a brief qualitative discus-
sion. The learning progress throughout a run can vary significantly and many
characteristics are hard to distill into a single numerical measure. Nonetheless
certain differences in learning behavior are striking when different parametriza-
tions are contrasted: In Table 3, we have selected four representative model runs
for each of the three normalization schemes. Two runs in each normalization cat-
egory are memory-less and two have been conducted with single round memory.
The chosen runs certainly represent a reoccurring pattern, but nonetheless there
are other runs in the same category with distinct appearances. Each category has
been run 100 times and we briefly comment on impressions that we had when
inspecting these runs. In order to reduce noise, the individual impressions gained
from Table 3, we follow up with a statistical evaluation of the offer price develop-
ment throughout the learning process averaged over all 100 runs with the same
normalization and memory choices in Fig. 9. There, we depict the development
of the average competitiveness between the algorithms throughout the learning
process. This is measured for each individual episode by the percentage of runs
that undercut each other in a given episode. Overall, competitiveness starts high
and eventually decreases, however there are distinct differences in the speed of
decline depending on the normalization scheme and the memory model.

Overall, the choice of normalization seems to strongly influence behavioral pat-
terns of the agents. We believe that one of the most striking facts is the influence of
memory. In Table 3, we see significantly more competition between both partici-
pants, whenever we include memory in the state space. The memory less runs tend
to settle quickly into a Nash equilibrium and exhibit an overall more static behavior.
This seems to come along with a tendency to converge easily.

This observation is confirmed by the statistics from Fig. 9. In all cases, we see
considerable more variance in the means of the cases with memory than without,
although the range of offers within one standard deviation is only slightly enlarged.
This illustrates an overall more unsteady behavior in the non-empty state spaces.
The increased variance of means with memory seems to be consistent throughout
the different normalization schemes.

564	 C. Graf et al.

1 3

Even though we have seen in Sect. 5.4.1 that memory leads to larger sensitivity
of convergence towards learning rate choice, we believe that this is not necessar-
ily a sign of bad learning. Indeed, we are inclined to conjecture that the memory
allows to know the opponent’s behavior better and thus engage in fiercer compe-
tition. From the perspective of market simulation, this may be a more realistic
behavior or at least it may be seen as parametrizing some sort of risk-seeking.
Hence, we investigate the competitiveness of the two algorithms as a distinct fea-
ture of interest.

Initially, it is not clear how to measure competitiveness. We point out that a high
variance is not sufficient for ensuring competitveness. For instance, consider the
batch-normalized no memory examples depicted in Table 3. There, both low offer-
ing players vary there offers considerably, but their price offers never reach the prox-
imity of the high offering player after episode 2000. This is an example of relatively
high variance with no competiteveness.

Hence, we propose the following measure of competitiveness. If one player is
the high offering player in one turn and the low offering player in the next turn, we
count this as a switch. We count the number of switches per episode and divide by
the turns per episode, yielding the average switches per episode. This relative meas-
ure is normalized to range in [0, 1] with 1 corresponding to a switch in every turn
and 0 to never switching. We believe, that this measure clearly captures the notion
of competitive behavior, due to being high precisely when opponents undercut each
other frequently.

One caveat of the measure may be that it not explicitly considers the magnitude
of undercuts, but we still belief it to be informative.

Finally, we smooth the measure by applying a rolling average over a window of
100 episodes. Smoothing is not conceptual, but serves a better visual representa-
tion, since the significant variance of the competitiveness measure between episodes
leads to indistinguishable graphs.

We depict the development of the algorithms competitiveness measure in Fig. 9.
Each color represents a different normalization method. Panel (a) depicts 100 runs
without state space memory, while Panel (b) depicts 100 runs with state space
memory.

We point out that DDPG is equipped with two possibly interacting types of mem-
ory: the replay buffer and a possible state space memory. Hence, results of Panel (a)
are not to be understood as memory-less, however they do not include the actions of
last round in the state space, but only rely on the statistical representation of the his-
tory within the replay buffer of size 50,000. Nonetheless, we see a significant effect
of state space memory on the algorithms competitiveness.

First, it has to be noted that we find unormalized runs to be the most competitive
ones, while normalization tends to decrease competitiveness overall. Hence, normal-
ization methods can severely affect the resulting outcome.

Generally, state space memory does not strongly impact the development of
unnormalized or layer normalized runs. This stand in stark contrast to batch nor-
malized runs, where competitiveness changes completely. While Panel (a) sees

565

1 3

Computational Performance of Deep Reinforcement Learning…

batch normalized runs by far the most uncompetitive, in Panel (b) the memory
alleviates the normalization effects leaving batch and unnormalized runs almost as
competitive.

Contrasting these results with the convergence rates of Fig. 3a, b, we see that
while layer normalization leads to perfect convergence and admits consistent behav-
ior regardless of the state space, it comes at the price of a significant decrease in
competitiveness and thus essentially makes a behavioral assumption. This is not nec-
essarily a disadvantage, but it illustrates that the choice of the normalization method
needs to be in fact a conscious modelling choice.

The decrease in convergence between layer and unnormalized runs is marginal, at
least in the empty state space regime that we summarized in Fig. 3a. Indeed, it may

Table 3   Qualitative depiction of normalization schemes and memory influence on offering behavior.
Notes: Exemplary selection of 2 out of 100 DDPG runs per normalization methods and memory. Plots in
top rows display runs without state space memory (no memory), plots in bottom rows display runs with
state space memory (with memory). In the runs with memory, fiercer competition during the learning
process seems to be apparent. This assertion is strengthened by Fig. 9’s quantitative evaluation of the
average number of undercuts

Unnormalized Layer Normalized Batch Normalized

N
o
M
em

or
y

Episode

O
�e

r P
ri

ce

Episode

O
�e

r P
ri

ce

Episode

O
�e

r P
ri

ce

Episode

O
�e

r P
ri

ce

Episode

O
�e

r P
ri

ce

Episode

O
�e

r P
ri

ce

W
it
h
M
em

or
y

Episode

O
�e

r P
ri

ce

Episode

O
�e

r P
ri

ce

Episode

O
�e

r P
ri

ce

Episode

O
�e

r P
ri

ce

Episode

O
�e

r P
ri

ce

Episode

O
�e

r P
ri

ce

566	 C. Graf et al.

1 3

be worthwhile to forfeit normalization against common machine learning practices,
if competitive behavior is seen as desirable. However, the drop in convergence of
unnormalized DDPG runs is significant already in the only slightly enlarged state
space of Fig. 3b. It is therefore quite possible that unnormalized DDPG is not robust
in complex state spaces.

Another interesting alternative, is the use of batch normalization methods.
Although, this normalization method fails both in convergence and competitiveness
in Panel (a), it seems to be a sensible choice in Panel (b). If accompanied with state
space memory, batch normalization is similarly in competitiveness to unnormalized
runs and convergence. Moreover, it is the only method that increased its perfor-
mance in the larger state space, while all others performed worse. This may indicate
a superior scaling of batch normalization to more complex state action spaces. Con-
sidering that batch normalization methods stem from computer game learning envi-
ronments, where each pixel is regarded as individual state it seems at least plausible
that this method may work better only in large state spaces. Nonetheless, this can not
be fully concluded from the result at hand, but certainly merits deeper investigation
to assess this conjecture.

5.6 � Replay Buffer & the Limiting Case of the “Ultra‑competitive” Benchmark
Scenario

In our standard benchmark scenario with demand q < D < 2q , convergence could
be reliably achieved with adequate choices of learning rates and normalization meth-
ods. In this case, a replay buffer that was comparably large with up to 50,000 turns
memorized was sufficient to attain convergence. We emphasize that in the standard
scenario 20,000 episodes were used as a standard run-time. However, algorithms
frequently converged already around 5000 episodes.

Fig. 9   Competitiveness influenced by normalization and memory. Notes: To measure competitiveness,
we depict the average rate of undercuts per episode from 100 DDPG runs smoothed by a rolling average
over 100 episodes. Each plot shows three normalization methods: unnormalized (green), layer normal-
ized (orange), and batch normalized (blue). Panel a represents runs without explicit state space memory,
while panel b allows for state space memory

567

1 3

Computational Performance of Deep Reinforcement Learning…

Classically, Bertrand duopolies are studied in an unconstrained and a symmet-
ric setting. This situation is well known to exhibit a unique equilibrium, where
both agents offer their marginal costs. In the unconstrained Bertrand duopoly (i.e.,
0 < D < q ), we find DDPG to converge towards both players offering marginal costs
as expected. However, the speed of convergence depends crucially on the configu-
ration of the replay buffer. A too large memory buffer leads to slow convergence
times. Even extremely long run-times of up to 100,000 episodes did not converge
fully, until we reduced the size of the replay buffer. Indeed, in this situation the size
of the replay buffer seems absolutely critical. Figure 4, Panel (a)–(c), depict the
effect of the memory buffer size on DDPG’s convergence time.

Another parameter that has been proven critical is the noise decay rate. This is
less surprising since highly competitive equilibria require sufficient exploration to
converge. The “super-competitive” scenario is such a highly competitive equilib-
rium. Consequently, the effect of the decay rate on the convergence of unconstrained
Bertrand games is clearly visible.

5.6.1 � Replay Buffer Size

We tested replay buffer sizes of 50,000 rounds (approximately 400 Batches), 5000
rounds (approximately 40 Batches), 500 rounds (approximately 4 Batches), 256
rounds (2 Batches), and 129 rounds (1 Batch) each.12

Neither very high (50,000 episodes) nor very low choices (129 or 256 episodes)
led to good results. Too large memory buffers led to both agents only marginally
undercutting each other with a steady but extremely slow decrease in offers over
time. Smaller choices of the size of the memory buffer corresponded directly to fast
decreases in offers towards the marginal cost equilibrium. However, too small mem-
ory buffers (129 or 256 episodes) quickly approached marginal costs but did not
necessarily stay within equilibrium. Overall, buffer sizes of 500 converged quickly
but yet remained stable. We want to stress that this trend held true both with and
without the inclusion of past actions into the state space.

We explain this phenomena by the fact that large buffer sizes slow learning. For
instance, in the D ≤ q case, the equilibrium is only found through long periods of
competition. However, initially both algorithms can succeed with relatively large
offer prices. Big buffers tend to keep up old experiences for a relatively long time
and result in the algorithm decreasing its offer prices slower than with small buffers,
as initial successes are remember longer. In contrast, if the memory buffer is not big
enough to retain the information that deviations from equilibrium are punished, the
algorithm will be unstable as it begins to explore again after convergence to equi-
librium. This indicates that replay buffers are indeed an integral part of DDPG and
can not be simply left out. Nonetheless, the buffer size should be carefully limited. If
convergence is possible, smaller memories are better.

12  The choice of low memory buffer sizes are determined as batch size plus one and batch size times
two.

568	 C. Graf et al.

1 3

5.6.2 � Noise & Decay Rate

As its name suggests, deep deterministic policy gradient (DDPG) algorithms employ
neural networks that deterministicly output the same values given the same inputs.
Outputs only change after training on unseen data. However, novel data would never
be explored by a deterministic neural network. Noise introduces randomness into
the algorithm, in order to generate novel behavior. Hence, the noise directly con-
trols DDPG’s exploration. In turn, the decay rate controls the fading out of the ini-
tially high noise over time that ensures an eventual switch from initial exploration to
exploitation. Hence, the decay rate is the most direct correspondence to Q-learnings
exploitation-exploration parameter.

We depict the influence of the decay rate on convergence behavior in Fig. 10. The
figure shows relatively common behavior similar to many reinforcement algorithms.
This is not surprising since the interplay between exploration and exploitation is a
shared characteristic of all RL algorithms. Too fast decay rates, such as 0.9, lead
to trivial behavior, while slow decay rates such as 0.99999 leads to complete ran-
dom behavior. In the intermediate regime, convergence is possible with the most-
balanced choice of 0.999 leading to the best convergence time in our setting.

5.7 � Beyond Duopoly

In this section, we compare oligopolies with 3, 5, and 7 strategic players to the duop-
oly outcome to understand the algorithmic performance of DDPG when the number
of firms increases. For player numbers larger than 2 we lack a theoretical benchmark
similar to Proposition 1. We therefore focus on unconstrained symmetric Bertrand
scenarios. In that setting, we know that the static Bertrand equilibrium would lead
to marginal cost offers. Hence, we are able to analyze the convergence properties of
our algorithm in that setting.

We remark that general reinforcement learning is believed to be considerably
harder in multi-player settings than in single-player settings (Bu et al. 2008; Foerster
et al. 2016). This stems from the fact that every new strategy employed by an agent
requires all other agents to recommence learning in response. Insofar, even studying
a duopoly is a contribution to the current state-of-the-art in RL. Furthermore, it is
generally assumed that convergence times can grow exponentially in the number of
players. Hence, every added firm is expected to impact the run-time significantly.

In Sect. 5.6 we studied 100 2-player simulations. We commence by contrasting
100 3-player simulations, 20 5-player simulations, and 20 7-player with respect to
their convergence rates after 100,000 iterations. We have not studied higher player
numbers since no simulation converged completely in the 7 player case.

In agreement with theoretical expectations, the convergence to equilibrium after
100,000 iterations drops with increased player numbers. However, we believe that
the results are remarkable nonetheless since they show a much more nuanced scal-
ing behavior than expected. In our setting, 2 or 3 players are indeed tractable within
at most 100,000 iterations. We were able to find convergence to equilibrium for 100
out of 100 2-player games, and for 95 out of 100 3-player games. In the 5-player

569

1 3

Computational Performance of Deep Reinforcement Learning…

O
�e

r P
ric

e

(a) 0.9999 Decay Rate

O
�e

r P
ric

e

(b) 0.999 Decay Rate

O
�e

r P
ric

e

(c) 0.99 Decay Rate

Fig. 10   DDPG convergence times of unconstrained bertrand games depending on decay rate size. Notes:
Figures depict identical DDPG runs with varying decay rates. The decay speed increases from top to bot-
tom. Note that decay rates are multiplicative factors, hence larger numbers correspond to slower decay.
The depicted rates are a 0.9999, b 0.999, and c 0.99. Even faster decay rates have a counterproductive
effect on convergence times in our setting

570	 C. Graf et al.

1 3

case only 1/20 converged and in the 7-player game we did not find convergence.
However, even though after 100,000 iterations full equilibrium was never reached
by 7 players (i.e., 7 players simultaneously playing their best response), on average
5 out of 7 players converged to their best response with only 2 players maintaining
high volatility in their actions. Hence, there is a clearly visible trend towards the

Fig. 11   Convergence conditional on the number of players. Notes: The figures depicts examples of the
development of offers over 100,000 iterations for 3, 5, and 7 strategic players. It is visible that for 5 and 7
players not all players have converged to the Nash equilibrium yet

571

1 3

Computational Performance of Deep Reinforcement Learning…

equilibrium present even in the unconverged runs. This is shown by example runs
for 3, 5, and 7 agents in Fig. 11.

6 � Conclusion

Our main contribution is the adaption of the deep deterministic policy gradient
(DDPG) algorithm to a novel problem domain: strategic interaction through a uni-
form price auction with a continuous action space.13

With regard to the neural network design, we closely followed (Lillicrap et al.
2015). Overall, this design seems workable for analyzing competition in auctions.
We also remark that Lillicrap’s design seemed like a reasonable starting point, but
there is a vast range of possible design choices. However, we believe that refined
network designs are an exciting avenue of future research.

We believe and argue that DDPG is a significant step beyond the frequently used
Q-learning algorithm. The methodological novelty lies in the possibility of allowing
fully continuous state and action spaces (as compared to Q-learning) and no need for
any assumptions of a functional form parametrizing the strategy space of the agents
(as compared to policy gradient learning). We have argued that despite frequently
being labelled “model-free,” Q-learning’s state and action space assumptions indeed
require significant modeling assumptions to be justified. Essentially, DDPG’s conti-
nuity properties are another step forward towards being truly model-free. Nonethe-
less, we have pointed out the caveat that certain parametric choices such as memory
models and normalization methods do impact agent behavior.

Furthermore, the problem is naturally a multi-agent problem and applying the
initially single-agent DDPG to multi-agent settings is in itself a timely endeavour,
although there have already been several works pursuing this new line of research.
In summary, we believe to have demonstrated that deep reinforcement learning algo-
rithms like DDPG essentially remove the necessity to discretize strategic offering
state and action spaces in low feature spaces. This result is most likely generalizable
to scenarios with numerous features, however this needs to be ascertained by future
work.

We accompany our DDPG implementation with a benchmark framework based on
its ability to consistently converge to Nash equilibria. This is only possible through
our employment of a scenario (see Sect. 4) where we can analytically derive Nash
equilibria. In our case, we consider a duopoly engaged in a uniform price auction of a
capacity constrained homogeneous good. We are able to completely characterize the
auctions equilibrium strategies. We have performed a number of DDPG market simu-
lations while varying the key learning parameters: actor learning rate, critic learning
rate, state space memory, and normalization technique. Each parametrization has been
run 100 times and evaluated with respect to the percentage of strategies that converged
to an equilibrium after 15,000 episodes of learning. This allows us to assess the impact
of the aforementioned parameters on the learnability of the equilibria.

13  If players do not have capacity constraints these setting translates to price competition à la Bertrand.

572	 C. Graf et al.

1 3

Despite considerable variance in the results between differing algorithm para-
metrizations, there is a common trend: Well parametrized DDPG simulations play
equilibrium strategies almost always (more than 95% of the runs). Ill-parametrized
runs may not converge at all. Nonetheless, our first key finding is that it is possi-
ble to reliably find equilibrium strategies with a properly tuned DDPG algorithm.
Commonly, the success of deep learning algorithms depends crucially on the correct
parametrization. Hence, we give specific advise on how to choose these parameters
in Sect. 5.5. We discuss the effects of explicit state space memory, replay buffer
memory, and normalization method encountered during our analysis. All showed
significant impacts on the algorithm’s behavior. Furthermore, layer normalization
clearly performed best in our benchmark, if measured solely in terms of conver-
gence reliability.

Including an explicit memory of the last round’s actions as state information
had counterintuitive results. Similarly, using a larger replay buffers did not neces-
sarily perform better. In contrast, larger replay buffers led to slower convergence
times. One might have expected memory to “help” the algorithm and thus converge
more easily, but we found the opposite effect. Memory-less algorithms converged
in a wider range of learning rates. Nonetheless, both memory-less and algorithms
with memory reached convergence rates above 90%, albeit the memory-less ones
did so more robustly. This result certainly merits further investigation, however we
conjecture two possible reasons for this behavior. First, the large state space of the
memory might counteract any informational benefits. This would indicate that one
should include state space information only if one is certain that it is vital informa-
tion. Second, the algorithms with memory appear to compete more proactively. Pos-
sibly, awareness of the opponent is necessary to place competitive offers. It may be
the case that competition seeking agents explore the strategy space more thoroughly
and thus require longer equilibration times. In our opinion, this could be beneficial
for market simulations or policy analysis, where one might hope to fully explore the
strategy space. Overall, this leads us to conclude that, with respect to algorithmic
memory, less seems to be more.

Furthermore, we have to stress the impact of normalization schemes on final
behavior. Generally, unnormalized runs did perform well too, however the best con-
vergence rates were encountered by the use of so-called layer normalization. Layer
normalization tended to produce well-equilibrated, but also relatively static and non-
competitive behavioral patterns. This result stood in contrast to batch normalization.
Batch normalization showed highly differentiated behavior. While memory-less
batch normalization led to the worst convergence rates by far, batch normalization
with memory performed well albeit worse than layer normalization with memory,
and was the only method that profited from the inclusion of memory. This may
be an indication that batch normalization is better suited to handle more complex
state spaces; which is also a question for future research. Moreover, it showed an
extremely pronounced tendency to compete, experiment, and explore the state space.
This property may or may not be desirable, but we certainly see significant behavio-
ral assumptions entering through seemingly inconspicuous normalization methods.
Hence, we advise to take this into account.

573

1 3

Computational Performance of Deep Reinforcement Learning…

In summary, we believe to have demonstrated that Nash equilbria in multi-agent
uniform price auctions can be found by DDPG simulations. This makes it a promis-
ing tool to analyze auctions or to derive informative counterfactuals even in more
general settings.

Funding  Open access funding provided by University of Natural Resources and Life Sciences Vienna
(BOKU). Christoph Graf and Claude Klöckl gratefully acknowledge financial support from the Anni-
versary Fund of the Oesterreichische Nationalbank (OeNB), 18306. Furthermore, Christoph Graf
acknowledges financial support from the Austrian Science Fund (FWF), J-3917. Johannes Schmidt and
Claude Klöckl thank the European Research Council (’reFUEL’ ERC-2017-STG 758149) for its financial
support.

Availability of Data and Materials  Not applicable.

Code Availability  https://​github.​com/​ckrk/​biddi​ng_​learn​ing.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Human and Animals Rights  None.

 Informed Consent  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Adami, C., Schossau, J., & Hintze, A. (2016). Evolutionary game theory using agent-based methods.
Physics of Life Reviews, 19, 1–26. https://​doi.​org/​10.​1016/j.​plrev.​2016.​08.​015.

Aliabadi, D. E., Kaya, M., & Şahin, G. (2017). An agent-based simulation of power generation company
behavior in electricity markets under different market-clearing mechanisms. Energy Policy, 100,
191–205. https://​doi.​org/​10.​1016/j.​enpol.​2016.​09.​063.

Andreoni, J., & Miller, J. H. (1995). Auctions with artificial adaptive agents. Games and Economic
Behavior, 10(1), 39–64.

Asker, J., Fershtman, C., & Pakes, A. (2021). Artificial intelligence and pricing: The impact of algorithm
design. Technical report, National Bureau of Economic Research. https://​www.​nber.​org/​system/​
files/​worki​ng_​papers/​w28535/​w28535.​pdf

Awerbuch, B., Azar, Y., Epstein, A., Mirrokni, V. S., & Skopalik, A. (2008).Fast convergence to nearly
optimal solutions in potential games. In Proceedings of the 9th ACM conference on Electronic com-
merce, pp. 264–273. https://​doi.​org/​10.​1145/​13867​90.​13868​32

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv:​1607.​06450
Blum, A., Hajiaghayi, M., Ligett, K., & Roth, A. (2008) Regret minimization and the price of total anar-

chy. In Proceedings of the fortieth annual ACM symposium on Theory of computing, pp. 373–382.
https://​doi.​org/​10.​1145/​13743​76.​13744​30

https://github.com/ckrk/bidding_learning
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.plrev.2016.08.015
https://doi.org/10.1016/j.enpol.2016.09.063
https://www.nber.org/system/files/working_papers/w28535/w28535.pdf
https://www.nber.org/system/files/working_papers/w28535/w28535.pdf
https://doi.org/10.1145/1386790.1386832
http://arxiv.org/abs/1607.06450
https://doi.org/10.1145/1374376.1374430

574	 C. Graf et al.

1 3

Boyer, C. N., & Brorsen, B. W. (2014). Implications of a reserve price in an agent-based common-value
auction. Computational Economics, 43(1), 33–51. https://​doi.​org/​10.​1007/​s10614-​013-​9413-8.

Brown, N., Lerer, A., Gross, S., & Sandholm, T. (2019). Deep counterfactual regret minimization. In
International conference on machine learning (pp. 793–802). PMLR. http://​proce​edings.​mlr.​press/​
v97/​brown​19b/​brown​19b.​pdf

Bu, L., Babu, R., & De Schutter, B. (2008). A comprehensive survey of multiagent reinforcement
learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 38(2), 156–172. https://​doi.​org/​10.​1109/​TSMCC.​2007.​913919.

Calvano, E., Calzolari, G., Denicolò, V., & Pastorello, S. (2020). Artificial intelligence, algorithmic
pricing, and collusion. American Economic Review, 110(10), 3267–97. https://​doi.​org/​10.​1257/​
aer.​20190​623.

Caoui, E. (2022). A study of umbrella damages from bid-rigging. The Journal of Law and Economics,
65, 239–277.

Charankevich, H. (2021). Bid manipulation in open procurement auctions. Working paper, University
of Virginia. https://​drive.​google.​com/​file/d/​1LoRT​hIkEj​Af-​VMnW8​yYgRq​7Yaqy​56PPS

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Con-
trol, Signals and Systems, 2(4), 303–314. https://​doi.​org/​10.​1007/​BF025​51274.

Deissenberg, C., Van Der Hoog, S., & Dawid, H. (2008). Eurace: A massively parallel agent-based
model of the European economy. Applied Mathematics and Computation, 204(2), 541–552.

Foerster, J., Assael, I. A., de Freitas, N., & Whiteson, S. (2016). Learning to communicate with deep
multi-agent reinforcement learning. In Proceedings of the 30th international conference on neu-
ral information processing systems, p. 29. https://​arxiv.​org/​pdf/​1605.​06676.​pdf

Foster, D. P., & Vohra, R. V. (1997). Calibrated learning and correlated equilibrium. Games and Eco-
nomic Behavior, 21(1–2), 40. https://​doi.​org/​10.​1006/​game.​1997.​0595.

Fudenberg, D., & Levine, D. K. (1998). The theory of learning in games (Vol. 2). MIT Press.
Fudenberg, D., & Maskin, E. (1986). The folk theorem in repeated games with discounting or with

incomplete information. Econometrica, 54, 533–554. https://​doi.​org/​10.​2307/​19113​07.
Fujimoto, S., van Hoof, H., & Meger, D. (2018). Addressing function approximation error in actor-

critic methods. CoRR, arXiv:​1802.​09477
Graf, C., & Wolak, F. A. (2020). Measuring the ability to exercise unilateral market power in loca-

tional-pricing markets: An application to the Italian electricity market. Working paper, Univer-
sity of Stanford. https://​web.​stanf​ord.​edu/​group/​fwolak/​cgi-​bin/​sites/​defau​lt/​files/​Measu​ring in_​
Locat​ional_​Prici​ng_​Marke​ts_​Graf_​Wolak.​pdf

Graf, C., Quaglia, F., & Wolak, F. A. (2020a). Market performance assessment in locational markets
with non-convexities. Working paper, University of Stanford. https://​web.​stanf​ord.​edu/​group/​
fwolak/​cgi-​bin/​sites/​defau​lt/​files/​NonCo​nvexB​enchm​ark.​pdf

Graf, C., Quaglia, F., & Wolak, F. A. (2020b). Simplified electricity market models with significant
intermittent renewable capacity: Evidence from Italy. NBER Working Papers 27262, National
Bureau of Economic Research. http://​www.​nber.​org/​papers/​w27262

Graf, C., Quaglia, F., & Wolak, F. A. (2021). (Machine) learning from COVID-19 lockdown about
electricity market performance with a large share of renewables. Journal of Environmental Eco-
nomics and Management, 105, 102398. https://​doi.​org/​10.​1016/j.​jeem.​2020.​102398.

Greenberg, H. J. (2010). Myths and counterexamples in mathematical programming. Mathematical
programming glossary. https://​gloss​ary.​infor​ms.​org/​myths/​Curre​ntVer​sion/​myths.​pdf

Guerre, E., Perrigne, I., & Vuong, Q. (2000). Optimal nonparametric estimation of first-price auc-
tions. Econometrica, 68(3), 525–574. https://​doi.​org/​10.​1111/​1468-​0262.​00123.

Harrison, G. W. (1989). Theory and misbehavior of first-price auctions. The American Economic
Review, 79(4), 749–762.

Hinton, G. E., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., et al. (2012). Deep neural net-
works for acoustic modeling in speech recognition: The shared views of four research groups.
IEEE Signal Processing Magazine, 29(6), 82–97. https://​doi.​org/​10.​1109/​MSP.​2012.​22055​97.

Hommes, C. H. (2006). Heterogeneous agent models in economics and finance. Handbook of Compu-
tational Economics, 2, 1109–1186.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing
internal covariate shift. CoRR, arXiv:​1502.​03167

Ito, K., & Reguant, M. (2016). Sequential markets, market power, and arbitrage. American Economic
Review, 106(7), 1921–1957. https://​doi.​org/​10.​1257/​aer.​20141​529.

https://doi.org/10.1007/s10614-013-9413-8
http://proceedings.mlr.press/v97/brown19b/brown19b.pdf
http://proceedings.mlr.press/v97/brown19b/brown19b.pdf
https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1257/aer.20190623
https://doi.org/10.1257/aer.20190623
https://drive.google.com/file/d/1LoRThIkEjAf-VMnW8yYgRq7Yaqy56PPS
https://doi.org/10.1007/BF02551274
https://arxiv.org/pdf/1605.06676.pdf
https://doi.org/10.1006/game.1997.0595
https://doi.org/10.2307/1911307
http://arxiv.org/abs/1802.09477
https://web.stanford.edu/group/fwolak/cgi-bin/sites/default/files/Measuring%20in_Locational_Pricing_Markets_Graf_Wolak.pdf
https://web.stanford.edu/group/fwolak/cgi-bin/sites/default/files/Measuring%20in_Locational_Pricing_Markets_Graf_Wolak.pdf
https://web.stanford.edu/group/fwolak/cgi-bin/sites/default/files/NonConvexBenchmark.pdf
https://web.stanford.edu/group/fwolak/cgi-bin/sites/default/files/NonConvexBenchmark.pdf
http://www.nber.org/papers/w27262
https://doi.org/10.1016/j.jeem.2020.102398
https://glossary.informs.org/myths/CurrentVersion/myths.pdf
https://doi.org/10.1111/1468-0262.00123
https://doi.org/10.1109/MSP.2012.2205597
http://arxiv.org/abs/1502.03167
https://doi.org/10.1257/aer.20141529

575

1 3

Computational Performance of Deep Reinforcement Learning…

Jha, A., & Leslie, G. (2020). Dynamic costs and market power: Rooftop solar penetration in Western
Australia. Technical report, SSRN Working Paper.

Kastl, J. (2011). Discrete bids and empirical inference in divisible good auctions. The Review of Eco-
nomic Studies, 78(3), 974–1014. https://​doi.​org/​10.​1093/​restud/​rdq024.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization, 2014. cite arxiv:​1412.​6980.
Comment: Published as a conference paper at the 3rd International Conference for Learning Rep-
resentations, San Diego.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in
neural information processing systems (Vol. 25, pp. 1097–1105). Curran Associates, Inc.

Lago, J., Poplavskaya, K., Suryanarayana, G., & De Schutter, B. (2021). A market framework for grid
balancing support through imbalances trading. Renewable and Sustainable Energy Reviews, 137,
110467. https://​doi.​org/​10.​1016/j.​rser.​2020.​110467.

Lehna, M., Hoppmann, B., Scholz, C., & Heinrich, R. (2022). A Reinforcement Learning approach for
the continuous electricity market of Germany: Trading from the perspective of a wind park operator.
Energy and AI, 8, 100139. https://​doi.​org/​10.​1016/j.​egyai.​2022.​100139.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015).
Continuous control with deep reinforcement learning. arXiv:​1509.​02971

Lussange, J., Lazarevich, I., Bourgeois-Gironde, S., Palminteri, S., & Gutkin, B. (2021). Modelling stock
markets by multi-agent reinforcement learning. Computational Economics, 57, 113–147.

Merlo, A., & Schotter, A. (1992). Theory and misbehavior of first-price auctions: Comment. The Ameri-
can Economic Review, 82(5), 1413–1425.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-
level control through deep reinforcement learning. Nature, 518(7540), 529–533. https://​doi.​org/​10.​
1038/​natur​e14236.

Noe, T. H., Rebello, M., & Wang, J. (2012). Learning to bid: The design of auctions under uncertainty
and adaptation. Games and Economic Behavior, 74(2), 620–636. https://​doi.​org/​10.​1016/j.​geb.​2011.​
08.​005.

Reguant, M. (2014). Complementary bidding mechanisms and startup costs in electricity markets. Review
of Economic Studies, 81(4), 1708–1742. https://​doi.​org/​10.​1093/​restud/​rdu022.

Roughgarden, T. (2010). Algorithmic game theory. Communications of the ACM, 53(7), 78–86. https://​
doi.​org/​10.​1145/​17854​14.​17854​39.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., et al. (2020). Mastering
Atari, Go, chess and shogi by planning with a learned model. Nature, 588(7839), 604–609. https://​
doi.​org/​10.​1038/​s41586-​020-​03051-4.

Schuurmans, D., & Zinkevich, M. A. (2016). Deep learning games. In Advances in neural information
processing systems, pp. 1678–1686. https://​papers.​nips.​cc/​paper/​2016/​file/​c4015​b7f36​8e6b4​87180​
9f49d​ebe05​79-​Paper.​pdf

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et al. (2016). Master-
ing the game of Go with deep neural networks and tree search. Nature, 529(7587), 484–489. https://​
doi.​org/​10.​1038/​natur​e16961.

Sirignano, J., & Cont, R. (2019). Universal features of price formation in financial markets: Perspectives
from deep learning. Quantitative Finance, 19(9), 1449–1459.

Spooner, T., Fearnley, J., Savani, R., & Koukorinis, A. (2018). Market making via reinforcement learn-
ing. In Proceedings of the 17th AAMAS, pp. 434–442.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
Tesfatsion, L., & Judd, K. L. (2006). Handbook of computational economics: agent-based computational

economics. Elsevier.
Thurber, M. C., Davis, T. L., & Wolak, F. A. (2015). Simulating the interaction of a renewable portfolio

standard with electricity and carbon markets. The Electricity Journal, 28(4), 51–65.
van Hasselt, H. P., Guez, A., Hessel, M., Mnih, V., & Silver, D. (2016). Learning values across many

orders of magnitude. Advances in Neural Information Processing Systems, 29, 4287–4295.
Viehmann, J., Lorenczik, S., & Malischek, R. (2021). Multi-unit multiple bid auctions in balancing

markets: An agent-based Q-learning approach. Energy Economics, 93, 105035. https://​doi.​org/​10.​
1016/j.​eneco.​2020.​105035.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., et al. (2019). Grand-
master level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782), 350–354.
https://​doi.​org/​10.​1038/​s41586-​019-​1724-z.

https://doi.org/10.1093/restud/rdq024
http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/j.rser.2020.110467
https://doi.org/10.1016/j.egyai.2022.100139
http://arxiv.org/abs/1509.02971
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.geb.2011.08.005
https://doi.org/10.1016/j.geb.2011.08.005
https://doi.org/10.1093/restud/rdu022
https://doi.org/10.1145/1785414.1785439
https://doi.org/10.1145/1785414.1785439
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://papers.nips.cc/paper/2016/file/c4015b7f368e6b4871809f49debe0579-Paper.pdf
https://papers.nips.cc/paper/2016/file/c4015b7f368e6b4871809f49debe0579-Paper.pdf
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1016/j.eneco.2020.105035
https://doi.org/10.1016/j.eneco.2020.105035
https://doi.org/10.1038/s41586-019-1724-z

576	 C. Graf et al.

1 3

Viossat, Y., & Zapechelnyuk, A. (2013). No-regret dynamics and fictitious play. Journal of Economic
Theory, 148(2), 825–842. https://​doi.​org/​10.​1016/j.​jet.​2012.​07.​003.

Watkins, C. J. C. H. (1989).Learning from delayed rewards. Ph.D. thesis, University of Cambridge.
Yao, J., Adler, I., & Oren, S. S. (2008). Modeling and computing two-settlement oligopolistic equilibrium

in a congested electricity network. Operations Research, 56(1), 34–47. https://​doi.​org/​10.​1287/​opre.​
1070.​0416.

Yi, H. (2018). Deep deterministic policy gradient for autonomous vehicle driving. In Proceedings on the
International Conference on Artificial Intelligence (ICAI), pp. 191–194.

Zhang, Z., Chen, J., Chen, Z., & Li, W. (2021). Asynchronous episodic deep deterministic policy gradi-
ent: Toward continuous control in computationally complex environments. IEEE Transactions on
Cybernetics, 51(2), 604–613. https://​doi.​org/​10.​1109/​TCYB.​2019.​29391​74.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1016/j.jet.2012.07.003
https://doi.org/10.1287/opre.1070.0416
https://doi.org/10.1287/opre.1070.0416
https://doi.org/10.1109/TCYB.2019.2939174

	Computational Performance of Deep Reinforcement Learning to Find Nash Equilibria
	Abstract
	1 Introduction
	2 How to Model Strategic Interactions? From Game-Theoretic Equilibrium Models to Reinforcement Learning
	2.1 From Game Theory ...
	2.2 ... over Algorithmic Game Theory ...
	2.3 ... to Reinforcement Learning

	3 Reinforcement Learning: From the Q-table to Deep Neural Networks
	3.1 Reinforcement Learning
	3.2 Q-Learning
	3.3 Deep Deterministic Policy Gradient

	4 Price-Competition in a Symmetric Capacity Constrained Duopoly
	5 DDPG Learning in Uniform Price Auctions
	5.1 Main Benchmark Scenario: Capacity Constrained Bertrand Competition
	5.2 Alternative Benchmark Scenario: Unconstrained Bertrand Competition
	5.3 Tuning Parameters
	5.3.1 State Space
	5.3.2 Optimization Routine
	5.3.3 Actor and Critic Network Design
	5.3.4 Noise
	5.3.5 Replay Buffer

	5.4 Variational Analysis of Learning Parameters
	5.4.1 Learning Rates
	5.4.2 Normalization Schemes
	5.4.3 State Space and Memory

	5.5 Qualitative Analysis
	5.6 Replay Buffer & the Limiting Case of the “Ultra-competitive” Benchmark Scenario
	5.6.1 Replay Buffer Size
	5.6.2 Noise & Decay Rate

	5.7 Beyond Duopoly

	6 Conclusion
	References

